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THE EQUILIBRIUM TEMPERATURE PROBE,
A DEVICE FOR MEASURING TEMPERATURES IN
HYPERSONIC BOUNDARY LAYERS

,,w"‘?’
Hb)}ba James E. Danberg ,
e

A

ABSTRACT: The equilibrium temperature probe is a device
which may be used to determine the flow temperature in a
hypersonic boundary layer. It consists of a sharp, small
angled cone of low emissivity metal supported by a thermal
insulator., A thermocouple is installed to measure the cone
temperature. The cone is held with its axis parallel to the
w:m, Ildeally, the indicated temperature is the adiabatic
wall temperature, a property of the flow which when combined
with other more easily obtained properties and established

relationships provides sufficient information to determine
the total temperature of the flow,

The equilibrium temperature probe can be made very small
without excessive conduction and radiation effects. This is
the main advantage obtained from using the equilibrium tempera-
ture probe over the conventional total-temperature probe, In
addition, the conical corfiguration minimizes the probe's
interference with the flow.
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This report describes and analyzes the equilibrium
temperature probe, an instrument for measuring flow tempera-
tures at hypersonic speeds. The probe is designed for
measuring temperatures within the boundary layer for the high
temperature and low density conditions associated with hyper-
sonic w.ind tunnels,

The work was performed in connection with an experimental
program for measuring the characteristics of the hypersonic
turbulent boundary layer. This project was sponsored by
the Bureau of Naval Weapons under Task No. RMGA-42-034/212-1/
F009-10-001.

The author wishes to express his indebtedness to
Dr. E. M. Winkler for many helpful discussions during this
work and to Mr. E. Petzold for his skill in making the instru-
ment.

W. D. COLEMAN
Captain, USN
Commander
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SYMBOLS

pP-p
7 Pju;

pressure coefficient = 2

specific heat of constant pressure

heat-transfer coefficient

constants (see equation (3))

thermal conductivity
Mach number
pressure

c
Prandtl number = _Eﬁ

recovery factor

Reynolds number based on distance from the leading edge

Stanton number = h/Cppu

temperature

velocity

distance from the cone tip
distance from the wall
Mach number factor

ratio of specific Lkeats
viscosity

density
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THE EQUILIBRIUM TEMPERATURE PROBE,
A DEVICE FOR MEASURING TEMPERATURES IN
HYPERSONIC BOUNDARY LAYERS

INTRODUCTION

Normally the experimental study of hypersonic wind-tunnel
boundary layers requires either the direct or indirect measure-
ment of the temperature distribution. Of primary interest is
the static temperature; however, this quantity cannot be
measured directly by any instrument introduced into the flow.
This is because the presence of the probe tends to convert
the translational energy of the flow in the immediate vicinity
of the instrument into thermal energy through shock waves and
viscous effects. Thus, probes tend to indicate the total
temperature of the flow., Fortunately, this is an adequate
measurement because the static temperature is related to the

total temperature in a simple way when the Mach number is
known,

The conventional total-temperature probe (references (a)
through (e)) is the instrument most frequently used for hyper-
sonic boundary-layer work., Such a probe operates by adia-
batically compressing a sample of the flow by passing it
through a normal shock wave, This sample then enters the probe
and passes over a temperature sensing element (e.g., a thermo-
couple) at relatively low speed. Ideally, the sample is at
the total temperature and the sensing element then indicates
the total temperature. Practically, in a low density (or low
absolute pressure), high-speed and high-temperature flow, the
heat losses from the sensing element due to conduction and
radiation combined with the small heating potential of the
sample cause large deviations in element temperature from
the actual total temperature,

As the size of the total-temperature probe is made smaller
or the flow density is decreased, the sensing element tempera-
ture tends to indicate the external surface temperature of
the probe, which is nearly the adiabatic wall temperature
associated with the external boundary layer on the probe.

This fact suggests that by designing a probe of suitable
geometry for which the relationship between adiabatic wall
temperature and total temperature is known in terms of the
free-stream Mach number, the measurement of the adiabatic

wall temperature is sufficient for determining the local total
temperature, Such a probe might be called an adiabatic wall
temperature probe., Unfortunately some conduction and radiation
effects are also present in any practical design and therefore

1
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the sensing element does not indicate adiabatic wall tempera-
ture but a temperature associated with the equilibrium between
the heat losses and the aerodynamic heating. Therefore, such
a probe may be logically called an equilibrium temperature
probe. ‘A similar instrument was suggested some years ago by
E. R. G. Eckert in what he called a cylinder thermometer
(reference (f)), which was designed to measure the adiabatic
surface temperature on a cylinder in longitudinal flow,.

EQUILIBRIUM TEMPERATURE PROBE DESIGN,
THEORY, AND CALIBRATION

Design. A possible configuration for an equilibrium tempera-
ture probe might be a sharp, small angled cone made from low
emissivity metal and supported by a thermal insulator. One of
the main advantages of employing a cone is that the relationship
between the flow conditions ahead of the probe to the flow con-
ditions behind the shock wave are known and available over a
wide range of Mach numbers. By employing a sharp tip and small
cone angle the variation in equilibrium temperature is reduced

along the cone and support. In addition such a configuration
minimizes the flow interference effects.

Figures 1 and 2 show an experimental model of such a cone
probe. The thermocouple (Ty) is soldered directly to the
base of the cone, and measures approximately the average
temperature of the cone material. Because of the large exposed
surface area of the cone and small heat absorbing mass, the
tip has a short response time compared with the conventional
probe. Polished stainless steel was used in making the probe
shown in Figure 1 in order to decrease the emissivity and
thereby decrease the transfer of heat by radiation. Subsequent
models were improved by reducing the size of all dimensions by
one half of those shown in Figure 1. In addition, platinum

tips were used with the result that the small radiation effects
were further reduced.

The wires from the thermocouple junction are electrically
insulated by passing them through separate holes in the ceramic
support. This insulator also reduces the conduction of heat
from and to the tip. This is particularly important because
normally the supporting sting has one or more stagnation
regions of high temperature relative to the cone temperature,
The major part of the remaining heat conduction is through the
thermocouple wires. This can also be reduced by using small
diameter wire.

It is important that the cone be oriented with its axis

parallel to the flow direction, otherwise it is difficult to
account for the effect of angle of attack in the data analysis,.

2
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It is also important because the ceramic insulator has very
little strength in bending., However, with the probe properly
mounted, testing over a wide range of wind-tunnel conditions
is possible without damage to the instrument. For example,

a probe, one mm in diameter, has been used repeatedly in the
NOL Hypersonic Tunnel No., 4 at a Mach number of 6.7 at supply
pressures up to 35 atmospheres,

A second thermocouple (Tp) (see Figure 1) has been pro-
vided at the sting end of the ceramic insulator to facilitate
evaluation of the conduction effects on the tip temperature.,
That is, the conduction of heat from and to the tip can be
calculated approximately from (a) the temperature difference
between the tip and the base, (b) a constant obtained from
calibration information, and (c) a function of local Mach
number derived from theory.

Theory. Ideally the primary thermocouple (T,) indicates
the adiabatic wall temperature (Tg) which is a property of the
basic flow, the cone geometry and the type of boundary layer
on the cone, Specifically the cone adiabatic wall temperature
is directly proportional to the local total temperature, all
other conditions being the same.

T
o 32)

T
(T‘;’)- 1/ [R(l-T/TO) + T/To] . (2)

T/To is the ratio of static to total temperature in the flow
Just outside of the cone boundary layer, and R is the tempera-
ture recovery factor. Knowing the Mach number of the flow

just ahead of the cone tip, and knowing the cone geometry, the
ratio T/T, can be determined from conventional cone tables
(reference (g)). Generally the local cone Reynolds number is
considerably less than the Reynolds number of transition, and
under these conditions the recovery factor equals the square
root of the Prandtl number. Because the Prandtl number is only
a weak function of temperature, the recovery factor can usually
be considered a constant in the wind-=tunnel operating range.

where

As in the conventional probe some radiation and conduction
errors are also present in the equilibrium temperature probe,
Therefore the indicated cone temperature deviates from the
desired adiabatic wall temperature. The heat balance for the
cone is the basis for evaluating this temperature error.

3
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h(Te-Ta) = -K1(Tp=-Ta) + Ko(Ta¥-Tg) (3)
O pr— f‘."h—. ~
Convection = fConduction + Radiation

Where h = heai-transfer coefficient
" K3 and K, are constants
Tg = temperature of the surrounding walls.

By rewriting equation (3), the difference between the measured

temperature T, and the desired adiabatic wall temperature Tg
is obtained:

Te-T, = -(K3/h) (Tp-Ta) + (Kp/h) (T A-1 Y . (4)

The temperature of the surrounding walls, Ti’ is assumed to
o

be known, even if only approximately, in al f the following
discussions.

Calibration, The unknowns in equation (4) are Tg, Kj/h,
and K27h. These quantities are not constants but depend on the
flow conditions around the probe, i.e., Mach number, pressure,
and temperature., Normally, the probe should be calibrated
in order to determine the value of K1/hf, Kg/h¢, and Tef under

known conditions (subscript f). Three different values of

Ta and Ty are required, holding everything else constant,
i.e., Tog, Mg, and Ts. This can be done by applying three
different amounts of heating to the sting of the probe, Then
K1/h and Ko/h are calculated for a specific case by multi-
plying both Kj/hf and Ko/hs by the ratio hg/h, the determi-
nation of which will be discussed in the next section. <he
local value of Te for the cone can be obtained by inserting
the measured and calculated quantities into equation (4),
rewritten in the following form:

_ h K Ko
Te = Ta +(h_f) 'ﬁ} (Ta-Tp) + E; (Ted-Tg¥)( . (5)

In order to relate the local value of T, on the cone to
the total temperature in the flow ahead of ?he cone, equations
(1) and (2) are used. The Mach number on the cone that is
required to evaluate T/T, in equation (2) is obtained from
the Mach number ahead of the cone, which is presumed to be

4
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known, and from cone tables. The recovery factor may be either
calculated from the square root of the Prandtl number or found
by using the calibration value of To., and the calibration
conditions in equations (1) and (2).” Since the recovery factor
is nearly constant, the calibration value Ry can usually be
employed over a wide range of conditions, somparison of the
recovery factor obtained from the calibration conditions with
the theoretical value of Prl/2 ig usually a check on how well
the probe is aligned with the flow,

The variation of h with the basic flow conditions is
obtained by assuming the dependence of h on cone Mach number
and total temperature based on well established compressible
laminar boundary-~layer relations, By employing the Mangler
transformation for the compressible flow over a cone it is

possible to write the local heat-transfer coefficient as (see
reference (h))

S K puxe
h = .6625 V3 [ - % prl/3 ° (6)

where all the quantities appearing in equation (6) are evaluated
Just outside the cone boundary layer.

k = thermal conductivity

u = velocity just outside cone boundary
layer

X, = distance from cone tip
B = coefficient of viscosity

p = density just outside cone boundary
layer

(S¢/Sti)pr is the ratio of the compressible to the incompressible
Stanton number on a flat plate, evaluated at a Mach number cor
responding to the edge of the cone boundary layer. Since the
cone is under conditions of nearly zero heat transfer, the
Stanton number ratio can be evaluated at adiabatic conditions.
The result is that (St/Stji)p can be considered only a function
of cone Mach number, and the resulting relation is shown in
Figure 3, which is taken from reference (h).

The ratio of the heat-transfer coefficient under any con-
dition to its value at the calibration condition can be written
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St .
P*—:(-é__t_i)p (.‘.’3.)1/3 k p (?_1_)1/2" e . (D
f

Within reasonable limits in temperature and Mach number the
following substitutions can be made:

Pr . 3 (8)
Prf y4

k - B . I

137 he Tg

where

= -(I_) To Tor) : 9
T \To Tog / \Tt
The cone pressure p can be related to the static pressure and
Mach number in the flow ahead of the cone.

2
Poaa s 4N oo (10)
P1 2

where C,(My) is the pressure coefficient and is a function of
cone angle and M] as determined from cone tables, Thus
equation (7) can be written:

h 8 (To )1/8 P >1/2 (11)
hf Be Tos 11'1:t

S 1/2 1/8
s of 5t [(p/p]_) u] 2 g (12)
Sti P

where
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St
8 o \Sti/o |@mpw M2 a8 . as)
By St ) (o/p1)t Mg (T/To) 178

Sty /prg

For a given cone, B/B. is just a function of the calibration
Mach number, Mg, and the Mach number in front of the cone, M3,
since the cone Mach number M is known in terms of Mj.

In equation (11) (To/To )l/8 contains the temperature, T,,
which is the desired ultimate result of the calculation and
hence unknown, However, because of the 1/8 power this term
can in most cases be set equal to unity without affecting the
result, or at least it is possible to iterate if more accuracy
is required, The ratio of the static pressures, pl/plf, must
be known, In the case of boundary-layer measurements, however,
the assumption of constant static pressure makes pj/pjs 2
constant for a given boundary-layer survey. Since evaluation
of the Mach number from Pitot pressure measurements requires
the static pressure, this quantity is known in most cases,

For a given cone, B can be calculated and plotted as a
function of Mj, the Mach number ahead of the probe over the
entire range expected including the calibration condition.

Then the value of B/Bf in equation (13) is obtained by finding
the appropriate value of B from the graph and forming the ratio
B/Bs., Figure 4 shows a graph of B as a function of M} for the
50 galf angle cone probe of Figures 1 and 2,

The variation of B with Mj for a 5° half angle cone is
approximately equal to M11 2 as can be seen from Figure 4.
This becomes more accurate as the Mach number goes to zero
because both St/sti and ’I‘/To approach one and also, since
the cone angle is small, both p/p1 and M/M]1 approach one 75
M} goes to zero. Therefore equation (13) is equal to M11
with a sufficlent degree of accuracy.

A low-speed limitation on the use of the probe is indi-
cated by Figure 4 because as the Mach number of interest
approaches zero, B also approaches zero. This is important
because the difference between Te and Ty is inversely pro-
portional to the heat-transfer coefficient and hence to B,
with the result that the conduction errors can become large.
The useful range can be increased by analyzing in greater
detail the subsonic conduction and radiation errors. However,
when the probe is used in a hypersonic boundary laver (a) tbe

7
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size of the probe limits the minimum Mach number encountered;
(b) as the probe approaches the surface the difference between
probe temperature and the surrounding temperature decreases
thereby reducing the radiation heat loss; and (c) the heat
losses can be made to have a minimum effect on the tip tempera-
ture by better insulation and lower emissivity material,

EXPERIMENTAL RESULTS

Example of Equilibrium Temperature Probe Measurements.
Figure 5 shows a typical hypersonic turbulent boundary-layer
temperature distribution as obtained with an equilibrium tempera-
ture probe, The probe shown in Figures 1 and 2 was used, and in
addition the probe was calibrated in the flow just outside the
boundary layer so that pl/p]_f = 1,0, The measurements were

obtained on a flat plate in the NOL Hypersonic Tunnel No. 4
under the following conditions:

Moo = 6.5 T, = 300°K

Po = 15.2 atms Tg = 300% (approximate

value)
To.. = 5490K
0o

The Mach number distribution calculated from Pitot probe data
and wall static pressure is shown in Figure 6, The curves
marked A and B in Figure 5 are the actual measured temperatures
Ta and Tp of the probe. The curve marked C is the calculated
total temperature based on the following calibration constants:

K1/hg = 0,297

Ko/bge = 1.1 x 10~10 1,03

2
R = 0,826 (Prwl/ = 0,8267)

The effect of radiation and conduction cancelled to some
extent, That is, conduction tended to heat the cone because
the support was slightly hotter. However, radiation to the
cold wind-tunnel walls tended to reduce the cone temperature,

Near the wall, the total temperature is considerably lower
and, hence, the radiation heat loss decreases. The influence
on the cone temperature, however, caunnot be predicted so
easily because although the heat loss due to radiation becomes
smaller deep within the boundary layer, on the other hand the
local heat-transfer coefficient decreases very rapidly in
this region also,
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Comparison with the Conventional Total-Temperature Probe,
Figure 7 shows the total temperature calculated from the
equilibrium probe measurements (curve B) and the measurement
from a conventional total-temperature probe (curve A). The
total-temperature probe was instrumented to indicate the
temperature of the thermocouple wires at the point the wires
entered the support. The temperature of thermocouple at the
support is shown as curve C. The difference then between
curves A and C is an indication of the conduction along the
primary thermocouple wires.

When the conventional probe is in the free stream, the
external surfaces are subject to a temperature considerably
lower than T,. As a result, some heat from the sensing element
flows toward this low temperature region., Because of the low
speed of the internal flow, the heat-transfer rate to the
sensing element is small, and consequently, small heat losses
become a significant fraction of the heat input, Under these
conditions the element temperature is considerably lower than
Toe A similar result was obtained by Wood (references (d) and
(e)) in the free stream and with a large probe,

The preceding is the case when the entire probe is immersed
in a uniform stream as during calibration., However, when
probing the boundary layer with a conventional total-temperature
probe the situation is quite different because usually the sup-~
port extends into the free stream exposing its surfaces to free-
stream adiabatic wall temperature. The primary element, on
the other hand, is exposed to local T, which near the wall in a
high heat-transfer case, can be several hundred degrees Centi-
grade below Tog and hence even below Tg of the free-stream.

In this case, heat flows from the relatively hot support to
the colder element. Thus, if the ability of the internal flow
to absorb this heat is low, the element is considerably higher
in temperature than the local T,. This is shown in Figure 7
in the region less than one mm from wall. Similar errors

may result from radiation between the element and the shield
as well as from conduction if the shield temperature is
approximately the same as that of the support. Thus the error
in a conventional total-temperature probe cannot be repreosented
by a recovery factor just dependent on the internal flow con-
ditions because it does not account for changes in heat con-
duction or radiation due to the changing external flow field.
If curve B (Figure 7) is the correct Ty distribution then a
recovery factor greater than one is required to transform
curve A into B in the region less than one mm from the wall.

An important region in Figure 7 is where curves A and C

cross since at that point the conduction losses are zero and
the indicated temperature equals the actual local total

9
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temperature., The curves in fact do cross almost on the T,
curve based on equilibrium temperature measurements,

CONCLUS IONS

The equilibrium temperature probe is essentially a sharp,
small angled cone made from low emissivity metal and supported
by a thermal insulator., A temperature sensing element measures
the temperature of the cone which ideally would be the cone
adiabatic wall temperature. The adiabatic wall temperature is
a property of the flow which when combined with other easily
obtained quantities (Mach number and cone geometry) and
established relationships (cone flow and laminar recovery
factor) provides sufficient information to determine the total
temperature of the flow.

The advantages of indirectly measuring the total temperature
in a hypersonic boundary layer by an equilibrium temperature
probe are:

a. The element area, in this case the cone surface, is
large compared to the conduction path, thereby decreasing the
required correction to the measurement for conduction,

b. Under some conditions the local heat-transfer coef-
ficient at the sensing element is larger for the cone probe
than for the conventional probe because of the higher local
flow velocity. This also reduces the conduction error,.

¢, The cone and its supporting insulator are all at
approximately the same temperature, which further decreases
the magnitude of conduction losses.

d. Both the radiation and conduction losses can be
evaluated with the aid of a calibration procedure, However,
radiation effects will limit the usefulness of the instru-
ment at extremely high temperature,

e. The size of the probe is not as restricted by manu-
facturing difficulties as is the more complicated shielded
thermocouple of the conventional total-temperature probe.

f. The small angle cone presents a minimum disturbance

to the external flow field and this reduces the reservation
concerning the use of probes in close vicinity of a wall.,

10
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