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ABSTRACT

A procedure is described for designing 8 & A (safety-
and-arming) setback mechanisms of the rotary-leaf and spring
type to obtain optimum safety and reliability. The design
procedure, developed from a mathematical analysis, is described
in detail, This procedure is formulated so that 1little mathe-
matical background is required to understand or use it,

An analytical study is made of the effect of varying the
mass of the leaves upon the accidental drop safety of the
mechanism, The drop safety is defined as the absolute minimum
velocity change that can possibly arm the device, This figure
of merit is derived and evaluated for each set of leaves.

To determine whether the mechanism arms when fired,
graphical curves are developed, showing the arming time of each
leaf of different weight as a function of the time that elapses
from the moment of firing to their release, By adding these
arming times together, the combinations of welghts that will
arm are readily obtained.. This study was made for both fast-
and slow-rising acceleration curves, and for restraining
springs with both flat and steep spring rates. A simple ex-
ponential function, with one varying parameter, was developed
to represent different gun acceleration curves,

The results of the analysis in each case indicate that
leaves of equal weight are about as safe and reliable as com=-
binations of leaves of varying weights, It was also discovered
that the mechanism performed much as though a constant accelera-

tion had been applied to it., The main assumption of the analysis

was that friction has an average effective value,
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The primary B&A (safety-and-arming) mechanigsm of high-velocity non-
rotating ordnance pro;jectiles (artillery or mortar) that are launched
with high acoelerations is often a multiple-leaf setback device. The

_pendulum-like leaves of this device, impelled by the firing -accelera= :
tion, are deasigned to operate sequentially, one after the other. _Each
leaf must rotate through a certain angle kefore the next one is re-
leaged,’ The last leaf arms the projectile by releasing a rotor, clos-
ing a switch, starting a clock, or some such mechanism, This arrangement
insures that the device will arm only if the acceleration lasts a
certain finite time and provides safety against accidental handling !
accelerations of short duration,

o e A
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Although the leaves are not limited to rotary motion, these are
. the only type that will be considered in this report, since they are ;
; the most common, Also, it will be assumed that the device has three -
- leaves, as in most models, and that they are of flat pendulum con-
figuration mounted on shafts that rotate on bearings. The movement :
of each leaf under acceleration is opposed by a stiff helical spring -
mounted under tension on the shaft with one end anchored to the frame '
and the other to the leaf, A post, which is part of the frame, pre-
vents each leaf from rotating in a negative direction. It is assumed
that the leaves are positioned so that they are most sensitive to ac-
: celerations in the direction of firing. This three-leaf setback device
= is a simple inexpensive mechanism, but a design providing the maximum
) safety and reliability required of ordnance items is rather complicated.
N The design of most models has relled on experimental testing programs
and past performance,

Theoretical and experimental studies conducted by Hausner have
added much ro the understanding of this device (ref 1,2,3,4), This
theoretical study is based on his earlier work. Among the results of
Hausner's theoratical analysis that pertain particularly to this study
are his derivations of the equations of motion of the leaves, expressions
for the principal friction torques on the leaves, and derivations of
tae absolu.e minimum velocity change (time integral of acceleration)
that the setback mechanism must receive in order to arm, His mathe~
matices model for this last derivation assumes that the spring torque
oppesing rotation is constant (rather than linear), that there is no
friction, and that shock and vibration effects are negligible, A
further study of this device was desired to obtain a better under- .
standing of the factors determining the safest and most reliable
operation, and to derive a simple procedure for designing these de- .
vices=-a handbook technique if possible, :

The results of this analysis include the recommendation of a
simple function to represent various gun accelerations curves, Its
shape is changed by varying just a single parameter, A definition

10
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of drop safety is borrowed from Hausner, and a drop-safety index (or
figure of merit) is derived for a leaf, which is a function of the
gpring stiffness and the mass of the leaf. This drop-safety index
is proportional to the absolute minimum velocity chatge that will arm = =
a leaf, Instead of the constant spring torgue used by Hausner, a
linear spring torque is used in all derivations in this report, so

that the effect of the mass-spring system's natural frequency of oscil-
lation is included in the solutions.

L TR MR I

Another result of this study is the derivation of an analog com-~

puter method by which curves can be obtained, showing the variation

. in arming time of a leaf as a function of the time that elapses from
the application of the gun acceleration until the leaf is released. :
An analysis of these curves obtained for different spring stiffnesses, H
leaf masses, and gun acceleration curves shows that there is little B
increase in drop safety to be gained by using leaves of unequal mass,
Therefore, it is recommended that, where possible, leaves be of the
same mass, (If the friction load of the latch or rotor on the last
leaf is very large, this may not be desirable.,) A simple procedure
requiring little mathematical background is described in section 3 for
designing a leaf-spring setback mechanism that will have the highest
drop-safety index and still arm the mechanism,
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The technique employed in the analysis and the assumptions made
are described in section 2, In this study, any effects due to vibra-~
tion and shock, such as deformation of parts of the mechanism, are
excluded, Also ignored are the weights of the springs and shafts,

2. METHOD OF ANALYSIS

2,1 Derivation of Equations of Motion

A setback leaf is essentlally a rotational mass-spring
system, which is energized for a very short period of time by a large
acceleration during the firing of an artillery device. The setback

. leaves are designed to "recognize" a particular acceleration function,
Each leaf of the mass-spring system absorbs enough energy from the
applied acceleration during its existence to rotate to a position that

. will release the next leaf. These movements of the leaves occur
sequentially, and the arming of each leaf must occur in a time short
enough to allow the succeeding leaves to accomplish their function also,
Since the last leaves are delayed for a period of time hefore being .
released, they must he designed for the arceleration that ia still E
available during their travel. In other words, the leaf design de-
pends on the magnitude and shape of the acceleration~time function.

However, a satisfactory design must not only arm for a speci-

fied acceleration but must also provide the maximum safety against acci-
dental arming resulting from acceleration-time functions of shapes different

11
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from the operating acceleration. The relative safety of leaves is
usually expressed in terms of the velocity change resulting frem ac-
cidental drops required to arm the leaves. The proble:n-of determin-
ing the safety of a leaf and its definition has been discussed by
_Hausner (ref 3)., The measure of the safety of a leaf is chosen to
“be the absolute minimum velocity change required to arm the leaf.
This minimim velocity change will be that resulting from what, in
mathematical terminology, is known as an impulse function, or a
delta function-~a very sharp pulse of infinite acceleration lasting
for an infinitely short period of time. Such & pulse is, of course,
physically impossible; but it 1s the limiting case of a high ampli- *
tude pulse of short duration, whose velocity change or time integral
of acceleration, remains constant,

The equation of motion of a pendulum~type setback leaf
rotating about a fixed axis is

%LZJ M

when MJ are the external torques about the fixed axis of rotation,
If the” leaf 1s energized or shocked by an acceleration g A(t), the
equation of motion is (ref 2)

d®e
I =t MS + Mf = mg A(t) y cos (6 - ) (L

where Ms and Mf are the torque of the restraining spring, and the

assorted friction torques, respectively,

The particular setback leaf system analyzed is shown in
figure 1. It is assumed in the analysis that the acceleration im-
parted to the system is in the vertical direction. The symbols m,
y, and g are the mass of the leaf, the torque arm (distance from the
center of mass to the center of the shaft about which the leaf
rotates), and the acceleration due to gravity, respectively, Cal-
culations for the center-of-mass and moment of inertia of leaves of
this geometry are given in appendix A, The © 1s the angle of rota- 7
tion of the leaf measured as the angle through which the center of
mass rotates, assuming that its initial value is zero and that the :
angle to which it must rotate to arm (or permit the next leaf to H
rotate) is @ — 8 . The axis from which © is measured is offset by :
an angle (¢ from ¥he direction perpendicular to the applied accelera-
tion, This angle ¢ is often taken to be © /2 Then as the leaf

o o ant

[

rotates, & - @ varies from - 5— through zero to + —g. In this analysis
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Figure 1. Leaf arrangement in setback mechanism,
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Op is 45 deg,s0 that -22.5 deg < -0 < +22.5 deg., The cos(@ - ) faector

then varies from 0,934 to unity and back to 0,934, Therefore, there
is an error of only a few percent in setting cos(® - @) equal to unity,
which reduces a nonlinear equation to a linear approximation. The cos
(@ - @) may be considered as a factor modifying the applied accelera~
tion A(t) slightly at the beginning and end of the rotation of each
leaf (fig. 2), Since © 1s close to zero most of the time as the leaf
gathers energy to rotate, there would be actually less reduction in
A(t) if o were smaller than “r/2, so that © - & would be nearly zero
during most of the time that energy is being asbsorbed by the leaf.
However, for this analysis ¢ will be half er. (If available space is

8o limited that the leaves cannot be oriented in the same vertical
direction as in figure 1, angle & may be different for each leaf,)

A(t) is the acceleration in "g", or units of gravity--a dimensionless

function of time. The torque of the helicael spring opposing the

rotation of the leaf is assumed to be a linear function of the angle
of rotation €,

M, = M0 + N8 = 1(90 + 9) (2)

vhere M, is the initial torque on the spring restraining the leaf
until the external acceleration is applied; and A\ is the spring con-
stant, the rate of increase in torque with the increase in ©, The
initial torque Mo is obtained by winding the spring through an initial

angle eo before assembly. Then as the leaf rotates, the spring is
wound through a further angle 6.

The friction torques are caused by pressure on a leaf re-
sisting its rotation, The main friction torques result from pressure
on each leaf by the following leaf in the sequence, and from each
leaf pressing on its own bearing. The force of any leaf on its pre-
Jdecessor depends on its own torque., This force, to a first approxima-
tion {neglecting its own friction torques), is equal to [see fig 3],

1

Fi+l = -}K [m1+1 yi+1 g A(t) cos ai+l -MO, i+1! (3)

where the subscripts i+l refer to the (i+l)leaf effect on the (i)th
leaf,

The consequent friction torque is
Ri ¢

f 1
| - :
Lmi+l Viel B A(t) cos Mo, 141]

-

M. =
Rt © PRE 141 (49
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where R 1s the leaf radius and My is the coefficient of friction

between leaf surfaces. The expression within parentheses is re-
stricted to positive values, s0 that this torgque is never negative.

For the last leaf, this torque represents the pressure due to a

rotor, release latch, or some such device, Because of lack of informa-
tion as to what this element might be, it will be assumed for simplicity
that its torque is of the same nature as that on the other leaves,.

The friction torque resulting from the ith leaf pressing
against its bearing is caused mostly by the force of the (i+l) leaf
F1+1 (3) plus the force from the gun acceleration, Although these

forces should properly be added vectorially (fig. 3), there is little
error in adding them algebraically, with considerable simplification,
The bearing friction torque is then

- r ' - .
1 )
Mb =, Tim g A(t) + T 1M1 Vi1 A(t) cos a1+1 M :

141 l 0,141

’

1
| 5

r being the radius of the bearing in which rotates the shaft on which
the leaf is mounted. Again, the expression within parentheses 1is
restricted to positive values,

The small friction torque caused by the pressure of the
helical spring against the leaf shaft Ghich should also be a small com-
ponent of Mb) will be neglected in this analysis, Since little is

known of the coefficlents of friction and their variations under different
conditions, there is no point in deriving every friction torque to a
high precision, The friction torque expressions are only approxima-
tions, in effect, modifying the frictionless equations of motion,

If these torques are now substituted in the equation of
motion (1) of leaf i, it becomes

d® o R

1 1
fTgE Mot Mt iR (“‘1+1 Vigg € M) 008 ay My )

f [ '
1 co - -
+ My rtmis ACt) + EI:I 1m1+1 Yip 8 AL cos Gy Mo’ 1+4H =my, gA(t)
7/

This equation can now be rearranged as follows:
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) cos ai#i
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(6)
oi Moi
Thé equation of motion of each leaf is of this form,
2.2 Reduction of the Equation of Motion
Egquation (6) can be simplified if certain reasonable assump-
tions aré made, For reasons of safety, it is desirable in the manu-
facture of S&A devices to make the assembly as "foolproof" as possible.
Therefore, the springs for all the leaves are usually made identical,
and the leaves made of tlie same geometry, varying only in thickness
(mass), Throughout this analysis it will be assumed that these re-
quirements hold, Therefore, the subscripts will be dropped from each
5 ¥s R, and a, because they will be the same for each leaf, Also,
12 will be assumed that the coefficients of frictiomn Hp and W, are the
same, and thelr subscripts dropped. Then (8) reduces to
d%e ! m T
i r i+l r |
I1 e + xei =myEg A(t) |1 *‘{y + m, (1 + R) cos ai
\
M 1-u+E) (7"
o’ “ R
L- ——
1f the expressions within brackets are each represented by a constant,
(r Myl r !
cl=1-p;[;+-Ti—(l+i)cosa' (8)
. J
C,=1-pQ 4+ (9)
2 R
this simplified friction model is seen to be of the same form as the
frictionless model.
daei
11-_dt—a-+ )\91=m1 ygclA(t) - CZMO (10)
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For the frictionless case, C1 and c2 become unity, For a given
m
geometry, ratio mi+1

, and constant value of the coefficient of friction,

the equation of motion may be considered as having an acceleration ind
initial spring torque that are modified by the factors c1 and CZ:

' A'=CA; 0%¢C <1

1

‘M'=CM;O0<C

o 20 < 1

2

The equation of motion (10) is still not complete, 1t is
necessary to account for the restraints on the leaves., All leaves are
prevented from having a negative angle of rotation © by suitable
mechanical stops. In addition, leaves other than the first cannot move
until the preceding leaves are out of the way. These restraints can
be accounted for mathematically by including in the equation the step
function:

h(t - to) =1 for ¢t - to >0
=0 for t ~ t, <0 (11)

The corrected equation of motion then becomes:

m,yg C.ACt) C.M
2
ey +—-—§ 8, = h(t = t_,) iI LR §° (12)
dt® i i i

This equation is applicable to all of the leaves. For the first leaf,
to is the time at which the external applied acceleration has increased

to the point where the applied torque equals the initial spring torque
Mo; i.e., when the forcing function within the brackets goes positive.

The other leaves are suddenly released later, at which times the ap-
plied torque is much larger than the spring torque. This is illustrated
in figure 4, where t01, toz, t03 represent the times when each of the

three leaves begins to rotate., The time when the first lcaf moves (for

a given applied acceleration) depends on the initial spring torque, but
the other leaves start only when the preceding leaves in the sequence

have moved out of the way. Their starting times are not a function of

the constants of their own equation of motion, but depend on the solutions
for the first leaves. Thus, the arming time of leaves other than the
first one depends on the times that the first leaves take. In other

i
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Figure 4. Initial starting times for each leaf rotation,

words, the arming time
release time occurs on
analytical approach to
the arming time varies

of a particular leaf depends upcn where the
the applied acceleration curve. The major
this study relies on the determination of how
as a function of the release time of a given

leaf, This information,which has not been obtained before for repre-

sentative gun acceleratiomns, is a valuable aid to the design procedures
for setback-leaf systems,

The initial spring torque Mo can be expressed in terms of
equivalent g-level by letting (ref 1)

uo =N = mygNo (13)

where No is now the g-level of applied acceleration to produce a torque

squivalent to Lhe iniiial spring torque. 1t this is substituted in
equation (12), it becomes of the form:

)

A
a *1 °°

m
nt - v ) & E’l‘“t) - CzN;l (14)
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2.3 Method of Solution

This equation is recognized to be a second order linear dif-
ferential equation of a simple undamped harmonic oscillator set into
motion by a transient impressed forcing function, Because of this
forcing function, or externally applied energy, the mass-spring system
is nonconservative, However, it can be readily solved by standard
techniques for a variety of acceleration functions of time. Solutions
for some simple linear functions are derived in appendix B. Laplace
transform techniques are used to solve differential equations through-
out this analysis., These techniques are used because of their alge-
braic. simplicity, automatically incorporating in the operational
solution the initial or boundary conditions, and they are particularly
adapted to handling equations containing step functions and delta

functions, 1In all cases in this report, the initial conditions are

that © and %%— are zero at t equals zero.

Although solutions arc readily derived for @, the expressions
are so complicated that [except for the case of A(t) equal to a con-
stant] analytical expressions cannot be obtained for other variables
of more interest, particularly the arming time, or time for a leaf to
rotate a given number of degrees. Therefore, analog computer solutions
will be developed for these variables., The only solutions of interest
are through the initial arming angle ©_ of leaf rotation, By the time
© reaches this value, the next leaf had been. released, and subsequent
performance is of no interest.

In the solutions of equation (14), A1 is equal to the square
of the natural frequency of oscillation of the mass-spring system
without any forcing function, Therefore, A/I can be replaced by p®
in the equation of motion, 1In addition, if the moment of inertia I
is replaced by its value mk?, where k is the radius of gyration, the
mass of the leaf is cancelled from the amplitude factor of the forcing
function. However, © is not independent of the mass, since it is a
factor in the relationship between the sprinquiorque and the accelera-
tion as seen by equation 13, and in the term —,.

d® Y- I
Et—g +  c nt - t,) % clA(t) - czN;I (15)

It 1s assumed in this analysis that the leaves vary only
in mass; the release angle er, vy, and k being appropriate constants,

It is further assumed that the initial spring torque Mo is a constant

of suitable value, with the relationship between Mo and Nodetermined by
equation 13 and the mass of a particular leaf.
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Another variable will also be- allowed, which is proportional
to the spring constant A. This variable is defined by first consider-
irg- the relative change in the spring torgue as 6 rotates from its
initial position to its arming position ©_ (fig. 5). The spring
torque then increases frow Mb to Mo + RB}, a change equal to xa;.

The relative change in spring torque, which will be called z, is
then

z=——ﬁ——=M (16)

Mo and er are constants so that the variable z is proportional to

the spring constant A.(z is used as the variable instead of A be-

cause it was found to be a useful dimensionless parameter in evaluat-
ing the drop safety.)

In summary, the variables in the analysis are z, the
relative spring torque change, and the individual leaf masses m for
various given gun acceleration~time curves. The problem then re-
duces to that of determining a method of selecting the three best
masses for the leaves, which will result in an S&A device that will
arm for the given applied acceleration-time function while requiring
that the minimum velocity-to-arm be as large as possible. This
minimum velocity-to-arm for a three-leaf device 18 defined as the
sum of the minimum velocities-to-arm of the individual leaves. This
problem is analyzed for representative acceleration-time functions
of different shape, and for springs of different stiffness as given
by 2z, The masses can vary from leaf to leaf, but the springs are
the same for all three leaves. M, y, Kk, and 9r have the same con-
stant values throughout the analysis.

It is assumed in this analysis that the acceleration-time
curve used 1s already the minimum that will be available with the
lowest increment propellant. It is this applied acceleration that
must arm the device. It 1s assumed that, if it arms for this minimum

acceleration, it will arm for larger acceleration curves of the same
shape,

The analysis 18 developed in detail in sections 4 through
7. There were two main results of this analysis, First, it is
found from the procedure outlined above that there is very little
to be gained by selecting a combination of leaves of different
mageecg; il.c,, by trying to chooss the leaf mass Lu [1L lhe puriicular
segment of the acceleratiion function occurring at the time the leaf
is rotating, For any combination of variable leaf masses designed to
arm for the given applied acceleration and have the maximum drop-
safety index, there is a set of equal-mass leaves that will also
arm and have a drop-safety index that is no less than three or
four percent below the index of the leaves of varying mass., Therefore,
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unless. there are other reasons for leaves of unequal mass, there is
little to be gained by varying the mass from lgaf to leaf, The dg--
sign problem is greatly simplified by using leaves of the same mass.

The other major result of the analysis is the discovery
that the leaf-spring system, or setback mechanism, can be designed
from a flattened and "squared-up" acceleration-time curve of the
same. area, The area of the gun curve that is thus averaged is the
upper part; i.e., above the level of the equivalent spring torque
acceleration No (defined by eq 13 and illustrated by f£ig 6). The

average acceleration above No can be obtained by finding the area

by any of a number of methods and dividing it by the time interval.
Then the optimum design is obtained by adjusting the physical
parameters of the leaf-spring system until the setback mechanism
just arms in the allowed time interval for a constant apblied ac-
celeration equal to this average.

The net acceleration required is obtained from the equa-
tion of motion of the leaf (eq 15) as shown below.

The solution to equation 15 for a constant applied accelera-
tion A is shown in appendix C (eq C-17) to be

myg (C,A - C,N)
o = lx 20 (1 - cos Jé%; t)

The leaf rotates to its arming angle er in a time tr'

- Vg - - A
8. == (CIA Cz“o) (1 - cos J%-tr) 17)

If A is eliminated by use of equation (13) and equation
(17) is rearranged, it becomes

O N
ro
%
ClA = C2N0 + = "
1 - cos — tra
%

If ClNo is subtracted from both sides, the constant net acceleration,

in excess of the "equivalent” spring torque acceleration, required
to arm a leaf in a time tr is found to be

CI(A - No) = (C2 - Cl) N° + (18)
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‘The design technique that .employs this formula is outlined in detadl
in the next section followed by an illustrative example,

8. DESIGN PROCEDURES

3.1 §__Lrpp_luied Formulg,s

This section outlines a procedure for designing a three-
leaf setback mechanism having identical leaves and helical springs,
The equations and procedures used are derived in later sections of
this report. The method described is proposed for an optimum de-
gign where it is necessary that maximum safety be obtained from the
setback mechanism against arming from accidental drop. At the same
time, the device must arm in a reliable manner when fired at its
lowest charge increment,

The design procedure, which is described in detail so that

little mathematical background is required to follow it, consists of
the following steps:

(1) The first requirement in designing the three-leaf
mechanism 1s to obtain a graphical plot of the gun acceleration as
a function of time, The acceleration should be in "g" or gravity
units, and the time in milliseconds. This acceleration-time curve
should be the minimum that might be available,

(a) From the gun curve, select an acceleration level

No approximately half the peak value. Determine the time t1 that

the gun acceleration takes to rise to this value No, and the time

tz when the gun acceleration drops again to No.

(b) Determine the area under the acceleration-time
curve above the acceleration level No' This can be obtained by any

of a number of standard techniques. Perhaps the simplest technique
is to add evenly spaced (in time) values of the acceleration dif-
ference, and then to multiply by the time interval (fig. 7); this
is the well-known trapezoidal rule for finding areas.

(c) Calculate the average value of acceleration

above No by dividing the area by t2 - tl.

a a—]
A—N:—~—A‘c 2L 4. A, 4. . e—= (19)
ot -t 2 1 2 2
2 1

where At is the time sub-interval between acceleration values, and
a8,y 815 859 4 4 ., B AT the acceleration differences for each
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point on the gun ecurve. Any triangular areas befofe‘éo ahd héﬁéhd'-
a, should also be included before dividing by the term (tz' tl).

e ... _{d) Repeat steps a through ¢ for other values of N .

The range of values of N. should be between one-quarter and three-.
quarters of the peak value of gun acceleration., Five to seven evenly
spaced values of No are probably sufficient,

Once the first area is obtained, areas aboveother
values of N_can be found by a shortcut. The increase or decrease
in area for a smaller, or larger value of No, respectively, closely

approximates a trapezoidal area, which is easily calculated. This

is illustrated in figure 8 for a smaller second value of No.

The incremental area is approximately equal to

(Nyy = Npp) Et21 = tyy) * (b, - tlz)] (20)

N

A{Area) =

(e) Now plot both the average net acceleration
A - No and the average arming time available for a single leaf,

t~t

t =
r

2

1

3

14

{21)

as a function of No.

(Let N° be the abscissa.) Both curves will be

EE R I TR I BT W S T P .Nl.uxmhu.l.l.@yly}ghhl uﬂli ki

approximately linear with negative slopes,

(2) The next step 1s to determine the leaf-spring param-
eters so that a leaf will just arm in a time tr for the average net

acceleration A =~ No obtained in step 1, The constant acceleration
required to arm a leaf is given by equation (18), Since A - No and
tr are empirical functions of the chosen No’ it 1s necessary to solve
the equation (18) graphically.

It is assumed in this design procedure that the

geometry of the setback mechanism has already heen selected so that
the following quantities are known:

n

“ ¥ =®n
n

radius of leaf
radius of leaf bearing shaft
radius of gyration of leaf

distance from axis of rotation to center of mass
of leaf,
27
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% eo = initial windup angle of helical spring

?___ er = angle through which leaf must rotate to release

c next leaf, or to arm

‘_ D = mean diameter of coil H
W = weight of leatf %
1L = average coefficlent of friction i
o = initial angle between position of center-of- g

mass and direction perpendicular to ac~-
celeration

a it

HULVNS TEN 1 2EviR
’

The graphical solution for No proceeds as follows:

FFS T
Lol da ! g

(a) Calculate coefficients
r r 5 -
1 =1 p(-;+EL+-;_]cosa) (22) :

Cy=1-u (1 +3) (23)

Q
n

(b) Select a trial velue of N, approximately half of

the gun acceleration peak, From the curves plotted in step 1(d), find
the value of tr.

Then calculate

N ©

or

c,~-C c.e
2 1 1o |

(A-N) = G N, + ) \/y{ A (24)

- co8 F— -9— tr |
© i
. and plot (A = No) on the same graph paper used in step 1(d). i

(c) If point (A - N, No) is above the A - No
° versus N° curve, select a smaller value of No’ and repeat step 2(b).
1f the point is below the curve, a larger No should be used,

(4) cContine to repeat step (b) until enough points
have been obtained to determine the value of No, at which A - No is

equal to the calculated value of A - No; onc~percent accuracy is -

sufficient.

29
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(3) After determining optimum.N , the next step is the de-
sign of the helical spring, its wire dismeter, and number of coils.

The diameter of wire depends on the allowable stress in the wire when

the bending moment, or torque, is applied. . The choice of “torque—at—-

which the stress myst be controlled is determined by the amount of
torque on the wire when the leaf has rotated to its arming’ position
Br. This torque is equal to

Mr =Wy Nr = )\(B° + Br) (25)

where N_ is the "equivalent acceleration” of the spring torque at
the arming position and W is the weight of the leaf, mg,

(a) The minimum wire size is found as follows:

Calculate Nr from (fig, 9)

e +86
o] r

Nr = -——e—o—— No (26)

Find the torque at er by

e +0
o _r

The minimum wire size d is then obtained from

32 M
r

ms (27)
r

where Sr is the maximum allowable stress at the arming position of a

leaf (ref 5). Equation(27) 1s the expression for the stress in a
cylindrical straight beam; while not strictly true for a coil of
round wire, it is accurate enough for this purpose. The wire size

selected i5 the smallest standard size equal to or greater than that
obtained from equation (27).

(h) To dete e
it is necessary to first find th

the number of coils of

ielical wire
e desired spring constant Ao

b4

o (28)
o
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A= .8 np (2a)

1

“ihere A is-the torque per radian, E is Young's modulus, D is. the wean
digme'ter of the.helical coil, and n is the number of coils. Thus,
the number of coils needed to provide the desired spring constant is

Ed*
"= 5.8 0
n 1s usually not an integer because of the coil geometry and leaf ar-
rangement. Thus, as shown by the example of figure 10, n might be

120°
n=p-mu-;p=l,2,3,... (31)

The smallest value of p is chosen that will make the value of n in
equation (31) greater than that calculated from equation (30)., With
this number of coils, the height of the coil will be

h=(n+1) d (32)

(c) With d and n now determined. the actual value of
the spring constant A can be calculated from equation (29), This, in
turn, requires an adjustment in either the weight of the leaf W, or
the initial windup angle eo so that equation (28) is satisfied,

WyN° lso
0 = or W=
[} A y NO

(33)

(No adjustment in N° is needed since optimum No, obtained from eq 24,
is insensitive to small changes in eo.)
The spring-and-leaf system parameters having now

been obtained, the setback mechanism will consist of three identical
leaves and springs operating in sequence,

As a check, the actual stress on a spring when
its leaf roitates to the arming position is

s - 32 Mr ~ 10.2 X(Go + 9) (34
L d°
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(4) A setback mechanigy having been designed to. armffur ﬁt‘s
given gun curve and assumed parafiéters, the absolute minimum velocity

change resulting from any accidental drop that will arm the device is
shown in section 4 to be

V6 =3.4/2 .(135)
where Nh is the mean'value of N halfway between N0 and Nr'
N +N e +1/2 @
] r [ r
Np=—"3 = o, No (36)

V6 is based on condition of no friction and with the velocity change

occurring in the form of three equal delta functions properly spaced
in time,

¥hile V6 is the absolute minimum velocity change that

can arm the setback device,a more practical velocity change for specify-
ing its expected drop safety is derived in section 4. This is the
minimum velocity change for a constant applied acceleration, which
continues until the first two leaves have armed and the third one has
acquired just enough momentum to continue rotating to its arming
position, This drop-safety velocity is given by

Vds =p V6 (37)
er
where p is a function of z = " and is obtained from table I. Also

given is the relative acceleragionA ; Which requires the minimum
velocity change. Any other value of acceleration will require a
larger velocity change.

In general, it will be found that slightly larger values of VS

and slightly smaller values of vds will be obtained for the larger

values of z, However, practical spring manufacturing tolerances
make it advisable to use large initial windup angles eo, and hence

small 2z, The variation in end position of small coils cannot be kept
less than about 10 deg without increased manufacturing costs., There-
fore, the percentage error will be smaller for larger values of eo.
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TABLE 1. FACTORS FOR DETERMINING DROP-SAFETY VELOCITY

L2 A
z = 5;— p _E;
0.1 1,76 2,37
0.2 - 1.74 2,42
0.4 1,71 2,50
0.3 1.69 2,55
0.6 1.68 2,60
0.8 1.65 2.69
1.0 1.62 2,79
1.5 1.58 3.06
2.0 1,54 3.32

Since 1t is necessary that the mechanism arm reliably,
the maximum value of e° allowed by this tolerance should be used in

the design calculations, Other physical parameters such as k, y, and
)\ are not as likely to have a large manufacturing tolerance. However,
if it 1s expected that any of these tolerances are not negligible,
the maximum allowed values of k and A and the minimum y should be
used., This insures that the design value of No will be sufficiently

small so that the device will arm despite the manufacturing variation
in parameter values. Each of these changes in parameter values will
cause a small reduction in the drop-safety velocity, but it is more
important that the arming function reliably,

3.2 Example

(1) A setback-leaf mechanism will now be designed to arm
the T28E6 shell fired at one increment, The acceleration-~time curve
is considered accurate to + 10 percent. Thereforo, since it is neces~
sary that the device arm for the worst case, the acceleration curve
used in the design must be for the lower limit (amplitude reduced by
10 percent) The resulting curve is shown in figure 11, The accelera-
tion is seen to rise tc an 800-g peak in a little more than 4 msec
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and then to drop more slowly than the rise time, the acceleration
being below 200 g after 18 msec,

The procedure outlined earlier is new utilized,— - - - ——

(a) The first value chosen for No is 400 g. From :
the acceleration curve of figure 11, it is found that for N0 = 400 g, i

- ’ B B k ,'."“"
o SRR R T N
£
]
i
}
§
:
‘ ¥
I
¥
|
|
|
| } i
1 ‘ 1 i
| B

woitle, ot b p “-:

: tl = 0.9 msec
; . t2 = 11,0 msec
- 11.0 - 0,9  10.1
" tr = 3 =—3 = 3.37 msec

(b) The area between the acceleration curve and 400 g
is found by adding the values of acceleration less 400 every 0.4
msec beginning at 1.2 msec, The small triangular areas before 1.2
msec and after 10.8 msec are added to the result to complete the area,

Area = 0.4 [E% + 135 + 205 4+ 255 + 307 + 352

+ 385 + 400 + 400 + 392 + 380 + 360 4+ 340
+ 308 4 275 4+ 250 4 220 4+ 192 4+ 164 + 137

+ 100 + 83 + 55 + 32 + % ] + % [0.3 x 60
+0.2 x 8] = 2318

(cY The average acceleration in excess of 400 g is

2318 2318
A-N,=¢t -t "11.0-05 -230¢8
2 1
) (d) Now let N_ = 500 g
. Then tl = 1,4 msec
t2 = 9,4 msec
9.4 -~ 1,4 8.0
t = — 2.67 msec
-r = 3 = 3 — ‘4.6 cu

The approximately trapezoidal area which is added
algebraically to area above 400 g is
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A(Area) = § (400 - 500Y A1 < 0.9) +7 - LT

"
N

s - 1%2 [10.1 + 8.0] = -B05

The area above 500 g is thus.

Area = 2318 - 905 = 1413

The average acceleration is then

R BRI RRRPRL T ot U 7 B

1413 © .

A-No=-8—.°—..l77g !
i ' Continuing this process for No = 600 g . B
B t1 = 2.0 msec -

t2 = 7,9 msec

t =..7;9-—2'0. = 1.97 msec

r 3

Area = 1413 - l%g [8.0 +5,9] = 718

718
A-No=°g'—§—122g

t1 = 0,6 msec

t2 = 12,8 msec

t =M = 4,07 msec

r 3 .
Area = 2318 + l%g [12.2 + 10,1] = 3433

3433

A No-m = 281 g
Finally, for N = 200 g
tl = 0,4 msoc
t2 = 15,3 msec

38




16,3-0,4
tr = 3 = 4,97 msec

— Area = 3433 + l%g [14.9 + 12,2] = 4788
4788
A-N°==-1—4-T§=321g

PR i

s

(e) Now A -~ N° and tr are plotted for the five values

of No and curves drawn through the points (figure 12), The curves

are seen to be nearly linear. They show the average time and 7 z
average net acceleration available from the firing of the shell to - g
arm a leaf, as a function of the "equivalent acceleration” N, of ' -

LI TR EH HE

the initial spring torque,
(2) From the above acceleration curve data, a setback-
leaf device will be designed, employing three identical leaf and

spring combinations, Each set will just arm in the available time
tr for a constant applied acceleration A, so that A -~ No is equal to

the A - N_available from the gun. From the geometry of the leaves,
and an assSumed coefficient of friction, are obtained the following
necessary parameters for the design:

R = 0.200 in.

r = 0,020 in.

D = 0,100 in,

k%= 0,0178 in,?

y = 0,0645 in,

W = 0,0147 ozf (ounces of force)

6 = 90 deg (nominal) = 1,57 radians

. o
er= 45 deg = 0.785 radians
1
o - 225 dcg
w=0,2 :

The units employed in this example will be inches for length, ounces
for force and milliseconds for time, The acceleration due to gravity
is, in these units: g = 0,000386 in,/msec®. Sample calculations for
the radius of gyration k and the torque arm y are given in detail in

Appendix A. 39
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(a) The coefficients C1 and C_ are now calculéted.

2

T r 0.02 ;
ei- =1 =~ (ay--+ -E—Aﬁ-—a-—cos-a)- =-1. A»O,L(W). e |1
Cl = 0,735

.r / 0.02
Cza:l-p.(l-i-i)-—l 0'2(1+6.—26 = 0,780

(b) The optimum value of No will be obtained by succes-

sive trials, Let the first trial value of No be 400 g. From figure 12,

the time available f6r arming is found to be

t_ = 3.37 msec
r

The net acceleration required to arm the leaf in this time is

Noer
c, -C c. ©
A-N, = —3—?;——l N+ 1l o
1 R AR ;
1l - cos 5
K o,
Since Y& - 0.0645 x 0.000386 _ 000891,
K? e, 0.0178 x 1.57
400 x 45"
- 0735 = 907
A-§ = 2780 -0.735 0 0.735 x 90
[} 0,735
1 ~ cos J/ 0,000891 x 400 x 3.372
272

A- N, =24 + T o551

»
1
2
n

215 g
Thus, it is seen that for No = 400 g, it takes a net acceleration

A - N° of only 215 g to arm in 3.37 msec, whereas there 1s available
a firing acceleration of 230 g. Therefore, a larger No can be used,

The point No = 400, A - No = 215 is plotted on figure 12, It is seen

41
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from this _fi:g_ureli;h:at “'e = ﬁb-#g -ﬁayibe “the optimnm vaive.

(c) Therefore, step “fh) is repeated with N, = 420 g
for which tr = 3,23 msec

420 x 45 )
0,780 --0,735 _ - 0,785 x 90°
A No = 0,735 x 420 + o
: 1 - cos /0.000891 x 420 x 3.23° /
286 ; :
A - No = 26 + 1 - cos 1,98
A-N =231¢g

Now, the net acceleration required, A - No = 231 g, is greater than

the amount available, A = No = 220 g, Therefore, the optimum value
of No is between 400 and 420 g,

(d) The point No = 420 g, A-No = 231 g is plotted on

figure 12, and a straight line is drawn between this point and the
point obtained in step 2 (b). This A - N° line intersects the

A - N, line at about No =412 g, A - N° = 225 g, Thus, the largest
value of No that can be used and still arm the three-leaf device is
rbout 412 g, It is desirable to make NO as large as possible to ob-

tain maximum safety from an accidental drop.

(3) Now the helical spring opposing the rotation of theleaf
is designed. It 1s desirable to keep the stress in the spring \
wire (usually music wire) below 150,000psi, Therefore, the spring
is designed to have a stress no greater than this amount when the
coil 1is wound to its armed position er. The coil at this time will *

be wound through a total angle equal to eo + er.

(a) Nr’ the "equivalent acceleration” at e, is found
from Ng.

_90° 4 48
o]

r= e N 50 x 412 = 618 g
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The torque on the wire M, at 6, is then

Mr = wyN; = 0,0147 x -0,0645-x- 618 = 0,586 in.-ozf

The minimum wire diameter that can be used and still keep the stress
below 150,000 psi when the torque, or bending moment is 0,586 in,-
ozf is

1

32 x 0.586 )° = 0.0136 in.

™ x 150,000 x 16

d = (

Three standard wire sizes are 0,013, 0,014, and 0.016-in, diameters.
Therefore, a wire diameter of 0.014 in, is selected so that the
stress stays within the allowable 1imit of 150,000 psi,.

(b) The desired spring constant A for an equivalent
acceleration N0 of 412 g when the spring has an initial windup angle

90 of 90 deg is

2= WyNo _ 0.0147 x 0.0645 x 412 _ 0.391 _ 5 49 incozf
8o 1,57 1.57 rad

The number of coils n of 0,014-in, wire needed
to provide this spring constant is

Ed? 0.3 x 10° (0.014)* x 16
N=§78DN" €7.8 x 0,100 x 0,249 = 10.92 coils

where Young's modulus is 30,000,000 psi for steel wire. Because of
the geometry of the coll leads, it is desirable that (fig. 10)

_120° _1
360() P ‘3_ p=1, 2, 3, « ..

Therefore, let p = 12, so that n = 11.67 coils, The height of the
coil is then

h=( + 1)d = 12,67 x 0,014 = 0,177 in.

(c) With d = 0,014 in, and n = 11.67 coils, the actual
value of A is

4 ] 4 -5
Ed® 0.3 x 10°(1.4)"x 10 "x 16 _ 0.233 inrozf

A= T8 Dn - 67.8 x 0,100 x 11.67 = rad

Sebn b
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) - . The actual windup angle 8 ﬂor,)\a,ﬂ,m;zﬁgs%
nust then be adjusted to a new value: '

o = WNo _ 0.0147 x 0,0645 x 412
o~ X 0,939

= 1,68 radians = 96 -deg

to maintain an NO value of 412 g, (An-alternative adjustment-could be
made in W if it is desired to maintain eo equal to 90 deg; this would
require only a small decrease in the thickness of the leaves,)
In summary, the spring will consist of 11,67
coils of 0.,014-in, music wire with a height of 0,177 in, The spring
constant is 0,233 3%%%52 and the initial windup is 96 deg where the .
torque 1s 0,391 inrozf, cquivalent to an acceleration of 412 g.

The stress in the wire when the leaf rotates to
its arming position er will be

10,2 X (8, +©)) 10,2 x 0.233 (1.68 + 0,78)
Sp = & = 0.014°

= 2,130,000 iﬁg; or, s_ = 133,000 psi.

This is well within the maximum allowance,

The setback mechanism consists of three of these
identical leaves and springs, and is now designed to just complete
the arming operation with little, if anything, to spare for the as-
sumed minimum acceleration curve and constant coefficient of friction.
It is the 1limit to which the design can be "stretched” with con-
fidence that the device will perform its arming function. It 1s in-
tended to obtain the maximum safety against arming from the sudden
deceleration caused by an accidental drop.

The absolute minimum velocity change that must
occur before the setback mechanism will arm depends on the value of
the equivalent acceleration Nh when the torque on a leaf has rotated

the leaf halfway to its armed position,

0
e + 0,58 9¢° 4+ 22%

Nh= eo No= 960 x412=508g
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The absolute minimum velocity change required, which is that occurring
in the form of three delta functions properly spaced in time with

Zero friction, is then

‘ o
2
v wa = % _ . /2x0.0178 x 0,785 x 0.000386 x 508
s = v = 0.0645

1
sec

in,
V6 = 0,875 meec or Vé = 72,9

A more practiéal drop-safety velocity change would

o 0
be a multiple of the above figure, obtaired from table I for N

= = 0,47.
. 98

The minimum velocity change for a constant acceleration continuing

until the third leaf has acquired enough momentum to reach its armed
position is

V. = pV, = 1.70 x 72.9 = 124 1L
P 8 sec

if the constant acceleration is 2,54 N,, or 1046 g.

If this velocity change is higher than necessary
for reasonable safety precautions, the design can be relaxed somewhat
so that the mechanism is more certain of arming, i.e., it will arm at
a lower acceleration, This is done by increasing the thickness of the
leaf, decreasing the spring constant A, or decreasing the initial wind-
up angle © . The minimum veloeity would, of course, have to be recal-
culated to adjust for changes in p or Nh'

4, DROP-SAFETY INDEX

The design procedure described is baused on the results of an
analysis of the operation of setback-leaf mechanisms, which is discussed
in the remaining sections of this report. The method of approach to
this problem was outlined in section 2. An optimum design is one that
orms rellably when the projectile 18 fired at some specified velocity,
but has maximum safety against arming from velocity changes caused by
accidental handling drop-impacts. The design should be such that ac-
cidental acceleration operate only some of the leaves, but not all,
The finite time that is required to arm each of the sequentially
operating leaves insures that the device will not arm unless the
accidental acceleration exists for some minimum length of time. This
means that there must be some minimum velocity change (time integral

of acceleration) to arm all the leaves regardless of thc nature of
the acceleration function,

45
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_Hausner thoroughly discussed the problem of safety;. his res
sults and conclusions are applied here., As a figure of merit for
the optimum design, he proposed the absolute minimum velocity cliange
safer the deaigp. 0f course, the design must also be such ihﬁt the
mechanism arms during firing. The mathematical model used by‘HEusner

-assumed (for simplicity) that the resultifng Spring torque as the

46

leaf rotated was constant, rather than increasing linearly. This
resulted in smaller minimum velocity changes, Hausner's derivations
are given in appendix C, together with the derivations for the case
of linearly increasing spring torque (positive 1),

All these derivations related to the safety of a design assume
that there is zero friction., Because friction consumes energy,
there is less velocity change required where the friction is zero.
Since it is always possible that, under some conditions of accidental
drop, the friction may be vory small, it is advisable to calculate
velocity changes with friction assumed equal to zero,

To obtain the minimum velocity change to arm a three-leaf device,
it is useful to first derive the velocity changes for two different
applied accelerations required to arm a single leaf. The first ac-
celeration for which the velocity change is calculated is that of a
constant acceleration A, suddenly applied and lasting until a leaf
arms, This velocity change is given by equation (C-5) for the case
of a constant opposing spring force (A = 0) as

2
2g1 O A >'b

AT (38)

In addition, the velocity change is obtained for the case of a con-
stant acceleration lasting only until the leaf has acquired suffi-
cient momentum to rotate to its armed position. Thils velocity change
is given by equation (C-15), again for the case of a constant opposing

force,
2gl ©_ N A\#
r o
= | —— 9
v (my(A = N°)> (39)

These were the results obtained by Hausner, The velocity
changes for the same two accelerations as above are derived in ap-
pendix C for positive A and are given respectively by equations
(C-22) and (C-28):

o Wi Lnlt&.-l@lﬂbﬁ&'
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L oos™? |1 - —F J‘
V:Ag/:cos [ myg(A - N (40)
2
14 (A - No) - <mygNo + m,ﬂ
V=Ag /l: cos™ 4 mygA

- 41)
) (A Ng i (

—g—

Equations (38) and (39) are speclal cases of equations (40) and
(41) where A equals zero,

These equations can be plotted in dimensionless units. To do
this, however, it is first necessary to express the equations in some-
what different form by employing equations (12), (13), and (16). Then
the following equivalent expressions are obtained:

2r
A Or ~ Mo _ 2 (42)
myg(A-N) ~ A _, TA_,
N, N,
/O L
ag [3 =g mygN°\j— (g e N°) i (43)
A A er my \/—z—
¥,
mygN°+ )\er 1 + =
. = 44
porery A (44)
N
o

When these expressions are substituted in (40) and (41), they become

- A

10 gN_ 2 N, .
V= — cos™? |1 - — (45)
my z Eo- 1

and

FRErE S St N
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- cos
my v
A A2 (A 2 2
= +{=— =~ 1)° - (1 ¢+ 2)
Cerch,)i NO -1 ?6 NO )
= — 08 A A
ny 2 2 = = -
N Y
or
Ie gN\& N
V= ( r- o © os™ |1 - z(i +Az) (46)
my J;- 2 = i— - 1,
No\No

Pigure 13 is a plot of equations (45) and (46) where the

abscissa is % and the ordinate is
o

v
I ergNOS *
my

and the parameter for the different curves is the spring rate
z=0,1, 0,5, 1,0, 1,5, and 2,0,

Equations (38) and (39) are the special case of z = 0 after
they are written in the same dimensionless units:

K
'iergNo i 2 ii
= ; 2=0 (47)
v (B2
N
[¢]
and
A%
2__
Iergnoi N,
V= T A_....]_ ; 2=0 (48)
N‘O
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Hausner's equations derived for z = O contain the factor cos @ in the
denominators of (47) and (48) as‘he let A(t) cos € in (8) be A cos ;
whereas, in this derivation it is represented by A only, the cos O
being absorbed into A, If it is desired to include cos ¢ in these

equations, it can be done by replacing V in equations (45) to (48) by
V cos O,

The solid curves of figure 13 represent equation (45) for the
case of the constant acceleration continuing until the leaf rotates
to ©_, while the dashed curves are for (46)--the case of the rectangu-
lar pulse. These curves present the velocity change required to arm
the leaf as a function of the acceleration A in units of N , the ac~-
celeration required to just overcome the opposing spring force and
start the leaf rotating. It is seen from this figure that the leaf

will not arm unless % is greater than a particular value which is a
o

function of z, This relationship between the minimum A and z can

be obtained from the requirements in equations (46) and (47) that

the absolute value of the terms within the square brackets be no
greater than unity. After suitable algebra, both (46) and (47) yleld
the same required inequality for the leaf to arm:

:—>1+§ (49)
[+
Since
pY:] pY:) 5]
r
4 = c— = — =
M A8 e ’
(o} o o

1
A e * 2 er
T)
(o] eo
or that, by (36),
A > Nh

Thus, it is seen that if a constant acceleration is suddenly applied
to a leaf, (as in centrifuge testing), it will not arm unless the

acceleration is greater than the equivalent acceleration Nh of the

spring torque when the leaf has rotated halfway to its arming position.
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The absolute minimum velocity to arm with the rectangular pulse
is needed for large values of acceleration and, in fact, 1s least

for accelerations infinitely large., 1If %— is allowed to approach

]
infinity in (46) to obtain an expression for the value of this minimum
velocity, the equation becomes indeterminate. An attempt to employ
L'Hospital's rule results in laborious algebra; therefore, the ex-
pression was obtained using a series expansion for small values of
the arc cosine (ref 6):

L]

cos™ x = [2(1 - x) +% (1~ x)%+ %5(1 - X% .. L]

where
1 - x =1 l+z(2+z) _z(2+z)
o A /A 21_\(_& -1
NO(NO) N, \ No
Thus,
A ‘ ‘
v _ lim IergNo % No 2(2+2) + 1 -z(2+z) l?+
min = a4 my Jz | A [A 3 A _A___l(
° N \N N (N
o o] [¢] 8]
1im IergNo é (2 + z) 1 z (2+z)
+ = + 4o
A my (-1 3 zé__l)’
® A/N) N
o]
or
agm) 2 3
Vain =\ "my ) (2 * 2 (50)

When I is replaced by mk® and equation (13) is substituted, this ex-
pression for Vmi" reduces to

-—/0 M /———- (51)

51
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where k, vy, er, and Mo are all constants as specified in section 2,

This minimum velocity is the absolute minimum velocity that can arm

the leaf, This is the velocity change that is experienced when a

delta function acceleration is applied initially to the leaf., It is

physically an impossibility, but it is the limiting case of a larger

and larger rectangular pulse occurring for a shorter and shorter time,

an instantaneous velocity change. Equation (50) is seen to agree

with the solution (C-34) obtained independently for the case of an

applied delta function. The time that it takes the leaf to arm is

also a minimum for an applied delta function acceleration, This

minimum time is given by equation (C-33): *

t o =F tan? [ Y (52) ‘
A 1 gNg

If the numerator and denominator inside each square root are multi-
-]

plied by ﬁz: and No eliminated by (13), the expression becomes

(o)
k?e
t = . r\é tan™ ygv _mz t (53)
min 2M, k erMo

While the absclute minimum velocity change required to arm the
leaf is that given by (51) (which is indicated in figure 13 as a
limit of the curves by a horizontal line index at the right of the
graph), it should be noted that the velocity changes required to
arm much lower acceleration values of rectangular pulscs are only
a few percent larger than those required for delta functions. The
delta function serves as a lower limit, but other rectangular
pulses require only slightly larger velocity changes.

Now that the velocity changes needed to arm & single leaf
have been derived for these acceleration functions, it is possible .
to derive velocity changes for arming the entire multiple-~leaf
setback system, The absolute minimum veloclity change to arm three
leaves 1is considered to be the sum of the absolute minimum veloci- !
ties to arm each of the individual leaves, or }

1
A =_2 Voo (54)
i=1



Ty -,w\:-q'-ll"v ]? .

1 DI R R MR P

|

for a three-leaf device, where V6 is the tofal velocity change re-

quired with three delta functions, When equation (51) is substi-
tuted in (54), it becomes

(55)

For the analysis of this report, the leaves have the same geometry,
varying only in thickness (and therefore mass), and the springs are
identical, If the mass is expressed as:

My =M™ (56)

where m, is some arbitrary mass and L is a dimensionless decimal

multiplier, the minimum velocity change may be put in Lhe form
KoM
V6 = |—— Z (57)
¥
Mo

2 + 2 . (58)
m
rl

where

zZ =

[

i

"

1

Since ka, er, Mo’ y, and m will be kept constant, the minimum

velocity change 1s proportional to Z, which will hereafter be called
the drop-safety index. By choosing a design that maximizes Z while
successfully arming for the given gun acceleration, the absolute
minimum velocity change 18 also maximized and the design is con=-
sidered optimum. BSection 5 and 6 present a method of selecting values
ofm _, m_, and m . for different values of z to obtain maximum

rl r2 r3

values of Z and still arm when fired. The m., are functions of z,
larger values of z requiring larger moy to arm, so that 7 is not

necessarily increased by increasing z.

Since V6 is the absolute minimum velocity change required, any
practical value of drop velocity change for which the setback-leaf

53
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device would be expected to be safe would be lavger than- equatign
(57). About the only way three nwsitw pilse aceplerations -bgtep.
changes in velocity) could be approached would be in the highly im~
protiable case o’r a drop through three successive metal plates properly
spaced to allow each leaf time to arm. -An approximately censtant =
“dceelération wauld appear to be the most probable-type - encountered.

Therefore, as a measure of the drop safety, consider the
minimum velocity change required to arm for a constant applied ac-
celeration, continuing until the first two leaves have rotated to
their release position and the third has acquired sufficient .
momentum to continue the necessary rotation to complete the arming
function. The velocity change required for any applied acceleration
for each of the first two leaves is given by equation (45), and for
the third leaf, by equation (46), When these velocity changes are
summed and the result normalized with respect to V5, the following
expression is obtained.

A
N .
z— =—2 ___ {2 cos? I_l- A z ] + cos‘lLl - _z_(z_q-__z_)____’] (59)
8 3/ z(2+2) = -1 A A -
No 2 ¥ ('ﬁ - 1)
o Vg

The minimum values (p) of this ratio as a function of z are ob-
tained graphically (not shown) and given in table I, Then the
minimum drop-safety velocity is given by

where p is obtained from table I, and V6, from equation (57). This

should be a good practical drop-safety velocity for use in specify-
ing the safety of the setback-leaf mechanism, As it is derived as-
suming zero friction, it is a conservative figure,

5. ARMING TIME

Now that a quantitative method has been defined for evaluating
the relative safety of a particular design of a multiple-leaf setback .
mechanism, it is necessary to examine the other major factor in the
cholce of a design--the arming time of the device for a given gun
acceleration. A method is needed for readily determining whether or
not a particular design will successfully arm. The total arming
time can be obtained if it is known how long it takes each leaf to
arm, If the first leaves take so long that there is not sufficient
gun acceleration left to arm the last leaf, a change must be made in
the design, For all applied accelerations that are not constant, the
time that it takes a leaf to rotate to any given angle will be a
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function of the time at which it 1s released. The first leaf starts
its motion when the applied acceleration rises to a value equal to the
initial spring torque's "equivalent acceleration" N,. The other leaves

start their metion as soon as the preceeding leaves arm. Thus, they
can start at any time on the acceleration curve,

Graphical curves will be developed in this section presenting !
the arming time versus the release time for various leaf masses.
These curves will be obtained for two different gun acceleration-
timc curves, in order to determine the effect of the shape of the
acceleration curve, One acceleration will be similar to that of the
T28E6 mortar, whereas the other will have a faster rise to its peak
value, In addition, two very different values of z will be used to
investigate whether or not the relative change in spring torque of
a leaf between its initial position and its arming position affects
the performance. Friction will bhe assumed equal to zero although
the method would be the same for constant non-zero friction.

It iz shown in appendix E that gun acceleration curves can be
represented by a function of the form

A(t) = Ao(e-at - e—bt); b>a

o

where the shape of the curve is varied by changing the ratio M =

The larger T is, the steeper is the rise. If this function is sus-
stituted for A(t) in (14), the equation of motion for the (i)th leaf
becomes

d®e pY:]

n.y g
1 i i -at -bt
e + —E: = h(t - toi) -—:[*;— I_CIAO(B e ) - CZNoi] (60)

The starting time for rotation of the first leaf t01 is determined by
the time at which the term within the brackets becomes positive,

© ~at -bt
ol ol
C,A, (e -e ) = CoNyy (81)

while the starting times of the second and third leaves are the times
when the first and second leaves, respectively, reach their arming
angles.
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Zthe dndtdal spring torque and moment of inertia of each leaf axe

given by

Mo = myyeNg,

=tl|ka

L i

where Mo’ A, ¥, and 'k are the same for each leaf.

To simplify the algebra, let

B -] - L - M_oz_.
b L amiYEA  CyveA
1y K2
Com YBN,; CM,
Qi = I =
i mika

Equation (60) then becomes

o )
i ) [p(e-at _ e-bt) _ Qi]

= - -
- +B2 e, =n(t-t,

(62) .

(63)

(64)

(85)

The general solution to this equation is given by (D-3) (dropping

the running index 1),

@
t

) Zgi&ﬁ’ cos B (t - to)] - o7Pto i_—z'&; e Pt - to)

b+ 8

(g 0ty

af .
- sin B(t-to)

bR _ - g2 -
+* ® 5B sin B(t to) B'_:fﬁg cos B(t to)]

% [1 - cos B(t -to]>

(66)
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After a time tr’ the leaf has rotated to its arming position er' The

time T that it requires for the leaf to arm, once it has been released,
is then ’

T=t -t (67)

If these substitutions are made in equation (66), the arming posi-
tion angle er is obtained as a function of T and to.

P —aty - a2 -aT ap pe
_ _-btg [__g° -bT bp __B
e o [ B T ¢ g BT - o cos B
- % (1 - cos 6
T 1 cos BT] (68)

Since er is also considered constant in this analysis, (68) is
an equation relating the arming time T to the release time to, and

can be expressed as an implicit function.

0 = e-ato[;ﬁ%z'é? e'aT + T%*a sin BT - 1‘%: cos BT —]

a a

-bt - aa -bT bﬁ BB
- o -
o [Elm e e sin BT - i cos BT
e

r

- 93 [1 - cos BT] - (69)

P

or

o
1

£ (t,

57
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Thoygh an analytic solution for T cannot be derived, graphical selu-
tigps ean be achieved with the HDL applqg .gomputer. The computer
solution is most conveniently obtained fram the total derivative
dT/dtq, which 1s given by equatlion(D-8,)

4T e-atoLQQQ-BT*qlrsin AT-gscos BT]-e—bt°Lq§ e—bT}QQsin,BT2Q5CQS gT]
T P = e
° e at°[-qaeaT+qasin BT+gzcos BT]-e bt°[-eq.5e bT+qesin fT+qs cos BT]—%sin BT
where - (70)
N 8B g2
Q=g s = Py po B =7 B
%= B B
- b3+ BE y Gs = bTTEE 3y Qg < b2+ BS (71)

To eliminate division by the computer (since the divisor approaches
zero), the derivative dt/dt, is replaced by (ref 7)

ar

ar 4t

dto dto

dr
where T is the machine time. Then (70) can be written (72)
-at - - -

df e “[aa2 aT+qlsin BT-qacos BT]-e bto[qse bT+q4sin BT-qscos BT] dto
dt e~at°[-qae_aT+qasin BT+QQCOSBT]'e-bt°['QEG—bT+q8SiﬂﬂT+QECOSBT]'g—51nBT dar

(73)
Now division can be avoided by letting

dtg

dr

- -8 - -
=e at°[-q3e T+qasin BT+qzcos PBT])-e bt°[--qse bT+qesin BT4+qgcos BT]= %sinBT

The computer programming is simplified by the generation of the sub-

Aam dat_
functions which appear in the expressions for ﬁi and 3;3.
subfunctions 1is generated as the result of the machine solution of a
simple first-order differential equation with rational coefficients.
Thus, the following differential equations will generate the required

Each of these
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functions shown at the right:

df1 dt N
——=-af——9' f=e-at0 '
dT ldr ' 1
df, ~dtg bt
. — = ~bfy — ; f5 =
dT ar
P gy 2, £, = e T
dt 34y ' @t
(74)
df dT
4 -bT
_(F- = "'bf4 _(ﬁ— H f4 = e
dfg _ B2 9T, £, = sin BT
dr £ odr
df,. ar | _
3 = By T fgy = cos BT
When these subfunctions are substituted into the expressions for
dT dto
P and T given by equations (72) and (73),
™~
9T 2 [q.fs+q fs-0sf, £, 4, f5-q. L
p = ) ldgfata fs~dafa J-fo (g La+da e 05 £ ] (75)
T
dto
- =& [ =ug £a+0n 8 +ap £o 1-Ea [ ~Gs £a 496 £5 4l £ 1~ 2 £,
£

a complete set of cquations (74) and (75) is cbtained which, when
programmed on the analog computer, can be solved graphically to show
the variation in arming time T with release time to. The unscaled

59

TR

{ail

s ool b odibaltbionid dibias i

i i




3

flow diegramis 'shown in figure 14.

The initial conditions (to, T)T = pFequired for the integrating

amplifiers of the computer must satisfy the implicit function (69)
relating T to tb. The earliest.release.time"pnaaible.ia,t014 which

is obtdined from a graphical solution of figure 15 plotted as

omator _ btoy _ S2her _ G2

ClAu Clmigon

(76)

This is shown in figure 15 for two acceleration curves, The most
convenient method of determining the initial value.of T is from

a computer solution of equation (65), plotting @ versus time, Tl
is then the time for © to rotate to er, when 1t is released at time

t01. The form of (65) which 1s programmed is
a?e,
el Bf @ + h(1 -t ) [P(H - f2) - Q] (77)
where
héL =-afy ; L = o7 (78)
%éﬁ = -bfy ; f5 =c¢ °T

Its computer flow diagram is shown in figure 16, Relay amplifier
No. 1 serves as a step function in this program by switching on the

impressed function within the brackets at time f01‘ The values ob-
tained for T1 from this program, together with t01, enable initial
conditions to be calculated for all the integrating amplifiers for

the program of figure 14, including the initial values of the sub~

functions, The following constants were used in the computer
analysis:

y = 0,0645 in,

k¥ = 0.,0178 in.?
Cl.-:.l

Cy =1

M, = 0.380 ozf-in,
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Figure 16, Unscaled circuit diagram for obtaining arming
time of first leaf. R
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0, = 45° = 0.786 radians

A&
The fractional change is spring torque, z = —-M—r, was assigned the
: o
two-values- 0.4 and 2,0, the first representing a typical setback=leaf
spring stiffness and the second, a very steep spring rate., The major
variable in the computer runs was the mass, which was expressed in
equation (56)

m = mrmo (79)

where Mo is 0,003686 252, and m, is a dimensionless decimal

multiplier, Values of mr that were used varied from 2,5 to 12,0,

Two different gun acceleration functions were studied, The
first, which has a medium fast rise, was a good approximation to the
T28E6 mortar (as discussed in appendix E):

A(t) = 2910(e'°'173t -e'o'369t) (80)

The peak of this curve is 792 g, which occurs after 3.86 msec, The
second acceleration curve studied has the same peak value with a
more steeply rising front, reaching the peak in only 1,48 msec,

-0.173t _ -1.73t

A(t) = 1136(e ) (81)

In both of these expressions, time is in milliseconds. Thus, for
the first acceleration curve, A° = 2910, a = 0,173 per msec, b = 0,369

g = 2,133, For the second curve A_ = 1136, a = 0,173

msec, and 1)

per msec, b = 1,73 per msec, and TN = 10,

Three sets of computer solutions for the arming time as a
function of the release time were obtained. The first set, shown in
figure 17,was developed for the case of z = 0.4 and the acceleration
function given by equation (BO). For this case, the constants in
the computer programs had the following values: P = 4,060 per msec®

2,232 . 4 1,136 .
.m por mocc?, 2% _ 2,84 - 7;1— per msed®, aud to
r r r

&2

wus

1
the time at which the curve of figure 15 reached thc value

CMy  0.5484
szrmogyﬂo m

r
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v

The second, set differs from the first in that the fast rise ac-
celeration given by equation (81) 'is riow used instead of (80). Naoy
Q and R are the same as before, but P = 1,587 per msec® and to, 18
now.-the.time _at which the curve reaches -1-%%%

i r
in figure 18.

The third and final set, shown in figure 19, differed from the
first in that now the relative change in spring torque was in-
creased from 0.4 to 2,0, This change affected only p?, the other

5.68 3
per msec®,
m

r
The curves of figures 17, 18, and 19 demonstrate the variation
in the arming time as a function of the release time while the mass
of the leaf changes. Although the mass of the leaf is the parameter
of the curves, the numbers associated with each trace in these

2 4 z)ﬁ
m

r
a constant for each set of curves, the index depends only on the
mass, This index is the parameter of importance for each leaf
since the sum of the individual indices measures the relative safety
of the multiple leaf device, From these sets of curves it is pos~
sible to select the combination of leaf masses that will at the same

time both arm under the given acceleration function and provide
the greatest safety, as measured by the drop-safety index,

constants remaining the same; B? now equaled

figures represent the drop-satety index Z =( « Since z is

6. OPTIMIZATION OF THE DROP-SAFETY INDEX

The selection of a set of leaf masses that will arm from the
curves of figures 17, 18, and 19 is both simple and straightforward.
Each trace represents a separate mass, and there are enough traces
to determine the arming time of any given mass., The actual pro-
cedure, however,is really to find the arming time for a leaf of a
particular index of drop safety, and then determine the correspond-
ing mass from the index by equation (58)

= (2 o+ z) mo (82)

mi za

Each trace has a particular mass and drop-safety index associated
with 1t, and each sct of traces is for one particular z and one ac-
celeration function only. Thus, {iguie 17 was obtaincd for z = 0.4
and acceleration function (80), figure 18 for z = 0.4 and function
(81), and figure 19 for z = 2,0 and function (80).

It will be noted that the larger the safety index (and the
smaller the mass) of a leaf, the longer is the arming time. Each

+ . These runs are shown
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of the release time between which the particular leaf will arm. In
addition, the leaves with the larger indices take longer to start
rotating because of larger N _.!'s, It is seen from these curves

trace has definite starting and ending points; these define the limits ‘ l

- that--there is a limit to the amount of time that a leaf takes to

arm, For instence, figure 17 indicates that all but the beaviest
leaves arm in under 4 msec, In the case of figures 18 and 19 this
upper limit seems to be about 3.3 and 4 msec, respectively. This
means that a leaf, if it is going to arm at all, will do so within
a certain limited time regardless of when it is released., This re-
sults from the fact that the leaf-spring combinatlons have natural
periods of oscillation,

The combined total of the starting time of the first leaf and
its arming time,(gor#rl.e trl)’ is indicated by the terminus of the

45-deg dashed lines drawn down to the right from the starting point
of each trace. The terminal points of each of these lines are the
times at which the first leaf is armed, and correspondingly, the
second leaf released.

Now if this new release time for the second leaf is used as
the horizontal coordinate, the arming time for leaves of different
indices can be obtained from the curves, This time is added to

the release time to obtain the accumulated time until the second
leaf 4is armed,

Since this is now the relcase time of the third and last leaf,
it is desirable to choose as the third leaf the one with the largest
drop-safety index that will stiil arm. This will be the topmost
trace that extends as far as the release time of the third leaf,

The arming time for this leaf added to its release time is the

total arming time for the three-leaf device. (Since the third leaf
Just reaches arming position, it might be thought that this is a

poor choice, since no allowance was made for manufacturing tolerances,
etc. However, each combination is being obtained for comparison

with other combinations. The sum of the indices measures the

relative safety of the three leaves selected,

This procedure can be repeated for various combinations of
the particular indices, and the results compared. A useful system-
atic procedure is shown in table II for one combination from figure
17, Actually, this particular leaf combination illustrated had the

highest total drop-safety index that could be found for any of the
comhinations of figure 17.
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TABLE II. DETERMINATION OF ARMING™TIME FOR A GIVEN LEAF-

COMBINATION
R4z 24 -
1 Zy Yo1 T Yrs= Sort Ty | My = A A
1 0,926 1,49 3.22 4,71 | 2.8
2 ’l 0.894 ' 4.71 2.72 7.43 3.0
3 0,775 , 7.43 3.40 10.83 | 4.0
: 2.595 ! '
3
z =2 Z, = 2,595
1=1

In determining the combinations with the largest total index,
one can begin by selecting the largest index; i, e., 0.961, for the
first leaf and then trying various combinations of indices for the
last two leaves, The last leaf is always chosen to have as large an
index as possible. Then, after these combinations have been totaled,
the next step is to choovse the leal with the second largest iandex
(trace) as the starter, and to try various combinations of second
and third leaves with it, The process continues for the third largest
index, the fourth, etc., as long as it 1s possible to obtain appreci-
able values of the total index, Actually, it soon becomes apparent
what combinations have the larger values, making it unnecessary to
try very many combinations, even through a large variety was cal-
culated from figures 17, 18, and 19 for demonstration purposes. These
values obtained for the total index for various combinations of m

are shown in tables II1I, IV, and V, respectively. Also given is the
time required for the leaves to finish arming, In table VI are given
equivalent values of L and Z for z = 0.4 and 2.0,

The results given in tables III, IV, and V arc presented in two
groups, At the left are listed the indices obtained for combinations
of leaf masses where the mass of the first leaf is less than or equal
to the mass of the second; at the right are listed the combinations
where the second leaf is heavier than the first, On the same line .
are the cases where values of m and my arc interchanged.

An examinalion of Lhese results, for the case of [igure 17 and
table III indicates the optimum value of the index is 2,595, This
index value is obtained with relative leaf masses of 2.8, 3.0, 4.0,
or 3.0, 2.8, 4.0, the second combination being the same as the tfirst
except for the interchange of the {irst and second leaves. There are
numbers of other combinations in table III whose index is within 1 percent
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TABLE 11I. DETERMINATION OF DROP-SAFETY INDEX-—CASE I

m o<Wy m > m

my m L] tra Z m mg ma trs

2.6 3,2 5,0 10.90 2,520

2.6 4,0 4.0 10,80 2,511
50 2,6 3.6 9.28 2,470

2,7 3.0 5.0 10.66 2,530

2.7 3.2 5.0 9,80 2,502

2,7 3.6 4,0 10,03 2.534 3.6 2,7 3.6 10,16 2,575

2.7 3.8 3.8 10.53 2,533 3,8 2,7 3.6 9.36 2,554

2,7 4.0 3.8 10.08 2,513 4,0 2,7 3.6 9.01 2,534

2.7 5,0 3,8 9,58 2,431 5.0 2,7 3.6 8.20 2,452

2.8 3.0 4,0 10.83 2,595 3.0 2,8 4,0 10.80 2.595

2.8 3.2 3.8 10,77 2.587 3.2 2,8 3.8 9,92 2,587

2.8 3.6 3.8 9.69 2,537 3.6 2.8 3.6 9,14 2,558

2,8 3.8 3.6 10,07 2.537 3.8 2.8 3,6 8,79 2,537
4,0 2,8 3.6 B8.55 2.517
50 2,8 3,2 8,59 2,485

3.0 3.0 3.8 9,82 2,583

3,0 3.2 3,6 9.70 2,576 3,2 3.0 3,6 9,42 2,578

3.0 3.6 3.6 9,10 2,526 3.6 3.0 3,6 8,54 2.526
3.8 3.0 3.6 8,20 2,505
4,0 3,0 3.2 8,96 2.535

3.2 3,2 3.6 8,92 2,548

3.2 3.6 3.6 8,52 2,498 3.6 3.2 3.2 9,20 2,548
3.8 3.2 3.2 8,70 2,527
4,0 3,2 3,2 8,37 2,507

3.6 3.6 3.2 8,55 2,498

3.4 3.4 3.4 8.52 2,520

2,6 3,9 5.2 9.71 2,426
3.8 3.6 3.2 8,20 2,477
6.0 2,6 3,6 8,70 2,409
6.0 2.7 3,2 8,68 2,441
8.0 2,6 3,24 9.32 2.369
8.0 2,7 3.2 8,16 2,357
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TABLE IV. DETERMINATION OF DROR=SAFETY INDEX~CASE II-

m o< M m > my
m ma ma ra Z mo mg mg tra &
2,8 4,4 9,0 11,7 2.185
2,8 5,0 7.5 10.23 2,189
2.8 6.0 6,5 9.85 2,167
2.9 4.4 7,0 10,31 2,234
2,9 5.0 6.5 9.67 2,211
2,9 6,0 6,3 9,37 2,167
3.0 4,0 7,5 10,27 2,239
3.0 4.4 6,6 9,72 2.243
3.0 5,0 6,1 9.55 2,217
3,0 6.0 5,7 9,10 2,176
3.2 3.8 7,0 10,28 2,246
3.2 4.0 6,5 9,78 2,256
3.2 4.4 6,0 8.80 2,237
3.2 5.0 5,7 8,56 2,209
3,2 6,0 5.5 8.39 2.158
8.0 3.2 5.6 8.63 2,074
3.4 3.8 6.3 9,51 2,255
3,4 4,0 6,0 8.82 2,247
3,4 4,4 5.7 8.54 2.228 4.4 3.4 6,2 9.45 2,204
3,4 5.0 5.4 8,50 2,203 5.0 3.4 5,5 8,95 2,193
6.0 3.4 5,3 8,43 2.147
3.6 3.6 6.4 9.72 2.242
3.6 3.8 5.8 8.82 2,251 3.8 3,6 5,9 9,39 2.236
3.6 4.0 5.6 8.59 2,246 4,0 3.6 6,0 8,50 2,223
3.6 4.4 5.3 8,33 2,230 4,4 3.6 5.5 8.57 2.215
5,0 3,6 5.3 8.40 2,184
6.0 3.6 5,0 7,86 2,141
3.8 3.8 5.7 9.00 2,240
3,8 4.0 5.5 8,62 2,230 4,0 3.8 5,5 8,64 2.230
3.8 4.4 5.2 8,39 2,214 4.4 3.8 5,2 8.43 2,209
3.8 5.0 5,0 7.99 2.181 5,0 3.8 5.0 8,11 2,181
6.0 3.8 4,8 7.79 2,132
4,0 4.0 5.3 8.46 2,225
4,0 4,4 5,0 8.45 2,207 4.4 4.0 5.0 8.48 2.207
4,0 5,0 4,8 7.86 2,173 5.0 4,0 4,8 17.88 2,173
4.4 4.4 4.9 7,88 2,178
4.4 5,0 4.7 7.71 2,142 5,0 4.4 4.7 7.70 2.142
. 4,7 7.69 2,145
. . 4.6 7.55 2.111
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TABLE V. DETERMINATION OF DROP-SAFETY INDEX—CASE III 4
3
3
m < m m > m e
my g ta z m mg ma - Z E =
4,6 4,2 b5.4 8.8 2,770 :
: 4.8 4.2 5,1 8,66 2,775 ;
4,4 5.2 B,87 2,783 E
4.5 4.4 5.1 8,52 2,782
4.6 4.4 50 8,44 2,780
4.8 4.4 4,9 8,19 2,770
4.4 5,0 5.0 8,53 2,741
4.4 6,6 8.8 7,06 2,406
4.5 4,6 5.0 8,46 2,770
4.8 4,5 4,9 8,09 2.760
4.6 4,6 4,9 8,38 2,770
4,8 4.8 4.8 7.95 2,739
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TABLE VI. DROP-SAFETY INDEX FOR EACH MASS

2.4 4,0 .

n, Z =(:;r— d n, &= (TEP ¢

r r
2,4 1,000 4.0 1,000
2.6 .961 4.2 +976 .
2,7 .943 4.4 .953
2.8 .926 4,5 .943
2,9 .910 4.6 .933
3.0 ,894 4.7 .923 *
3.2 .866 4.8 913
3.4 .840 5,0 .894
3.6 .816 5.2 877
3.8 .795 5.4 861
4,0 776 5.6 .845
4.4 «739 5.8 830
4.7 «715 6.0 .816
5,0 .693 7.0 . 756
6,0 .632 8,0 . 707
8.0 . 548
10,0 «490
12,0 . 400
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of the optimum value such as: !
m m n g
L 2 x8 &
2.8 3.2 T8 R ¥
3,0 3.0 3.8 T f
3.0 3.2 3.6 :
3.6 2.7 3.6
3.2 2.8 3.8 .
3.2 3.0 3.6

The masses are all about the same size, differing very little in
magnitude. 1In general, for this case, the index will be slightly
larger if the first mass is heavier than the second., This pro-
bably results from the fact that the average applied gun accelera-
tion is less during the rotation of the first leaf than the second.

If the leaves are all of equal mass (m =my =my = 3.4), &
drop-safely index of 2,520 can be obtained, which is only 3 percent
less than the optimum value possible by varying the masses,

If a 2, 3, 4 ratio of the leaf masses is used--as has been a
common rule-of-thumb cholce in the design of setback leaf devices-~the
largest index that can be obtained is 2,426 for a 2.6, 3.9, 5.2 com-
bination. This index 18 6-1/2 percent less than the optimum and 4
percent less even than that obtained with equal masscs,

For the case of figure 17 and table IV (the steeply rising ac-
celeration), the optimum index appears to be 2,256 from a 3,2, 4.0,

6,5 combination. Other combinations whose index is within 1 percent
of the optimum are:
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In this case, the 2, 3, 4 ratio of leaf masses is obviously more nearly

optimum; for instance, 2 3,2, 4,8, 6.4 ratio would have an index of

about 2.200 (interpolating between curves), which is only 2 1/2 percent 1
lcss than optimum. A ratio of 2, 2, 3 would be an even better choice. ' ?
The index will, in general, be larger now when the first leaf is ' !
lighter than the second, the average applied acceleration being

greatest during the first leaf rotation.
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For leaves of equal mass (4.7, 4.7, 4.7), an index of 2,145
is obtained, which is only 5 perceént less than optimum,

For the third and final case of the steep spring rate (figure
19 and table V), the optimum index was found to be 2,783 from &

4.4, 4.4, 5.2 combination of relative leaf masses. Again, there
are a number of other combinations within 1 peFcent of this index:

et b s e

m m m
1 _fa _T3 L o ra T
4,5 4,6 5,0 4,5 4,4 5.1
4,6 4,6 4,9 4,6 4.4 5.0
4.6 4.2 5.4 4,8 4.4 4,9
4.8 4.2 5,1 4,8 4.5 4.9 ’

Now, the higher values of the index occur for combinations of nearly
equal masses., In fact, the 4.8, 4.8, 4.8 combination has an index
‘only 1 1/2 percent less than the optimum. A ratio of 2, 3, 4,

such as 4,4, 6.6, 8,8 masses, would obviously be a poor choice in
this case,

It will be noted that the lightest leaf (the top trace of
figure 19) would not arm if released when the acceleration equaled
the equivalent initial spring torque N;, but only if released after
the acceleration had a chance to increase further. Thus, this
lightest mass of (4.2) could not be selected for the first leaf,
but only for the second or third leaf. It would not arm at first
release because the average applied acceleration then was too small,

the period of the natural frequency of oscillation of the mass-spring
system being short.

For each of these cases there is obviously an infinite number
of possible combinations of leaf masses that could be used. However,
those purticular masses that were tested represent an adequate
sampling, since the discrete values were chosen close enough together so
that no significant improvement (greater than a small fraction of

1 percent) could be obtained in the index by using intermediate .
values of relative mass.

7. RESULTS

The analyses of section 6 indicate that, in all cases, a set
of equal masses for all three leaves 1n a setback mechanism can have
a drop-safety index almost as large as the best set of unequal
masses, The maximum drop-safety index that can be obtained by
varying the mass of the leaves is only scveral percent higher than
the index that can be found for three leaves of some equal mass,
Therefore, for the sake of simplifying the design, it is recom-

mended that all leaves be of the same mass since little 18 to be
gained otherwise.
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This analysis 1s based on a mathematical model in which it is
assumed that the frictional load on the last leaf is equal to that
on the other leaves., However, if the frictional load on the last
leaf 1is unavoidably large--being & heavy latch or other device--it
may not be possible to use leaves of equal mass, or at leasl leaves
of the preferred mass. In this case, it might be desirable to
desigpn the mechanism using the detailed method of sections 5 and 6.
In any case, it is advisable to keep the load on the last leaf to
a minimum by the use of materials with low coefficients of friction
and by optimum design of the element bearing on the last leaf,.

U s AV A IO

When the values of the drop-safety index for the three cases
are compared, it is found that the indices are lower for the case
of the last rising acceleration curve (Case II), This results
because the available velocity change, or area under the accelera-
tion curve, is less., The indices are a few percent larger for
the case of the steep spring rate (Case II), However, the flatter
spring rate is to be preferred because of tolerance problems in
spring manufacturing, as discussed in section 3.

The optimum mass that the leaves should have is the smallest
value that will still result in the mechanism arming during the
applied gun acceleration, It will be demonstrated that this value
can be obtalned by averaging the applied gun acceleration that is
available to arm the lecaves in excess of some No’ and comparing

it with the constant acceleration required to arm in the same avail-
able time, assuming the same N . This process is repeated for
several valucs of N until the average acceleration avallable is
found equal to the constant acceleration required. This then
determines lhe opltimum value of N , and hence, of m., This procedure
is essenlially the same as the degign procedurc described in section
3, except that for this analysis the mass is the principal variable,
the spring rate and initial spring torque being held constant,

The average acceleration available to arm is obtalned by
finding the arca under the gun curve and above an arbitrarily
selected acceleration N, and dividing by the time period that the
gun acceleration exceeds No' Sincce a mathematical function was

used lor the gun acceleration, the average for each No can be ob-

tained by integration,

W 1 R ~-bt. 1 .
A R s ‘Jt | Ao (e e ) TNt (83)
3 .
—-f ~at -b - +
L AO l—e at, - e 313 _ e tl - e btg ] . .
T, -1, a b ) o :
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where tl and t2 are the two times when the function equals NO:

=at ~bt
A (e 1.6 J) = Noi t

o =t,, ty (84)

J

The constant acceleration required to arm three identical

leaves in the time (tz - t;) for each N, is given by equation (18),
[S)
If z = EI is substituted and C; and Cy are set equal to unity,
[¢]

the constant acceleration to arm each leaf is

zNo
A-N = e
o ygz N,
1 - cos [og=— tr : (85)
Kk er

where the time to arm cach leaf is

ta-t,

3

Is.‘

and

B = /- (87
K2 o,

The angle Btr is limited to a maximum of ™ radians since the leaf

rotation reaches its maximum at this value of Btr. Therefore, if

ygzN, (tz-1;)
Ple= /e, 37

is greater than n radians, tg must be reduced to such a time that Btr

Just cquals n, Then, since less time is available in which to arm
ihe ihree leaves, A - No and A - No must be redetermined for this

smaller tp substituted in (83) and (85). This special limiting of

ta 1s only required for large values of z, as in Case I1. However,

the usual values of z are small., After the value of N_ is determined
for which the available acceleration is equal to the cgnstant acceler-
ation required, the optimum mass of all the leaves 1is obtained from (13)
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To test this design procedure, it was applied to the three cases
of section 6, for which the optimum relative masses were, in order:
3.4, 4.7, and 4.8, The application of this simplified design
procedure resulted in optimum relative masses of 3.3, 4.7, and
4.8. Thus, this technique is seen to be accurate for determining
the optimum mass to provide maximum safety in a setback-leaf
mechanism while still being designed to arm when subjected to the
gun acceleration. Why this empirical method should work so well
is not fully understood; however, it is probably because of an
"averaging-out" of the mean arming time of each leaf over the risinp
and falling applied acceleration. This fact is partly illustrated
by the results of appendix B, where it is seen that the arming time
for increasing linear acceleration is longer than for a linear de-
creasing acceleration of the same total velocity clange--the time for
a constant acceleration being intermecdiate,

It is interesting to examine the instantaneous distribution
of the applied acceleration torque betwcen the spring torque and
the inertial torque for each leaf of the mechanism, Figures 20, 21,
and 22 exhibit these torques for the three cases of section 6 with
equal leafl masses. These curves are analog computer solutiions for
each of the bracketed parts of the following equation:

d“"ei .
[1 ‘a'i?;‘ RO el)] = n(t - 1) | mye A.(t)] (88)
or
Mo+ N, = M (89)

It will be noted in the first {wo cases that the spring torque on

the third leaf exceeds Lhe applied torque before the arming position
is reached, so that the leaf's angular acceleration becomes negative,
However, in the third case with the steep spring rate, the spring
torques of all three leaves acquire enough momentum to surpass the
applied torque belore recaching arming positions, The spring torque
curves vary as O varles, and the inertial torque varies as the angular

amralarationn
acgeeioraiien.

8. CONCLUSIONS

It 1s seen from the detailed methematical analysis that, wherever
possible, it 1s desirable to design setback mechanisms with leaves of
equal weight., A procedure for designing such mechanisms can be based
on treating the applied acceleration as constant. Because of a lack
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of information, friction was treated as & constant, although it is
certain to vary for different environmental conditions and from unit
to unit, Experimental results are needed to further evaluate this
design procedure, Centrifuge-testing permits the application of con-
stant accelerations, and the results could be used to determine the
effective friction coefficient that should be allowed, Obviously,

manufacturing techniques that reduce friction to a minimum should
be used.
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APPENDIX A

THE CENTER OF MASS AND MOMENT OF INERTJIA OF A LEAF

The center of mass and moment of inertia of & representative
l@af dre cdlculated by parts, Since the leaf (figure A-1) is
symmetric about the line through the axis of rotation and the center
of the hole for attaching one end of the spring, only one coordinate
of the center of mass need be calculated., If the flat leaf is con-
sidered to consist of three component parts--a semicircle, a tri-

angle, and a circular hole--the y component of the center of mass
is

- my:s + Mays + MaYya
y = (A-1)
m 4+ My + Mg

and each mass is
m, = pha, (A-2)

p being the density of the leaf material, h the thickness, and A

is here the area of the leaf parts. The ph cancel from numerator
and denominator, The mass of the shaft and any spacer used will

be ignored. Then the y component of the center of mass is

A + +
A+t Ao (A-3)

_(gl‘f_)f‘jg%l. + (RC) (%) + (-1rg®) (-d)

R
2

<

+%c+(ﬂ§)

-]
_ -2 0990 4 Qilggsﬂg:gggl— + m(0,022)2 (0.121)
v = -
7 (0.199)® + (0.199) (0,082) - 1(0.022)?
or
y = [£§f83§9%]= - 0.0600 in. (A-4)

This distance is the effective torque lever arm of the leaf.




Figure A-1l.

The center of mass of & leaf,

. Brkaan g

Ry a0d88in.
ry =0.0221n,
¢=0.082in,

d=0.121In.
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The moment of inertis is obtsined by dividing the leaf surface
into five geometric aveas, as shown in figure A-2, The moment of

inertia of each component part may be expressed in terms of its
mass and radius of gyration k

1, = mk? =phak? (A-5)

The moment of inertia about the exis of rotation is then
1=Il-|-12+13+14+15 (A-6)

ronwR? R2 RSP, RE rg . .
T=ph [C%) (=5 + CE o) (= + 0

(A-T7)

ab a® »  4a® |
+2(——2-) (-1—8-+1—8'+—§—+T):]

where the radii of gyration are iound in handbooks, The parallel-
axes theorem was employed to obtain the polar moments of inertia of

circular area 3 and triangular areas 4 and 5 about the leaf axis of
rotation,

When numerical values are substituted, the radius of gyration
squared of the leaf is found to be ¥°= I/phA

- 3
o= T (0,109) + T (0.076)* - m(0.022)2 (22222 | 0.1212)
5h(0.077) L4 16 2

S 3
+ (0 .076)(0,184) (0-276 + 0.;84 )]

= g7~ [0.001232 + 0,000 006 ~ 0,000 023 + 0,000 119]

or

¥ = 0,0173 in,® (A-8)

The values of the leaf constants calculated in this Ap-
pendix are not to bo considered related to the values employed

in the main body of the repori, bui unly serve as illustrative
examples,




Figure A-2,

Moment of inertia of leaf,

Ry = 0.199in.

Rg=0.07€In.

rz = 0.0221n.
a=0076In.
b =0.184In.
d =0.12lin.
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APFENDIX- B

RESPONBE 1O INCREASING AND DECREASING

LINEAR ACCELERATIONS

The response of the leaf-spring system to both increasing and
decreasing linear accelerations will now be derived. Consider a
class of linear accelerations starting at zero time and continuing

until time t is equal to —%—-, where 0 < § <.

functions pass through the point (—%E s A), the velocity change,
or area, for all accelerations will be the same, as seen in figure

B-1l, The equation of a straight line passing through a point
L_
(23, A) is

I£ all linear

A(t)=A+b(t-g—§);0 <t< %— (B-1)

where the constant slope b may be positive, zero, or negative; and
A is the average acceleration,

It this acceleration function is substituted in the equation

of motion (14) for the leaf with zero friction, the equation be-
comes

2 -
S22+ e = n(t) BE (R - N + bt - 5] B-2)

where B is the natural frequency of oscillation. The initial con-
ditions are:

at t = 0, @ = 0 and de = 0, To simplify the algebra,

dt
let
P= E%Lb_; Q= ﬂg_(:;i_-ﬂ’) (B-3)
Then (B-2) reduces to
P 0 . 499 < n(t) [Q + P(E - =1 (B-4)
dta 25
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Figure B-1l., Linear accelerations of the same velocity
change,
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The Laplaece transform is

(s + 8% €= B

+ =
where @ is the transform of ©

When this is divided by (s® + p?) and the inverse transform is
obtained, the solution to (B-4) is

ER TP b

FRR

@ - 39 ot |

® = h(t) ———Eg——— (1 - cos Bt) + i - il sin Bt} (B-5) .
After time pi = ¥, when the velocity ol..,. is the same for all -
values of b, ¥ = © v

Q- B
ev=—E,—39 (1-cos ) + -5 siny
p B
ev = g; (1 - cos §) + —gg (-%— + —%— cos ¢ - sin §) (B-86)

For all values of § such that 0 < { < m, the coefficient of
P is negative. Therefore, the angle of rotation of the leaf will
be greater for negative values of P (negative slopes b); the more
negative P (and b), the greater the rotation. To limit the term

in brackets in (B-2) and (B-4) to positive values only, it is neces~
sary to restrict b, and therefore P, such that

-2 7 - 28 3 -
P @E-N)<bg Eﬁu N)

This agrees with Hausner's conclusion that the greatest leaf

rotation is obtained when most of the acceleration is applied at
the start.

Figure B-2 is a plot of (B-5) for the case of | = 7 for :
negative, positive, and zeroc sloping accecleration functions, For

b = 4 %Q (A - No)’ 0, and ~ %Q (a - No), respectively, (B-5)

becomes

- (B-7a)




LLl Ll

LEL ALl

vk

a8 >

Alt)=A+bit-

X

2g

W ——— e —_—e—_—— —e—————

Figure B-2.

pt=»

Response of leaf to linear applied accelerations,
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(1 - cos ft) (B-7b)

@
1l
w8

T

0 = gs [1 - cos Pt - 593'—’—1-“—&] (B-7¢)

It 1s seen from these curves that when t = —%— ) B = gg— in all

cases, However, for all cases of negative P,  rises rapidly to
§§- at an earlier time, continues to a maximum, and then returns to

gg— on the rebound.
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APPENDIX C

THE VELOCITY CHANGE TO ARM A LEAF

The velocity change, or time integral of applied acceleration,
which a leaf must receive to reach its arming position, will be
derived for two simple acceleration functions. The f£irst function
considered will be the step function lasting as long as it takes
the leaf to arm, Then a rectangular pulse of acceleration will
be used, which lasts just long enough to supply sufficient
momentum to the leaf by the time the pulse ends to cause it to
continue rotating to its arming angle.

Case 1

For the first case considered, a constant acceleration A is
suddenly applied at zero time to a frictionless leaf-spring system
whose opposing spring force is equal to a constant, Thus, in the

equation of motion (14), X = 0, t,=0,C = 1, C, =1, end

A(t) [or more exactly A(t) cos ©] is a constant A.
) mgy : b - -
= = h(t) 1 (A No)' 8, = 6,=0 (c-1)

In all cases, the initial values of the angle of rotation 6 and
its angular velocity will be taken as zero,

The solution of this equation is obtained by the use of Laplace
transforms, Tho transform of equation (C-l1) is,letting L [B]: e

# 9 = E%Z(A-NO)%.

When this is divided by s®, and the inverse transform is taken, the
solution becomes

o - DBY (A - No t°

(c-2)
21

The leaf will rotate to its arming angle er after a time tr' There~

fore
21 4
t =(Tnyx"‘—(A = No)) (-3

23




In this first case, it will be noted that © increases with t® and
the angular velocity

(c-4)

de _ mgy(A -~ N,
at - T T

increases linearly with time as long as the acceleration continues
constant.

~ The velocity change applied until the leaf rotates to er is

then the time integral of the acceleration, or just the product of
the constant acceleration and time to arm:

. 2g1e _A° #
v=A Btr = (Em_—no'b (c-5)

Case 11

The next case conaldered is the same as the first except that
now the acceleration lasts only long enough to give the leaf suf-
ficient momentum to reach 6_ as the angular velocity drops to zero.

(1f the leaf reached ©_ with an excess of velocity, the acceleration
pulse could have been germinated earlier and the leaf would still have
armed.) The acceleration is now a rectangular pulse initiated at t = 0
and terminated at some t = t1:

A(t) cos 8 = A [h(t)—h(t-tl)] (C-6)

The equation of motion (14) is then

d?e _ mygA myeNy
-EE- = —%E— [h(t)'h(t"‘tl)] - 1 (0'7)

The transform of this equation is

2 g - MYBA ., _ t1sy _ mygNo
870 = Is (1-e ) “Is

This 18 dividad hy 8 and rearranged to give

o Lmft N A
I { 8° 89 )
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The inverse transform is then:

- 9
e = -"-‘511- Si_r“_e’t - h(t - ) -%— (t - )3 (c-8)

The differentiation of (C-8) results in the following equation
for the angular velocity, since the time derivative of the step
function is the delta function:

—-‘;—‘:—- = ﬂ%“- BA - Nt - h(t - t) A(t - ) - % (t - tl)aé(t-tl)]

By definition
(t-t)6(t-1t)=0 (c-9)

so that the last term of (C-8) is zero.

@ m
K= —315 [_(A - Nt - h(t - ) ACt - tl)] (c-10)

It is noted that the angular velocity in this case rises linearly
until time t; with a slope (A - No) and then falls linearly with a

slope (-N ). The angle of rotation © increases as before with the

time squared, but at time t; the curve undergoes inflexion, rising
less rapidly to a peak.

For the area under the acceleration pulse, or velocity change,
to be a minimum, the required boundary conditions are that, at

de
t=1t,q =08nd 6 =9, where t >t so that Wt - t) =1

=yg | (A - Noj)3_ A - )3
o, = ME [ 3702 7 ¢, - )]

= E I_ - - - ]
0= I (A No)tr A(tr t1)
The second equation can be solved for tr:
A
tl’ = -i; t, {(Cc~-11)
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and the result substituted in the first.

AC(A -~ X))
= e 9_ ;8 -
8, =37 N t? _ (c-12) o
o E
The length of time which the acceleration pulse must endure for i
the leaf to rotate an angle er is therefore
210 _N &
ro .
ty s { —m————————= (c-13)
myg A(A ~ N,
while the time it takes the leaf to arm is
218 A %
t = ——— c~-14
r \myg NO(A—NO) ( )
The velocity change which the leaf receives is then
21g0_A N_ #
Ve=Agt = | ——r0vt (C-15)
my (A No)

The above results were first obtalned by Hausner, and are here
included in abbreviated form so that they can be discussed in the

context in which they were obtained in the main body of this report
and compared with the following new derivations,

Case III

The two above cases provide useful results, but for a hetter
approximation it is desirable to determine what the effect is of
replacing the constant opposing spring force by a more realistic
linear spring force. This requires retaining the term A9/1 in the
equation of motion, (14), so that the opposing-spring force increases
as the leaf rotates., Therefore, the first twoc cases are now re-
derived with a linear spring force. For the case of a step function

acceleration applied with a linear spring the equation of motiom )
(14) is

d‘e e m

e 2 sn) 28 (a-x) (c-16)

dt2 I I o

The Laplace transform is

sa ® 4 % 8= myg(As- NO)
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I1f this equation is divided by s® + % ; and the inverse transform
is taken, the solution for (C-16) is found to be

nyg(A - N,) i
8= — - cos\/% t) (c-17)

It is noted that 6, instead of increasing indefinitely with the :
time-squared as in the case of a constant spring force, now in- :
creases as a one-minus-the-cosine (or sine-squared) function of

time reaching a maximum angle of rotation

2myg(A - No)
o, = ——2 (C-18)

in a time

1
n 3T (Cc-19)

Thus the arming time can be no greater tham (C-19) and is in
general equal to

pY:)
= /i 1] ¢ — -
tr = J/:T cos [1 TYE(A = No)] (C-20)

The angular velocity is a sinusoidal function of time.

myg(A - N )
L — sin\/—: t (c-21)
I 1

The velocity change received until the leaf arms 18 now

-

- = Y cog? |1 @ ——— T -
V = Agt = Ag 1 cos [1 ayE A - No)] (c-22)

Case IV

Now consider the case of the rectangular pulse acceleration

modified by a linear spring opposing force. The equation of motion
is (C=7) with the addition of the term A9/I.

27
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& . = A (o) - neeeyy )] - lgte (c-23)

The tranaform of this equation is

A® _ mygA _ o-tis, _ mygNg
£ 8+ 7= =75 - -y :

When this is divided by s® 4 l‘, and the inverse transform obtained,
the solution of (C-23) is found to be

Q0 = E% [(A =N - cos /T)Tt)'A{l - cos/-l-): (t - tl)}h(t-tq )] (=24}

The angular velocity is obtained by differentiating, recognizing

[1-cos/~§(t-tl):|6(t-t1) = 0.
de _ myg /K /K
—_— (A-N)sin /o t - A¢sin /< (t - t3)>h(t - t1) (c~-25)
dt f_nl" o 1 1 ‘} 1]

The conditions for minimum velocity change are, as in Case 1I,

that

de
that, at t =t , @ = _ sand = = 0, where t_ ) 4.

Gr = _n_l%g [(A - No)(l - ¢os /% tr) - A {1 - cos /Tr(tr - tﬂ}]

- WYE - A - A -
o _Jﬁ[A N,) sin/; t, Asinﬂ(tr tl)]

The second equation can be solved for /-? tr in terms of /Z 1. *

1

3 sin ‘/:;\ ty :
tan /—- t. = (c-26)
! T nng l“h - (u’.)..
I A

When this result is substituted in the first oquation, a
solution can be obtained for t; . However, in order to simplify the
algebra, it is useful to first rearrange the equation for er as
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follows:

A9 N (A -N)
T ° A A
oy T K = co8 \/: (t, - %) - Y cos [T t.

(A-N)
A ) A A A
. =[cos /-i_tl ry ]cos /;tr+sin/;t1 sin /T_t

or

o m N ) sin
myzm:gA [cos f ]cos /— [1 ﬂ - (A Ny »/; ”]

If (C~26) is now substituted, and the trigonometric identity

1 + tan® \/%_t,. = E
cos® 72 t

employed, the equation reduces to

Y (A -N)
mygNo + mr cos /T ty - —_A——

mygA =
cos/—%‘- tr
’ ~ (A - NDqa $
(sin"’/_ t, + COSJ -]

/  (A=-N)? 2(A—N)
=k1+ = - cosJ

A solution for cos /% t, can be obtained by squaring both sides of

this equation,
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A N’\ mygN + me
14
2y = mygA a-g"
cos q/z-ti = TA- No Q-27)

The velocity change which the leaf receives is now

(] e o
* - :
= Agt; = Ag /—; cos™! A . WYEA (c-28)

1 (<)

4

Case V i
The last case to be considered will be that of an applied delta
function of infinite amplitude lasting an infinitely short time with

a8 minimum velocity change V. The opposing spring force will be
considered linear. The acceleration is

gA(t) = VB(t) (c-29

and the equation of motion (14) becomes

d®e M m mygNo
@+ - P ww -SER (C-30)

The transform of this equation is

sae.'_l@:m_myghto

-
-
#

When this is divided by 8? & %, and the inverse transform taken,

the solution of (C-30) 1is found to be

mygN )
© = m gin \/A_t - 4 (1 - cos/z t)
J—ii' I A I

nygN i &N
-l Y (o) e e E o

or
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The time required for ® to reach its meximum angle of rotation

e mygN° LN (c-32)
m 1 N ’
is seen to be
V4. TR ) |
*min = \/;(2 tan v f;)
or, since % - tan? x = tan”} (;];-) (Cc-33)

k
tmin=/_tan <— T

I1f (C-32) is solved for the velocity change V in terms of the
angle of rotation em = er, it is found that

0. 3 3
BN, /%([1 * mygNo] - 1)

<
(]

or
1@ N g 29 #
ro r
V= [2 ] Cc-34)
( i ' mygNo > ¢
The angular velocity of rotation obtained by differentiating
(c~31) is
mygN
de -
5 = \/_ (1 + cos(’ t4 (b) (Cc-35)
or

2op(r dn) (Ao e )
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~ APPENDIX D

LEAF ARMING TIME AS A FUNCTION OF ITS RELEASE TIME
Consider the differential equatien of motion of the form

e . - -at_ _-bt, _ ., _
5= +B e =n(t-t) [P e ") q].eo=6°-o (p-1)
where

for t = t , pe %Yo - ¢7Plo) >Q (D-2)

The Laplace transform of this equation can be obtained as

-8t -8t -8t
3 2 g.p8tge ° _ -bto e _°__e ©
s° 04+p8° O=Pe ;—;r; Pe s + b Q et

When this is divided by s° + p®, the solution of the differential
equation is found to be

- -at 1 -a(t = tg) 1 -
8 = h(t to) Pe o m e ol W)i sin (Bt ¢a)]
-b(t - t_)
w.—bto [ 1 R 0" 1 _
F - * SR o 6 - )]

- g, [1 - cos B(t - to)]}

tan ¢a = %; tan ¢b = %

where

This 1s now rearranged by expanding each sin (ﬁt-¢) and factoring out

'C%Pd
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. 1. 8 -a(te 8 ; -
8 = h(t-t,) %a-{e “"[—E—_“—a” — @ alr 1;")-l- -%-B” sin B(t-t)- ‘%‘B ~% ©ooa ﬁ(t—to)]
- a - -
-e btﬁ[.-b,%é,. e b(t t‘-’)+ 53%, sin B(t-t,) ~ EE'T-'B' cos a(t-tg)]

~4[1 - con et - tp)]} ' (2-3)

After a time t' = to @ becomes equal to the angie of release for o 3
the leaf, or 6 = er

- 2 - - ]
er - ’gﬂ‘{e atg [_a’.%é' e a(tr t°)+ 'a:%ﬂ’sin B(tr-to) - Eg-;égcos ﬁ(tr-to)]

-b(t -t )

-bt [—:P—r 'sg% sin a(tr-to) - Bg;—é‘éos ﬁ(tr-to)-‘
- .g. [1 - co8 B(tr - to)]} (D-4)

The length of time it takes the leaf to arm is t- ty which
will be called.T,

er = -;ig' {e-at" [;%1 e-aT+ ag-iLB-g sin BT = _BE;-_B' cos ﬂ'l‘-]
e Pto Eﬁ-:.—s‘e —E—P—Q sin BT - -‘Lﬁ'g cos ET]
-3 [1- cos s'r]} (D-5)

Equation (D-53) is seen to present the arming time T as an
implicit function of the release time to, all other symbols represent-

ing constants, The derivative of an implicit functionm.

e, = (T, to) (D-6)
is given by
3
4T T3ty -
dto - E— (D-7)
aT
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for the values of the variables to, T such that

where 3t and %% are partial derivatives of (D-5)

(a7 Lo 74
ctirs

|

©

bty - ga -bT

(D-8)

- 2 -
-ae"%to [;:E:'En o~8T + EE_EEE’ sin BT '_E’—%iﬁn cos BT]

: 2
+be R © + 5 bg 5 sin BT - ;gE:fEB cos BT]

-at,
df ° [ ap® -aT a8
37 e ?—Egge + 2 . B2 ccs BT +

gin BT]

-bt ~-bT
o [FEEe v S e sr e g on o]

- ;B sin BT

When these expressions for Qﬂ. and §£
ato oT

are substituted in (D-7),

the totol derivative of T with respect to t, is found to be, after

cancelling B,

o7 e-at°nge-aT+ q; 8in BT -qzcos B?]- et qae-b

+q481in BT-qgcos BT]

dt,

where

al a 2

A R T
b® b

q4=b+5; ds "'ﬁ;

n

=-ato -aT 'bto
e Eq,e +q38in BT gcos BT]— e [-qae

© - g

+qg sin ﬂT+q5coseiir %sinBT
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APPENDIX E

ANALYTICAL EXPRESSIONS FOR GUN ACCELERATION-TIME CURVES

The determination of an analytical expression for gun accelera-
tions as & function of time is a special type of curve fitting pro-
blem, The usual curve-fitting task 1is related to finding an equation
that gives the best fit to & set of points, or perhaps a specific
curve. The conatants of the equation are calculated but once,
sometimes to considerable precision, However, when, inslead of a
single curve, a wide variety of curves of varying shapes must be
expressed in the same analytic form, the method of solution is not
so straightforward, Onc techunique is rto search for functions whose
general shapes are that of the given curves; and then to obtain as
much information as possible about these functions to aid in finding
methods of determining the parameters for each curve, Another
technique is to plot the given curves on various kinds of logarith-
mic paper to determine if any relationships can be determined between
the variablcs and their logarithms. For example, a straight-line
segment on semilogarithmic paper indicates an exponential relation-
ship., Hausner used this technique to obtain a sum of three exponentials

for a close fit to the acceleration-time curve of the 81 mm, T28E6
mortar at one increment.

A representative set of gun acceleration curves is shown in
tigure (E-1). The curves are dilficult for engineers to obtain
accurately, and no simple theoretical derivations have been made for
the accelerations obtained in gun firings. It will be noted that
all the curves are of a type that rise sharply to a rounded peak
and drop off more slowly in what appears to be an exponential manner.
In addition, all curves have an inflection point beyond the peak, and
some~--particularly thosc with high increment power--have an inflection
point also before the peak, Actually, for this setback-leaf problem,
only the upper part of the curves nced be fitted to an analytic ex-
pression since the leaves do not begin to move until the acceleration
exceeds the equivalent spring acceleration N_ , and arming is com-
pleted before the curve has dropped below, say, one-third of the

peak. Therefore, it will be assumed that any fit of the upper two-
thirds of the curves is sufficient.

Among the functions that have the same general shape as the
curves of figure (E-1) are the skewed normal distribution.
-(t - t)
P 2
f(t) = Aot e

where t is the mean and g®is the variance, and the gamma distribution

~b
(1) = A" e t
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Although good fits can be obtained for an individual curve with
either of these functions, 1t is a laborious process, and no
systematic technique could be devised for determining the param-
eters for each of the curves. In addition (and this was the most
important reason these functions were not used), when the accelera~
tion is expressed in terms of one of these functions, the analytic
solutions of equation(14) are complicated and difficult to do much
with. Furthermore, they require the use of a large number of
analog computer components in obtaining machine solutions,

For these reasons, other functions were sought to represent
the family of gun curves. The sum of several exponentials seemed
to be the most promising, Before these are discussed, it is helpful
FU an o cre kil AT Peamandd ~o o

e wareasiasao abe  wamge wame s PEEEVN

i .
v D

(E-1)

By taking the natural logarithm of both sides,

In A = 1nA -at
o

(where 1n is used to indicate the logarithm to the baze e), it is
seen that an exponential function will plot as a straight line on
gomilogarithmic graph paper with A0 the intercept with the log axis

and a slope equal to {(-a). Another method of determining thc value

A
of "a" results from the fact that, when t = %, A= 52. Thus, "a" is
equal to the inverse of the time coordinate of the point on the line

where A is equal to é times the intercept Ao.

Hausner used the following sum of three exponentials to fit the
acceleration curve of the 81-mm T28E6 mortar shown in figure E-2:

A= 2700 o 172: 7t 3330 o 9014t | gy ~1084.5C

(E-2)
where t is in seconds,

This is obtained by plotting the given gun curve on the semi-log
paper and fitting a strailght line to the approximately straight ex-
ponential trailing edge to obtain the constants of the first expo-
nential. Then, the difference between the straight line and the
plot of the gun curve is also plotted on the same paper, Another
straight line is fitted to the right-hand portion of this difference
curve to obtain the constants ¢of the second exponential. The
difference is plotted again, and the process continues until the




remaining difference becomes small, However, this is more difficult
than it might appear. The first difference curve is usually quite
curved; therefore, it may not be possible to find a very long
portion to which a straight 1ife can be fitted. This results in
the next difference being-an odd-shaped curve, and the whole pro-
cess can break down, The resulting sum of exponentials is then
not a good representation of most acceleration curves, even though
Hausner was able to find a close fit for his particular curve. In
addition, the sum of three exponentials to represent a set of ac-
celeration curves meets the same objections as the gamma distribu-
tion and the skewed normal distribution in that there appears to be
no systematlcC ana Blupid WAY vi vaiylug cue puiameters ol the ex-
pression as the curves vary, Already, there are several parameters
in the equation of motion, and an additional four or five greatly
complicates any theoretical analysis, since it is desirable to know
= how results are affected as each parameter is variled,

o
5

AR MG N
]
o
B
(I

il

==

IR
q

1

) The sum of three exponentials has five parameters in the form:

ACE) = et —(a + A) Y 4 A 71 (E-3)

Now, it will be shown that this expression can be rearranged to a
more usable form

ACY) = 1, (D)-2a(t) = A& (e 2P ) opg(e™P e ab < ¢ (E-0)

> A

This is recognized as the difference of two similar functions,
identical except for their parametric values, In figure E-2,
Hausner's curve is shown split into these two component parts.

The interesting feature of these two curves is that they both have
the same general shape as the gun curves, This suggests the pos-
sibility that one of these curves alone could be used to represent
the gun curves; it will be shown that, fortunately, this is true.

It should be mentioned first, however, that if it is necessary

to find a close fit to a given gun curve, expressions in the form

: of (E-4) show promise, This was not pursued further, but it can
be seen that the larger curve given by the first part of (E-4)
shonld bhe selected to peak before the given gun curve, with its
amplitude adjusted, so that the gun curve fits beneath with the
trailing edges coincident. To prevent the difference curve from
going negative at the start, it 1s necessary that the initial slope
of the larger curve be greater than the smaller, From the differ-
entiation of (E-4), it is seen that the slopes of the two curves

are:
£ - -at,
. ?i_tl = A (be bt _ge at)
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and

%{1 = Ao (ce™®% -be™"%y,

Therefore, it is required that at t = O,

A1 (b-a) > Ag (c-b)

for the slope of the larger curve to be the greater, Also, there
would be more flexibility if all four of the exponential coefficients

were different; i.e., if the first exponential coefficient of f3 is
not b, but some other constant.

Now, an examination will be made of the two-exponent exponential
curve that is part of equation (E-4)

f = Ao (e-at—e-bt); b>a (E~5)

A° is only an amplitude or scule factor that can be set equal to

unity, For b greater than a, this function is positive for all
values of t greater than zero., The curve always has a single peak
that is followed by an inflection point., The time at which these

points occur can be obtained from the first and second derivatives
of (E-5)

df -at -bt

E = =fe + be (E 6)
3 - -

%Eé = a%e %t et (E-7)

Setting each derivative equal to zero and solving for "at", it is

found that the times at which the maximum and inflection points
occur, respectively, are

1
(b/a)~-1
1 b b
atm =(-t-’7a-j—_—1— in 3 ° in (-E) (E-8)
2 b
atin = W in z = 2 at n (E-9)
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{It should be noted that such solutions cannot be obtained analytically
for the functions discussed earlier in this anpendix,) The time at
which the curve undergoes inflection is seen to be double the peak

time, so that the drop from the peak always takes longer than the rise.

When (E-8) and (E-9) are substituted into (E-5), it is found that
the values of the Pfunection at the peak and at the inflection point are,

respectively: -1 -b/a
b b ]
£ = o %tm g - et = O Chle -® [
m T 'a a
- b/a
b/a - 1
b b
-G E-n (5-10)
b
and -2 ~ %3
b b b
£ = e_atin -e i (atin) = (B) a” 1-(2) O
in T a 8
.
a
b,
- LY (E-11)

From (E-8) - (E-11), it is seen that at_, atin, £, and fin are

all functions of b/a alone, let 7T equal the ratio b/a, which iz al-
ways larger than unity, and the equations then become:

atm = ﬂ'i in7 (E-12)
at 2 _ 1nm (E-13)
in 7 -1
t =i (E-14)
"y
1 Ll
f, = -1 (E-15)
" L
&Ly
n Ll

Lt

R e o
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The equations (E-12),(E-14) and (E-15) are plotted in figure E-3.
It will be noted that the maximum possible value of atm is unity as

n approachgs unity. Thereforc, tm must be less than 1/a., If it

shoulu be necessary that tm te greater than l/a, the time origin of
the curve can be shifted.
The function (E-8) can be expressed in normalized form if it
is divided by (E-14) and "at" is replaced by the dimensionless time
L ]
Tl
) (_IL
. t e at _ "3 (at)= n ﬂ-l) (;_T -e‘“fj (E-16)
fm -1 -1
a1 __
a\n-1

This normalized function is shown plotted in figure E-4 for values of
N equal to 1,1, 1,5, 2, 3, 4, 6, 8, 10, and 20, These curves show
how the shape of the function varies as 1 changes, and aid in the
selection of a suitable value of 7 to £it the gun curve. As an
additional aid, these curves are replotted in figure E-5 with their
time axes shifted to make the peaks coincident.

To £it a given gun curve to this function, it is necessary to
first determine "a" from a plot on semilogarithmic graph paper as
described earlier, and then to scale the amplitude of the gun curve
to have the same peak as the curves of figures E-4 and E-5 with a
new normalized time scale "at." It may be necessary to make adjust-
ments in the value of "a" to get the best fit, and to interpolate
between the curves of figures E~4 and E-5 to get the best value of
T. These parameters and the amplitude factor Ao should be selected,

80 that the resulting function gives the best fit to the upper half
of the given gun curve. Values of 1 equal to 2,13 and 10, with "a"
equal to 173 per sec, provide two representative curves that are used
. in the analysis, The choice of T equal to 2,13 results in a curve
that gives a good fit to the T28E6 as shown in figure E-2, These twc
acceleration functions are shown in figure E-6,

In summary, the two-exponent exponential function (E-5) 1s a
useful representation of acceleration curves, since a whole family
of gun curves can be approximated by varying a single parameter T,
as shown by figure E-4, This function's usefulness is increased, 1in
that it is one of the most tractable mathematical functions to em-
ploy in the equations of motion in dynamics,
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