NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SUBJECT OF INVESTIGATION

EXPLORATION OF NEW CHEMOTHERAPEUTICS
FOR
INFECTIONOUS DISEASES

RESPONSIBLE INVESTIGATOR

by Dr. Toju Hata, M.D.
President
Kitasato Institute for Infectious Diseases
Head of Antibiotic Division of the Said Institute

U.S. Army Research & Development Group (9852) (Far East)
Office of the Chief of Research and Development
United States Army
APO 343
D-I-S-T-R-I-B-U-T-I-O-N

The distribution of this report as made by U.S. R&D Op (FE) (9984) is as follows:

Army Research Office, ORRD, Washington 25, D. C. (3)
Surgeon, HQ USARJ, APO 343 (1)
CO, 406th Medical General Laboratory, USAIMCJ, APO 343 (1)
Scientific Attache, American Embassy, Tokyo, Japan (1)
Army Attache, American Embassy, Tokyo, Japan (1)
EXPLORATION OF NEW CHEMOTHERAPEUTICS
FOR
INFECTION DISEASES

Fundamental Studies on Protomycin, an Antiamoebic
Antibiotic and Cephalomycin, an Antiviral Antibiotic

Toju Hata,
Ryozo Sugawara, Akihiro Matsumae
and
Hiroshi Yamamoto

Kitasato Institute
for
Infectious Diseases

Tokyo, Japan
1. Protomycin

In the preceding quaternary report, we have proposed the structure for protomycin.

\[
\begin{align*}
\text{CH}_3 & \quad \text{CH}_2, \text{O} \\
\text{CH}_2 - \text{CH} - \text{CH} - \text{C} - \text{C} - \text{CH}_2 - \text{CH} - \text{CH} & \quad \text{CH}_2 - \text{CO} \\
\text{CH}_2 - \text{C} - \text{OH} & \\
\text{CH}_3 & , \\
\end{align*}
\]

To prove this structure, an acid obtained by the following sequence of reactions remained still to be identified:

- **Protomycin**
 - **H\textsubscript{2}O, Pd**
 - **Pyridine**
 - **NH\textsubscript{2}OH**
 - heated with H\textsubscript{2}SO\textsubscript{4} on water bath to induce Deckmann's rearrangement; distilled from dil. H\textsubscript{2}SO\textsubscript{4}.
The corresponding acid ester was synthesized by the following sequence of reactions:

\[
\text{CH}_3\text{COOC}_2\text{H}_5
\]

\[
0 = 0 - \text{CH}_3
\]

\[
\text{CH}_3\text{OH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{C} - \text{COOC}_2\text{H}_5
\]

\[
\text{CH}_3 - \text{C} = 0
\]

\[
(\text{\textcircled{5}})_{\text{CH}_3} = \text{OS}_2
\]
Although mixed melting point of the products (I) and (II) was 55-56°C at several different proportions and their infrared spectra were almost identical each other except three absorption bands, we undertook the resolution of racemate (II) into optically active components. While the experiment is still under continuous, we obtained a fraction with M.P. 62-53°C from (II) with (M.P. 72-73°C).

2. Cephalomyacin

Cephalomyacin was separated into fractions by the chromatography on DEAE-cellulose. The most active component eluted with 0.4% NaOH was assayed for amino acid constitution by DNP method. The result was as follows:

<table>
<thead>
<tr>
<th>Amino Acids</th>
<th>Malaratic</th>
<th>Amino Acids</th>
<th>Malaratic</th>
</tr>
</thead>
<tbody>
<tr>
<td>valine & leucine</td>
<td>2.7</td>
<td>proline</td>
<td>4.3</td>
</tr>
<tr>
<td>alanine</td>
<td>1.45</td>
<td>arginine</td>
<td>?</td>
</tr>
<tr>
<td>serine</td>
<td>0.95</td>
<td>histidine</td>
<td>?</td>
</tr>
<tr>
<td>glutamic & aspartic acid</td>
<td>4.9</td>
<td>methionine</td>
<td>?</td>
</tr>
<tr>
<td>threonine</td>
<td>0.90</td>
<td>phenylalanine</td>
<td>0.34</td>
</tr>
<tr>
<td>cystine</td>
<td>0.02</td>
<td>glycine</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Protomyocin was treated with pronase, a proteolytic enzyme selectively acting on L-amino acid moiety, to evaluate liberated amino acids. Because the protomyocin is quantitatively hydrolysed with pronase, D-amino acid was supposed not to exist. Glycine, alanine, serine and threonine were detected as N-terminal groups by DNP-method.