NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Semi-Annual REPORT ON
CONTRACT NO DA-92-557-FEC-35699
INCLUSIVE DATES 15 November 1962 TO 14 May 1963

SUBJECT OF INVESTIGATION

STUDIES ON THE MECHANISM OF CELL
DAMAGES IN LIVER AND KIDNEY CELLS
AND IN HEART MUSCLE FIBERS AS
REVEALED BY ELECTRON MICROSCOPY

RESPONSIBLE INVESTIGATOR

Dr. Fumikazu Takaki
Professor of Pathology
Jikei University School of Medicine
2-105, Atago-cho, Shiba, Minato-ku,
Tokyo, Japan.

U.S. Army Research & Development Group (9984) (Far East)
Office of the Chief of Research and Development
United States Army
APO 343
The distribution of this report as made by USA R&D Op (FE) is as follows:

Army Research Office, 3045 Columbia Pike, Arlington 4, Virginia. ATTN: Chief Research Programs Office

Army Attaché, American Embassy, Tokyo, Japan

Office of Primary Scientific Liaison
Chief, Medical Research Branch, Research Division, U.S. Army Medical Research & Development Command
Office of the Surgeon General
ATTN: Lt Col Donald W. Bowle
Room 2528, Main Navy Bldg
Washington 25, D. C.

Offices of Scientific Cognizance
Chief, Life Sciences Division
Army Research Office
ATTN: Dr. R. W. Sporns
3045 Columbia Pike
Arlington, Virginia 20310
Semi-Annual Report on
Contract No. DA-92-557-FEC-35699
Inclusive Date: 15 November 1962 to 14 May 1963

SUBJECT OF INVESTIGATION

STUDIES ON THE MECHANISM OF CELL DAMAGES IN LIVER AND KIDNEY CELLS AND IN HEART MUSCLE FIBERS AS REVEALED BY ELECTRON MICROSCOPY

RESPONSIBLE INVESTIGATOR

Dr. Fusakazu Takaki
Professor of Pathology
Jikei University School of Medicine,
2-105, Atago-cho, Shiba, Minato-ku,
Tokyo, Japan.
1. The purpose of the investigation

In this research project we would like to study the changes of cell organelles in case of various cell injuries caused by various noxes, the mechanisms of toxic effects of which are known or yet unknown, e.g. as chemicals, cyto-toxin, bacterial toxin, etc., mainly by electron microscope. The light optical histochemistry and electronmicroscopic histochemistry will be applied also when necessary. The results which will be obtained will help much in clarifying the mechanisms of cell degeneration (cloudy swelling, hydropic degeneration, fatty metamorphosis, necrobiosis, necrosis, etc.) and finally may contribute in preventing such damages.

2. The preliminary experiments already done:

a. Acute poisoning of Monofluoracetate in rat.

(1) Material and method.

Natrium salt of monofluoracetate was administered in dose of 5 mg/kg body weight (0.025% solution in physiological saline) to the rats (185-250 gm.). Liver was examined electron microscopically 10 and 50 minutes after intraperitoneal injection of monofluoracetate. Usual osmic acid was used as fixative and methacrylate for embedding.

(2) Results.

Marked changes were observed in mitochondria and other cell organelles beginning already 10 minutes after administration. They consist of swelling, crystolysis, and decrease in density of ground substance of mitochondria, localized dilatation of rough surfaced endoplasmic reticulum (RER), loss of RNA granules from RER and its transformation to smooth surfaced endoplasmic reticulum (SER), decrease in number of SER, loss of glycogen, increase in number of microbody, etc. The changes of mitochondria might be interpreted as morphological expression of inhibition of TCA cycle, but changes of ER and other structures need further studies.

b. Acute intoxication of 2,4-Dinitrophenol in rat.

(1) Material and method.

2,4-Dinitrophenol was administered 100 mg/kg body weight (group A), 50 mg/kg body weight (group B), subcutaneously as a NACH solution having a pH 8.5 in rats (130-200 gm), respectively. The liver was examined electron microscopically 15, 30, 50 minutes after injection in group A, 3, 6, 12, and 24 hours after injection in group B. Usual osmic acid was used as fixative, and epoxy resin or styrene for embedding.

(1)
(2) Results.

(a) Group A. After 15 minutes, there are localized
dilatation of Disse's space filled with red blood cells, mito-
chondria, glycogen granules, ground substance of cytoplasm, etc.,
of destructed liver cells. Bile canaliculi are generally dilated.
There are two types of liver cells. One is characterized by
somewhat darker cytoplasm filled with seemingly swollen mito-
chondria. The other is cells appearing as if atrophied. Their
mitochondria have electron dense ground substance. Cytoplasm of
this type of cells shows decreased electron density. Although
endoplasmic reticulum (ER) is relatively well preserved,
occasional transformation of ER to SER by drop off of RNA
granules is observed. In liver examined 30 minutes after admin-
istration of drug, there are swelling, increase of electron
density of ground substance, dilatation of pale layer of cristae,
etc., of mitochondria, irregular vacuoles in cytoplasm, and
drop off of RNA granules of ER. The nucleus shows often marked
nucleolation formation. Structures corresponding to focal cyto-
plasmic degradation (Spargo) are also encountered occasionally.
After 50 minutes, there are similar changes together with appear-
ance of ring made up of SER. Glycogen begins to diminish after
30 minutes.

(b) Group B.

After 6 hours, besides the changes mentioned above, there are
increase in number of liquid droplets of small size, loss of gly-
cogen which is present even after 1 hour. After 12 to 24 hours,
the most conspicuous changes are increased shrunken liver cells
having high electron density. The cell organelae within these
cells seem to be rather well preserved, although it is quite
difficult to recognize in electron dense cell body.
The most noteworthy changes found in this series of experiment
are lack of cryostyisis of cytoplasm, increase in electron
density of ground substance and widening of middle pale layer of
cristae of mitochondria. All of the biological meanings of these
changes will be discussed in future.

3. Experiments now in progress.


Purpose: To find the effects of Lecithinase and DNA-ase contained
in the toxin on cells.
Liver was embedded in epoxy resin and styrene for electronmicro-
scopy, and light optical preparations were finished.

b. Temporary ligation of renal artery.

Serial preliminary experiments revealed light optically that:
1) anoxic changes of tubular cells were observed clearly after
ligation of renal artery for 45 minutes which increases with lapse of time. But there is no anemic infarction. 2) temporary ligation of renal artery for more than 30 minutes results in much more marked changes after reopening of the renal artery. It consists of peripheral coagulation necrosis and central autolytic changes (Anemic infarction). These changes begins to appear 1 hour reopening of renal artery. In case of 30 minutes of ligation, the changes seen 1 hour after reopening are less conspicuous. The typical anemic infarction develop in case of 2-3 hours ligation-1 hour after reopening or in case of 1 hour ligation-3 hours after reopening.

Experiments for taking electron microscopic specimen will be started in near future.

c. Diphtheria toxin.

Specimen were embedded to be cut.