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ABSTRACT

A procedure is described for designing S & A (safety-
and-arming) setback mechanisms of the rotary-leaf and spring
type to obtain optimum safety and reliability. The design
procedure, developed from a mathematical analysis, is described
in detail. This procedure is formulated so that little mathe-
matical background is required to understand or use it.

An analytical study is made of the effect of varying the
mass of the leaves upon the accidental drop safety of the
mechanism. The drop safety is defined as the absolute minimum
velocity change that can possibly arm the device. This figure
of merit is derived and evaluated for each set of leaves.

To determine whether the mechanism arms when fired,
graphical curves are developed, showing the arming time of each
leaf of different weight as a function of the time that elapses
from the moment of firing to their release. By adding these
arming times together, the combinations or weights that will
arm are readily obtained. This study was made for both fast-
and slow-rising acceleration curves, and for restraining
springs with both flat and steep spring rates. A simple ex-
ponential function, with one varying parameter, was developed
to represent different gun acceleration curves.

The results of the analysis in each case indicate that
leaves of equal weight are about as safe and reliable as com-
binations of leaves of varying weights. It was also discovered
that the mechanism performed much as though a constant accelera-
tion had been applied to it. The main assumption of the analysis
was that friction has an average effective value.
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T p•imay *A (safety.-and-aming) **,phani, of high-velocity-non-
rotatig ordnance projectiles (artillery or mortar) that are ianqd
with hgh aceelerations is often a multiple leaf setback 4gvice. 7Tbe
pendulum-rlike.laso this dniia, m 4-l-e-fAinL-ool&a
tion, are designed to operate seqetially• _ Lte the oether .. Each
leaf mu-st rotate through a certain angle before the next one is re-
leased., The last leaf arms the projectile by releasing a rotor, clos-

ing a switch, starting a clock, or some such mechanism. This arrangement
insures that the device will arm only if the acceleration lasts a
certain finite time and provides safety against accidental handling
accelerations of short duration.

!9

Although the leaves are not limited to rotary motion, these are
the only type that will be considered in this report, since they are
the most common. Also, it will be assumed that the device has three
leaves, as in most models, and that they are of flat pendulum con-
figuration mounted on shafts that rotate on bearings. The movement
of each leaf under acceleration is opposed by a stiff helical spring
mounted under tension on the shaft with one end anchored to the frame
and the other to the leaf. A post, which is part of the frame, pre-
vents each leaf from rotating in a negative direction. It is assumed
that the leaves are positioned so that they are most sensitive to ac-
celerations in the direction of firing. This three-leaf setback device
is a simple inexpensive mechanism, but a design providing the maximum
safety and reliability required of ordnance items is rather complicated.
The design of most models has relied on experimental testing programs
and past performance.

Theoretical and experimental studies conducted by Hausner have
added much Lo the understanding of this device (ref 1,2,3,4). This
theoretical study is based on his earlier work. Among the results of
Hausner's theorntical analysis that pertain particularly to this study
are his derivations of the equations of motion of the leaves, expressions
for the principal friction torques on the leaves, and derivations of
the absolute minimum velocity change (time integral of acceleration)
that the setback mechanism must receive in order to arm. His mathe-
matlcen model for this last derivation assumes that the spring torque
opposing rotation is constant (rather than linear), that there is no
friction, and that shock and vibration effects are negligible. A
further study of this device was desired to obtain a better under-
standing of the factors determining the safest and most reliable
operation, and to derive a simple procedure for designing these de-
vices--s handbook technique if possible.

The results of this analysis include the recommendation of a
simple function to represent various gun accelerations curves. Its
shape is changed by varying just a single parameter. A definition
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of drop safety is borrowed from Hausner, and a drop-safety index (or

figure of merit) is derived for a leaf, which is a function of the
spring stiffness and the mass of the leaf. This drop-safety index
is proportional to the absolute minimum velocitý_ chifnie-tha-- wilT-a•-

S~a leaf. Instead of the constant spring torque used by Hausner, a

linear spring torque in used in all derivations in this report, so
that the effect of the mass-spring system's natural frequency of oscil- i

_ ~lation is included in the solutions.

SAnother result of this study is the derivation of an analog com-
Sputer method by which curves can be obtained, showing the variation
S• ~in arming time of a leaf as a function of the time that elapses from •

S~the application of the gun acceleration until the leaf is released.-
S~An analysis of these curves obtained for different spring stiffnesses,
S~leaf masses, and gun acceleration curves shows that there is little •

S~increase in drop safety to be gained by using leaves of unequal mass.
•- Therefore, it is recommended that, where possible, leaves be of the
S~same mass. (If the friction load of the latch or rotor on the last
S~leaf is very large, this may not be desirable.) A simple procedure

requiring little mathematical background is described in section 3 for
designing a leaf-spring setback mechanism that will have the highest
drop-safety index and still arm the mechanism.

The technique employed in the analysis and the ausumptions made
are described in section 2. In this study, any effects due to vibra-
tion and shock, such as deformation of parts of the mechanism, are
excluded. Also ignored are the weights of the springs and shafts.

2. METHOD OF ANALYSIS

2.1 Derivation of Equations of Motion

A setback leaf is essentially a rotational mass-spring
system, which is energized for a very short period of time by a large
acceleration during the firing of an artillery device. The setback
leaves are designed to "recognize" a particular acceleration function.
Each leaf of the mass-spring system absorbs enough energy from the
applied acceleration during its existence to rotate to a position that
will release the next leaf. These movements of the leaves occur
sequentially, and the arming of each leaf must occur in a time short
enough to allow the succeeding leaves to accomplish their function also. •
Since the last leaves are delayed for a period of time before being
released, they must be designed fnr the apt,@ieratinn that IR still
available during their travel. In other words, the leaf design de-
pends on the magnitude and shape of the acceleration-time function.4

However3 a satisfactory design must not only arm for a speci-

fied acceleration but must also provide the maximum safety against acci-

dental arming resulting from acceleration-time functions of shapes different

S1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- -
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fr-om the operating acceleration. The •rLative saety of leaves is

us#ally expressed in terms of the velocity chage egaulting from ao-
cldenal drops required to arm the leaveas. +The probleo.iýof dete-vmln-
*ig the safety of a leaf and its definition has been discussed by
•Mýr 1 f _, The measure of the afsafetY_ f _a lf-Lchoman.1o
be the absolute minimum velocity change required to arm the leaf.
-lhid-minimum velocity change will be tthat resulting from what, in

_o mathematical terminology, is known as an impulse function, or a
delta function--a very sharp pulse of infinite acceleration lasting
for an infinitely short period of time. Such a pulse is, of course,
physically impossible; but it is the limiting case of a high ampli-
tude pulse of short duration, whose velocity change or time integral
of acceleration, remains constant.

The equation of motion of a pendulum-type setback leaf
rotating about a fixed axis is

Z MJ

when M are the external torques about the fixed axis of rotation.
If the leaf is energized or shocked by an acceleration g A(t), the
equation of motion is (ref 2)

de
Tdt- + Ms Mf =mg A(t) y cos (e-a) (1)

where Ms and Mf are the torque of the restraining spring, and the

assorted friction torques, respectively.

The particular setback leaf system analyzed is shown in
figure 1. It is assumed in the analysis that the acceleration im-
parted to the system is in the vertical direction. The symbols m,
y, and g are the mass of the leaf, the torque arm (distance from the
center of mass to the center of the shaft about which the leaf
rotates), and the acceleration due to gravity, respectively. Cal-
culations for the center-of-mass and moment of inertia of leaves of
this geometry are given in appendix A. The e is the angle of rota- •
tion of the leaf measured as the angle through which the center of
mass rotates, assuming that its initial value is zero and that the
angle to which it must rotate to arm (or permit the next leaf to
rotpte) in @ - 4 . The axiq from which e is measured is offset by
an angle a from [he direction perpendicular to the applied accelera-
tion. This angle a is often taken to be 0 /2. Then as the leaf

8 r Orrotates, e - a varies from - - through zero to + - In this analysis

12
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Figure 1. Leaf arrang~ment in setback mechanism.
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i Or is 45 deg,so that -22.5 dog 9• -c < +22.5 deg. The cos(e - ) fact

then varies from 0.934 to unity and back to 0.934. The;efore, thereis an error of only a few percent in setting cos(e - a) equal to unity,which reduces a nonlinear equation to a linear approximation. The eos

(0. (- )- may he-aensidered as a factor modifying the applied ac-ol-era-
tion A(t) slightly at the beginning and end of the rotation oQ each
leaf (fig. 2). Since e is close to zero moat of the time As the leaf
gathers energy to rotate, there would be actually less reduction in
A(t) if a were smaller than 4r/2, so that 0 - a would be nearly zero
during most of the time that energy is being absorbed by the leaf.
However, for this analysis C will be half e . (If available space is

r
so limited that the leaves cannot be oriented in the same vertical
direction as in figure 1, angle C may be different for each leaf.) e
A(t) is the acceleration in "g", or units of gravity--a dimensionless
function of time. The torque of the helical spring opposing the
rotation of the leaf is assumed to be a linear function of the angle
of rotation e.

M M +xe = (O + e) (2)

where M, is the initial torque on the spring restraining the leaf
until the external acceleration is applied; and X is the spring con-
stant, the rate of increase in torque with the increase In e. The
initial torque M0 is obtained by winding the spring through an initial

angle 00 before assembly. Then as the leaf rotates, the spring is

wound through a further angle 0.

The friction torques are caused by pressure on a leaf re-
sisting its rotation. The main friction torques result from pressure
on each leaf by the following leaf in the sequence, and from each
leaf pressing on its own bearing. The force of any leaf on its pre-
decessor depends on its own torque. This force, to a first approxima-
tion (neglecting its own friction torques), is equal to [see fig 3].

SI y gM (3)i+l Li+l i+l g A(t) cosa , i+l!

where the subscripts i+l refer to the (i+l)leaf effect on the (i)th
leaf.

The consequent friction torque is

=i Im g A(t) cosa M (4)
M14 "R Ri+l L i+l i+l i+l o, i+l!
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L where B is the leaf radius and jR is the coefficient of friction

between leaf surfaces. The expression within-parentheses is re-
strioted to positive values, so that this torque is nedcO negative.
For the last leaf, this torque represents the pressure due to a
rotor, release latch, or some such device. Because of lack of informa-
tion as to what this element might be, it will be assumed for simplicity
that its torque is of the same nature as that on the other leaves.

The friction torque resulting from the ith leaf pressing
against its bearing is caused mostly by the force of the (i+l) leaf
S•i+1 (3) plus the force from the gun acceleration. Although these

forces should properly be added vectorially (fig. 3), there is little
error in adding them algebraically, with considerable simplification.
The bearing friction torque is then

Mb~ = b r mi g AMt) + R m1 1 yi+l g A(t) cos ai+l-Mo,i+l (5)

1 1

r being the radius of the bearing in which rotates the shaft on which
the leaf is mounted. Again, the expression within parentheses is
restricted to positive values.

The small friction torque caused by the pressure of the
helical spring against the leaf shaft (vhich should also be a small com-
ponent of ?4b) will be neglected in this analysis. Since little is

known of the coefficients of friction and their variations under different
conditions, there is no point in deriving every friction torque to a
high precision. The friction torque expressions are only approxima-
tions, in effect, modifying the frictionless equations of motion.

If these torques are now substituted in the equation of
motion (1) of leaf i, it becomes

Moi+ Mei+ •R i• •mi+l Yi+l gA) o i~l-Mo i+1)
dte Ri+-

jibb A~t) r r- Ri+I i+l Yi+ g A(t) cub il Me, i+ - m yl A(t)

This equation can now be rearranged as follows:

17
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It

-- + ý,0i =mlYl g A(t) 'I b Y i i+ Yl R o÷ a

d7- ~ ~ I YPi 1 +I1 (4 + ý't

-Moi Moi R i+\

The equation of motion of each leaf is of this form.

2.2 Reduction of the Equation of Motion

Equation (6) can be simplified if certain reasonable assump-
tions are made. For reasons of safety, it is desirable in the manu-
facture of S&A devices to make the assembly as "foolproof" as possible.

Therefore, the springs for all the leaves are usually made identical,
and the leaves made of the same geometry, varying only in thickness
(mass). Throughout this analysis it will be assumed that these re-
quirements hold. Therefore, the subscripts will be dropped from each
M , y, R, and a, because they will be the same for each leaf. Also,
i? will be assumed that the coefficients of friction VR and ib are the

same, and their subscripts dropped. Then (6) reduces to

It r + xeI = m•y g A(t) +1 -{• + -- (1+j) cosae

-M° 1 - 4(l + (7)

If the expressions within brackets are each represented by a constant,

fr m i+l I
C + - + ) Cosa' (8)

C +
C2 =1- p (l+j) (9)

this simplified friction model is seen to be of the same form as the

frictionless model.

i dt + Xe = M ygCiA(t) - C2 M° (10)

18



For the frictionless case, C1 and C2 become unity. For a given

geometry, ratio - and constant value of the coefficient of friction,

the equation of motion may be considered as having an acceleration and
initial spring torque that are modified by the factors Cl and C2AI2

At =CA; 0 < C<1 1

Io' = M 0 < 1
a 2o-2-

The equation of motion (10) is still not complete. It is
necessary to account for the restraints on the leaves. All leaves are
prevented from having a negative angle of rotation e by suitable
mechanical stops. In addition, leaves other than the first cannot move
until the preceding leaves are out of the way. These restraints can
be accounted for mathematically by including in the equation the step
function:

h(t - to) = 1 for t - t > 0

=0 for t - t < 0 (11)S--

The corrected equation of motion then becomes:

S• •~[mlYg CiA(t)C2o
d +•--6 = h(t - ti) Ig CAt (12)

This equation is applicable to all of the leaves. For the first leaf,

to is the time at which the external applied acceleration has increased

to the point where the applied torque equals the initial spring torque

Me0; i.e., when the forcing function within the brackets goes positive.

The other leaves are suddenly released later, at which times the ap-
plied torque is much larger than the spring torque. This is illustrated
in figure 4, where t01, t 0 2, t03 represent the times when each of the

three leaves begins to rotate. The time when Lhe first lcaf moves (fnr
a given applied acceleration) depends on the initial spring torque, but
tho other leaves start only when the preceding leaves in the sequence
have moved out of the way. Their starting times are not a function of
the constants of their own equation of motion, but depend on the solutions
for the first leaves. Thus, the arming time of leaves other than the
first one depends on the times that the first leaves take. In other

Ii
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Figure 4. Initial starting times for each leaf rotation.

words, the arming time of a particular leaf depends upon where the

release time occurs on the applied acceleration curve. The major
analytical approach to this study relies on the determination of how
the arming time varies as a function of the release time of a given
leaf. This informationwhich has not been obtained before for repre-
sentative gun accelerations, is a valuable aid to the design procedures
for setback-leaf systems.

The initial spring torque can be expressed in terms of

equivalent g-level by letting (ref 1)

=O = mygN (13)

where N is now the g-level of applied acceleration to produce a torqueo

equivalent to Lhe iziLial spring torque. 1Z tnis is substituted in
equation (12), it becomes of the form:

at--e + X = h(t - to M- 1A(t) -Cs•(4
70T Y0 P l 2o% (14)

20



2.3 Method of Solution

This equation is recognized to be a second order linear dif-
ferential equation of a simple undamped harmonic oscillator set into
motion by a transient impressed forcin function. Because of this
forcing function, or externally applied energy, the mass-spring system
is nonconservative. However, it can be readily solved by standard
techniques for a variety of acceleration functions of time. Solutions
for some simple linear functions are derived in appendix B. Laplace
transform techniques are used to solve differential equations through-
out this analysis. These techniques are used because of their alge-
braic. simplicity, automatically incorporating in the operational
solution the initial or boundary conditions, and they are particularly
adapted to handling equations containing step functions and delta
functions. In all cases in this report, the initial conditions are

de
that e and are zero at t equals zero.

Although solutions arc readily derived for a, the expressions
* are so complicated that [except for the case of A(t) equal to a con-

stant) analytical expressions cannot be obtained for other variables
of more interest, particularly the arming time, or time for a leaf to
rotate a given number of degrees. Therefore, analog computer solutions
will be developed for these variables. The only solutions of interest
are through the initial arming angle e of leaf rotation. By the time
0 reaches this value, the next leaf has been-released, and subsequent
performance is of no interest.

In the solutions of equation (14), X/I is equal to the square
of the natural frequency of oscillation of the mass-spring system
without any forcing function. Therefore, X/I can be replaced by P
in the equation of motion. In addition, if the moment of inertia I
is replaced by its value mkO, where k is the radius of gyration, the
mass of the leaf is cancelled from the amplitude factor of the forcing
function. However, e is not independent of the mass, since it is a
factor in the relationship between the spring4orque and the accelera-
tion as seen by equation 13, and in the term

dt +X h(t - to) Y iA(t) - C2 N (15)

It is assumed in this analysis that the leaves vary only
in MnRI thp rAlease angle er, y. and k being appropriate constants.

It is further assumed that the initial spring torque M is a constant
0

of suitable value, with the relationship between M and N determined by

equation 13 and the mass of a particular leaf.
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Another variable will also beý aallowed, which is proportional
to the spring constant X. This vartable is defined by first consider-

- ing the relative change in the spring torque as 8 rotates from its
initial position to its arming position 0r (fig. 5). The spring

#! torque then increases fror M- to %° + MI a change equal to W- 7r

WTe relative change in spring torque, which will be called z, is
then

SM-M X
r 0 r (16)

M Me
0 0

M and e are constants so that the variable z is proportional to
0 r

the spring constant X.(z is used as the variable instead of X be-
cause it was found to be a useful dimensionless parameter in evaluat-
Ing the drop safety.)

In summary, the variables in the analysis are z, the
relative spring torque change, and the individual leaf masses m for
various given gun acceleration-time curves. The problem then re-
duces to that of determining a method of selecting the three best
masses for the leaves, which will result in an S&A device that will
arm for the given applied acceleration-time function while requiring
that the minimum velocity-to-arm be as large as possible. This
minimum velocity-to-arm for a three-leaf device is defined as the
sum of the minimum velocities-to-arm of the individual leaves. This
problem Is analyzed for representative acceleration-time functions
of different shape, and for springs of different stiffness as given
by z. The masses can vary from leaf to leaf, but the springs are
the same for all three leaves. M , y, k, and r have the same con-
stant values throughout the analysis.

It is assumed in this analysis that the acceleration-time
curve used is already the minimum that will be available with the
lowest increment propellant. It is this applied acceleration that
must arm the device. It is assumed that, if it arms for this minimum
acceleration, it will arm for larger acceleration curves of the same
shape.

The analysis is developed in detail in sections 4 through
7. There were two main results of this analysis. First, it is
found from the procedure outlined above that there is very little
to be gained by selecting a combination of leaves of different
masses; i.c., by trying to choose the leaf mass Lu ZL Lhe pazLicular
segment of the acceleratiion function occurring at the time the leaf
Is rotating. For any combination of variable leaf masses designed to
arm for the given applied acceleration and have the maximum drop-
safety index, there is a set of equal-mass leaves that will also
arm and have a drop-safety index that is no less than three or
four percent below the index of the leaves of varying mass. Therefore,
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uiless. there are other reasons for leavej of unequal mass, therq, is
little to be gained by varying the mass rom l9#f to lqaf, T dT
sip. problem is greatly simplified by using leaves of the same mass.

The other major result of the anialysis is the di~soezy
j that the leaf-spring system, or setback mechanism, can be desLgned
E from a flattened and "squared-up" acceleration-time curve of the

same. area. The area of the gun curve that is thus averaged is the
upper part; i.e., above the level of the equivalent spring torque
acceleration N (defined by eq 13 and illustrated by fig 6). The

0

average acceleration above N can be obtained by finding the area
0

by any of a number of methods and dividing it by the time interval.
Then the optimum design is obtained by adjusting the physical
parameters of the leaf-Bpring system until the setback mechanism
just arms in the allowed time interval for a constant applied ac-
celeration equal to this average.

The net acceleration required is obtained from the equa-
tion of motion of the leaf (eq 15) as shown below.

The solution to equation 15 for a constant applied accelera-
tion A is shown in appendix C (eq C-17) to be

myg (CIA - C2 No)
l G - cos t)

The leaf rotates to its arming angle e in a time tr.r r

e = !yg (C A - C No) (1 - cos t) (17)
r X 1 2 0 )mk-r

If X is eliminated by use of equation (13) and equation
(17) is rearranged, it becomes

eNro

CIA = C2N° + 0

1 - Cos - - t 2
k2 e0  r

If CONO is subtracted from both sides, the constant net acceleration,
in excess o± the "equivalent" spring torque acceleration, required
to arm a leaf in a time t is found to be

r
eN
ro

C(A -NO) (C2 C) NO + 0 (18)
0 2g 210y

Cos k 2  r
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The 4•aign technique that .employs th4s 1ox-mula is outlined in de'"ail
in the next section followed by an illustrative example.

2. DESIGN PROEDURIES

3.1 lim•.fed Formulas

This section outlines a procedure for designing a three- i'
* leaf setback mechanism having identical leaves and helical springs.

The equations and procedures used are derived in later sections of
this report. The method described is proposed for an optimum de-
sign where it is necessary that maximum safety be obtained from the

Ssetback mechanism against arming from accidental drop. At the same
time, the device must arm in a reliable manner when fired at its
lowest charge increment.

The design procedure, which is described in detail so that
little mathematical background is required to follow it, consists of
the following steps:

(1) The first requirement in designing the three-leaf
mechanism is to obtain a graphical plot of the gun accelerption as
a function of time. The acceleration should be in "g" or gravity
units, and the time in milliseconds. This acceleration-time curve
should be the minimum that might be available.

(a) From the gun curve, select an acceleration level
N approximately half the peak value. Determine the time t1 that

the gun acceleration takes Lo rise to this value No; and the time

t2 when the gun acceleration drops again to No.

(b) Determine the area under the acceleration-time
curve above the acceleration level N . This can be obtained by any

o

of a number of standard techniques. Perhaps the simplest technique
is to add evenly spaced (in time) values of the acceleration dif-
ference, and then to multiply by the time interval (fig. 7); this
is the well-known trapezoidal rule for finding areas.

(c) Calculate the average value of acceleration
above N by dividing the area by t 2 - tI.

A_ t F a o a •

A- N At R ..- (19)
0 t 2 - t 1 L 1 2 2j.....2]

where At is the time sub-interval between acceleration values, and
ao, a, a 2  . . . , a n are the acceleration differences for each
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point on the gun curve. Any triangular areas before a and bayond
0

a should also be included before dividing by the term (t 2 - t 1 ),

.. ..... Repeat stepsa through c for other values of N

The range of values of N should be- betwenana-quarter PLdthree-oquarters of the peak value of gun acceleration. Five to seven evenly
spaced values of N are probably sufficient.

0

Once the first area is obtained, areas above other
values of N can be found by a shortcut. The increase or decrease
in area for0a smaller, or larger value of No, respectively, closely

approximates a trapezoidal area, which is easily calculated. This
is illustrated in figure 8 for a smaller second value of N

0

The incremental area is approximately equal to

A(Area) 2 0 - -N (20)

(N 01 02 t[21 - tll '" 22 12]ld

(e) Now plot both the average net acceleration
A - N and the average arming time available for a single leaf,

0
t2- tI

t = 2 1 (21)r 3

as a function of No. (Let N be the abscissa.) Both curves will be

approximately linear with negative slopes.

(2) The next step is to determine the leaf-spring param-
eters so that a leaf will just arm in a time tr for the average net

acceleration A - N obtained in step 1. The constant acceleration

required to arm a leaf is given by equation (18). Since A - N and

tr are empirical functions of the chosen No0 it is necessary to solve

the equation (18) graphically.

It is assumed in this design procedure that the
geometry of the setback mechanism has already been selected so that
the following quantities are known:

R = radius of leaf

r = radius of leaf bearing shaft

k = radius of gyration of leaf

y = distance from axis of rotation to center of mass
of leaf.

27
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80 initial windup angle of helical spring

0 r = angle through which leaf must rotate to release
next Aerk• or to arm

e D = mean diameter of coil

W = weight of leaf

a •= average coefficient of friction

ax = initial angle between position of center-of-
mass and direction perpendicular to ac-
celeration

The graphical solution for N proceeds as follows:
0

(a) Calculate coefficients

C1  - + [I+ Cos a) (22)

C2  1 + E ( ) (23)

(b) Select a trial value of N approximately half of

the gun acceleration peak, From the curves plotted in step l(d), find
the value of t r

Then calculate
NO

orC2" CI C1I8o
(A - N) - N + o(24)0 -0 k• 80

1 1cos i~e r (4

and plot (A - No) on the same graph paper used in step l(d).
0

(c) If point (A - N0, N0 ) is above the A - NO

versus N curve, select a smaller value of N0, and repeat step 2(b).

If the point is below the curve, a larger N should be used.

(d) Co•nii1ni to repeat step (b) until enough points
have been obtained to determine the value of N0, at which 7FY is

0 0

equal to the calculated value of A - No; one-percent accuracy is

sufficient.

29
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(3) After determining OIRtUm-w-, the not step in the CIO -

sign of the helical spring, its wire diagmter, a-nW_, niupr o9 c•ils.

1w diameter of wire dopende on the al1w o1e a ar, In ths W±• WJ =
the.flEdingmflt ,-.-ar torque--,. ia -appliad- -The-olv-jee of -torqt e- a~-t
wh•loh the stress must be controlled is de-nrnnlmd.by- the amount of
torqUe on the wire when the leaf has rotated to its arming'position
0 @ This torque is equal to

M W y N X(° + ie) (25)
r r 0 r

where N is the "equivalent acceleration" of the spring torque at
the arming position and W is the weight of the leaf, mg.

(a) The minimum wire size is found as follows:

Calculate Nr from (fig. 9)

+

er 0 er No (26)

Find the torque at e byr

+ 0Mr = W Y Nr 0 o r M 0

0

The minimum wire size d is then obtained from

32 M
d _ r (27)

r

where S is the maximum allowable stress at the arming position of ar
leaf (ref 5). Equation(27) Is the expression for the stress in a
cylindrical straight beam; while not strictly true for a coil of
round wire, it is accurate enough for this purpose. The wire size
selected is the smallest standard size equal to or greater than that
obtained from equation (27).

(h) T- determine te u.b. of of helical wire,
it is necessary to first find the desired spring constant X.

WyN 0  (28)
e

0 3
30
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The standard formula for the spring eoAmt of a oI.l Ia (.e..I&

X .8 nD

4 he-re i-s--th torque per radian, E is Young'sa mcdulus, D is. the imm-L...
diamieter of the helical coil, and n is the number of coils. Thus,

the number of coils needed to provide the desired spring constant is

Ed4  (30)Sn = 67.8 DX (0

n is usually not an integer because of the coil geometry and leaf ar-
rangement. Thus, as shown by the example of figure 10, n might be

120n= p -3 -; p 1, 2, 3, . . . (31)

The smallest value of p is chosen that will make the value of n in
equation (31) greater than that calculated from equation (30). With
this number of coils, the height of the coil will be

h = (n + 1) d (32)

(c) With d and n now determined, the actual value of
the spring constant X can be calculated from equation (29). This, in
turn, requires an adjustment in either the weight of the leaf W, or
the initial windup angle e so that equation (28) is satisfied.

0

WyN X8
o 0 or W 0 (33)

0 y 0

(No adjustment in N is needed since optimum N0 , obtained from eq 24,
is insensitive to small changes in e0 .)

The spring-and-leaf system parameters having now
been obtained, the setback mechanism will consist of three identical
leaves and springs operating in sequence.

As a chock, the actual stress on a spring when
its lea! rotates to the arming position is

32 M 10.2 M(e + E

r T d_ d__(__
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Figure 10. Helical wire coil.
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(4) A setback nec~gni bede-netoamfr
given gun curve and assumed paraifitt1, the absolute minimum velocity
change resulting from any accidental drop that will arm the device i's
shown in section 4 to be

V6 =3 - 2Z- ge I N)
y r h

where N is the mean value of N halfway between N and N
h 0 r'

N + N e + 1/2 e
0 r o r

Nh 2 e No (36)
0

V6 is based on condition of no friction and with the velocity change

occurring in the form of three equal delta functions properly spaced
in time.

While V6 is the absolute minimum velocity change that

can arm the setback device,a more practical velocity change for specify-
ing its expected drop safety is derived in section 4. This is the
minimum velocity change for a constant applied acceleration, which
continues until the first two leaves have armed and the third one has
acquired just enough momentum to continue rotating to its arming
position. This drop-safety velocity is given by

Vds = p 6  (37)

8r
where p is a function of z = and is obtained from table I. Also

given is the relative accelera ion, which requires the minimum
velocity change. Any other value io acceleration will require a
larger velocity change.

In general, it will be found that slightly larger values of V6
and slightly smaller values of Vd. will be obtained for the larger

values of z. However, practical spring manufacturing tolerances
make it advisable to use large initial windup angles ea, and hence

small z. The variation in end position of small coils cannot be kept
less than about 10 deg without increased manufacturing costs. There-
fore, the percentage error will be smaller for larger values of 8 e

0

34



TABLE I. FACTORS FOR DETERMINING DROP-SAFETY VELOCITY

•r A
p

00

*0.1 1.76 2.37

0.2 1.74 2.42

0.4 1.71 2.50

0.5 1.69 2.55

0.6 1.68 2.60

0.8 1.65 2.69

1.0 1.62 2.79

1.5 1.58 3.06

2.0 1.54 3.32

Since it is necessary that the mechanism arm reliably,
the maximum value of 8 allowed by this tolerance should be used in

the design calculations. Other physical parameters such as k, y, and
X are not as likely to have a large manufacturing tolerance. However,
if it is expected that any of these tolerances are not negligible,
the maximum allowed values of k and X and the minimum y should be
used. This insures that the design value of N will be sufficiently0

small so that the device will arm despite the manufacturing variation
in parameter values. Each of these changes in parameter values will
cause a small reduction in the drop-safety velocity, but It is more
important that the arming function reliably.

3.2 Example

(1) A setback-leaf mechanism will now be designed to arm
the T28E6 shell fired at one increment. The acceleration-time curve
is considered accurate to + 10 percent. Therefore, since it is neces-
sary that the device arm for the worst case, the acceleration curve
used in the design must be for the lower limit (amplitude reduced by
10 percent) The resulting curve is shown in figure 11. The accelera-
tion is seen to rise to an 800-g peak in a little more than 4 msec
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and then to drop more slowly than the rise time, the acceleration
being below 200 g after 16 msec.

The procedure outlined earlier is -now utilized.------------.

(a) The first value chosen for N is 400 g. From

the acceleration curve of figure 11, it is found that for N = 400 g,
0

t1 =0.9 msec

t - 11.0 msec
2

11.0 - 0.9 10.1
t 3 = =3.37 msec
r 3 3

(b) The area between the acceleration curve and 400 g
is found by adding the values of acceleration less 400 every 0.4
msec beginning at 1.2 msec. The small triangular areas before 1.2
msec and after 10.8 msec are added to the result to complete the area.

60
Area = 0.4 [-2 + 135 + 205 + 255 + 307 + 352

+ 385 + 400 + 400 + 392 + 380 + 360 + 340

+ 308 + 275 + 250 + 220 + 192 + 164 + 137
8 1[03x0

+ 100 + 83 + 55 + 32 +- ] + 1 [0.3 x 60

+0.2x 8] = 2318

(c' The average acceleration in excess of 400 g is

A-N = 2318 2318
o t2 - tI 11.0 - 0.9

(d) Now let No = 500 g

Then t = 1.4 msec

t2 = 9.4 msec

9.4 - 1.4 8.0
r 3 3

The approximately trapezoidal area which is added
algebraically to area above 400 g is
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I - - lO.! a~o'I -- 0

5i _ aArea) b(400- 80)ED -. t.I2

2 [10.1 + 8.01 -905

J The.A-rek ab-ove- 500-- a -t-h___-

Area = 2318 - 905 =1413

The average acceleration is then

1413SA - ~NO . 177 g

Continuing this process for N = 600 g

t -2.0 msec

t= 7.9 msec

t 7.9 - 2.0 = 1.97 msecr 3

100 .0+.9 78
Area = 1413 - -- [-8.0 + 5.9= 718

718
A - No = - 122 g

5.9-

For No = 300 g

t1 = 0.6 msec

t2 = 12.8 msec

12.8 - 0.6
t = = 4.07 msecr 3

100
Area = 2318 + -1- [12.2 + 10.1] = 3433

N 83433 1
o 12.2 - g

Finally, for N = 200 g

t = 0.4 msoc

t2 = 15.3 msec

38



1 0

S~ 15-3-0.4

tr = 3 fi4.97 msec

. ~~~~~~100 [49+t,]=48
S Area - 3433 2 [14.9 1-2.2] 4788

-- 4788

A - 4o= -4.7 = 321 g

(e) Now A - N and tr are plotted for the five values
0 r

of N and curves drawn through the points (figure 12). The curves

are seen to be nearly linear. They show the average time and
average net acceleration available from the firing of the shell to
arm a leaf, as a function of the "equivalent acceleration" N0 of

the initial spring torque.

(2) From the above acceleration curve data, a setback-
leaf device will be designed, employing three identical leaf and
spring combinations. Each set will Just arm in the available time
tr for a constant applied acceleration A, so that A - N is equal to

the A - N available from the gun. From the geometry of the leaves,
and an assumed coefficient of friction, are obtained the following
necessary parameters for the design:

R = 0.200 in.

r = 0.020 in.

D = 0.100 in.

kO= 0.0178 in.ý

y = 0.0645 in.

W = 0.0147 ozf (ounces of force)

* = 90 deg (nominal) = 1.57 radians

Sr= 45 deg = 0.785 radians

- ""2g

=0.2

The units employed in this example will be inches for length, ounces
for force and milliseconds for time. The acceleration due to gravity
is, in these units: g = 0.000386 in./msec2 . Sample calculations for
the radius of gyration k and the torque arm y are given in detail in
Appendix A. 39
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(a) The coefficients C1 and C2 are now calculated.

C1 = 0.735

C2 1 - + 1 0.2 1 + 0.02m 0.780

(b) The optimum value of NO will be obtained by succes-

sive trials. Let the first trial value of N be 400 g. From figure 12, -

the time available for arming is found to be

t = 3.37 msoc
r

The net acceleration required to arm the leaf in this time is

N Eo r
C2 - C1 Co1 0

A - No C NO + y o

1 - cos ! -

Since Y g 0.0645 x 0.000386
- = 0.000891,

k 2 6 0.0178 x 1.57
0

400 x 45U
0.780 - 0.735 0.735 x 9FA -N = 400 +o 0.735 1 - cos J0.000891 x 400 x 3.372

A- N 24+ 272
o 1 - cos 2.0l

A - N 215 g0

Thus, it is seen that for N = 400 g, it takes a net acceleration0

A - No of only 215 g to arm in 3.37 msec, whereas there is available
a firing acceleration of 230 g. Therefore, a larger N can be used.

0

The point No = 400, A - No = 215 is plotted on figure 12. It is seen

41

SI



t

• = _V_ _ ÷ - •

from this f igure -that N-6 420--a may be th-e opitibýa Va~zue.

f (c) Therefore, s -p ) is repeated with N° 420 g

for which t = 3.23 msec
r r

420 x4
ANo 0.735;I! 1 Cos /0.000891 x 420 x 3.23e

N 26+ -cos 1.98

A A N =231 g
0

Now, the net acceleration required, A - No = 231 g, is greater than

"the amount available, A ý-N = 220 g. Therefore, the optimum value
0

of N is between 400 and 420 g.0

(d) The point No = 420 g, A-No = 231 g is plotted on

figure 12, and a straight line is drawn between this point and the
point obtained in step 2 (b). This A - N line Intersects the

o

A - No line at about No = 412 g, A - No = 225 g. Thus, the largest

value of N that can be used and still arm the three-leaf device is
0

about 412 g. It is desirable to make N as large as possible to ob-0

tain maximum safety from an accidental drop.

(3) Now the helical spring opposing the rotation of theleaf

is designed. It is desirable to keep the stress in the spring

wire (usually music wire) below 150,OOOpsi. Therefore, the spring
is designed to have a stress no greater than this amount when the
coil is wound to its armed position 6 . The coil at this time will

r
be wound through a total angle equal to e + er.

0 r

(a) Nr) the "equivalent acceleration" at er, is found

from No.

N = e- +r N =900 439 x 412 = 818 g
r 0 0 90
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A

The torque on the wire Mr at e r is then I _

M =-- = 0.0141- x-0i0645-x- 618 =0.586 in.-ozf
r r

The minimum wire diameter that can be used and still keep the stress
below 150,000 psi when the torque, or bending moment is 0.586 in.-
ozf is

d =.32 x 0.586d =(n x 150,000 x 16) =0.0136 in.

Three standard wire sizes are 0.013, 0.014, and 0.016-in. diameters.
Therefore, a wire diameter of 0.014 in. is selected so that the
stress stays within the allowable limit of 150,000 psi.

(h) The desired spring constant X for an equivalent
acceleration N of 412 g when the spring has an initial windup angle

0

e of 90 deg is

WyNo 0.0147 x 0.0645 x 412 0.391 ine-ozf- - =_______ -- 0.249 -
eo 1.57 1.57 rad

The number of coils n of 0.014-in. wire needed
to provide this spring constant is

Ede 0.3 x 108 (0.014)4 x 16
n = 67.8 D 6 = 7.8 x 0.100 x 0.249 = 10.92 coils

where Young's modulus is 30,000,000 psi for steel wire. Because of
the geometry of the coil leads, it is desirable that (fig. 10)

120P 1
n=p 360° -P 3 1P=1, 2, 3, . . .

Therefore, let p = 12, so that n = 11.67 coils. The height of the
coil is then

h = (n + l)d = 12.67 x 0.014 = 0.177 in.

(c) With d = 0.014 in. and n = 11.67 coils, the actual
value of X is

Ed 4  0.3 x 108(l.4)4 x 10-x 16 inrozf
T67.8 Dn -67.8 x 0.100 x 11.67 0,233 rad
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A

Me~ actual winud~e1Iaf for A = fW23

must then be adjusted to a new value-

eo WyN 0.0147 x 0.0645 x 412 1.68 radians 96 deg

to maintain an N value of 412 g. (An.alternatlve-adjustment-cou1-d-bD
0

made in W if it is desired to maintain 0 equal to 90 deg; this would0

require only a small decrease in the thickness of the leaves.)

In summary, the spring will consist of 11.67
coils of 0.014-in. music wire with a height of 0.177 in. The spring

Sin'-ozf
constant is 0.233 raz and the initial windup is 96 deg where the

rad
torque is 0.391 inrozf, aquivalent to an acceleration of 412 g.

The stress in the wire when the leaf rotates to
its arming position 8 will ber

10.2 X (a0 + 0 ) 10.2 x 0.233 (1.68 + 0.78)
r 0.014

ozf= 2,130,000 T7n; or, Sr = 133,000 psi.

This is well within the maximum allowance.

The setback mechanism consists of three of these
identical leaves and springs, and is now designed to just complete
the arming operation with little, if anything, to spare for the as-
sumed minimum acceleration curve and constant coefficient of friction.
It is the limit to which the design can be "stretched" with con-
fidence that the device will perform its arming function. It is in-
tended to obtain the maximum safety against arming from the sudden
deceleration caused by an accidental drop.

The absolute minimum velocity change that must
occur before the setback mechanism will arm depends on the value of
the equivalent acceleration Nh when the torque on a leaf has rotated

the leaf halfway to its armed position.

8 + 0.5 er 9(P+ 22 °

N - 0 No - 9 x 412 = 508 g
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The absolute minimum velocity change required, which is that occurring
in the form of_three delta functions properly spaced in time with
zero friction, is then

S rgNh /L 0--7
S2x 0.0178 x 0.785 x 0.000386 x 508SV6 =3 - 3v - y 0.0645

V 0.875 or V, 72.9 ft
meec 6sec

A more practical drop-safety velocity change would

er 450
be a multiple of the above figure, obtined from table I for - 9 = 0.47.

The minimum velocity change for a constant acceleration continuing
until the third leaf has acquired enough momentum to reach its armed
position is

V = pv8 = 1.70 x 72.9 = 124 ft

p V sec

if the constant acceleration is 2.54 No, or 1046 g.

If this velocity change is higher than necessary
for reasonable safety precautions, the design can be relaxed somewhat
so that the mechanism is more certain of arming, i.e., it will arm at
a lower acceleration. This is done by increasing the thickness of the
leaf, decreasing the spring constant X, or decreasing the initial wind-
up angle e 0. The minimum velocity would, of course, have to be recal-
culated to adjust for changes in p or Nh.

4. DROP-SAFETY INDEX

The design procedure described is based on the results of an
analysis of the operation of setback-leaf mechanisms, which is discussed
in the remaining sections of this report. The method of approach to
this problem was outlined in section 2. An optimum design is one that
arms reliably whan the Projectil I . . fired at some specified velocity,
but has maximum safety against arming from velocity changes caused by
accidental handling drop-impacts. The design should be such that ac-
cidental acceleration operate only some of the leaves, but not all.
The finite time that is required to arm each of the sequentially
operating leaves insures that the device will not arm unless the
accidental acceleration exists for some minimum length of time. This
means that there must be some minimum velocity change (time integral
of acceleration) to arm all the leaves regardless of the nature of
the acceleration function.
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-HMuLM= tkoroughly -discuassd thet prnhbja-m oL-s&±ety; hAD -rae-i
sults and conclusions are applied here. As a figure of merit -fr
safe optimum design, he proposed the abse3ute minimum velocity change
required to arm all the leaves; the higher this figure beeome•, thesafer the deign.. Of cours e) the design must also be. such that..the

mechanism arms during firing. The mathematical model used by.•-1isher

Sleaf rotated -was constant, rather than i zeaping lt1marly. ThlaS~resulted in smaller minimum velocity changes. Hausner's derivations

are given in appendix C, together with the derivations for the case
of linearly increasing spring torque (positive X).

All these derivations related to the safety of a design assume
that there is zero friction. Because friction consumes energy,
there is less velocity change required where the friction is zero.
Since it is always possible that, under some conditions of accidental
drop, the friction may be very small, it is advisable to calculate
velocity changes with friction assumed equal to zero.

To obtain the minimum velocity change to arm a three-leaf device,
it is useful to first derive the velocity changes for two different
applied accelerations required to arm a single leaf. The first ac-
celeration for which the velocity change is calculated is that of a
constant acceleration A, suddenly applied and lasting until a leaf
arms. This velocity change is given by equation (C-5) for the case
of a constant opposing spring force (X = 0) as

V ý2gI Or A(38)
= my(A - NO)(

In addition, the velocity change is obtained for the case of a con-
stant acceleration lasting only until the leaf has acquired suffi-
cient momentum to rotate to its armed position. This velocity change
is given by equation (C-15), again for the case of a constant opposing
force.

= my(A - No) (39)

These were the results obtained by Hausner. The velocity
changes for the same two accelerations as above are derived in ap-
pendix C for positive 2, and are given respectively by equations
(C-22) and (C-28):

46



~I

V aAg ff00 s F (40)
AIX myg(A - N

S( (mygNo + Xer

V Ag/ \o() mygA (41)

((41)

Equations (38) and (39) are special cases of equations (40) and
(41) where X equals zero.

These equations can be plotted in dimensionless units. To do
this, however, it is first necessary to express the equations in somc-
what different form by employing equations (12), (13), and (16), Then
the following equivalent expressions are obtained:

A r

X 9 M
r 0 z (42)

myg(A- NO) - A - i A
NO No

Ter A

rg 0

Ag 1 r m~ y} - (43)

mygNo+ XOr 1 + z

mygA A (44)
T-

0

When these expressions are substituted in (40) and (41), they become

A

V r= cos-I (45)
\ -My r,/z

No"

and
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V Cos

A 2 A•
No o -" 2

a gNot N 2

& (~;O) r- ( 1+

7 0

or

2o •o- 1 j(46)
Figure 13 is a plot of equations (45) and (46) where theA

abscissa is -o and the ordinate is

and the parameter for the different curves is the spring rate
z = 0.1, 0.5, 1.N * 1.5, and 2.0.

Equations (38) and (39) are the special case of z = 0 after
they are written in the same dimensionless units:

and

":t"my-- _,l- , ;,.-_o (48)

VN

0
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Hausner's equations derived for z = 0 contain the factor cos a in the
denominators of (47) and (48) as'he let A(t) cos e in (8) be A cos Ce;

whereas, in this derivation it is represented by A only, the cos a
being absorbed into A. If it is desired to include cos a in these
equations, it can be done by replacing V in equations (45) to (48) by

V cos a.

The solid curves of figure 13 represent equation (45) for the
case of the constant acceleration continuing until the leaf rotates
to e r, while the dashed curves are for (46)--the case of the rectangu-
lar pulse. These curves present the velocity change required to arm
the leaf as a function of the acceleration A in units of N , the ac-
celeration required to just overcome the opposing spring force and

start the leaf rotating. It is seen from this figure that the leaf
A

will not arm unless A is greater than a particular value which is a
N0 A

function of z. This relationship between the minimum - and z can

be obtained from the requirements in equations (46) and (47) that
the absolute value of the terms within the square brackets be no
greater than unity. After suitable algebra, both (46) and (47) yield

the same required inequality for the leaf to arm:

A >l Z
A > 2 (49)

Since
•e e 8

r r r

M xe e'
o 0 0

it is necessary that

1
A 0o 2 er

N e
0 0

or that, by (36),

A > Nh

Thus, it is seen that if a constant acceleration is suddenly applied
to a leaf, (as in centrifuge testing), it will not arm unless the
acceleration is greater than the equivalent acceleration Nh of the

spring torque when the leaf has rotated halfway to its arming position.
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The absolute minimum velocity to arm with the rectangular pulse
is needed for large values of acceleration and, in fact, is least

for accelerations infinitely large. If L is allowed to approach
0

infinity in (46) to obtain an expression for the value of this minimum
velocity, the equation becomes indeterminate. An attempt to employ
L'Hospital's rule results in laborious algebra; therefore, the ex-
pression was obtained using a series expansion for small values of
the arc cosine (ref .6):

cos-1 x = [2(1 - x) + (I- X)2 + 4(i - x)3+

where

z(2 + z) z(2 + z)

Thus,

A(_lira Ie~rgNo_ No 0 (2+A) 1 iz(2+z) 12 •

IeN ~ X 12
1 im ( ro' (2z 1 z (2+z) I '(2z

A in A my) 1_ 3 2 AAl
Vml A No. •-- 1--Y) 2oN~ -iI 2o• ~ +"

18o. 9N ) 12 l"'

0

or

Vmin = (z + (50)
my1

When I is replaced by mk2 and equation (13) is substituted, this ex-
pression for V . reduces to

V - M 2 z (51)
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where k, y, 8r, and M° are all constants as specified in section 2.

This minimum velocity is the absolute minimum velocity that can arm
the leaf. This is the velocity change that is experienced when a
delta function acceleration is applied initially to the leaf. It is
physically an impossibility, but it is the limiting case of a larger
and larger rectangular pulse occurring for a shorter and shorter time,

an instantaneous velocity change. Equation (50) is seen to agree
with the solution (C-34) obtained independently for the case of an
applied delta function. The time that it takes the leaf to arm is
also a minimum for an applied delta function ucceleratiun. This
minimum time is given by equation (C-33):

ti = tan-1• g V (52)
mi T, - gNo

If the numerator and denominator inside each square root are multi-
8

plied by r-, and N0 eliminated by (13), the expression becomes

t k~~ tan-, ygv I(mz~) (53)

While the absolute minimum velocity change required to arm the
leaf is that given by (51) (which is indicated in figure 13 as a
limit of the curves by a horizontal line index at the right of the
graph), it should be noted that the velocity changes required to
arm much lower acceleration values of rectangular pulses are only
a few percent larger than those required for delta functions. The
delta function serves as a lower limit, but other rectangular
pulses require only slightly larger velocity changes.

Now that the velocity changes needed to arm a single leaf
have been derived for these acceleration functions, it is possible
to derive velocity changes for arming the entire multiple-leaf
setback system. The absolute minimum velocity change to arm three
leaves is considered to be the sum of the absolute minimum veloci-
ties to arm each of the individual leaves, or

V6 Vi min (54)

i=l
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for a three-leaf deviee, where V6 is the total velocity change re-

quired with three delta functions. When equation (51) is substi-
" ~tuted in (54), it becomes

3 ____

varying only in thickness (and therefore mass), and the springs are
"- ~identical. If the mass is expressed as:

m I = M r mo0 (56)

where m 0is some arbitrary mass and m ris a dimensionless decimal

o r

multiplhere the minimum velocity change may be put in the form

V f!ec7 57)

where 

y'

Smr
ini

i=l

Since kol irn M k y s and m ( wll be kept constant the minimum

0 r

velocity change is proportional to Z, which will hereafter be called
the drop-safety index. By choosing a design that maximizes Z while
successfully arming for the given gun acceleration, the absolute
minimum velocity change is also maximized and the design is con-

sidered optimum. Section 5 and 6 present a method of selecting values
of M rl' m r2- and m r3 for different values of z to obtain maximum

values of Z and still arm when fired. The mr, are functions of z,

larger values of z requiring larger m ri to arm, so that Z is not

necessarily increased by increasing z.

Since V 6 is the absolute minimum velocity change required, any

practical value of drop velocity change for which the setback-leaf
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detoe 'would be expected to be sat~e would be -1agia-r than -equ~ii~w
(57). About the only way three nV'w :Mlse acwlexa-tion- -wýtp.

oh:bses in velocity) could be approached would be in the highly im-
probable came of a drop through three successive metal plateS prqlwrly
spwoed to allow each leaf time to arm. An approximately Qaals-ta "
acce itm n ould a-ppear to be-the most probable-type -encounte-red.

Therefore, *as a measure of the drop safety, consider the
minimum velocity change required to arm for a constant applied ac-
celeration, continuing until the first two leaves have rotated toS~their release position and the third has acquired sufficient

momentum to continue the necessary rotation to complete the arming
function. The velocity change required for any applied acceleration
for each of the first two leaves is given by equation (45), and for
the third leaf, by equation (46). When these velocity changes are
summed and the result normalized with respect to V1, the following
expression is obtained.

AA

v _ No 2 cos1 L- ~~-- + Lo- 3. 2 (5z))

V6 3f -z(2+z) 1- A
No 2--l

The minimum values (p) of this ratio as a function of z are ob-
tained graphically (not shown) and given in table I. Then the
minimum drop-safety velocity is given by

Vds P V6

where p is obtained from table I, and V6, from equation (57). This

should be a good practical drop-safety velocity for use in specify-
ing the safety of the setback-leaf mechanism. As it is derived as-
suming zero friction, it is a conservative figure.

5. ARMING TIME

Now that a quantitative method has been defined for evaluating
the relative safety of a particular design of a multiple-leaf setback
mechanism, it is necessary to examine the other major factor in the
choice of a design--the arming time of the device for a given gun
acceleration. A method is needed for readily determining whether or
not a particular design will successfully arm. The total arming
time can be obtained if it is known how long it takes each leaf to
arm. If the first leaves take so long that there is not sufficient
gun acceleration left to arm the last leaf, a change must be made in
the design. For all applied accelerations that are not constant, the
time that it takes a leaf to rotate to any given angle will be a
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function of the time at which it is released. The first leaf starts
its motion when the applied acceleration rises to a value equal to the
initial spring torque's "equivalent acceleration" No• The other leaves
start their motion as soon as the preceeding leaves arm. Thus, they

can start at any time on the acceleration curve.

Graphical curves will be developed in this section presenting
the arming time versus the release time for various leaf masses.
These curves will be obtained for two different gun acceleration-
time curves, in order to determine the effect of the shape of the

" acceleration curve. One acceleration will be similar to that of the
T28E6 mortar, whereas the other will have a faster rise to its peak
value. In addition, two very different values of z will be used to

* -investigate whether or not the relative change in spring torque of
a leaf between its initial position and its arming position affects
the performance. Friction will be assumed equal to zero although
the method would be the same for constant non-zero friction.

It id shown in appendix E that gun acceleration curves can be
represented by a function of the form

A(t) = Ao(e0at - e bt); b > a

b
where the shape of the curve is varied by changing the ratio f = a-

The larger f is, the steeper is the rise. If this function is sus-
stituted for A(t) in (14)j the equation of motion for the (i)th leaf
becomes

dSd ry o -at -bt

+ i = h(t - toi e - C21 i0 (o0)

The starting time for rotation of the first leaf t 0 1 is determined by

the time at which the term within the brackets becomes positive,
-ato 1l-b

C1A° (C e e-btel) = C2Nol (61)

while the starting times of the second and third leaves are the times
when the first and second leaves, respectively, reach their arming
angles.

t02 rl

toe 0 tr2
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I1
7-he--n-It-Cal spring torque and moment of ixeztia of eaoh leaf s-e
given by

Mo m=ygNoi

where Mo A y, and k are the same for each leaf.

To simplify the algebra, let

M~zX Mo o
- i - r (62)

ClmtYgAo ClygAo
p = -~ (63)

C2 miygNoi - C2M (64)

d~I --

mi

Equation (60) them becomes

-- + 3 e = h(t - t ) [P(e -a e ) -bi (65)
dt2  ±

The general solution to this equation is given by(D-3)(dropping
the running index i),

) (e-at o  ar+ a(t - to) a n(
e =h(t - to (e- e_ + sin ý(t-to

- cos 1 (t - to)1- e-bt - eb(t et)

+ 2 sin P(t - t - cos j(t - to)]

- [ -cos P(t -t]) (66)
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After a time t the leaf has rotated to its arming position er' The

time T that it requires for the leaf to arm, once it has been released,
is then

T =t t (67)
r 0

If these substitutions are made in equation (66), the arming posi-
tion angle e is obtained as a function of T and to.r o

P -ato - 2s -T aO 02
e = - F32 5- e + aS+ + p sin PT - o2 cos RT

re -a b + 2 sin fT - a + os T.

e-ebto L2 02 e-bT +bJ3 sin 13T - 32 cos 3T]
V + Do bP+ 32

Q [- cos Or]) (68)

Since 0 is also considered constant in this analysis, (68) isr

an equation relating the arming time T to the release time to, and

can be expressed as an implicit function.

0 = e[-ato - eaT + - u T - cos 1T

-e -bt 0 [rb e + b sin OT - cos DT

P [1 - cos 1T] r

or

0 f (to, T)
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Thgugh an Analytic solution for T cannot be derived, graphical zau- _4
t±Us Gan be achieved with the HDL au ", .Gomputer. The computer
solption is most conveniently obtained frgm the total derivative
dT/dto, which is given by equation(D-9,)

I -

at_ -~ 0 q T -bto -bTdT° e-atNoe +q, sin DT-4qcos WT]-e e Eq e - q4sin OT-qacos OT]- n
S --at aT -bto -bT Q
e [-q2e _isin DT+q2cos PT>'_e ~-eqle qsinl OT+q5cos PT]-Rsin PT

where (70)

29
a _p

= b2 bo
q4 b+ f3 I q= ba + ; 9 - b2+ o (71)

To eliminate division by the computer (since the divisor approaches
zero), the derivative dt/dto is replaced by (ref 7)

dT
dT dr

dt - dto

dT

where T is the machine time. Then (70) can be written (72)

-at -aT -bt -bT
dT _e 'tq 2 'T +qlsin PT-q 2 cos OT]-e - [qre -+q4sin PT-qsrcos PT] dto
dT -e-ato_q2 e-aT +qasin 3T+qgcosOT]-e'bt°[ -q5e'bT -sinT+qscosPT]---sinOT dT

(73)
Now division can be avoided by letting

dt_ = eat[qe -aT -bt0  -bT ~i~
o -t -T[-qae +qmsin aT+qzcos PT]-e - [-qUe +qcssin T+qrcos OT]- RsinPT

dT

The computer programming is simplified by the generation of the sub-
A' fit

functions which appear in the expressions for = and -. Each of these

subfunctions is generated as the result of the machine solution of a
simple first-order differential equation with rational coefficients.
Thus, the following differential equations will generate the required _.
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functions shown at the right;

df dt -at
dT - af d- ; f, = e

df 2  dt 0 -bt°
d'r

df 3  dT"•-- = -afa3 T fa =e a

(74)

df 4  dT -bT
dT -bf4 j - f4 =e

df5  dT f

dfT - dT
d-- = -; f6 cos PT

When these subfunctions are substituted into the expressions for

dt
T"and -2 given by equations (72) and (73),

Tq j i e fa % f4 +q4 f.- q f] (75)

dr

0 = Q.-~ .%+q;f cf
dto -fm (-- .+q• a f - [-qr. 4 +% fs +qn f• - ff,

a complete set of equations (74) and (75) is obtained which, when
programmed on the analog computer, can be solved graphically to show
the variation in arming time T with release time t 0 The unsealed

0
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flow diamrai isshown in figare 14. . -i

The initial conditions (to, T)T 0orequired for the integrating

amplifiers of the computer must satisfy the implicit function (09)
relating T to to. The earliest. release_ time poaaiblne a -to,: which
is obtained from a graphical solution of figure 15 plotted -as

C N C Me-atol _ ebtol 2Nol 2 0e- (76)
C A C migyAo

This is shown in figure 15 for two acceleration curves. The most
convenient method of determining the initial value-of T is from
a computer solution of equation (65), plotting 9 versus time. T1

is then the time for E to rotate to er, when it is released at time

t 0. The form of (65) which is programmed is

d 2k
d a k 6 + h(j - to0) IP(fl - f2 ) - Q 1  (77)

where

df- -aTVT -= -af, ; f, = e (78)

S= 
-bf 2  ; f2 = c-b

dl*

Its computer flow diagram is shown in figure 16. Relay amplifier
No. 1 serves as a step function in this program by switching on the
impressed function within the brackets at time t 01 The values ob-

tained for T1 from this program, together with to 1, enable initial

conditions to be calculated for all the integrating amplifiers for
the program of figure 14, including the initial values of the sub-
functions. The following constants were used in the computer
analysis:

y = 0.0645 in.

ks 0.0178 in.0

-2l

C -l1

M = 0.380 ozf-in.
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e 45 0.785 radians I"
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The fractional change is spring torque, z - was assigned theM0 •

two--va-lues-O4 and 2.0, the first representing a typi-ca1 setbaqkle-af
spr-ing stiffness and the second, a very steep spr-i-n rate. The major
variable in the computer runs was the mass, which was expressed in
equation (56)

mM r Mro (79)

ozf
where m is 0.003686 -•, and m is a dimensionless decimal

0 g r
multiplier. Values of m that were used varied from 2.5 to 12.0.

r

Two different gun acceleration functions were studied. The
first, which has a medium fast rise, was a good approximation to the
T28E6 mortar (as discussed in appendix E):

AMt) = 2910(e-0.173t -0.369t(At 90e-e )(80)

The peak of this curve is 792 g. which occurs after 3.86 msec. The
second acceleration curve studied has the same peak value with a
more steeply rising front, reaching the peak in only 1.48 msec.

A(t) = 1136(e-0.173t -e-173t ) (81)

In both of these expressions, time is in milliseconds. Thus, for
the first acceleration curve, A = 2910, a = 0.173 per msec, b = 0.369O

msec, and 1 = - = 2.133. For the second curve A = 1136, a = 0,173a oper msec, b = 1.73 per msec, and f = 10.

Throe sets of computer solutions for the arming time as a
function of the release time were obtained. The first set, shown in
figure 17, was developed for the case of z = 0.4 and the acceleration
function given by equation (80). For this case, the constants in
the computer programs had the following values: P = 4.060 per mseca

-2.232 - z 1.136. -Pei, his .iu 2 itd L wasin.. m -Im I U O1
r r r

the time at which the curve of figure 15 reached the value

C1 Mo 0.5484
C2mrM0gyAo m
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The second, set differs from the first in that the fast rise ac-
co1grat~gn given by equation (81) -f Eiow' used instead of (80). NoWQ and 0 are the same as before, but P = 1,587 per msec and t ii

1. 4048
now.-the-tlmeat which the. cury-e1reach 8 Tiese runs are shown

r
in figure 18.

The third and final set, shown in figure 19, differed from the
first in that now the relative change in spring torque was in-
creased from 0.4 to 2.0. This change affected only PO, the other
constants remaining the same; e now equaled 5.68 per msec

r
The curves of figures 17, 18, and 19 demonstrate the variation

in the arming time as a function of the release time while the mass
of the leaf changes. Although the mass of the leaf is the parameter
of the curves, the numbers associated with each trace in these

figures represent the drop-safety index Z =(2 z. Sizac z is
\ r

a constant for each set of curves, the index depends only on the
mass. This index is the parameter of importance for each leaf
since the sum of the individual indices measures the relative safety
of the multiple leaf device. From these sets of curves it is pos-
sible to select the combination of leaf masses that will at the same
time both arm under the given acceleration function and provide
the greatest safety, as measured by the drop-safety index.

6. OPTIMIZATION OF THE DROP-SAFETY INDEX

The selection of a set of leaf masses that will arm from the
curves of figures 17, 18, and 19 is both simple and straightforward.
Each trace represents a separate mass, and there are enough traces
to determine the arming time of any given mass. The actual pro-
cedure, however, is really to find the arming time for a leaf of a
particular index of drop safety, and then determine the correspond-
ing mass from the index by equation (58)

M (2 + z) me (82)
?Z

Each trace has a particular mass and drop-safety index associated
with it, and each set of traces is for one particular z and one ac-
celeration function only. Thus, £1igui 17 was obta-rcd for z = 0.4
and acceleration function (80), figure 18 for z = 0.4 and function
(81), and figure 19 for z = 2.0 and function (80).

It will be noted that the larger the safety index (and the

smaller the mass) of a leaf, the longer is the arming time. Each
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trace has definite starting and ending points; these define the limits
of the release time between which the particular leaf will arm. In
addition, the leaves with the larger indices take longer to start
rotating because of larger N i!s. It is seen from these curves

--- that-there isia limit to the amount of time that a leaf takes to
Sarm. FQr instance, figure 17 indicates that all Vi-ttM -breaviest -

leavas arm in under 4 msec. In the case of figures 18 and 19 this
upper limit seems to be about 3.3 and 4 msec, respectively. This
means that a leaf, if it is going to arm at all, will do so within
a certain limited time regardless of when it is released. This re-
sults from the fact that the leaf-spring combinations have natural
periods of oscillation.

The combined total of the starting time of the first leaf and
its arming time,(t l+T. t) is indicated by the terminus of the

ol r 1 r is
45-deg dashed lines drawn down to the right from the starting point
of each trace. The terminal points of each of these lines are the
times at which the first leaf is armed, and correspondingly, the
second leaf released.

Now if this new release time for the second leaf is used as
the horizontal coordinate, the arming time for leaves of different
indices can be obtained from the curves. This time is added to
the release time to obtain the accumulated time until the second
leaf is armed.

Since this is now the release time of the third and last leaf,
it is desirable to choose as the third Leaf the one with the largest
drop-safety index that will still arm. This will be the topmost
trace that extends as far as the release time of the third leaf.
The arming time for this leaf added to its release time is the
total arming time for the three-leaf device. (Since the third leaf
Just reaches arming position, it might be thought that this is a
poor choice, since no allowance was made for manufacturing tolerances,
etc. However, each combination is being obtained for comparison
with other combinations. The sum of the indices measures the
relative safety of the three leaves selected.

This procedure can be repeated for various combinations of
the particular indices, and the results compared. A useful system-
atic procedure is shown in table II for one combination from figure
17. Actually, this particular leaf combination illustrated had the
highest total drop-safety index that could be found for any of the
combntgtlons of figure 17.
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TABLE II. DETERMINATION OF ARM-TNG•'IME FOR A GIVEN LEAP
COMBINATION

l zi te Ti tri tel+ T• mrS11 ZI 2a-- -

1 0.926 1.49 3.22 4.71 2.8

2 0.894 4.71 2.72 7.43 3.0

3 0.775 7.43 3.40 10.83 4.0

2.595
3

Z 2.595

i=l

In determining the combinations with the largest total index,
one can begin by selecting the largest index; i. e., 0.961, for the
first leaf and then trying various combinations of indices for the
last two leaves. The last leaf is always chosen to have as large an
index as possible. Then, after these combinations have been totaled,
the next stop is to choose the leaf with the second largest index
(trace) as the startcr, and to try various combinations of second
and third leaves with it. The process continues for the third largest
index, the fourth, etc., as long as it is possible to obtain appreci-
able values of the total index. Actually, it soon becomes apparent
what combinations have the larger values, making it unnecessary to
try very many combinations, even through a large variety was cal-
culated from figures 17, 18, and 19 for demonstration purposes. These
values obtained for the total index for various combinations of m

r
are shown in tables III, IV, and V, respectively. Also given is the
time required for the leaves to finish arming. In table VI are given
equivalent values of m r and Z for z = 0.4 and 2.0.

The results given in tables III, IV, and V are presented in two
groups. At the left are listed the indices obtained for combinations
of leaf masses where the mass of the first leaf is less than or equal
to the mass of the second; at the right are listed the combinations
where the second leaf is heavier than the first. On the same line
are the cases where values of mn and m2 are interchanged.

An examilnaLion of these results. fur the case of figure 17 and
table III indicates the optimum value of the index is 2.595. This
index value is obtained with relative leaf masses of 2.8, 3.0, 4.0,
or 3.0, 2.8, 4.0, the second combination being the same as the first
except for the interchange of the first and second leaves. There are
numbers of other combinations in table III whose index Is within I percent
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Ii& TABLE III. DETERMINATION OF DROP-SAFETY INDEX-CASE I!A

-n ms Ifl• tra Z mI mi ml tr3 Z

2.6 3.2 5.0 10.90 2.520
2.6 4.0 4.0 10.80 2,511

5.0 2.6 3.6 9.28 2.470
2.7 3.0 5.0 10.66 2.530
2.7 3.2 5.0 9.80 2.502
2.7 3.6 4.0 10.03 2.534 3.6 2.7 3.6 10.16 2.575
2.7 3.8 3.8 10.53 2.533 3.8 2.7 3.6 9.36 2.554
2.7 4.0 3.8 10.06 2.513 4.0 2.7 3.6 9.01 2.534
2.7 5.0 3.8 9.58 2.431 5.0 2.7 3.6 8.29 2.452

2.8 3.0 4.0 10.83 2.595 3.0 2.8 4.0 10.80 2.595
2.8 3.2 3.8 10.77 2.587 3.2 2.8 3.8 9.92 2.587
2.8 3.6 3.8 9.69 2.537 3.6 2.8 3.6 9.14 2.558
2.8 3.8 3.6 10.07 2.537 3.8 2.8 3.6 8.79 2.537

4.0 2.8 3.6 8.55 2.517
5.0 2.8 3.2 8.59 2.485

3.0 3.0 3.8 9.82 2.583
3.0 3.2 3.6 9.70 2.576 3.2 3.0 3.6 9.42 2.576
3.0 3.6 3.6 9.10 2.526 3.6 3.0 3.6 8.54 2.526

3.8 3.0 3.6 8.29 2.505

4.0 3.0 3.2 8.96 2.535
3.2 3.2 3.6 8.92 2.548
3.2 3.6 3.6 8.52 2.498 3.6 3.2 3.2 9.29 2.548

3.8 3.2 3.2 8.70 2.527
4.0 3.2 3.2 8.37 2.507

3.6 3.6 3.2 8.55 2.498
3.4 3.4 3.4 8.52 2,520
2.6 3.9 5.2 9.71 2.426

3.8 3.6 3.2 8.20 2.477
6.0 2.6 3.6 8.70 2.409
6.0 2.7 3.2 8.68 2.441
8.0 2.6 3.24 9.32 2.369
8.0 2.7 3.2 8.16 2.357
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TABLE IV. DETERMINATION OF1' CflW.AFETY INDNX-CASE II

MI <s m >"

• fS tr Z m tr•> ft

mi ~~ra a7

2.8 4.4 9.0 11.7 2.185
2.8 5.0 7.5 10.23 2.189
2.8 6.0 6.5 9.85 2.167

2.9 4.4 7.0 10.31 2.234
2.9 5.0 6.5 9.67 2.211
2.9 6.0 6.3 9.37 2.167

3.0 4.0 7.5 10.27 2.239
3.0 4.4 6.6 9.72 2.243
3.0 5.0 6.1 9.55 2.217

3.0 6.0 5.7 9.10 2.176

3.2 3.8 7.0 10.28 2.246
3.2 4.0 6.5 9.78 2.256
3.2 4.4 6.0 8.89 2.237
3.2 5.0 5.7 8.56 2.209
3.2 6.0 5.5 8.39 2.158

8.0 3.2 5.6 8.63 2.074

3.4 3.8 6.3 9.51 2.255
3.4 4.0 6.0 8.82 2.247
3.4 4.4 5.7 8.54 2.228 4.4 3.4 6.2 9.45 2.204

3.4 5.0 5.4 8.50 2.203 5.0 3.4 5.5 8.95 2.193
6.0 3.4 5.3 8.43 2.147

3.6 3.6 6.4 9.72 2.242
3.6 3.8 5.8 8.82 2.251 3.8 3.6 "5.9 9.39 2.236
3.6 4.0 5.6 8.59 2.246 4.0 3.6 6.0 8.50 2.223
3.6 4.4 5.3 8.33 2.230 4.4 3.6 5.5 8.57 2.215

5.0 3.6 5.3 8.40 2.184
6.0 3.6 5.0 7.86 2.141

3.8 3.8 5.7 9.00 2.240
3.8 4.0 5.5 8.62 2.230 4.0 3.8 5.5 8.64 2.230

3.8 4.4 5.2 8.39 2.214 4.4 3.8 5.2 8.43 2.209
3.8 5.0 5.0 7.99 2.181 5.0 3,8 5.0 8.11 2.181

6.0 3.8 4.8 7.79 2.132
4.0 4.0 5.3 8.46 2,225
4.0 4.4 5.0 8.45 2.207 4.4 4.0 5.0 8.48 2.207
4.0 5.0 4.8 7.86 2.173 5.0 4.0 4.8 7.88 2.173

4.4 4.4 4.9 7,88 ?.178

4.4 5.0 4.7 7.71 2.142 5.0 4.4 4.7 7.70 2.142

4.7 4.7 4.7 7.69 2.145

5.0 5.0 4.6 7.55 2.111
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TABLE V. DETERMINATION OF DROP-SAFETY INDEX-CASE III

im1  mn a h t Z nil Ma ma t Z

4.6 4.2 5.4 8.88 2.770
4.8 4.2 5.1 8.66 2.775

4.4 4.4 5.2 8.87 2.783
4.5 4.4 5.1 8.52 2.782
4.6 4.4 5.0 8.44 2.780
4.8 4.4 4.9 8.19 2.770

4.4 5.0 5.0 8.53 2.741
4.4 6.6 8.8 7.06 2.406
4.5 4.6 5.0 8.46 2.770

4.8 4.5 4.9 8.09 2.760
4.6 4.6 4.9 8.38 2.770
4.8 4.8 4.8 7.95 2.739
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TABLE VI. DROP-SAFEW I'NDWE FOR EACH MASS

2.4 Im m4r Z r r Mr)

2.4 1.000 4.0 1.000
2.6 .961 4.2 .976
2.7 .943 4.4 .953
2.8 .926 4.5 .943
2.9 .910 4.6 .933
3.0 .894 4.7 .923
3.2 .866 4.8 .913
3.4 .840 5.0 .894
3.6 .816 5.2 .877
3.8 .795 5.4 .-861
4.0 .775 5.6 .845
4.4 .739 5.8 .830
4.7 .715 6.0 .816
5.0 .693 7.0 .756
6.0 .632 8.0 .707
8.0 .548

i0.0 .4U0
12.0 .400
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of the optimum value such as:

, mr' m
2.8 V.----
3,0 3.0 3.8
3.0 3.2 3.6
3.6 2.7 3.6

3.2 2.8 3.8
3.2 3.0 3.6

The masses are all about the same size, differing very little in
magnitude. In general, for this case, the index will be slightly
larger if the first mass is heavier than the second. This pro-
bably results from the fact that the average applied gun accelera-
tion is less during the rotation of the first leaf than the second.

If the leaves are all of equal mass (m1 = m% = m% = 3.4), a
drop-safeLy index of 2.520 can be obtained, which is only 3 percent
less than the optimum value possible by varying the masses.

If a 2, 3, 4 ratio of the leaf masses is used--as has been a
common rule-of-thumb choice in the design of setback leaf devices--the
largest index that can be obtained is 2.426 for a 2.6, 3.9, 5.2 com-
bination. This index is 6-1/2 percent less than the optimum and 4
percent less even than that obtained with equal maascs.

For the case of figure 17 and table IV (the steeply rising ac-
celeration), the optimum index appears to be 2.256 from a 3.2, 4.0,
6.5 combination. Other combinations whose index is within 1 percent
of the optimum are:

m m m m m mrl r2 r3 i _re r3

2.9 4.4 7.0 3.6 3.6 6.4
3.0 4.0 7.5 3.6 3.8 5.8
3.0 4.4 6.6 3.6 4.0 5.6
3.2 3.8 7.0 3.8 3.8 5.7
3.2 4.4 6.0 3.8 3.6 5.9
3.4 3.8 6.3
3.4 4.0 6.0

In this case, the 2, 3, 4 ratio of leaf masses is obviously more nearly
optim.um,; for .n-tancc, a 3.2, MR A4 .4 ratio would have an index of
about 2.200 (interpolating between curves), which is only 2 1/2 percent
less than optimum. A ratio of 2, 2, 3 would be an even better choice.
The index will, in general, be larger now when the first leaf is
lighter than the second, the average applied acceleration being
greatest during the first leaf rotation.
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For leaves of equal mass (4.7, 4.7, 4.7), an index of 2.145
is obtained, which is only 5 pe-rerlt less than optimum.

For the third and final case of the steep spring rate (figure
19 and table V), the optimum index was found to be 2.783 from a -_

4.4) 4.4, 5ý.2 combination of relative leaf masses. Again, there
are a number of other combinations within 1 peicent of this index:

m i m m m m-
r 1  r 2  rs S r31r __

4.5 4.6 5.0 4.5 4.4 5.1
4.6 4.6 4.9 4.6 4.4 5.0
4.6 4.2 5.4 4.8 4.4 4.9
4.8 4.2 5.1 4.8 4.5 4.9

Now, the higher values of the index occur for combinations of nearly
equal masses. In fact, the 4.8, 4.8, 4.8 combination has an index

only 1 1/2 percent less than the optimum. A ratio of 2, 3, 4,
such as 4.4, 6.6, 8.8 masses, would obviously be a poor choice in
this case.

It will be noted that the lightest leaf (the top trace of
figure 19) would not arm if released when the acceleration equaled
the equivalent initial spring torque N1 , but only if released after
the acceleration had a chance to increase further. Thus, this
lightest mass of (4.2) could not be selocted for the first leaf,
but only for the second or third leaf. It would not arm at first
release because the average applied acceleration then was too small,
the period of the natural frequency of oscillation of the mass-spring
system being short.

For each of these cases there is obviously an infinite number
of possible combinations of leaf masses that could be used. However,
those particular masses that were tested represent an adequate
sampling, since the discrete values were chosen close enough together so

that no significant improvement (greater than a small fraction of
1 percent) could be obtained in the index by using intermediate

values of relative mass.

7. RESULTS

The analyses of section 6 indicate that, in all cases, a set
of equal masses for all three leaves in a setback mechanism can have
a drop-safety index almost as large as the best set of unequal
masses. The maximum drop-safety index that can be obtained by
varying the mass of the leaves is only several percent higher than
the index that can be found for three leaves of some equal mass.

Therefore, for the sake of simplifying the design, it is recom-
mended that all leaves be of the same mass since little is to be

gained otherwise.
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This analysis is based on a mathematical model in which it' is
assumed that the frictional load on the last leaf is equal to that
on the other leaves. However, if the frictional load on the last
leaf is unavoidably large--being a heavy latch or other device--it
may not be possible to use leaves of equal mass, or at least leaves
of the preferred mass. In this case, it might be desirable to _

design the mechanism using the detailed method of sections 5 and 6.
In any case, it is advisable to keep the load on the last leaf to
a minimum by the use of materials with low coefficients of friction
and by optimum design of the element bearing on the last leaf.

When the values of the drop-safety index for the three cases
are compared, it is found that. the indices are lower for the case
of the fast rising acceleration curve (Case II). This results
because the available velocity change, or area under the accelera-
tion curve, is less. The indices are a few percent larger for
the case of the steep spring rate (Case II). However, the flatter
spring rate is to be preferred because of tolerance problems in

spring manufacturing, as discussed in section 3.

The optimum mass that the leaves should have is the smallest
value that. will still resull. in the mechanism arming during the

applied gun acceleration. It will he demonstrated that this value
can be obtained by averaging the applied gun acceleration that is
available to arm the leaves in excess of some N0, and comparing

it with the constant acceleration required to arm in the same avail-

able time, assuming the same N . This process Is repeated for0
several values of N until the average acceleration available is
found equal to the constant. acceleration required. This then
determines [lie optimuni value of N , and hence, of m, This procedure
is essentially the stmire as the design procedure described in section
3, except thai for this analysis the mass is the principal variable,
the spr ing rat.e a• d i nit Inat spring torque being held constant.

The average acceleration available to arm is obtained by
finding the area under the gun curve and above an arbitrarily
selected acceleration No, and dividing by the time period that the
gun acceleration exceeds N 0 Since a mathematical function was

0

used for the gun acceleratlon, the average for each N can be ob-

tained by integrat ion.

i.
A _ i . -at -bt. 8AL% e - - No t (83)

0 T2 J ttL- o

A e-a tI e-S -at e-bt _ e-btoN

SI-a - b i-N 0
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where t1 and t are the two times when the function equals N :

-at - bt )
AoJe e ) N; t t (84)

The constant acceleration required to arm three identical

leaves in the time (ta - t1 ) for each N is given by equation (18).
E0

If z - is substituted and C1 and C2 are set equal to unity,
0

the constant acceleration to arm each leaf is

ZN
00A-N 0

o -Cos /gz t (85)
Sr

where the time to arm each leaf is

t . L -

r 3

and

f= Y9 (87)

r

The angle 01 1r is limited to a maximum or rr radians since the leaf

rotation reaches its maximum at this value of t r. Thereforeif

r 9 3r• o kt.e 3

r

is greater than n radians, t.9 must be reduced to such a time that •tr

Just equals n. Then2, since less time is available in which to arm
the three leaves, A - N and A - N 0must be redetermined for this0 0

smaller t2 substituted in (83) and (85). This special limiting of
ta is only required for large values of z, as in Case II. However,
the usual values of z are small. After the value of N is determinedo
for which the available acceleration is equal to the constant acceler-
ation required, the optimum mass of all the leaves is obtained from (13)
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To test this design procedure, it was applied to the three cases
of section 6, for which the optimum relative masses were, in order:

S ~3.4, 4.7, and 4.8. The application of this simplified design

procedure resulted in optimum relative masses of 3.3, 4.7, and
4.8. Thus, this technique is seen to be accurate for determining
the optimum mass to provide maximum safety in a setback-leaf
mechanism while still being designed to arm when subjected to the
gun acceleration. Why this empirical method should work so well
is not fully understood; however, it is probably because of an
"averaging-out" of the mean arming time of each leaf over the rising-
and falling applied acceleration. This fact is partly illustrated
by the results of appendix B, where it is seen that the arming time
for increasing linear acceleration is longer than for a linear de-
creasing acceleration of the same total velocity change--the time for
a constant. acceleration being intermediate.

It is interesting to examine the instantaneous distribution
of the applied acceleration torque between the spring torque and
the inertial torque for each leaf of the mechanism. Figures 20, 21,
and 22 exhibit these torques for the three cases of section 6 with
equal leaf masses. These curves are analog computer soltdions for
each of the bracketed parts of the following equation:

[ , -TI Lxa 4 ed=hot. - ti od Lyg A(t)] (88)

or

M m 4- Ms M A (89)

It will be noted in the first two eases that the spring torque on
the third leaf exceeds t.he applied torque before the arming position
is reached, so that the leaf's angular acceleration becomes negative.
However, in the third case with the stee)p spring rate, the spring
torques of all three leaves acquire enough momentum to surpass the
applied torque before reaching arming positions. The spring torque
curves vary as 0 varies, and the inertial torque varies as the angular
-ch"Icrat ion.

8. CONCLUSIONS

It is seen from the detailed methematical analysis that, wherever
possible, it. is desirable to design setback mechanisms with leaves of
equal weight. A procedure for designing such mechanisms can be based
on treating the applied acceleration as constant. Because of a lack
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of information, friction was treated as a conotant, although it in
certain to vary for different environmental conditions and from unit
to unit, Experimental results are needed to further evaluate-this

design procedure. Centrifuge-testing permits the application of con-
stant accelerations, and the results could be used to determine the

effective friction coefficient that should be allowed. Obviously,
manufacturing techniques that reduce friction to a minimum should
be used.
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APPMMDIX A
I4

U; THE CENTER OF MASS AND MOMENT OF INERTIA OF A LEAF

The center of mass and moment of inertia of a representative
leaf are cAlculated by parts. Since the leaf (figure A-l) is
symmetric about the line through the axis of rotation and the center
of the hole for attaching one end of the spring, only one coordinate
of the center of mass need be calculated. If the flat leaf is con-
sidered to consist of three component parts--a semicircle, a tri-
angle, and a circular hule--the y component of the center of mass
is

Y M=y1 + m2y2 + mey.
m 1 ±m+n~,(A-l)

and each mass is

mi = PhAi (A-2)

p being the density of the leaf material h the thickness, and A
is here the area of the leaf parts. The ph cancel from numerator
and denominator. The mass of the shaft and any spacer used will
be ignored. Then the y component of the center of mass is

- (0. 199Ay + A2.Y2 + A(0 (A
y - A, tAe + A8  A3

+(RI c E3 +((Ttr) d

2 a

(0.199)3 + 0.199 (0.082)2 + Tt(0.022) 2 (0.121)

r (0.199)2 + (0.199) (0.082) - 1T(O.022)2

or

[= L0 77=- 0.0600 in. (A-4)

This distance is the effective torque lever arm of the leaf.
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Figure A-1. The center of mass of a leaf.
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The momeint of inprt is is obt4Wnd by. 41MAI4n -the latfl Smiae
S i$o five geometric are"a, as shoqn in figure A-2. The moment of

4nertia of each component paxt may be expressed in terms of its
mass and radius of gyration k

I = mk = phA kis (A-5)
j jj A

The moment of inertia about the axis of rotation is then

1 + 1 2 + 13 + 14 + 15 (A-6)

[ -R,•.. .• 9  .Rr&T.2 10 ,r.R
I = ph -'2 ) 1 ) + (-T-)(- I)+q-TrraI--e-

ab a2  b2  4a2  b? 1
+ 2 (E ) (_22- b -' ÷--P ) (A-7)

where the radii of gyration are found in handbooks. The parallel-
axes theorem was employed to obtain the polar moments of inertia of
circular area 3 and triangular areas 4 and 5 about the leaf axis of
rotation.

When numerical values are substituted, the radius of gyration
squared of the leaf is found to be k= I/phAnh L4 40 22
Ica = ph( 7 (0"199)4 + 1 (0.076)4 - T(0"022)9( + 0.1212)

ph(0.077) L4 01 16 2

+ (0 .076)(0.184)j000 + 061042
2-1

k 0.7 [0.001232 + 0.000 006 - 0.000 023 + 0.000 1191-0.077

or

10 = 0.0173 in. 0  (A-8)

The values of the leaf constants calculated in this Ap-
pendix are not to be considered related to the values employed
in tne main body of the report, buL unly buorv as illustrative
examples.
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RI 0.1991n.
R2e 0.076 In.

r3 - 0.022 In.

a -0.076 In.
b - 0.1841n.
d a 0.121 in.
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d

Figure A-2. Moment of inertia of leaf.
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APPMM2 B

RZBPONIX TO INCEASIZNG AMW DOHMDASZNG

LINEAR ACCOBLERAT IONS

The response of the leaf-spring system to both increasing and
decreasing linear accelerations will now be derived. Consider a
class of linear accelerations starting at zero time and continuing

until time t is equal to where 0 < T < r. If all linear

functions pass through the point -A)) the velocity change,

or area, for all accelerations will be the same, as seen in figure

B-1. The equation of a straight line passing through a point

(±L -A) is

Act) + b(t 0 0 t <B-1)

where the constant slope b may be positive, zero, or negative; and
A is the average acceleration.

If this acceleration function is substituted in the equationi
of motion (14) for the leaf with zero friction, the equation be-
comes

&t + = h(t) N OCA - No) + b(t - )J (B-2)

where P is the natural frequency of oscillation. The initial con-
ditions are: de

at t = 0, 8 0 and - = 0. To simplify the algebra,

let
p M ;b myg(A - No) (B-3)

Then (B-2) reduces to

+ ÷ e = h(t) M Q + P(t - (B-4)

dtP 2B4
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Figure B-1.. Linear accelerations of the same velocity
change.
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The Laplace transform is

where e is the transform of 0
When this is divided by (sa + P2) and the inverse transform is
obtained, the solution to (B-4) is

pht) L Cos -+ Pt P (B-5)

After time Pt , when the velocity . is the same for q11
values of D, 0 6 v

ev= 1(1 - cos *) + - P sin

ev = SK(l - cos + +-P (A + * Cos -sin •) (B-6)
V 3 0 2 2

For all values of , such that 0 < I < IT, the coefficient of
P is negative. Therefore, the angle of rotation of the leaf will
be greater for negative values of P (negative slopes b); the more
negative P (and b), the greater the rotation. To limit the term
in brackets in (B-2) and (B-4) to positive values only, it is neces-
sary to restrict b, and therefore P, such that

- (A - N < <b < (A N,
- - * 0

This agrees with Hausner's conclusion that the greatest leaf
rotation is obtained when most of the acceleration is applied at
the start.

Figure B-2 is a plot of (B-5) for the case of 1 fl for
negative, positive, and zero sloping acceleration functions, For

b . (A - No), 0, and - -_ - No), respectively, (B-5)

becomes

e = -2 (at -Tsin Pt) (E-7a)
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Att

0.0 .+t -* .

Figure B-2. Response of leaf to linear applied accelerations.
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o= -Cos Rt) S (B-7b)

24

2 (O -c sin Pt)] (7e=•-[Z Cos •t - (•-i~).(B-7c)

It is seen from these curves that when t =-3 in all

cases. However, for all cases of negative P, 0 rises rapidly to
-at an earlier time, continues to a maximum, and then returns to

on the rebound.
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APPENDIX C

TIE VELOCITY CHANGE TO ARM A LEAF

The velocity change, or time integral of applied acceleration,
which a leaf must receivc to reach its arming position, will be
derived for two simple acceleration functions. The first function
considered will be the step function lasting as long as it takes
the leaf to arm. Then a rectangular pulse of acceleration will
be used, which lasts just long enough to supply sufficient
momentum to the leaf by the time the pulse ends to cause it to
continue rotating to its arming angle.

Case I

For the first case considered, a constant acceleration A is
suddenly applied at zero time to a frictionless leaf-spring system
whose opposing spring force is equal to a constant. Thus, in the
equation of motion (14), X = 0, to = 0, C1 = 1, C2 = 1, and

A(t) [or more exactly A(t) cos e1 is a constant A.

- = h(t) mgy (A - No); e 0 (C-1)

In all cases, the initial values of the angle of rotation e and
its angular velocity will be taken as zero.

The solution of this equation is obtained by the use of Laplace
transforms. The transform of equation (C-1) is, letting L [01= 8

8 ® = y (A - No) z.

When this is divided by s 2 and the inverse transform is taken, the
solution becomes

= mgy (A - No) ts (C-2)

21

The leaf will rotate to its arming angle 9r after a time t . There-
fore

tr = 2(myg.- Nr)) (C-3)
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In this first case, it will be noted that e increases with t2 and
the angular velocity

de mgy(A - No)t (C-4)

increases linearly with time as long as the acceleration continues
constant.

The velocity change applied until the leaf rotates to er is

then the time integral of the acceleration, or just the product ofS~the constant acceleration and time to arm:

t2gie rm:

V = A gt r ~:(-) (C-5)

Case II

The next case considered is the same as the first except that
now the acceleration lasts only long enough to give the leaf suf-
ficient momentum to reach 8 as the angular velocity drops to zero.r
(If the leaf reached 8 with an excess of velocity, the acceleration

pulse could have been terminated earlier and the leaf would still have
armed.) The acceleration is now a rectangular pulse initiated at t = 0
and terminated at some t = t

A(t) cos 8 = A [h(t)-h(t-t )1 (C-6)

The equation of motion (14) is then

d'e = = gA• [h(t)-h(t-t 1 )- mygN° (C-7)

TF II

The transform of this equation is

sS = my (1 - etls) mygNo= Is -lF

This is divtdpri hv • • ernged to gi%2e

/A-N A eti s\

myg o -
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The inverse transform is then:

e = z ( t - h(t - tj) (t - t)(C-)

The differentiation of (C-8) results in the following equation
for the angular velocity, since the time derivative of the step
function is the delta function:

de g -o)t -h(t -t) A(t- t) (A (t -dt 1 0_• _2 t-tl•(-

By definition

( t - tO) 6(t - ti) = 0 (C-9)

so that the last term of (C-8) is zero.

de (A - No)t - h(t - t%) A(t - tj) (C-10)

It is noted that the angular velocity in this case rises linearly
until time t 1 with a slope (A - N ) and then falls linearly with a

slope (-N ). The angle of rotation e increases as before with the
time squared, but at time t 1 the curve undergoes inflexion, rising
less rapidly to a peak.

For the area under the acceleration pulse, or velocity change,
to be a minimum, the required boundary conditions are that, at

t = tr,-e =:O and e = erY where t> sothath(t -t 1 )=Ir dt r r r

er= L(A -No )t (tr t-

- (A - No)tr- A(tr- t1)]

The second equation can be solved for t r
r

r - A tj, (C-11)
r N-

0
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and the result substituted in the first.

mnyg A(A-N) (-12)0 OY 0 1 ( 2

r 21 N

The length of time which the acceleration pulse must endure for
the leaf to rotate an angle 0 is therefore

r

21 (c-13)

myg ACA - NO))

"while the time it takes the leaf to arm is

(210 A A
tr--mye No(A-NoT)/(-4

The velocity change which the leaf receives is then

v t =, ,t _ _
my (A-No))(-B

The above results were first obtained by Hausner, and are here
included in abbreviated form so that they can be discussed in the
context in which they were obtained in the main body of this report
and compared with the following new derivations.

Case III

The two above cases provide useful results, but for a better
approximation it is desirable to determine what the effect is of
replacing the constant opposing spring force by a more realistic
linear spring force. This requires retaining the term ?8/I in the
equation of motion; (14), so that the opposing-spring force increases
as the leaf rotates. Therefore, the first two cases are now re-
derived with a linear spring force. For the case of a step function
acceleration applied with a linear spring the equation of motion
(14) is

d e )A ( h(t) M - (C-16)

dt 2  1 1

The Laplace transform is

s E + myg(A -No)
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If this equation is divided by s0 + , and the inverse transform
is taken, the solution for (C-16) is found to be

myg(A No) (-)
8 G Cos) (C17- cos)

It is noted that e, instead of increasing indefinitely with the
time-squared as in the case of a constant spring force, now in-
creases as a one-minus-the-cosine (or sine-squared) function of
time reaching a maximum angle of rotation

2myg(A -N0)
8m (C-18)

in a time

tm - (C-19)

Thus the armilng time can be no greater than (C-19) and is in
general equal to

t 'I O--i• r (C-20)
tr /!X s- N0 )] (C-20)

The angular velocity is a sinusoidal function of time.

de myg(A - No0)
A-= s0 n t (C-21)dt

The velocity change received until the leaf arms is now

V = tr =g Acos [ - r-N (C-22)

Case IV

Now consider the case of the rectangular pulse acceleration
modified by a linear spring opposing force. The equation of motion
is (C-7) with the addition of the term ?S/I.
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" =h(t)- h(t-t,)] -N (C-23)

SThe transform of this equation is

ss e + X mygA (1- e-tls) mgo
I Is Is

When this is divided by s -+ and the inverse transform obtained,
the solution of (C-23) is foun& to be

0 =y [A - N ) (1 - CoB t)- A {I - Cos/ (t -t 1 )'h(t-t, )1 (P-9.AN

The angular velocity is obtained by differentiating, recognizing
that

t1- cos (t - tI) ] 6(t - t1 ) = O.

[Gmg(A- N0) sin Ft - A sin / (t -j t9 h(t - ti)1 (C-25)

The conditions for minimum velocity change are, as in Case 1,
de

that, at t = tr, = S r and 2 = 0, where t) t 1 .

ar = ! (A- No)(1 - cos A t)- A {1 - cos (tr - tl)

0o Y =3 KA -N) sin xt As in (r t)

The second equation can be solved for tr in terms of t1 .

tan si J- t - (C-26)

When this result is substituted in the first equation, a
solution can be obtained for t1 . However, in order to simplify the
algebra, it is useful to first rearrange the equation for er as
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follows:

xr NO - (A-Nt
my- A + CC o Ios (tr -tx) A Cos trmyg I" "' r A

r j (A - No),f[cos ti - Cos tr + sin A t, sin tr

or

mygN 0+ M r (A - , s 0in ta r= ./oI-~ t' 1 0 1tF tan 'r]
"mygA CA Jco/I tr L + i t AV

If (C-26) is now substituted, and the trigonometric identity

1 + tans t
2 f Cosa~it

employed, the equation reduces to

mygN° + •er cos 0i - (A )

m y g A C o s t
co r

( In2 t1 + [Cos/r tj At0

(A - N a) 2(A - C)o -
-AT-A cosAt

A solution for cos A tj can be obtained by squaring both sides of

this equation.
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08 o=(2 A - No2

The velocity change which the leaf receives is now

A. .((Mo (YI + X
V = Agt = A/ co- A o myA (C-28)

Case V

The last case to be considered will be that of an applied delta
function of infinite amplitude lasting an infinitely short time with
a minimum velocity change V. The opposing spring force will be
considered linear. The acceleration is

gA(t) = V6(t) (C-29

and the equation of motion (14) becomes

d~e Xe = y V6 (t) -- C-I-
d + Z - I (C-30)

The transform of this equation is

2 + GmyV -mygo
"I I iT

When this is divided by s2 + and the inverse transform taken,

the solution of (C-30) is found to be

Smyv sin mYgNoe / • " -T -si(' - coo t)

or

mygNo / a / *N~
e8= jvr+) si +4 ti'(-1
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The time required for 0 to reach its maximum angle of rotation

t ~mygN0 -

/ -0 F'

is seen to be

ti = - tan-1 .

or, since - tan-' x = tan-' (-33)

-m11tan 
-N~

If (C-32) is solved for the velocity change V in terms of the
angle of rotation Om = ir it is found that

V = gNo I i+mgo

or

ClerNo N2 er-'

\my -Y,.

The angular velocity of rotation obtained by differentiating
(C-31) is

or

TT - I (V + ose t +

Afn
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1t.• a step Jump iLn the initial velocity from zero to
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APPINDIX D

LEAF ARMING TIME AS A FUNCTION OF ITS RULUASE TIME

Consider the differential equation of motion of the form

dee -at -bt ]
T + e = h(t -to) [P(O-at e0 ) 0 6 (D-1)

where

for t = to0 P(e-at 0 - e-h) > Q (D-2)

The Laplace transform of this equation can be obtained as

p E) + _Pe-at 0 e-tO .e-bto e-atO e-Sto
s~a + a a + b--

When this is divided by sa + p8 the solution of the differential
equation is found to be

e =h(t -t ) -a [ -2e a(t -to)+ sin (Pt-0 a (a + W n - Oa)

.,-bto F 1 -b(t - t0) + sin (lt -L•-+-- • + (bl + V)* Oi •t b)]

- ~ [ -coo g(t t

where

tan Oa=;a Ob =b

This is now rearranged by expanding each sin (pt-0) and factoring out

P
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P~ as

Wr-
o = ~t- 0) b j..Rt J4 $in -a (t-t0  14jF con Pt- t~-

-• [i - 0oc P(t - to) (-8)

After a time t'= trD e becomes equal to the angle of release for

the leaf, or e 8 er

e eat° 2 a(trto)+ a- {(t-to)- a- COS •(t-t)]

" -t ° • eba T r 't°- s in 5( t t ) b- I e (t- o la~ +13 r- 0 a 4 ro

-• [,- coo °(t -P]} o (.]

The length of time it takes the leaf to arm is tr- t0 , which

will be called .T.

*r= i{&ato L- _~ aT+-a". sin PT -a Cos 0T

-e ~ L§.-bT1
e-bto +b+u *g sin OT - Cos 0T

- L - coo (D-5)

Equation (D-5) is seen to present the arming time T as an
implicit function of the release time to0 all other symbols represent-

ing constants. The derivative of an implicit function.

er = f(T, to) (D-6)

is given by

dT ato (D-7)

1FT4
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for the values of the variables to* T such that

where and L are partial derivatives of (D-5)

F0

= -ae e + sin PT - f-- cos

+be  e + • sin PT cos TP

-e we+ cos OT + sin ]

- b e F - bt0 z e bT + b02 co T + b ~ Bin 5T

- sin OTP

When these expressions for •t° and- are substituted in (D-7),

the total derivative of T with respect to to is found to be, after

cancelling ,

dT _ ato-qneaT+ q-ibT-~cs~T~eto~qae -bT+q4sin PT-q~cas 0T

*dt 0  e-ato EqeaTa +qsin OT +q~cos P] e bt O[-qae~bT +qs in OT+qscosOT qBInp3T

(D-9)

where

S; q 2 = ; q = 2

q 4  = - ;; -"b
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APPENDIX B -

ANALYTICAL EXPRESSIONS FOR GUN ACCELERATION-TIME CURVES

The determination of an analytical expression for gun accelera- CA
tions as a function of time is a special type of curve fitting pro-
blem. The usual curve-fitting task is related to finding an equation
that gives the best fit to a set of points, or perhaps a specific
curve. The conatants of the equation are calculated but once,
sometimes to considerable precision. However, when, instead of a
single curve, a wide variety of curves of varying shapes must be
expressed in the same analytic form, the method of solution is not
so straightforward. Onc technique i. Lo search for functions whose
general shapes are that of the given curves; and then to obtain as
much information as possible about these functions to aid in finding
methods of determining the parameters for each curve. Another
technique is to plot the given curves on various kinds of logarith-
mic paper to determine if any relationships can be determined between
the variablcs and their logarithms. For example, a straight-line
segment on semilogarithmic paper indicates an exponential relation-
ship. Hausner used this technique to obtain a sum of three exponentials
for a close fit to the acceleration-time curve of the 81 mm, T28E6
mortar at one increment.

A representative set of gun acceleration curves is shown in
figure (E-1). The curves are difficult for engineers to obtain
accurately, and no simple theoretical derivations have been made for
the accelerations obtained in gun firings. It will be noted that
all the curves are of a type that rise sharply to a rounded peak
and drop off more slowly in what appears to be an exponential manner.
In addition, all curves have an inflection point beyond the peak, and
some--particularly those with high increment power--have an inflection
point also before the peak. Actually, for this setback-leaf problem,
only the upper part of the curves need be fitted to an analytic ex-
pression since the leaves do not begin to move until the acceleration
exceeds the equivalent spring acceleration N0 , and arming is com-
pleted before the curve has dropped below, say, one-third of the
peak. Therefore, it will be assumed that any fit of the upper two-
thirds of the curves is sufficient.

Among the functions that have the same general shape as the

curves of figure (E-1) are the skewed normal distribution.

-(t - t)

f(t) = A t e
0

where t is the mean and a2 is the variance, and the gamma distribution

f(t) = A0 ta e bt
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klthough good fits can be obtained for an individual curve with
either of tbese functions, it is a laborious process, and no
systematic technique could be devised for determining the param-
eters for each of the curves. In addition (and this was the most
important reason these functions were not used), when the accelera-
tion is expressed in terms of one of these functions, the analytic
solutions of equation(14) are complicated and difficult to do much
with. Furthermore, they require the use of a large number of
analog computer components in obtaining machine solutions.

For these reasons, other functions were sought to represent
the family of gun curves. The sum of several exponentials seemed
to be the most promising. Before these are discussed, it is helpful

; A =A e-a (E-1)
0

By taking the natural logarithm of both sides,

In A = lnA -at
0

(where In is used to indicate the logarithm to the base e), it is
seen that an exponential function will plot as a straight line on

somilogarithmic graph paper with A the intercept with the log axis0

and a slope equal to (-a). Another method of determining the value

of "a" results from the fact that, when t = 1 A = AO. Thus, "a" is
a e

equal to the inverse of the time coordinate of the point on the line

where A is equal to 1 times the intercept A.
e 0

Hausner used the following sum of three exponentials to fit the
acceleration curve of the 81-mm T28E6 mortar shown in figure E-2:

-172.7 -451.4t -I084.5t

A=2700 e "7t-3330 e + 630 e g (E-2)

where t is in seconds.

This is obtained by plotting the given gun curve on the semi-log
paper and fitting a straight line to the approximately straight ex-
ponential trailing edge to obtain the constants of the first expo-
nential. Then, the difference between the straight line and the
plot of the gun curve is also plotted on the same paper. Another
straight line is fitted to the right-hand portion of this difference
curve to obtain the constants of the second exponential. The
difference is plotted again, and the process continues until the
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remaining difference becomes small. However, this is more dif-fioult
than it might appear. The first difference curve to usually quite
curved; therefore, it may not be possible to find a vew'y loug __
portlon t~if ~ 1h fi~i~~hi~ui~
the next difference being -an odd - shaprd cuveand the whole -pro-
cess can break down. The resulting sum of exponentials is then
not a good representation of most acceleration curves, even though

M Hausner was able to find a close fit for his particular curve. In
addition, the sum of three exponentials to represent a set of ac-
coloration curves meets the same objections as the gamma distribu-
tion and the skewed normal distribution in that there appears to be
no systematic ana bilak way xyia , "%P pjiiduneters ol tne ex-
pression as the curves vary. Already, there are several parameters
in the equation of motion, and an additional four or five greatly
complicates any theoretical analysis, since it is desirable to know
how results are affected as each parameter is varied.

The sum of three exponentials has five parameters in the form:

A(t) = Ale-at -(A, + AO) e-bt + A -ct (E-3)

Now, it will be shown that this expression can be rearranged to a
more usable form

A(t) = fl(t)-f2(t) = A1 (e at-e )-A)(e-bt-e ct); a-b < c (E-4)

This is recognized as the difference of two similar functions,
identical except for their parametric values. In figure E-2,
Hausner's curve is shown split into these two component parts.
The interesting feature of these two curves is that they both have
the same general shape as the gun curves. This suggests the pos-
sibility that one of these curves alone could be used to represent
the gun curves; it will be shown that, fortunately, this is true.

It should be mentioned first, however, that if it is necessary
to find a close fit to a riven gun curve, expressions in tue form
of (E-4) show promise. This was not pursued further, but it can
be seen that the larger curve given by the first part of (E-4)
qhntild hP sAlpeted to Deak before the given gun curve, with its
amplitude adjusted, so that the gun curve fits beneath with the
trailing edges coincident. To prevent the difference curve from
going negative at the start, it Is necessary that the initial slope
of the larger curve be greater than the smaller. From the differ-
entiation of (E-4), it is seen that the slopes of the two curves
are:

df A (be-bt -at I
dt ffe
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and

___ A2 (ce tot -be -bt)
dt .

Therefore, it is required that at t = 0,

A, (b-a)> Ag (c-b)

for the slope of the larger curve to be the greater. Also, there

would be more flexibility if all four of the exponential coefficients
were different; i.e., if the first exponential coefficient of f2 is
not b, but some other constant.

Now, an examination will be made of the two-exponent exponential

curve that is part of equation (E-4)

f = A (e -ebt ); b > a (E-5)

A is only an amplitude or scale factor that can be set equal to
o

unity. For b greater than a, this function is positive for all
values of t greater than zero. The curve always has a single peak

that is followed by an inflection point. The time at which these
points occur can be obtained from the first and second derivatives
of (E-5)

df -at -bt
-t - -ae + be (E-6)

df 2 -at -bt77 = a~e at (E-7)

Setting each derivative equal to zero and solving for "at", it is
found that the times at which the maximum and inflection points
occur, respectively, are 1

m b b (b/a)-latm = (b/a)- ln -- :ln (-) (E-8)

2 bat 2 in 2 at (E-9)atin - (b/a)-l a -

all



(Tt IMuld 'be noted that such solutions Vaunot be obtained analyticallyI
tW the functions kiscusfed earlier in this a£pendix) 7he time at
Wh4'h the curve undergoes inflection is seen to be double -the peak
time, eo that the drop from the peak always takes longer than the rIUe.

When M•-B) and (9-9) are substituted into (B-5), it is found- that
the values of the function at the peak and at the inflection point are,
respectively:-lb/

- b/a :

b b/a-i

b b b

(aabt ) -1

"atin a ain b b a
f =e -e F(-) - a-)

in a a

-2 _b

ba

bb

From (1-8) - (E-Il), it is seen that atm, at in' fm, and fnare

all functions of b/a alone. Let fl equal the ratio b/a, which in al-
ways larger than unity, and the equations then become :

atr ln1 (E-10)

-2

at in b anb aE-13)

m (fl)

1-1)
1e2 (_ ) (-1

-21b

ai

bi



The equations (E-12),(B-14) and (E-15) are plotted in figure R-3.
It will be noted that the maximum possible value of at is unity as

'n approaches unity. Thereforc, tm must be less than 1/a. If It
mm

shoulq be necessary that t• bo greater than I/a, the time origin of

the curve can be shifted.

The function (E-5) can be expressed in normalized form if it
is divided by (E-14) and "at" is replaced by the dimensionless time
T.

Sf e0 -at -- (at) "7 -e-
S=e - e 1 a =1 (E-16)f m _e-i

This normalized function is shown plotted in figure E-4 for values of
I equal to 1.1, 1.5, 2, 3, 4, 6, 8, 10, and 20. These curves show
how the shape of the function varies as I changes, and aid in the
selection of a suitable value of I to fit the gun curve. As an
additional aid, these curves are replotted in figure E-5 with their
time axes shifted to make the peaks coincident.

To fit a given gun curve to this function, it is necessary to
first determine "a" from a plot on semilogarithmic graph paper as
described earlier, and then to scale the amplitude of the gun curve
to have the same peak as the curves of figures E-4 and E-5 with a
new normalized time scale "at." It may be necessary to make adjust-
ments in the value of "a" to get the best fit, and to interpolate
between the curves of figures E-4 and E-5 to get the best value of
1. These parameters and the amplitude factor A should be selected,

so that the resulting function gives the best fit to the upper half
of the given gun curve. Values of I equal to 2.13 and 10, with "a"
equal to 173 per sec, provide two representative curves that are used
in the analysis. The choice of I equal to 2.13 results in a curve
that gives a good fit to the T28E6 as shown in figure E-2. These twc
acceleration functions are shown in figure E-6.

In summary, the two-exponent exponential function (E-5) is a
useful representation of acceleration curves, since a whole family
of gun curves can be approximated by varying a single parameter 1,
as shown by figure E-4. This function's usefulness is increased, in
that it is one of the most tractable mathematical functions to em-
ploy in the equations of motion in dynamics.
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