NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SEMIANNUAL REPORT
For the Period January 1, 1964 - June 30, 1964

AROMATIC ORGANIC LASER DEVELOPMENT

by
WR Mallory
RA Shirk
DL Stockman

This research is part of PROJECT DEFENDER under the joint sponsorship of the Advanced Research Projects Agency, the Office of Naval Research and the Department of Defense.

Contract No. NONR 4135 (00)
From Office of Naval Research
Project Code 3730
Order No. 306-62

Prepared for
Office of Naval Research
Department of the Navy
Washington 25, D.C.

Prepared by
Electronics Laboratory
General Electric Company
Building 3
Electronics Park
Syracuse, New York

Submitted by
Heavy Military
Electronics Department
General Electric Company
Building 3, Room 4
Court Street Plant
Syracuse, New York
Semiannual Report

AROMATIC ORGANIC LASER DEVELOPMENT

Contract No. NONR 413500
from the
Office of Naval Research

Sponsored by
Advanced Research Projects Agency
Project Code 3730
Order No. 306-62

Contract Initiation Date: 1 April 1963
Contract Termination Date: 31 March 1965
Amount of Contract: $90,314.00

Prepared by
Electronics Laboratory
General Electric Company
Electronics Park
Syracuse, New York
992-GH-921

Submitted by
Heavy Military Electronics Dept.
General Electric Company
Bldg. 3, Room 4
Court Street
Syracuse, New York
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION AND SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>II MATERIALS SELECTION AND PREPARATION</td>
<td>2</td>
</tr>
<tr>
<td>A. Spectroscopic Measurements</td>
<td>2</td>
</tr>
<tr>
<td>B. Polymerization Studies</td>
<td>2</td>
</tr>
<tr>
<td>C. Optical Properties of Polymers</td>
<td>3</td>
</tr>
<tr>
<td>III DEVICE DEVELOPMENT</td>
<td>6</td>
</tr>
<tr>
<td>IV BIBLIOGRAPHY</td>
<td>8</td>
</tr>
<tr>
<td>V DISTRIBUTION LIST</td>
<td>9</td>
</tr>
</tbody>
</table>
I. INTRODUCTION AND SUMMARY

The purpose of this program has been to produce coherent stimulated emission in the blue-green region in a purely organic dopant-host system. Towards this end, the experimental program of the last six months has been concerned primarily with the study of the optical properties of the polymers to be employed and on the development of a high peak power pumping source. Progress has been made in both of these areas.
II. MATERIALS SELECTION AND PREPARATION

A. Spectroscopic Measurements

The previous semiannual report noted that two molecules had been found with suitable spectroscopic properties. The two compounds are perylene and 9-aminoacridine. The routine spectroscopic features of these compounds were presented in the previous report. We have made some additional spectroscopic measurements. From the absorption and emission data for perylene, shown in Figure 1, the terminal-ground state splitting is measured by the energy difference between the 4710 Å fluorescence peak and the crossover (the 0-0 transition) point: between the absorption and emission spectrum at 4445 Å. The energy separation is 1266 cm\(^{-1}\). The long wavelength absorption (>4445 Å) of the perylene is due to transitions of the upper vibrational-rotational levels of the ground electronic state to the lowest vibrational-rotational level of the excited state. The population arises from simple Boltzmann statistics. Owing to the near perfect mirror symmetry of the absorption and fluorescence spectrum, it would be anticipated that absorption at the 4710 Å terminal state would have the same cross section as the 4100 Å peak.

Figure 2 illustrates the experimentally obtained absorption of a 5.56 \times 10^{-4} molar solution of perylene in benzene using a 10 cm cell. From the optical density at 4710 Å, we calculate that the terminal ground state separation is about 1300 cm\(^{-1}\) in fair agreement with the spectroscopic value. Due to the assumptions employed, no better agreement should be expected.

B. Polymerization Studies

In the previous report, it was shown that casting of the dye-monomer solution in the absence of oxygen produced the highest optical quality polymer rods. When the birefringence studies were begun, it was found necessary to add dibutyl phthalate (see Section C). The polymerization rates in the presence of the dibutyl phthalate were slowed down to the...
ABSORPTION AND FLUORESCENCE SPECTRUM OF PERYLENE IN BENZENE

FIGURE I
extent that the organic dyes were oxidized by the catalyst, benzoyl peroxide. It was not found possible to adjust the rates of growth and concentration of catalyst used to prevent degradation of the dye. Part of the difficulty can be traced to the fact that the catalyzing agent is not completely used up at the end of the polymerization.

Another catalyst has been found which is used up completely, requires lower initial concentrations and does not oxidize the dye. This catalyst is λ, λ'-azodiisobutyronitrile. The appropriate samples have now been prepared for the stress optical measurements to be described below. The samples are grown in oxygen evacuated pyrex tubes under the temperature cycle given below;

\begin{align*}
40^\circ C & \quad 2 \text{ days} \\
\text{Raise } 40^\circ C \text{ to } 60^\circ C & \quad 1 \text{ day} \\
\text{Raise } 60^\circ C \text{ to } 100^\circ C & \quad 1 \text{ day} \\
100^\circ C & \quad 3 \text{ days} \\
\text{Cool and anneal at } 102^\circ C.
\end{align*}

C. Optical Properties of Polymers

It was noted in the last semiannual report that most polymers are birefringent in their natural state due to stresses which cannot be annealed out of the samples. If a high polymer is stressed there is a restoring force which originates from two types of molecular processes. One of these is an entropy component which is the result of the orientation produced by the deformation. Brownian motion of each segment of the distorted polymer chain operates to return the chain to its more probable configuration. The entropy force increases with temperature because of increased Brownian motion. There is also a potential energy component of the force which is a result of the attraction (or repulsion) between molecules that have been pulled apart (or squeezed together) during the deformation. Thermodynamically, the force, f, is

$$f = \left(\frac{\partial W}{\partial l} \right)_T = \left(\frac{\partial U}{\partial l} \right)_T - T \left(\frac{\partial S}{\partial l} \right)_T.$$
For an ideal rubber, only the entropy contribution is present.

If a polymer is stretched and held at constant length, the stress relaxes as a result of a rearrangement of the chains from their initial deformed configuration to the more probable configuration. Chemical reactions, viscous flow, localized strain rearrangement and crystallization are some of the processes which can change the polymers' configuration.

High polymers typically exhibit two types of behavior. At, or near, room temperature, most of them are in a glassy state characterized by frozen chain orientations. For polymers in this state, the birefringence is proportional to the stress for small values of stress and the stress arises principally from the potential energy term described above. At higher temperatures, the polymer changes conformation to a rubbery state characterized by stresses arising almost from the purely entropy considerations. A more complete discussion of these effects can be found elsewhere\(^1\).

The transition from the rubbery state to the glassy state is a second-order transition. Since all polymers of interest must be annealed in the rubbery state and cooled to a glassy state, and since it is not possible to maintain exact thermal equilibrium in passing through the transition temperature, it is not possible to remove all the stresses in a polymer sample. As a result, all polymers exhibit stress-induced birefringence, even after careful annealing.

The birefringence is related to the stress by

\[\Delta N = KF \]

where \(K \) is the stress-optical coefficient and \(F \) is the force per unit area.

Typical values of \(K \) for polymethyl methacrylate are \(-4 \times 10^{-13} \text{ cm}^2/\text{dyne}\). It has been shown by Lamble and Dahmouch\(^2\) that it is possible to obtain a zero stress-optical coefficient in polymethyl methacrylate by the addition of dibutyl phthalate. Figure 3 shows a measured stress-optical coefficient
for the modified polymer as a function of composition measured at 5461 Å. This was made on the benzoyl peroxide-catalyzed form of the undoped polymer. Due to the necessary changes in the polymerization of the polymer described in Section B, it will be necessary to re-determine the stress-optical coefficients for the polymers produced using the new catalyst system. The measurements will be made at 5461 Å and 4358 Å in order to ensure that differences in dispersion between the ordinary and extraordinary ray do not require a slight shift in composition. When this is done, it will be possible to produce a polymer which is optically isotropic and thus suitable for forming a proper resonant cavity.
III. DEVICE DEVELOPMENT

The development of a suitable optical pump involves generally a pulse of at most 1 microsecond duration, with a peak power of at least 100 megawatts without any sacrifice in terms of brightness of a lamp. It has become increasingly evident that black body systems such as the common xenon flash tube exhibit saturation of the lamp brightness at black body temperatures of 12-15,000°K(3). Previous experiments with the generation of short pulses of 100-200 nanoseconds duration showed that the lamps did not increase in brightness appreciably with apparent increased peak power. The theta-pinch lamp work described by Feldman and coworkers(4-6) is the subject of a current controversy(7). However, it is a lamp which yields a pulse of short duration and whose brightness remains relatively high. During this report period, we have constructed such a lamp and have attempted to maximize the various operating parameters.

The lamp-capacitor system utilizes a 0.9 microfarad, 50 KV clam-shell capacitor (GE $1^{1/4}$F756G2) in conjunction with a single turn coil surrounding a toroidal bottle containing argon at various pressures with an appropriate switch. The bottle is $1 1/8''$ OD, $5/16''$ ID, and 3'' long. The fill gas pressures range from 1-100 millimeters.

The chief experimental difficulty involves the switch. A number of switches have been tried. Initially, a high current ignitron was tried but the inductance (20 to 30 nanohenries) limited the current rise, so that inefficient operation and a rather long pulse of about 10 microseconds was attained. A simple airgap switch proved somewhat more satisfactory but at the higher voltages required, the gap separation was too large to switch the gap rapidly. Pulses of 4-5 microseconds were obtained. A switch of the Lupton design(8) first made at NRL was constructed and it gave further improved performance. The switch now being tested is a pressurized version of the Lupton design manufactured by Cooke Engineering Company of Alexandria, Virginia (Model ME40-10,000).
It is capable of fast triggering at 50 KV without a wide gap separation. The characteristics of this gap are as follows:

- **maximum voltage**: 50 KV
- **peak current**: 10^6 amperes
- **total energy switched**: 10^4 joules
- **inductance**: less than 10 nanohenries
- **dynamic impedance**: 5 milliohms

In the circuit we employ this should produce a pulse which rises in about 1.5×10^{-7} seconds and lasts about 1 microsecond depending on the coupling efficiency. The importance of rapid switching cannot be over-emphasized.

In order to trigger the switch properly, a voltage pulse rising at the rate of 1 KV/nanosecond is required. Figure 4 shows the appropriate thyratron circuit which is wired in accordance with good high frequency practice.

The spectral characteristics of this lamp are important. Feldman's data (7) is shown in Figure 5. The black spectrum is for an argon gas pressure of one millimeter and the white spectrum is at 20 millimeters gas pressure. At 20 millimeters, the continuum is obviously more significant. We plan to perform similar experiments at General Electric's Advanced Technology Laboratories using equipment developed under a previous flash lamp study contract (NONR-4121(00)). These experiments will be performed in order to measure the absolute brightness and efficiency of the source in addition to its time resolved spectroscopic characteristics.
IV. BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Institution</th>
<th>Address/Location</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA Black</td>
<td>General Electric Company</td>
<td>Schenectady, NY</td>
<td>1</td>
</tr>
<tr>
<td>S Byron</td>
<td>Aeronutronic Division of Ford Motor Co.</td>
<td>Newport Beach, CA</td>
<td>1</td>
</tr>
<tr>
<td>RS Congleton</td>
<td>Hughes Aircraft Corp.</td>
<td>Culver City, CA</td>
<td>1</td>
</tr>
<tr>
<td>Basil Curnutte, Jr</td>
<td>Kansas State University</td>
<td>Manhattan, KS</td>
<td>1</td>
</tr>
<tr>
<td>GH Dieke</td>
<td>Johns Hopkins University</td>
<td>Baltimore, MD</td>
<td>1</td>
</tr>
<tr>
<td>J Gerhauser</td>
<td>North American Aviation, Inc.</td>
<td>Los Angeles, CA</td>
<td>1</td>
</tr>
<tr>
<td>James Hobart</td>
<td>Laser Systems Center of Lear Seigler, Inc.</td>
<td>Ann Arbor, MI</td>
<td>1</td>
</tr>
<tr>
<td>CH Keller</td>
<td>Pek Labs, Inc.</td>
<td>Sunnyvale, CA</td>
<td>1</td>
</tr>
<tr>
<td>SP Keller</td>
<td>International Business Machines</td>
<td>Yorktown Heights, NY</td>
<td>1</td>
</tr>
</tbody>
</table>
CG Kirkpatrick
Autonetics
Division of North American Aviation
Anaheim, California

A Lempicki
General Telephone and Electronics Labs.
Bayside 60, New York

TH Maiman
Korad Corporation
2520 Colorado Avenue
Santa Monica, California

Joseph I. Masters
Technical Operations Research
Burlington, Massachusetts

TC McAvoy
Corning Glass Works
Corning, New York

W. McKusick
Eastman Kodak Company
Apparatus and Optical Division
400 Plymouth Avenue, N.
Rochester 4, New York

JF Miller
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio

NH Nestor
Linde Company
1500 Polco Street
Indianapolis 24, Indiana

JW Nielson
Airtron, A Division of Litton Industries
200 East Hanover Avenue
Morris Plains, New Jersey

Gerald Oster
Chemistry Department
Polytechnic Institute of Brooklyn
333 Jay Street
Brooklyn 1, New York
No. of
Copies

RG Seed
Northeastern University
Boston, Massachusetts

JW Turner
Westinghouse Electric Corp.
Electronics Division
P.O. Box 1897
Baltimore 3, Maryland

HA Weakliem
Radio Corporation of America
David Sarnoff Research Center
Princeton, New Jersey

CG Young
American Optical Company
Southbridge, Massachusetts

WP Siegmund
American Optical Company
Southbridge, Massachusetts

Dr. Jerald R. Izatt
New Mexico State University
University Park, New Mexico

Professor AK Kamal
Purdue University
School of Electrical Engineering
Lafayette, Indiana

Mr. Thomas C. Marshall
Columbia University
Dept. of Electrical Engineering
New York 27, New York

Mr. Charles G. Naiman
Mithras, Inc.
Cambridge 39, Massachusetts

Dr. JH Schulman
Solid State Division
US Naval Research Laboratory
Washington 25, D.C.

Dr. Jack A. Soules
Physics Department
New Mexico State University
University Park, New Mexico
Dr. Arden Sher
Varian Associates
611 Hansen Way
Palo Alto, California

Physical Sciences Division:
Army Research Office
Office, Chief, Research and Development
Washington 25, D.C.
ATTN: Dr. Robert A. Watson

Chief Scientist
US Army Electronics Command
Fort Monmouth, New Jersey
ATTN: Dr. Hans K. Ziegler

Director, Institute for Exploratory Research
Army Signal Research and Development Laboratory
Fort Monmouth, New Jersey
ATTN: Dr. EM Reilley

Asst. Director of Surveillance
Army Signal Research and Development Laboratory
Fort Monmouth, New Jersey
ATTN: Dr. Harrison J. Merrill

Director, Technical Ballistics Laboratory
Ballistics Research Laboratory
Aberdeen Proving Ground
Aberdeen, Maryland
ATTN: Dr. Edwin Minor

Director of Research and Development
Army Ordnance Missile Command
Huntsville, Alabama
ATTN: Mr. William D. McKnight

Office, Chief of Naval Operations /OP-07T-1/
Department of the Navy
Washington 25, D.C.
ATTN: Mr. Ben Rosenberg

Bureau of Naval Weapons /RR-2/
Department of the Navy
Washington 25, D.C.
ATTN: Dr. CH Harry

Bureau of Ships /CODE 305/
Department of the Navy
Washington 25, D.C.
ATTN: Dr. GC Sponsler
Office of Naval Research /CODE 402C/
Department of the Navy
Washington 25, D.C.
ATTN: Dr. Sidney Reed

Office of Naval Research /CODE 421/
Department of the Navy
Washington 25, D.C.
ATTN: Mr. Frank B. Isakson

Office of Naval Research /CODE 406T/
Department of the Navy
Washington 25, D.C.
ATTN: Mr. JW Smith

Naval Research Laboratory /CODE 6440/
Department of the Navy
Washington 25, D.C.
ATTN: Dr. CC Klick

Naval Research Laboratory /CODE 7360/
Department of the Navy
Washington 25, D.C.
ATTN: Dr. LF Drummeter

Headquarters USAF /AFRDR-NU-3/
Department of the Air Force
Washington, D.C.
ATTN: Lt Col EN Myers

Research and Technology Division
Bolling AFB
Washington, D.C.
ATTN: Mr. Rober Feik

Office, Aerospace Research /MROSP/
Washington 25, D.C.
ATTN: Lt Col Ivan Atkinson

Technical Area Manager /760A/
Advanced Weapons Aeronautical Systems Div.
Wright-Patterson AFB
Ohio
ATTN: Mr. Don Newman

Project Engineer /5237/
Aerospace Radiation Weapons
Aeronautical Systems Division
Wright-Patterson AFB
Ohio
ATTN: Mr. Don Lewis
Air Force Special Weapons Center /SWRPA/
Kirtland AFB
New Mexico
ATTN: Capt. Marvin Atkins

Project Engineer /5561/ COMET
Rome Air Development Center
Griffiss AFB
New York
ATTN: Mr. Phillip Sandler

Department of Electrical Engineering
New York University
University Heights
New York, New York
ATTN: Mr. Thomas Henion

BMDR
Room 2 B 263
The Pentagon
Washington 25, D.C.
ATTN: Lt Col WB Lindsay

Joint Advance Study Group
Joint Chiefs of Staff
Room 2 C 825
The Pentagon
Washington 25, D.C.
ATTN: Col. CA Barninger

Mr. JP Chernoch
General Electric Laboratory
Schenectady, New York

JW Eerkens
Terra Nova
MHD Research, Inc.
Post Office Box 1815
Newport Beach, California

Mr. John Emmett
Physics Department
Stanford University
Palo Alto, California

Dr. Harry Heard
Radiation at Stanford
3180 Hanover Street
Palo Alto, California
Secretary, Special Group on Optical Masers
ODDRCE Advisory Group on Electron Devices
346 Broadway - 8th Floor
New York 13, New York

ASD /ASRCE-31/
Wright-Patterson AFB, Ohio

Dr. Rubin Bronstein
Radio Corporation of America
David Sarnoff Research Center
Princeton, New Jersey

Dr. W Holloway
Sperry Rand Research Center
Sudbury, Massachusetts

Technical Area Manager /760B/
Surveillance Electronic Systems Division
LG Hanscom AFB
Massachusetts
ATTN: Major HI Jones, Jr.

Commanding Officer
US Naval Ordnance Laboratory
Corona, California

Director
US Army Engineering Research and Development Laboratories
Fort Belvoir, Virginia
ATTN: Technical Documents Center

Office of the Director of Defense
Defense Research and Engineering
Information Office Library Branch
Pentagon Building
Washington 25, D.C.

US Army Research Office
Box CM, Duke Station
Durham, North Carolina

Defense Documentation Center
Cameron Station Building
Alexandria 14, Virginia

Director
US Naval Research Laboratory
Technical Information Officer
CODB 2000, CODE 2021
Washington 25, D.C.
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
</table>
| 1 | Commanding Officer
Office of Naval Research Branch Office
230 N. Michigan Avenue
Chicago, Illinois |
| 1 | Commanding Officer
Office of Naval Research Branch Office
207 W. 24th St.
New York 11, New York |
| 1 | Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California |
| 1 | Air Force Office of Scientific Research
Washington 25, D.C. |
| 1 | Director
National Bureau of Standards
Washington 25, D.C. |
| 1 | Director
Research Department
US Naval Ordnance Laboratory
White Oak, Silver Springs, Md. |
| 1 | Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California |
| 1 | Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston 10, Mass. |
| 1 | US Naval Radiological Defense Laboratory
/CODE 9141/
San Francisco, California 94135 |
| 1 | Commanding Officer
US Army Materials Research Agency
ATTN: Technical Library
Watertown, Massachusetts 02172 |
| 1 | Boulder Laboratories
National Bureau of Standards
ATTN: Library
Boulder, Colorado |
<table>
<thead>
<tr>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief, Bureau of Ships</td>
<td>1</td>
</tr>
<tr>
<td>CODE 340</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>1</td>
</tr>
<tr>
<td>CODE 360</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>1</td>
</tr>
<tr>
<td>CODE 370</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>Air Force Weapons Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Guenther WLRPF</td>
<td></td>
</tr>
<tr>
<td>Kirtland Air Force Base</td>
<td></td>
</tr>
<tr>
<td>New Mexico</td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau of Naval Weapons</td>
<td>1</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td></td>
</tr>
<tr>
<td>ATTN: JM Lee RMGA-81</td>
<td></td>
</tr>
<tr>
<td>Air Force Cambridge Research Laboratories</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: CRXL-R, Research Library</td>
<td></td>
</tr>
<tr>
<td>Lawrence G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td>Bedford, Massachusetts</td>
<td></td>
</tr>
<tr>
<td>Battelle Memorial Institute</td>
<td>1</td>
</tr>
<tr>
<td>505 King Avenue</td>
<td></td>
</tr>
<tr>
<td>Columbus 1, Ohio</td>
<td></td>
</tr>
<tr>
<td>ATTN: BMI-Defender</td>
<td></td>
</tr>
</tbody>
</table>