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FOREWORD

This report presents results of one phase of the work in progress at

Picatinny Arsenal on the DASA NWER Subtask 08.008 Integrated Effects
program. .
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SUMMARY

The procedures used to calculate rate constants for certain ionization
and recombination reactions have been described. Results of calculations
based upon these procedures and analytical expressions which approximate
the values found with the computer have been presented.

The only recombination reactions which have been treated are those which
yield a hydrogenic ion. Extension of the present formalism to cases where
multi-electron ions are formed is restricted primarily by the lack of con-
venient radiative transition rate information for multi-electron systems.



T [ S o A

—.

-

B R

INTRODUCTION

Many of the properties of a plasma depend upon the concentrations of the
constituent ionic species and the relative population of the energy levels
of each ionization state. In situations where thermodynamic equilibrium
can be assumed to exist, such parameters are characterized by a tempera-
ture and can be found most easily by using the Saha ionization formula and
the well known Boltzmann formula. The use of these formulas results in
simplification in any analysis because a detailed examination of the many
processes which lead to excited-state and ionic-state equilibrium concen-
trations is not required.

In situations where thermodynamic equilibrium cannot be assumed, it is
necessary to enumerate the processes which cause ionization, recombi-
nation, and excitation, and then to determine the relative probability of
each. Depending upon the number of transitions permitted by the selection
rules, this can be a formidable task. In practice, it is usually necessary
to pick a few transitions which, hopefully, will dominate the others. If this
simplification is valid, then calculations using the dominant transitions
will adequately describe the actual physical situation.

When calculations are done to describe certain aspects of nuclear weapon
phenomenology, situations are encountered where a large amount of electro-
magnetic energy is deposited in the atmosphere during a very short time
interval. In order to utilize the various rate equations which govern the
ionic concentrations, it is necessary to determine the transition coefficients
for several reactions which appear to dominate the physical situation. The
following sections present results of calculations to determine rate co-
efficients for three types of atomic reactions: electron-impact ionization,
three-body recombination, and radiative recombination.

ELECTRON-IMPACT IONIZATION

Definition of the Process

In a plasma composed of atoms and free electrons having substantial
kinetic energy, it is quite conceivable that a free electron may, through the
Coulomb interaction, transfer a fraction of its energy sufficient to liberate
a bound electron. This process can be represented symbolically by

X+e X" 42e




where X is any neutral or partially stripped atom. This expression will be
taken as the definition of the electron-impact ionization process. It should
be noted that the final state for this reaction has two free electrons.
Exchange-type collisions were the initially bound electron is freed and the
incident electron is captured will occur, but such a process is unimportant
when ways of changing the degree of ionization of the plasma are being
considered.

Theoretical Reaction Cross Sections

Although quantum mechanical techniques for finding the cross section
for the reaction under consideration are available, the effort required to
obtain a solution for any but, say, one-electron or two-electron target atoms
would be very great. Since information concerning reaction rates in air is
desired, the use of extensive quantum mechanical calculations to deter-
mine the required cross sections is clearly impracticable.

Values for the cross sections used in this study were calculated using
the semiclassical theory of Gryzifiski (Ref 1). To summarize this theory,
consider the interaction of two particles having charges q, and q,, masses
m, and m,, and velocities v, and v,, respectively. Let AE be the change in
energy of particle 2, which is assumed to be the incoming particle, and let
E, and E, be the energies of particles 1 and 2 before the collision. Then
Gryzinski writes the cross section for a collision in which the incoming
particle suffers an energy loss greater than U as

Atmax
Q) = S 0 (AE)d (AE)
U

where ¢ (AE) is the cross section for an encounter in which an amount of
energy AE is lost by particle 2. When m, = m,,

%  |E E
AW =178 [T;”Tf] ¢}



where

2
),ifU+E,SE, 2

2 \ Y
2)] [(u %1 (1— %_2)] ’,if U+E,= E,

and for electrons interacting with electrons
o,=mé =6511x107" cm? eV2.

Let the velocity distribution of the j-shell electrons in an atom be de-
noted by ND (v,) and their ionization potential by UY. Then the value of

the cross section for electron-impact icnization can be written as

i 0,] 8D e o W) v, 3)
] o

where the minimum energy transfer has been set equal to the ionization
potential. Gryzinski obtains good results by using a &function for the
bound-electron velocity distribution. Thus, forl example, when considering
a helium target, Ny (v,) =23 [v, - (ZE;/me)/’] where E, is constant. Al-

though Equation 3 formally contains a sum over various electron shells, the
occurrence of the factor U2 in Equation 1 means that removal of K-shell
electrons will be insignificant compared with removal of P-shell electrons
because of the much higher ionization potential of the former.

Parameters for Specific lons

In order to calculate values for the ionization cross sections using the
semiclassical theory, it is necessary to know the kinetic energy of the P-
shell electrons and their ionization potentials. The latter are easily ob-

tained from Moore’s work (Ref 2) but the kinetic energies can only be
estimated.
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In keeping with the spirit of the semiclassical approach, it is assumed
that all the P-shell electrons of a given ion move in the same circular orbit
about the charged nucleus. With this approximation, the potential energy
of the electrons is given by V = -Z*¢*/r, where Z*e is the effective nuclear
charge and r, is the radius of the orbit for the principal quantum number of
m = 2. This radius is obtained from r,, = m?a,/Z* where a, is the Bohr
radius. Using the shielding factors given by Slater (Ref 3), reasonable
estimates of the effective charges can be found for the ions considered

here. Since

Kinetic energy + ionization potential = |V|,
it is possible to estimate the kinetic energy of the P-shell electrons. By
using this technique, the values listed in Table 1 are found.

TABLE 1

Parameters characterizing the motion of P-shell electrons:

in nitrogen and oxygen ions

jonization

lon Potential z* E,
NI 14.54 eV '3.90 89.0 eV
NI 29.61 '4.25 93.3
N III 47.43 '4.60 96.6
NIV 77.45 '4.95 89.3
NV 97.86 5.30 93.3
ol 14.61 eV '4.55 127.3 eV
on 35.13 A 4.90 128.3
O III 54.93 5.25 132.7
olv 77.39 5.60 136.0
ov 113.87 5.95 127.0
O VI 138.08 . 6.30 132.0

Comparison with Quantum Mechanical and Experimental Cross Section Values

Trefftz (Ref 4) gives the results obtained from quantum mechanical cal-
culations of the ionization cross section when electrons are indident on

O*+ (OV) and O°* (QVI). The results are
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cm?

o™ (0**) = 2.42x 10
when E, = 261 eV for the ionization of O*+ and
ogm (O°+) = 0.86'x 10~** cm?

when E, = 255 eV for the ionization of O°*.

By using Equations 1, 2, and 3, and the parameters shown in Table 1
with the assumption that the minimum energy transfer U equals the ionization
potential, the semiclassical cross section for ionization of O** is found to

be
sc - —18 2
o€ (O*) = 2.00 x 10 cm?.
Similarly, for the ionization of O®*, the semiclassical result is found to be
0;° (0°%) = 0.57 x 107" cm®.
Considering the complexity of the problem and the simplifying assumptions
which are required with each approach, the agreement of these results is
quite satisfactory.
In addition to the quantum mechanical results, a limited amount of ex-

perimental daca is available. Fite and Brackman (Ref 5) have measured the
cross section for the reaction

O+e 0%+ 2"
and Seaton (Ref 6) has derived cross section values for
N+e »NYt+2e”

from other experimental data. Figures 1 and 2 (pp 24 and 25) show these
relationships and the comparable semiclassical calculations. It can be
seen that the calculated results are two to four times as large as the ex-
perimental results, but the shape of the calculated curves, when properly
normalized, agrees fairly well with experiment. The only parameter in the
theory about which any appreciable uncertainty exists is the kinetic energy




of the bound electronis E,. Points are plotted in Figure 1 for calculations
done with E, = 100 eV and 150 eV, and it can be seen that changes in E,
do not appreciably alter the threshold behavior of the calculated cross
section.

The Reactior. Rate

The reaction rate is expressed i1 rms of the reaction cross section by
the relation
20 00
Rate = [ {0 (1w~ v D) I~ 3| Fw) dva Gw,) dy, 4

o o

where F(v,) and G(v;) are the distribution functions for the velocity of the
incident electrons and the target ions, respectively. Because of the large
mass difference between an ion and an electron, however, the motion of an
ion in a fixed coordinate system compared to that of a free electron is neg-
ligible. This does not mean that the initial velocity of the bound electron
which is liberated during the encounter with the free electron is negligible
compared to the latter’s velocity. In fact, consideration of the relative
motion of the bound and free electrons is included by Gryzinski in the
development of the theory described previously.

When the velocity of the target ions is disregarded, the reaction rate can
be expressed by

Rate =_S G(v;) dvig o (vy)v, F(v,) dv,
[o]

[+]

= nj ne j o (v,) ¥, f(v,) dv, (5)

(o]

where f is the normalized velocity distribution function and n; and n, are

the ion and free electron concentrations, respectively. Equation 5 can also
be written in the form

dn i
dc

= - anine

where the rate coefficient «is defined by

a= SN o(v,) v, f(v,) dv, (6)

(o]
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The question of what the exact form of the distriburion function f is can-
not be answered in general. However, estimates using expressions given by
Spitzer (Ref 7) for the time required for nonequilibrium gases to attain equi-
librium indicate that, with reasonable particle concentrations, the Max-
wellian velocity distribution is reached very quickly. Hence, for conven-
ience and for the lack of any better distribution, the free electron velocity
distribution is assumed to be Maxwellian.

After changing the integration variable in Equation 6 from velocity to
energy, and using Equation 3, the rate coefficient can be written in the form

a=« (I; + L)
Here
1 3
1 /2 2 /2 0’0 N) C ;
= 7 m, ¢ kT v X

where N; is the number of bound electrons of the type being removed, c is
the speed of light, m. is the electron mass, k is the Boltzmann constant,
and T is the temperature characterizing the free electron distribution. The
symbols I, and I, denote the integrals

2 UtEs E YA U u\l% U -=
- o —2 - _ - —— kt
L= J (El + Ez) [(1 + El) ( Ez)} [(E, + U) E, (E,+U)]e dE,
u
(8
00 / 3/2 _E.
L= ———-E2 -Z-E +U_E E, + U]le deEz 6)]
2 (E, +E, 3 E,
U+E,

These integrals seem to be intractable analytically. This difficulty is
due to the terms with the fractional exponents. The energy dependence of
these terms is shown in Figure 3 (p 26) for a typical ion. The results, shown
in Figure 3, suggest that polynomials of the second degree can be used to
replace the “‘troublesome’’ factors in Equations 8 and 9. Hence, for the
sake of obtaining analytical result for the rate coefficient it is assumed
that

U U %
[(“F) (1—;:)] - AE2+BE,+C U< E,<U+E,




E,+E,

Y

E, \"”

> 1; E, < 100 E,
E, +E,

E %
( 2 ) » DE2 + EE, + F; U+ E, <E,=< 100E,

where the constants A, B, C, D, E, and F are to be determined by fitting
the polynomials to the expressions which they replace.

After introducing this simplification, performing the integrations, and
making the substitutions

V=(2/3)E, +U
W=E, +U

X = U/KT

Y = (E, + U)/kT
R = 100 E,/kT,

I, and 1, are given by

I‘=.

WIN

W (kT) Alexp (-X)[X? + 2X + 2] —exp (-Y) [Y?* + 2y + 21}

4 -

wN

W (B-AU) (kT) fexp (-X) [X+ 1]-exp (-Y) [Y + 11} (10)

I8N

+ Z W (C-BU) KT [exp (-X) —exp (-Y)]

W

N % WCU [Ei (-X) - Ei (-Y)]
and

I, = V(kT) Diexp (-Y) [Y? + 2Y + 2] — exp (-R) [R? + 2R + 2}}

+ [VE-wDU] (kTY lexp (-Y)[Y + 1] —exp (-R) R + 1}}

(1D
+ [VF-WEU] (kT) lexp (=Y —exp (-R)]

+ WU [F Ei (=Y) + (1-F) Ei (-R)] + VKT exp (-R)
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where

o0
-t

~Ei (-x>=j. f de. »
X

The Rate Coefficient Calculation

A computer program for the IBM 709 was written to determine the poly-
nomial constants and to evaluate the rate coefficient using Equations 7,
10, and 11, and the parameters listed in Table 1 (p 5). In order to improve
the accuracy of the calculated resules, the theoretical cross sections for
all oxygen and nitrogen ions were multiplied by the “‘normalization factors’
required to improve agreement between the O I and N I theoretical and ex-
perimental cross sections, respectively. Unfortunately, the experimental
data available is not sufficient for determining individual normalization
factors for each type of ion. Hence it is necessary to use the O I normal-
ization factor for all oxygen ion calculations and the N I normalization

factor for all nitrogen ion calculations

To determine the polynomial fitting constants, the end points and a point
near the center of the curve being approximated were used as the three
ficting points. Comparison of the polynomial expressions with the exact
functions indicated that the agreement between the two functions was
generally within 20% throughout the range of validity.

The calculated rate coefficients are shown in Figures 4 and 5 (pp 27
and 28). To facilitate the use of these results in digital computer calcu-
lations, the rate coefficients shown in these figures were approximated by

expressions of the form

Table 2 (p 11) gives the appropriate values of G, H, and n in the indicated
temperature ranges. Values calculated with these simplified expressions
are for the most part within 5% of the computer results.

G T" (1 + HT).

10




TABLE 2

Fit coefficients for simplified rate coefficient expressions

lon Temperature Range

NI 1.95 (4)* to 2.50 (4)

2.50 (4)
3.50 (4)
5.60 (4)
1.20 (5)
2.00 (5)
3.50 (5)

NI 4.00 (4)
5.80 (4)
8.70 (4)
1.55 (5)
2.00 (5)
3,00 (5)
5.00 (5)
N III 7.80 (4)
1.05 (5)
1.65 (5)
2.22 (5)
'3.40 (5)
5.00 (5)
NIV 1.40 (5)
2.00 (5)
3.40 (5)
6.00 (5)

NV 2.00 (5)
3.10 (5)
5.00 (5)
8.00 (5)

to 3.50 (4)
to 5.60 (4)
to 1.20 (5)
to 2.00 (5)
to 3.50 (5)
to 1.00 (6)

to 5.80 (4)
to 8.70 (4)
to 1.55 (5)
to 2.00 (5)
to 3.00 (5)
to 5.00 (5)
to 1.00 (6)

to 1.05 (5)
to 1.65 (5)
to 2.22 (5)
to 3.40 (5)
to 5.00 (5)
to 1.00 (6)

to 2.00 (5)
to 3.40 (5)
to 6.00 (5)
to 1.00 (6)

to 3.10 (5)
to 5.00 (5)
to 8.00 (5)
to 1.00 (6)

n

e N W WAy O = NNW WG O = = Wb G\

= N WO\

= A

*Indicates power of ten by which significant figures are multiplied.

11

G

1.8556 (-51)
7.3622 (-39)
8.2322 (-30)
5.6130 (-24)
2.0833 (-14)
1.0119 (~13)
2.7385 (- 8)

2.0294 (-40)
5.5801 (=36)
2.5805 (~-27)
1.2770 (-20)
4.5556 (~20)
9.7667 (-15)
2.6000 (- 9)

1.6085 (-47)
7.2377 (=37)
7.3287 (=27)
1.2646 (-21)
2.6618 (-16)
3.9000 (~15)

7.8118 (—44)
4.4884 (-33)
5.4328 (-22)
2.8667 (~16)

2.4560 (-39)
1.0482 (-33)
1.3833 (-17)
1.5060 (-16)

H

1.6510 (~5)
1.8254 (-4)
2.0271 (-4)
2.5831 (-7)
2.5000 (-5)
1.1765 (-6)
2.3600 (-6)

5.0762 (-6)
2.9833 (-5)
6.6492 (—4)
1.4577 (-5)
4.8780 (-7)
2.0137 (-6)
5.5385 (-6)

'3.2556 (-5)

7.8635 (-7)
1.2349 (-5)
1.7178 (-5)
2.9558 {-5)
15385 (-7)

5.0009 (—6)
1.9625 (~6)
1.7420 (-6)
2.2093 (-6)

1.3619 (~6)
1.0638 (-7)
1.7952 (-5)
5.1383 (=7)
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lon

Ol

oIl

ol

olv

ov

oVvi

Temperature Range

1.95 (4) to 2.55 (4)
2.55 (4) to '3.60 (4)
3.60 (4) to 6.20 (4)
6.20 (4) to 1.00 (5)
1.00 (5) to 2.00 (5)
2.00 (5) to 4.00 (3)
4.00 (5) ro 1.00 (6)

5.80 (4) to 8.00 (4)
8.00 (4) to 1.25 (5)
1.25 (5) to 2.00 (5)
2.00 (5) to 3.50 (5)
3.50 (5) to 6.60 (5)
6.60 (5) to 1.00 (6)

9.80 (4) to 1.40 (5)
1.40 (5) to 2.30 (5)
2.30 (5) to 5.00 (5)
5.00 (5) to 1.00 (6)

1.50 (5) to 2.20 (3)
2.20 (5) ro 4.00 (5)
'4.00 (5) to 1.00 (6)

2.50 (5) to 3.90 (5)
3.90 (5) to 6.60 (5)
6.60 (5) ro 1.00 (6)

3.50 (5) to 6.00 (5)
6.00 (5) to 1.00 (6)

TABLE 2 (cont)

O = N W W O = NN BN 3

N OGN

[«)

12

G

2.1502 (<47)
1.3135 (-38)

'4.8269 (-29)
'3.1962 (-20)
'4.0000 (~19)

6.7500 (~14)
1.8333 (- 8)

3.8980 (<46)
2.6517 (<36)
2.4033 (—26)
9.7313 (-21)
3.6125 (~15)
1.1176 (- 9)

6.6399 (~43)
1.0936 (<32)
9.1104 (=22)
1.0400 (—15)

8.6918 (-44)
1.7726 (-28)
1.6667 (-17)

8.7337 (~40)
1.1063 (~28)
13336 (~22)

5.1901 (-35)
1.3944 (-23)

H

6.2801 (-5)
6.9377 (-5)
6.4848 (-6)
1.1515 (-4)
0.

9.2593 (~7)
2.5455 (-6)

2.7911 (-6)
1.8859 (-6)
9.0430 (-6)
1.9364 (-6)
1.6622 (=6)
5.2632 (-6)

7.1442 (-6)
9.8591 (-6)
4.6737 (-6)
9.2308 (-7)

6.6986 (-8)
1.9536 (-5)
3.5000 (-5)

6.8985 (-7)
1.3431 (-6)
4.9821 (-8)

8.1078 (-7)
1.6534 (-6)
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THREE-BODY RECOMBINATION
Definition of the Process

Consider the physical situation in which two free electrons simultaneously
pass within a small distance of a positive ton. As a result of the Coulomb
interaction between the three particles, it is possible for one electron to
lose sufficient energy to settle into a bound quantum state while the second
electron remains free and moves in such a way that energy and momentum
are conserved. Symbolically, this process can be represented by

Xt +2e » X*+em.

In this expression, X* denotes an atom in either the ground state or one of
the quantized excited states. It should be noted that this process is the
inverse of the electron-impact ionization reaction. This fact will be used in
determining the recombination rate.

It can be seen that recombination processes are inherently more difficult
to analyze than ionization processes because of the greater number of
“‘channels” through which the reaction can occur. In fact, three-body re-
combination yielding excited bound states occurs at a considerably higher
rate than does recombination yielding the ground state.

Derivation of the Recombination Rate. Expression

The simplest method for finding the rate at which various bound states
are formed by recombination is to use the principle of detailed balance.
The essence of this principle can be stated as follows: In the case of
thermodynamic equilibrium, the number of particles leaving a given quantum
state via some process is equal to the number of particles entering this
state via the inverse process (Ref 8). Because of this principle, it is pos-
sible to equate the rates for the direct and inverse reactions to get

n’n. 8 =n n_a (12)
e 1 m
In this expression n_ is the density of atoms in the state having principal

quantum number m, and n; and n, are the densities of ions and free electrons,

respectively. In addition, a_ is the electron-impact ionizarion rate
y » G

13
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coefficient for removal of an electron from an atom in state nl, and B is
the three-body recombination rate coefficient for the forination of an atom
in state m. By combining the Saha and Boltzmann formulas (Ref 9, pp 36,
37), we obtain

2(2 k'J.')a/z _Il
n, n: w
< 1=¢(m,"l')—gr+1’1 m: e KT
T gr, m h
so that
g h?
Bm = it %n (13)

%
gr +1,1 2(277 me kT)

where Iy is the ionization potential of the mt? bound state, me 1is the
electron mass, g, ., and g, ; 1 are the statistical weights of the mth
bound state of an r-times ionized atom and the ground state of an (r + 1)-
times ionized atom, respectively, and h is Planck’s constant. By using
Equation 13, it is possible to calculate the rate coefficients B8, when the

rate coefficients for the inverse reactions are known.
Radiative Decay of Excited States

In most situations where nonequilibrium conditions exist, a number more
useful than the rate at which atoms are formed in various excited states is
the rate at which ground state atoms are formed either directly or by radi-
ative decay of atoms formed in excited states. Indeed, the formation of a
ground state atom is the definition of a recombination event which D’Angelo
(Ref 10) used in his calculation of three-body recombination rates in hy-
drogen. This definition is used for the rate calculations described here.

Consider an electron which is captured during the formarion of an excited
ionic state. Two processes can occur: (a) the electron spontaneously under-
goes a radiative transition to a lower quantum level, or (b) the electron is
re-ionized by a collisicn with a free electron before de-excitation can occur.
Thus, the ultimate number of ground state atoms depends upon the relative
probability of making the next radiative transition at each step of the cas-
cade process.

14



The assumption that an electron in an excited state has only two alter-
natives for relaxation neglects collisional excitation and de-excitation
transitions between excited states. The omission of these reactions is
probably justified because, as D’Angelo points out, collisional transitions
occur mainly to neighboring states, so excitation and de-excitation proc-
esses will tend to compensate. In addition, Giovanelli (Ref 11) has found
that, at least in hydrogen plasmas, the rates of collisional transition
usually do not exceed the rates of collisional ionization.

Specialization to the Formction of Hydrogenic lons

Because of the large number of channels through which recombination can
occur, theoretical treatment of the recombination process for arbitrary ions
is not feasible. Racher than attempt this task, calculations have been per-
formed to determine the rate of three-body recombination of completely
stripped nitrogen and oxygen nuclei to form hydrogenic ions. With this
specialization, Equation 13 can be simplified by using the fact that the
statistical weights of the bare nucleus and the one-electronion in state m
are 1 and 2m?, respectively. Thus Equation 13 becomes

Bm=_LrL3/_ e¥Ta_ (14)
(27 m kT) 2

Only electric dipole transitions need to be considered for the radiative
decay of the excited ions. Hence, use of the well-known selection rule
Al = +1 permits a systematic enumeration of all allowed transitions for an
arbitrary maximum value of the principal quantum number. For the one-
electron ions formed by the process considered here, quantum mechanical
results for the radiative traasition probabilities are given by Bethe and
Salpeter (Ref 12). By a slight generalization of formulas given by these
authors, the dipole transition probabilities for hydrogenic ions are found to.

be

2

-1
Voo 8.0 " 13 Rt m
P:LL lf,— 109( 1 )Z (m+m‘) (x:x ) Iimi———- sec”’
3 24+ 1 m' m' : a
(15a)
and
. md
p:'{&*l?g;o x 10° Lr1\ Zmrm' Y m-m)’ Ry g+ sec™
3 24+ 1 m* m'* ay
(15b)
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where m and £ are the principal and orbital quantum numbers, respectively,
of the initial state and m' is the principal quantum number of the final

state, Rm'{’& ~ 1 isthe integral
m
m'f-1 > _ md
Rm{’ =J RmLRm'..{;—l r’dr—Rm,L_1
[¢] .

involving radial wavefunctions, and a5 is the "‘Bohr radius’’ for the hydro-
genic ion with atomic number Z. A general expression for Rm{'{’- 1

m
quoted by Bethe and Salpeter, is

%

g4 ' =4 [(med) (' +L - 1) 4 Y emry™ T 22
m{
= T X
a, 4@4-D!|@m-L-1 @ L) (m+m)m* o

, 4mm' m-m'] L, _ 4mm'
{F(—mrr—mr’ 2‘61-(m_m|)2)"l:m+m|] F(mr 2, mr,2£, (m-m')z)}

In this expression, F(q B, y, X) is the hypergeometric function and
m =m-4-1 m'=m' -4 are the radial quantum numbers of the two states.

The Recombination Rate

In order to describe the procedure by which the recombination rate was
calculated, consider Figure 6 {p 29), which shows all possible states in
which hypothetical hydrogenic ions with four quantum levels.can exist. It
is assumed that the number of ions in any particular state is being increased
at a rate given by Equation 12 and that the ions formed in state m are dis-

tributed over the 4 sublevels according to the statistical weight factor
(22 +1)/m

Two approaches for considering the redistribution of excited-state ions
are possible. The first of these is to start with a given number of ions
existing with certain (m,4) and then keep track of the number of ions which
radiate at each step of the cascade. Let P(m,4 » m',4') be the relative
probability that an electron undergoes a radiative transition between the
indicated states. If, for example, N(4,3) is the number of atoms with quantum

16



numbers (4,3), then the number of such atoms finally decaying to the ground
state is

N(4,3)x P (4,3~ 3,2) xP(3,2> 2,1) x P (2,1~ 1,0).

The second approach is to determine the redistribution of all ions origi-
nally in the highest quantum state after one radiative transition from this
level. The number of these particles going to particular lower levels is
then added to the original concentrations and the procedure is repeated at
the next lower level. Thus, for example, the concentration with (3,2) is
changed from its original value of N(3,2) to

N(3,2) + N(4,3)P (4,3~ 3,2) + N(4,1) P (4,1~ 3,2).

Similarly, the concentrations for all levels below m = 4 are augmented by
the ions originally having m = 4 which radiated before experiencing electron-
impact ionization. The final result for the number of atoms decaying to the
ground state is obviously the same using either approach. The results to be
presented larer were calculated using the second approach.

Now consider the calculation of the relative transition probabilities.
Formally, the constant in the spontaneous transition rate expression

dnm,L __va F X n
d&d = ml m, 4

is obtained from either Equation 15a or 15b. It has been shown that the
electron-impact ionization rate is given by

dn

L‘&_ == ampNe Oy ¢
de

Thus it can be seen that the quantity a, n, gives the transition probability

for electron-impact ionization. Then, for example, to calculate the relative
probability for the radiative transition (3,1)» (1,0), it is necessary to
evaluate

1,0
Py

+ 10 + 2,0
a PaZx Py

P (3,1- 1,00=

17
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using Equation 15a and the values for a, calculated in the manner described
in the electron-impact ionization section.

The Rate Coefficient Calculation

An effective recombination rate coefficient can be obtained by dividing
the rate at which ground-state ions are formed by n nj. A computer program
has been written for the IBM 709 to calculate this rate coefficient. The
program calculates the initial distribution of recombined states, the radi-
ative transition probabilities, the re-ionization rates, the relative prob-
abilities for radiative decay, and the successive distributions of recom-
bined states which lead to the final number of ions reaching the ground

state.

Calculations were performed with the assumption that m = 10 is the
highest populated level. Although higher states are actually populated and
the rate of population increases with the value of m, their contribution to
the ground state population rate is small for two reasons. First, the re-
ionization rate also increases with m, so the relative probability of radiative
de-excitation becomes small. And second, the levels (m, 1) which can pop-
ulate the ground state with a single efficient transition are not populated
strongly because of the statistical factor (24 + 1)/m2

The presence of free charges in the vicinity of the hydrogenic ions
lowers the position of the ionization continuum of the latter and causes only
a finite number of bound ionic states to exist. Estimates of the effects due
to the presence of free charges have been made using the results of Griem
(Ref 13). These calculations indicate that only for the highest electron
concentration considered here could this free-charge effect have any appre-
ciable influence on the present calculations. Thus, for the sake of sim-
plicity, neither this effect nor the concurrent shift in position of the bound
ionic states has been considered here.

At the highest temperatures considered in these calculations, there is a
question as to whether the ground state is populated appreciably under
equilibrium conditions because of collisional effects. However, by using
the Boltzmann factor, the population ratio n,/n, is found to be less than 1072
for all situations considered here. Hence, it seems reasonable to assume
that the cascade process does actually proceed all the way to the ground

state.

18
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The results for the effective rate constants for oxygen and nitrogen
nuclei forming hydrogenic ions are shown in Figures 7 and 8 (pp 30 and
31). These results can be approximated analytically by an expression of
the form

r(ne)

B(T,n)=m,)T

Values for m(ne) and r(ne) were found by first assuming that B varied as

some inverse power of the temperature for constant electron concentration.
Then, using the values for m(10**)...m(10"*), r(10%)...r(10'*), the m(n,) and

r(ne) were fit to polynomials in log n_ by a least squares analysis. The re-
sults were found to be:
For nitrogen
m(n,) = (-5.329 + 0.4166 log n ) x 107
r(n,) =[~3.41715 + 0.30504 log n_ - 0.01195 (log n ]
For oxygen
m(n ) = [80.887 - 10.753 log n. + 0.3585 (log n?] x 1077
r(n,) = [~4.08684 + 0.42122 log n_ - 0.0164! {log n,)’]
These expressions are valid in the temperature range 8 x 10*= T = 10¢ °K

and give results which are generally within 20% of the values found with
the computer. ‘

RADIATIVE RECOMBINATION
Definition of the Process
Consider the physical situation in which a free electron passes very near
a charged ion. Because of the interaction between the charges of the electron
and the ion, it is possible for the electron to become bound to the ion, with
the excess energy of the system being radiated away as an electromagnetic

photon. This process can be represented symbolically by

xt+e o X4y
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where y represents the photon. This process is known as radiative recom-

bination.
Derivation of the Recombination Rate Constant

Because of the complexity of treating recombination involving arbitrary
ions, only the recombination of bare nuclei with free electrons to form hydro-
genic ions will be considered here. The rate for the radiative recombination
process can be determined most easily by using cross section information
for the inverse reaction and the principle of detailed balance. Using the
result quoted by Richards (Ref 14) for the relation between the photo-
ionization and radiative recombination cross sections, it is possible to

write

2
h
o™ - (—Ji;) En o) (16)

10n
rec ¢ me gB

where hv =1_ + )5 m_v? expresses the conservation of energy, and gg and
8 are, respectively, the statistical weights of the bare nucleus and the

ion in state m.

Since recombination leading to excited states is not negligible, a realistic
calculacion of the rate requires that this fact be considered. An approximate
expression for the photoionization cross section of hydrogenic ions as a
function of the principal quantum number is quoted by Ambartsumyan (Ref
9, p 42). This expression is

agm) _ 64 TT‘ 6"0 me Z4 g'
1on 3 \/»gc h‘ V’ mS

(17)

where g' is a correction factor lictle different from unity and the other
symbols have their usual meanings. Now the statistical weights for the
initial and final states are, respectively, 1 and 2 m® From Equations 16
and 17, and the definitions

I _Zze'me
M oh? 2
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and for ionization potential and

8_"_ _____.__E‘ - —~24 2
%, = o 0.6652 x 107 cm

for the Thomson cross section, it follows that

(m) 2 Z'm, c2a¢0 I

%ec T3 m E. I+ E) (18)

where a = ¢*/hic is the fine-structure constant.

If it is assumed that the energy distribution of the free electrons is
Maxwellian, then the recombination rate for the formation of hydrogenic ions
in state m is given by

%

oo (m) 2E
Rate = J’ ne np f(E) o, (EJ|—=) dE, - 9)
o e

where f(E_)dE, is the normalized Maxwellian Aistribution function and ng

is the concentration of bare nuclei. When the recombination rate is written
in the form

dne
& = Knop e

use of Equation 19, with the appropriate substitutions, shows that the rate
coefficient K  is given by

3

2 l/;» 2
Km _ (me C ) ( 2 ) -(ZZ—G_M exp (Il,/mz kT) [_Ei (—Il/mz kT)]. (20)

=\ 3« kT o’
Radiative Deexcitation of Recombination States
As in the case of three-body recombination, it is desired to know the
rate at which ground-state ions are formed. As before, formation is assumed

to occur either directly or by radiative decay of excited states. Since the
radiative deexcitation process is independent of the mechanism by which

21




an excited ion is formed, all the discussion concerning the decay cascade
given in the section on three-body recombination applies here as well.

The Rate Coefficient Calculation

A computer program for the IBM 709 was written to compute the rate co-
efficient for the formation of hydrogenic ions in the ground state. This
program calculates the initial population of the excited states using Equa-
tion 20 and the successive distributions of recombined states. Figure 9 (p
32) shows the results of calculations performed for bare oxygen and nitrogen
nuclei, respectively.

For radiative recombination, in contrast to three-body recombination, the
rate at which excited states are formed falls off with increasing m. Hence,
the contribution to the ground-state recombination due to states above
m = 10 is quite insignificant. A consequence of the fact that the main con-
tribution to the ground-state recombination comes from low-lying states is
that the effect of electron impact reionization is quite small. Therefore,
the dependence of the rate coefficient on the free electron density is slight.
In fact, the calculations show that the rate coefficient is essentially in-
dependent of the electron density.

To utilize these recombination data in computer calculations, analytical

approximations for the curves shown in Figure 9 were obtained. The de-
sired expressions were found to be:

For nitrogen

K = (7.761x 107°) T~°+%3%: 3 x 10* < T < 2 x 10° °K

K =(1.721 x 107*) T™°-****}; 2 x 10°< T=< 10* °K
For oxygen,

K =(8.054 x 107°) T™**%; 3 x 10'< T < 2x 10° °K

K = (1.952x 107*) T™*%% 2x 10°<= T< 10° °K

Values obtained with these epproximate expressions are within 5% of the
computer results.

m;.r.\n,,.,.A,
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Fig 6 Possible radiative transitions for hypothetical four-level atom
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