DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
OFFICE OF NAVAL RESEARCH

Contract No. N.62558-3589
Task No. NR.356-445

TECHNICAL REPORT NO. 1

Four Coordinate Complexes of Carbon
by
R. N. Collings, R. S. Nyholm and M. L. Tobe

Prepared for publication
(In condensed form)
in "Nature"

University College London
Department of Chemistry

March 1964

Reproduction in whole or in part is permitted for
any purpose of the United States Government.
FOUR COORDINATE COMPLEXES OF CARBON

1. INTRODUCTION

Studies in these laboratories of complexes formed by the $1s^2$ core (light) elements, beryllium and boron, with the ditertiary arsine, o-phenylene bis(dimethyl arsine)\(^1,2\) (I) have now been extended to carbon.

Compounds of the type $[\text{CH}_3\text{AsR}_3]^+\text{X}^-$ have been known for a long time and more recently\(^3\) derivatives of the type II and III have also been described.

\[
\text{CH}_3\text{AsCH}_3 \quad \text{II} \quad \text{III}
\]

We have now developed this series to include complexes in which the same carbon is coordinated to two, three and four arsenic atoms; examples of the last two of these were previously unknown.

2. Di hydro (o-phenylenebisdimethyl arsine) carbon IV salts

\[
\text{CH}_3\text{AsCH}_3 \quad \text{II} \quad \text{III}
\]

Preparation:

(a) Bromide. Equimolar quantities of o-phenylene bisdimethyl arsine and dibromomethane were reacted and the yellow solid, on recrystallisation from methanol gave white crystals M.P. 220\(^\circ\).

Found C, 28.5, H, 4.3; As, 32.4; Br, 35.3%

$C_{11}H_{12}As_2Br_2$ requires C, 28.8; H, 3.9; As, 32.5; Br, 34.8%

Equivalent conductivity of $10^{-3}M$ aqueous solution = 250 mhos
(b) The iodide, M.P. 239°, was prepared in an analogous way using diiodomethane.

Found C, 23.7; H, 2.9; I, 45.8%

$\text{C}_{11}\text{H}_{12}\text{As}_2\text{I}_2$ requires C, 23.8; H, 3.2; I, 45.9%

Equivalent conductivity of 10⁻³ M aqueous solution = 246 mhos

(c) The perchlorate was prepared by adding a hot saturated ethanolic solution of sodium perchlorate to a hot saturated ethanolic solution of the bromide. The perchlorate crystallised out on cooling as shiny white needles, M.P. 270°.

Found C, 26.7; H, 3.6; As, 30.0%

Calc. for $\text{C}_{11}\text{H}_{12}\text{O}_8\text{As}_2\text{Cl}_2$ C, 26.4; H, 3.6; As, 30.0%

Equivalent conductivity of 10⁻³ M aqueous solution = 202 mhos

PROPERTIES These complexes are stable white crystalline salts readily soluble in water and the halide ions are freely titratable with silver nitrate. The conductivities correspond closely the values expected for 2:1 electrolytes.

It is possible to evaporate the aqueous solution and recover the complex unchanged.

3. bis-(o-phenylenebisdimethyl arsine) carbon (IV) salts

\[
\begin{align*}
\text{CH}_3 & \text{As} \quad \text{CH}_3 \\
\text{CH}_3 & \text{As} \\
\text{CH}_3 & \text{As} \\
\text{CH}_3 & \text{As}
\end{align*}
\]

Preparation:

The Bromide was obtained by reaction two moles of the diarsine with one mole of carbon tetrabromide. The solid reaction product was recrystallised from absolute ethanol/ether and the bromide obtained as white crystals M.P. 82°.

Found C, 28.0; H, 3.3; As, 30.0; Br, 35.6%

Calc. for $\text{C}_{21}\text{H}_{32}\text{As}_4\text{Br}_4$ C, 28.0; H, 3.6; As, 33.2; Br, 35.4%

The Iodide was obtained in a similar way but using carbon tetrabromide and obtained as white crystals M.P. 231°.

Found C, 23.2; H, 2.9; As, 27.1; I, 46.9%

$\text{C}_{21}\text{H}_{32}\text{As}_4\text{I}_4$ requires C, 23.1; H, 3.0; As, 27.4; I, 46.5%
The perchlorate was prepared by mixing hot ethanolic solutions of the bromide and sodium perchlorate and crystallised out on cooling. M.P. 243°.

Found C, 26.3; H, 4.0; As, 30.7%

$C_{21}H_{32}F_10AsC_4$ requires C, 25.7; H, 3.3; As, 30.5%

PROPERTIES These complexes are stable white crystalline solids that are extremely soluble in water. The bromide and iodide ions are readily titrateable and the conductivities indicate extensive ion association which is not unusual for ions bearing this high positive charge.

The low melting point of the bromide is of interest. It has been observed that, if the liquid is heated above 100°, it appears to bubble and then resolidifies. The white solid formed does not remelt until the temperature is above 200°. The nature of this reaction is uncertain but similar degradations of quaternary arsonium halides, whereby methyl halide is evolved and the tertiary arsine formed are not uncommon. The infra-red spectra have been recorded.

4. DISCUSSION The unique feature of these new compounds is the number of quaternary arsenic atoms (or coordinate links) associated with the same carbon atom. Just as one can formulate complexes of metallic elements with four coordinate links e.g. the complex

$[Zn\text{(diarsine)}_2](ClO_4)_2$ so the carbon compound can be written formally as shown in the figure:

It is not suggested that there is any real distinction between the representation

\[As\text{_bis_o_phenylenebisdimethylarsine_carbon(IV)}\text{_tetra_perchlorate}.\]

\[R_3As^+ \rightarrow C\leq \text{ and } R_3As \rightarrow C\leq \] but it is important to emphasise that no sharp distinction can be made between, say, Be(II) and C(IV) and that there is simply a gradual transition from Li(I) to C(IV) as the formal charge on the central atom increases.

We are now studying the reactions between $CHBr_3$ CHI_3, CBr_4 and Cl_4 with a variety of tri and quadridentate arsine ligands, both with aliphatic and aromatic skeletons.
TECHNICAL REPORT DISTRIBUTION LIST

CONTRACTOR: University College London

CONTRACT NUMBER: N6 2558-3589

<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding Officer</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td>Office of Naval Research Branch Office</td>
</tr>
<tr>
<td>230 N. Michigan Avenue</td>
<td>207 West 24th Street</td>
</tr>
<tr>
<td>Chicago 1, Illinois</td>
<td>New York 11, New York</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td>Office of Naval Research Branch Office</td>
</tr>
<tr>
<td>1030 East Green Street</td>
<td>Box 39, Navy # 100, F. P. O.</td>
</tr>
<tr>
<td>Pasadena 1, California</td>
<td>New York, New York</td>
</tr>
<tr>
<td>(1)</td>
<td>(7)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Director, Naval Research Laboratory</td>
</tr>
<tr>
<td>Office of Naval Research Branch Office</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Box 39, Navy # 100, F. P. O.</td>
<td>Attn: Technical Information Officer</td>
</tr>
<tr>
<td>New York, New York</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>(6)</td>
<td>(2)</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Chief of Naval Research</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Department of the Navy</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Attn: Code 425</td>
<td>Attn: Code 425</td>
</tr>
<tr>
<td>(2)</td>
<td>(20)</td>
</tr>
<tr>
<td>DDR&E</td>
<td>Director, Naval Research Laboratory</td>
</tr>
<tr>
<td>Technical Library</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Room 3C-128, The Pentagon</td>
<td>Attn: Technical Director</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>(1)</td>
</tr>
<tr>
<td>(1)</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>Supply & Maintenance Command</td>
<td>Supply & Maintenance Command</td>
</tr>
<tr>
<td>Maintenance Readiness Division</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Attn: Technical Director</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Army Research Office</td>
<td>Army Research Office</td>
</tr>
<tr>
<td>Box CM, Duke Station</td>
<td>Box CM, Duke Station</td>
</tr>
<tr>
<td>Durham, North Carolina</td>
<td>Durham, North Carolina</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Atomic Energy Commission
Division of Research
Chemistry Programs
Washington 25, D.C. (1)

Atomic Energy Commission
Division of Technical Information Extension
Post Office Box 62
Oak Ridge, Tennessee (1)

Commanding Officer
U.S. Army Chemical Research and Development Laboratories
Attn: Librarian
Edgewood Arsenal, Maryland (1)

Dr A. Eisenberg
Department of Chemistry
University of California
Los Angeles, California (1)

Dr P. A. Miller
ONR Branch Office
1000 Geary Street
San Francisco 9, California (1)

Dr Porter W. Erickson
Chemistry Research Department
Non-Metallic Materials Division
Room 4-171
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland (1)

Dr Albert Lightbody
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland (1)

Contracting Officer
U.S. Navy Purchasing Officer
8 Rathbone Place,
London W. 1, England (1)

Director
U.S. Navy European Research Contracts Program
Navy 100 Box 39 Fleet Post Office
New York, New York (1)

Dr C. Haber
Naval Ordnance Laboratory
Corona, California (1)
Dr A. L. Powell
ONR Branch Office
495 Summer Street
Boston 10, Massachusetts

Dr E. G. Rochow
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts

Dr T. D. Parsons
Department of Chemistry
Oregon State University
Corvallis, Oregon

Dr A. V. Tobolsky
Department of Chemistry
Princeton University
Princeton, New Jersey

Dr R. S. Stein
Department of Chemistry
University of Massachusetts
Amherst, Massachusetts

Dr S. Young Tyree, Jr.
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina

Dr A. M. Zwickel
Department of Chemistry
Clark University
Worcester, Massachusetts

Dr M. M. Chamberlain
Department of Chemistry
Western Reserve University
Cleveland, Ohio

Dr T. P. Onak
Department of Chemistry
Los Angeles State College
Los Angeles, California

Dr D. C. Bradley
Department of Chemistry
University of Western Ontario
London, Canada

Dr Riley Schaeffer
Department of Chemistry
Indiana University
Bloomington, Indiana

Dr T. G. Fox
Director of Research
Mellon Institute

Dr P. D. George
General Electric Company

Dr H. B. Jonassen
Department of Chemistry
New Orleans 15, Louisiana

Dr H. Freiser
Department of Chemistry
Stanford University
Stanford, California

Dr R. N. Minne
Science Department
Culver Military Academy
Culver, Indiana

Dr H. S. Gutowsky
Department of Chemistry
University of Illinois
Urbana, Illinois

Dr W. S. Fyfe
Department of Geology
University of California
Berkeley, California

6