NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SUBJECT OF INVESTIGATION

THE BIOLOGICAL SIGNIFICANCE AND CHEMISTRY
OF
A PROTEASE INHIBITOR NEWLY ISOLATED
FROM
ANIMAL TISSUES

RESPONSIBLE INVESTIGATOR

Dr. Hideo Hayashi
Professor of Pathology and Head of the First
Department, Kumamoto University Medical School,
Kumamoto, Japan
The distribution of this report as made by USA R&D Gp (FE) is as follows:

Army Research Office, 3045 Columbia Pike, Arlington 4, Virginia. ATTN: Chief Research Programs Office

Army Attaele, American Embassy, Tokyo, Japan

Office of Primary Scientific Liaison
U.S. Army Medical Research & Development Command
ATTN: Chief, Preventive Medicine Research Branch
Washington 25, D. C.

Offices of Scientific Cognizance
APPENDIX "A"

1. Resume of the present progress:

As described in a final report, March, 1963, a specific protease inhibitor of polypeptide nature was isolated from healing skin site of Arthus inflammation and extensively purified as fibrous substance (Fig. I). The inhibitor was solved in buffer and its solution was equilibrated with various buffers of desired pH by means of dialysis; and it received a paper electrophoretic analysis. There was revealed only one spot positive with anilinoschwarz B staining, showing successful purification of the inhibitor (Fig. II). A Grassmann's apparatus was used. This inhibitor inactivated particular SH-protease of cutaneous Arthus inflammation and papain, but had no effect on trypsin or chymotrypsin.

Mobilities as a function of pH were computed from a pH mobility curve according to Kunkel and Tiselius; and the isoelectric point of this inhibitor seemed to be around 6.6, as shown in Fig. III.

Fig. I. Photograph showing fibrous inhibitor (1310 IE/B280). x 800.

Fig. II. Paper electrophoresis of inhibitor. Inhibitor concentration: 2.67 mg. N/ml. (0.01 ml. used). 240 min., 2.15 volts per cm. A: Na acetate buffer pH 3.85, 0.1 M. B: Phosphate buffer, pH 6.8, 0.1 M (also tested in 420 min., 4.4 volts per cm; and the same results obtained). C: Barbiturate buffer, pH 8.6, 0.1 M.

Fig. III. Effect of pH on mobility of inhibitor. Inhibitory in. cm² sec⁻¹ volt⁻¹.

2. Research activity for the next half:

The above inhibitor receives further chemical analysis, for instance, by an ultracentrifugation and amino acids-analyzer. Crystallization of this inhibitor is completed; and its biological action on various types of inflammation is assayed. Also, the inflammatory vascular permeability factor and its antiprotease, discussed in a final report, are purified and their dynamic relationship in the vascular phenomenon in inflammation is studied. Furthermore, the relationship between the antiprotease and antipermeability factor is searched for essential understanding of inflammation. All these substances were pointed out by us.