UNCLASSIFIED

AD4339 b 4

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED



NOTICE: Wwhen govermment or other drawings, speci-
fications cr other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsihility, nor any
obligation whatsocever; and the fact that the Govern-
ment may have formulated, furnishked, or in any way
supplied the sald drawings, specifications, or other
data 18 not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



R o
L7/ ’ é:i,:zzzgijf;jfj;%g;’"ﬁfézzj%éi\/,_/

EFFECTS OF RE-ENTRY PLASMA SHEATH ON ANTENNA CHARAGTERISTICS

[omeas

]

-

et s W

by
M. Katzin
J. W. Marini

B. Y¥.=C. Koo

Final Report on

G.E. Purchase Order No. 214-361527
under
Contract AF-04—(647)-269

Prepared for

Missile & Space Vehicles Department
General Electric Co.
3198 Chegtnut Street
Philadelphia, Pennsylvania

Report No. 61527-3
30 June 1960

el

ELECTROMAGNETIC RESEARCH CORPORATION:

ShZMATON BUILDING, 7ii-I4¥ 8T, N. W,
WABHINGOTON 8, D. C. Q

2

@@«@
——

R NS oM e

) | (ﬂ Q’ }e‘"

\A «F, \”

1

PR L



R T /'lr'v.“:— \“.“QL .

Hﬁ/)EFFECTS OF RE-ENTRY PLASMA SHEATH ON ANTENNA CHARACTERISTICS ,
\

by
M. Katzin

Je. W. Marini
J

Bl Yo-Co KOO

"ﬂ Final Report on
G. E. Purchase Orcler No. 214-361527
under

;;/’Contruct AF-04-(647)-269

Prepared tor

Migsile & Space Vehicles Department
General Electric Co.
3198 Chestnut Street
Philadelphia, Pennsylvania

ELECTROMAGNETIC RESEARCH CORPORATION
SHERATON BUILDING, Til-14™ 8T, N. W.
WASHINGTON S, D. C.

') Report.No. 61527-3
7730 Jund 1960

) oa i 6hy Yherlirpe Py L Poseencebe CL"L!:’

4



\7 ABSTRACT

This report deals with various effects of the plagme which forme arownd a

re-entry vehicle on antenpa chsracteristics.

- T

.
-

- o
A study of numerical comput&viciis made on/ the IBM 704 shows that double~pre=

eision caleulations are imaccurats for cerpain ranges of the p! parameters,

so\% triple ,,pi-ecision should be loyed, A linear releticn is shown to exist
betweeh, the c'i;angra in input admitiepte o

ey a spherical slot anfemna from the free-
space vald and the change in r fractive in

N, of the plasma, for amall »,—{,

,
A}

as expressed in the rela@j.o’g \, ;

h AY = ALK (1), ‘
This suggests a convenient pre-~flight calibration techmique whersby in-flight }
measurenents. cen be used\to deduce plasma properties. ]
The harmonic series fobmulation for the imput admittaﬁc\e\ is found to be im~
practical for values of vehic]t;‘circumference greater than about one wavelength.

An alternative formulation suitable for large vehicle sizes is outlined. !

&5 general i‘omulﬁtﬁ.on is developadw for gpherically imhomogeneous plasmes,
It is shown that only the radial functions are affectsd by the imhomogeneity, so
thet resulis for the uniform plaema case can be extended to the non-uniform case
by the substitution of the appropriate radial fmct% It ig.show; ESUeveY,

\tﬂ%the elactric and magnetic modes satisfy appreciably different equations when

the refractive index gradient in the plagma 48 LAIEBe) - oo cmmo s

Investigations of the effect of“the plasmaon the vol:tg.ge\ distribution along
(—/
the shat did not lead_to: a\sdlﬁion of thig~problem. However, ;‘ﬁm‘c&d\ure which
appears promising is outlined, e e

e = e+

‘The effest of noise gemerated by the plasme on the problem of signal reception

ii
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aboard a hypersomic rs-entry vehicle is discussed. IL de-shovm=that the ef~
fective noise temperat re of )ﬂ:e plasas clepando on the atterustion of the

//l

plasma. Saeoh f?{e opbimum frequency for reception usually will be
significantly lower then for transmission. An optimization procedure is de-

2%

seribed.
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EFFECTS OF RE~ENTRY PLASMA SHEATH QN ANTENNA CHARACTERISTICS

1, INT CTION

This report summarizes the work done under the subcontract on the theoretical
investigations into the effects wn, 3h the plagma sheath generated by a high veloc—
ity vehicle re-entering the earth's atmosphere produces on the characteristics
of antennas carried on the vehicle. The work reported here constitutes an
extension of work carried cut by the Electromagnetic Research Corporation (ERC)
and repocrted under two previous subcontracts with the Missile and Spacg Vehicles
Department (MSVD) [1].

In the previous work, attention was confined to uniform plasmas, and prin-
cipally to strongly ionized plasmas., A strongly ionized plasms acts like a good
conductor over a wide range of frequencies. Consequently, an anterma which has
been matched to free space finds itself in a changed environment when the plasma
forms around it. This produces a change in the input impedancs of the antenna,
If the antenna is used for transmission, this change in input impedance generally

results in a reduction in the amount of power which is absorbed from the source.

In addition, losses are introduced by the attenuation of waves transmitted

through the plasma.

In a previous report [2] closed form expressions were obtained for the radi-
ation properties of seversl types of antennas when surrounded by a strongly
ionized plasma sheath, Particular attention was devoted to the analysis of a
slotted sphere type of antenna, since this geometry is the simplest ome for anal-
yeis and yet represents a fairly good approximation to the shape of practical
re-entry vehicles. One of the tasks under the present subcontract was to gener-

alize the previous work to cover:

% Numbers in brackets refer to Refercuces on p. 80.
1



{a) weaker ionization densities

(b} higher radic freguencies

(¢} non-symmetric geametries.

It was anticlpated that this would require a digital computation program, so
that the objective was to cast the analysis in a form suitable for machine pro-
grameing,

In a previous report under this subcontract [3] earlier work for the slotted
sphere antenms was put in a form suiteble for programming on the IBM 704 com-
puter, Programming snd calculations were cerried ocut by MSVD for several fre-
quencies and for a wide range of plasme ionization densities, Tabulations of
the numericel resulits were delivered to ERC during the lest month of the contract
period., Examination of these results led to the recognition of several proper-
ties Macteristic of the computations. One of these was a particularly simple
type of relation between the change in input admittance of the antenna and the
plasma characteristics for weak ionization densities. Another was that the se~
ries type of formulation used was not suilteble for antennas (spheres) large rel-
ative to the wavelength, since the number of terms in the series required in
order to oblain adequate convergence turned out to be too large, The results of
the numerical computational progrem and its Limitations are discussed in detail
in Sec, 2 of this report,

The properties e¢xhibited by the computed results lad to additional theo-
retical investigations which are presented in Sec. 3. An analytical in~
vestigation of wesk plasme densities led to a rather remarkable result. It
was found that for a spherical geometry and a wmiform plasma, the change
in dnput admittence of the antenna when the plasma forms is proportional to

the chemge in refractive index of the plasma sheath. The constant of pro-




portionality is in the nature of a sitructure constant dependent on the electrical
dimensions of the vehicle. The type of result is quite general and is not limited
to small vehicle sizes relative to the wavelength, From the way in which the
linear proportionality was obiained, it is felt thet a similar result would be
obtained with other regular (separable) geometries, In addition, it is suspected
that the same type of proportionslity probably exists for practical vehicle geom=
etries. This leads to a convenient and important technique for calibrating an
antenna on the ground so that in-flight measurements can be used to deduce plasma
properties. The details are given in Sec, 3.

Sec, 3 also contains the outline of an alternative formulation of the input
impedance problem which should be suitable for large vehicle sizes. Further
work along the lines indicated therein should form the basis for s computational
program which should bridge the gap for high frequencies for which the earlier
geries formuletion was found to be inadequete.

In the previous analyses it was sssumed that the plasma is of constant,
thickness and uniform demsity. This is a highly idealized assumption sincs,
in fact, the plasma sheath avound a re~entry vehicle has large gradients of
ionination density. The extension of the analysis to take into account these
gradients is carried out in Sec. 4. It is shown that it ls necessary only to
replace the radisl functions in the input admittance by functions appropriate
to the actual variation of plasms density. It is poinied out, however, that
care must be exercized not to overlook terms which are usually neglected in
treatamnts of propagation in inhomogeneous mediums, since these terms are not
negligible in re~eniry plasms problems.

The analysis of the lnput admitience of a slot type antemna involves the
voltage distribution along the slot. For a slot which is electrically short,
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the voltage distribution is approximstely triangular in shape, both in free space
and in the presence of the plaasma. For frequencies high enough so that the slot
is no longer electrically short, however, the assumption of a triangular voltage
distribution is probably inadequate, and, in addition, the voltage distribution
nmay change when the plasma forms. Consequently, a method either for determining
the voltage distribution or for calculating the input admittance without using
assumptions regarding the voltage distribution would be desirable. Sec. 5 of
this report gives the results of some work carried out on this problem. A com-
plete solution has not been obtained, but a method of attack which may prove
succeasful is presaated.

In Sec. 6 the recsiving problem aboard a re-entry wehicle iz considered. In
particular, the effact of noise generzted In the plasme upon the reception problem
is discussed. It is shoun thet the effective noise temperature of a recelving
system depends not only on the temperature of the plasms, but also on the attenu-
ation through the plasma at the frequency in question,

A brief summary of the work encompassed by the report, together with con-

clusions and recoumendetions for further studies, is given in Sec. 7,



2. FPROGRAM OF NUMERICAL COMPUTATIONS

2.1 Introduction
In a previous report | 3], an earlier solution for the input admittence of

a spherical slot antemna was recest in a form suitable for numerdcal computation.
This form was programmed for the IBM 704 computer by MSVD, Computations were
carrled out for a wide range of plasme densities at each of three frequencies:
14y 240, end 3000 mec., Tabulations of the results were furnished to ERC for study.
The results of this computation program will be discussed in this section,

In [3] it was shown that it is prefersble to caleulate the difference in
input admittasnce of the antenna in the presence of the plasma (dencted by ¥)
from that in some reference situation. The reference situation chosen in [3] is
that where the dielectric insulating layer surrounding the antenna (and over
which the plasma forms) is infinitely thick (for which the input admittance is
denoted by )%z ). This choice of reference was made because the expressions in
the input admitience simplify considerably. The incremental admittance then

becomes

Ay

v =i £2, o) et [n*em0®R2F + 06,74 (2:1)

The properties of the plasma enter only into the quantities 7, and G,, which
depend on the electrical dimensions of the antemna, In these quantities the

properties of the plasms enter through its complex refractive index Ngp, where

2 XY
ng= 1= - i(zrZm). (2.2)

x2 =8I Mo/, (2.3)

in which

b B)/Zﬁfg (204)
+ being the frequency, and A, and » the jonization density end collision



frequency, respectively, in the plasma. Values of Y =~ ¢ then can be com-
puted for various plasma characteristics by programming the computations for a
set of values of ng. If one of these values is ng= 1, then for this value the
quantity obtained is ¥ =Y, where Y is the input admittance in free space.
Consequently the change in input admittance upon formation of the plasma is ob-
tained by subtracting this value from each of the other end values Y =)z @

AY = V-5 = (Y-1%) = (Yo 7). (2.5)
This procedure was adopted since it appeared to reduce the complexity of the
machine program.

In (2.1) the summation over m is shown as extending to infinitﬁro In [3],
computation only up to 1 = 30 was reccomended, since pilot desk calculator com-~
putations indicated that this was sufficient to obtain convergence for the high-
frequency situations of interest in the earlier studies. A procedure was indi-
cated, however, whereby the computation of A, and G,, the quantities which
ultimately control the convergence of the series, can be extended to larger values
of n.

In this section, the numerical results obtained on the IBM 704 by MSVD will
be discussed, snd four characteristics of these results will be pointed out and

discussed.

2.2 IBM 704 Celculations

R.2.1 QOutline of Investigations

In [3], a recommended procedure was given for the calculation of

input admittance in accordance with (2.1). To check the progremming,* initial

% The programming was done by Mrs. Ruth Lyon of MSVD,
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computations were made of the spherical Bessel functions oceurring in An and Gy
These computations involve the use of recursion formulas to generate the func-
tions of varicus orders, Both ascending and descending recursions are used, de~
pending on the argmment, For intermediete arguments, a check can be made by
using both procedures. It was found that huge discrepancies resultsd when or-
dinary single-precision arithmetic was used. Pilot desk computations by ERC
showed that the recursion method was very sensitive to round-off error. Since
the 704 carriee only eight significant figures, the amount of round-off error
incurred in these computations using single-precision arithmetic mtroduced_ pro=~
hibitively large errors. Accordingly, a double-~precision routine was recommended
as being necessary, with the possibility that triple precision might be required.

After the program wes revised for double~precision computations, check values
of the spharical functions agreed to four or five significant figures. Conse~
quently, all subsequent computations were double precision. Evidence will be
shown below, however, that for certain regions of plasma properties (i.e., 7g)
*he resulting accuracy deteriorates, so that %riple precision pz;oSably is needed
in thsse ragions.

The frequencies, vehicle size, snd other parameters for which calculations
were carried out were specified by Dr. W. C. King of MSVD., Frequencies of 14,
240, and 3000 mc were specified. Values of x2 and z were selected in a grid to
cover an extremely wide range. Subsequently & mumber of intermediate points
were calculated, especially for 14 me, for which the most complete coverage was
nade,

As stated in Sec. 2.1, calculations were made of incremental admittance in
accordance with (2.1), where ¥z represents the admittance when the slotted

sphere is covered with a dielectric layer of infinite thickuess. Plots of Y-¥%
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did not prove to be espsclally revealing, since; for example, the imaginary
component reversed sign for certain values of 73, When the incremental ad-

‘mittance AYas determined by (2.5) was plotted, however, certain revealing

characteristics were foumd. In particular, the following four features became
evident:

(a) & linear proportionality between Ay and x2, for constant z and suffi-
clently small x2;

(b) an interference phenomenon at s value of X2 nesr 2;

(¢) a degradation of accuracy in the imaginary part of AY for large values
of ¢ and = ;

(@) apparently erroneous values of AY at certain "pathological™ combinations
of x2and z.

These properties and their significance will be pointed out in the discussior
of gome plots of AY to follow.

2.2.2 Dependence of AY on Plasma Properties

Fig. 2-1 18 a plot of the real part of AY vas. x2 for several values
of z for a frequency of 14 mec. It can be seen that a linear proportionality ex~
ists between x2 and both the real and imaginary parts of AY for x# below some
upper value, This upper value depends on and increases with the value of £,
Furthermore, a regular dependence on Z also is evidemt.,

Fig. 2-2 is the corresponding plot of the imaginary part of AY. For values
of xt below about 1, the same type of linear increase with x*® and a regular def"
pendence on 2z is evident. For large x2, however, the curves become quite irregu-
lar. In contrasi, the curves of Fig. 2-1 remain very amocth and regular in this
vegion, This feature of Fig. 2-2 will be discussed in Sec. 2c2.4q
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CORRECTION

Repor% No, 61527-3, 30 June 1960
Go E. Purchase Order 214-361527

Correction on page 11: Equation (2.7) should read

m_, Cz

1+ z®

Electromagnetic Research Corporation
711=14th St. N.W.
Washington, D.C.

Report No. 61527-3
30 June 1960

(2.7)



To show the dependence on z in the linear range more clearly, AY was
plotted against z, for a constant value of x*= 0,3, as shown in Fig. 2-3. It
was easy to see that a fit to the imaginsry part of Ay was given by a relation

of the form
C
L= = (2.6)
and the real part by
-._C
R= Ty (2.7)

where C is a constant. The solid curves in Fig. 2-3 are rlots of & and & in
accordance with these relations. Since Figs. 2-1 and 2-2 show that C is propor-
tional to x3 for x2 not too large, and in view of (2.2), the good agreement of ‘
the plotted points with these curves was very suggestive of the relation
AY= iKn3~1), (2.8)
where K’ is a constant. For 14 mc, Fig. 2-3 gives A= 1.4 x 10-2,
Thus we arrvive at the relation (2.8) for AY for sufficiently amall n¥-—|.
Since this region of 72 ~| is synonymous with m,=2{, (2.6) may be written as
AY= i2K(1n2—1) = LK) & 4K, (2:9)
where K= 2K% and ¥= 7~|. It will be shown analytically in Sec. 3, in fact,
that AY is given by (2.9) for small ¥ for any frequency and vehicle dimensions,
K being dependent on these parameters.
A noteworthy departure from (2.8) was found for the values of AY corres-
ponding to z = 0 in Fig. 2-1. This is classed as a "pathological®™ condition,
which will be discussed further in Sec. 2.2.5.

2.2,3 Interference Phenomenon
In Figs. 2-1 and 2-2 a sharp increase in AY takes place near
#2 = 2 for small values of Z, This produces a hump in the curve, which is more

pronounced the smaller the valus of Z. This region is plotted in greater detail

11
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in Figs. 2~4 and 2-5. The peak of the hump takes place at a value of x% which
is somewhat dependent on the value of z.

This phenomenon is suggestive of interferencs between the waves reflected
from the inner and outer boundaries of the plasma sheath. Although for x£> 1
the plasma represents a barrier or attenuating layer, its electrical thickness
is small enough so that the attenuation (for wenishingly small %, for example)
of a roun@-trip passage througk the sheath is quite low. A notable exception
to the general trend of the other curves i1s exhibited by the curve for z = 0.
As mentioned zbove, this curve appears to fall in the category of "pathological®
values to be discussed below in Sec. 2.2.5.

The aituation is snalyzed qualitatively in Sec. 3.3 by means of a plane-

wave analysis.

Ro2.4 Reduced Accur of Part of AY for
Fig, 2~6 shows an extension of Fig. 2-3 to larger values of 3.
The solid lines are the plots of (2.6) and (2.7), while the computed values are
shown by the encircled points. Clearly the points for &(AY) depart increas-
ingly from the curve as z increases. It will now be shown that this should be
interpreted as an error in the computed velues.
For z large, (2.2) approachses
NE-i= 2= =2y ==5z - i %
Thus for z >>x%2, ¥ becomes very small, decroasing as ! Iincreagses. Now, as men-
ticned earlier, the analysis in Sec. 3 will show that

AY =LKy + O(d.
Thus the computed points should approach the curves morse closely as z increases.

Since the opposite trend tskes place, the computations become suspect.

13
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It should be pointed out, in view of the phemomenon to be discussed in Sec.
2+2.5, that for z >> x%, the real part of 'nf—l “becomes negligibly small relative
to the imaginary part. In order words, n} - | approaches a pure imaginary quan-
tity, vhile n: approaches unity.

It has been pointed out already that the curves of d2(AY) in Fig. 2-2 be-
come irregular for large X2, It is believed that the curves are incorrect in
these regions, and to indicate this they have been dotted. As further evidence
of this inaccuracy, the values to be expected on the basis of (2.6) are shown
Ly the dashed lines, which have been drawn up to the approximate limit of x2
over which this.relation is expected to hold (x¥20.3). As Z increases, the
computed values depart more and more widely from these expected values. This
lends support to the conclusion that the dotted regions represent erronecus val-
ues -

The reason for this anomalous behavior of the computed values of £H{AY) is
not known. The apparent discontinuities in certain regions may be due to a
change in formulation in the program which we understand was introduced for
cesrtain reasons. Why this should affect <2(AY) and not XR(AY) we do not know.
The ancmalous behavior suggests that double-precision computations on the 704

are not adequate for this problenm.

2¢2.5 Pathological Values
It may have been noticed already in Fig. 2-1 and 2~2 that several

of the plotted points are "out of line" with respect to the amooth curve through
the remaining p&ints. Each of these points is encircled and joined by a verti-
cal arrow to the curve on which it belongs. Curiously, every cme of these

*pathological® points occurs when x?= |4 =%,

17
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Furthermora, it was found that ‘when a computation was made for this combination
of x* and %%, a "pathological® point always developed. .

It was suspected that some error had been made in the programming which re-
sulted in this pathological behavior. However, a thorough check by Mrs. Lyon
of MSVD showed that no such anomaly in the program existed. It will now be shown
that round-off error is the suspected cause of these pathological values,

From (2.2), m% becomss for these values

rGa-iz,
vhich is pure imaginarv. As noted in the preceding section, the computed values
of (AY) become increasingly in error as 777 approaches unity for small mz—i,
The behavior just discussed indicates that this same type of arror ocours for
imaginary valuss of 7.

Another region of anomalous behavior is the curve for z= 0 in Fig. 2-1.

For amall X3, the values should conform to (2.8), as shown by the rasults of the
analysis to be given in Sec. 3. However, for amall x%, the real part of the
computed value of AY becomes negative for 4 = 0, in contradiction to the positive
sign required by (2.8) and the theoretical analysis,

From the sbove behavior, it is suspected that the recursion celoulation of
the spherical Bessel functions becomes especlally semsitive to round-off errors
for imaginary and real values of ’Yl:' + Consequently it appears that, to achieve
accuracy for all values of argument, a triple-precision routine would be required
on the IBM 704. The anomalous behavior of <2(AY)discussed in Sec. 2.2.4 also

suggests that triple precision is neceasary for this problem.

f’.°206 K v r:f
It was chown in Seo. 2.2.2 that, for small Y=7,~| the values

18



of AY obeyed the relation
AY = LKV.
The dependence of the constant A on ifrequency will now be examined.
From plots of the computed values at the three frequencies, the values of
{K| in Table I were determined.

TABLE I

f, mc (K]
14 7.01073

240  6.5°1073
3000 7.2:10"2

The trend exhibited by this table is for |kK| to increase with f. However,
there is practically no change between 14 and 240 mc. In addition, thers were
reversals in the sign of ®(4Y) for small values of & at 240 me, while at
3000 me the signs were all negative.

As a repult of this unexpected behavlior of K, an exemination was made of
the values of £, and G,, which had been calculated as a subroutine and printed
out so as to be available for study. It was found that convergence had not set
in at & value of n = 29 for f= 240 and 3000 mc. It appeared, however, that a
value of N = 29 was just abou adequate for £ = 14 mc.

From a study of the convergence properties of (2.1) as exhibited by the
calculated values of A, and G, it 1s inferred that celculations would have to
ba carried out to about n= 500 for f = 240 mc and to about nt = 7000 for f= 3000
me. Consequently the use of (2.1) for these frequencies becomes impractical.
This is the condition where the sphere is large relative to the wavelength, under
vwhich condition the harmonic series analysis becomes impractical. A method of

dealing with this situation is outlined in Sec. 3.3.
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2.3 Sumary
From a study of the computations made by MSVD, the following four

properties of the results have been recognized:

(a) a linear proportionality between the change in input admit-
tance upon formation of the plasma, for weak plasmas, as expressed in (2.8),

(b) an interference phenomenon for smsll z due to the waves re-
flected at the inner boundary of the plasma,

(¢) impaired computational .accuracy for plarmas characterized by
imaginary or real values of the square of the refractive index,

(d) unsatisfactory convergence properties of the series formula-
tion (2.1) for vehicle sizes large relative to the wavelength.

In Sec. 3, theoretical investigations are made of (a), (b) and (d). The
linear proportionality in (a) is demonstrated quantitatively, while a qualitative
explanation of (b) is given by means of a plane-wave analysis. A procedure
whereby the limitation (d) can be overcome is outlined. It appears that limitae-
tion (¢) requires the use of a triple-precision program in order to obtain satis-
factory accuracy with the 704 for all values of refractive index of the plasma.
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3. THEORETICAL EXTENSTONS FOR A UNIFORM PLASMA
In this Section several extensions to the analytical results obtained in

previous reports which were obtained under the present contract will be reported.
These extensions include

(a) the analysis of weak plasmas, including a discussion of non-spher-
ical and non-symmetrical geometries;

(b) a dimscussion of the interference phemomenon pointed out in Sec.
R.2.3;

(e) a formulation applicable for the condition where the sphere is
large relative to the wavelength.

3:1 ¥Weak Plasmas
In Sec¢. 2.2.2 1t was shown that the computations indicated that, for
small wg7g-|y AY obeyed the relation
AY = LKy, (3.1)
where K depends on the frequency, but not on the plasma properties. In this
Section, the relation (3.1) will be derived analytically for the case of a spher-
ical gecmetry. Its applicability to other geometries then will be discussed.
The method of establishing this result will be to show that for each value
of the suwmation index n in (2.1) the corresponding term in AY’, which will be
designated by AY, , contaifs y as a factor.

As shown in [3], A, and G, are given, respectively, by

_ RH |

T Wk k) ~ R k)] (3.2)
Ri~ :

& D T k) - RE )] 3.3)

in vhich R,,'“ is the reflection coefficient of the nth magnetic mode at the

Fa

boundary r = b, and R,.E" is the corresponding reflection coefficient of the
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electric mode. Expressions for R and R were given in [3], and will be
rewritten below in a revised notation.

P and Gn appear in the expression for Y-) given in (2.1). The cor-
responding quantities which appear in );-)f may be demoted by F,’,,H“’a.nd 6,3“.,,
and the corresponding reflection coefficients by R¥L" and &FL". It will be
shown that :

R - M w v« 00, (3.4)
end, similarly, that .

REL - REC o _ivaE L OO, (3.5)
where -f;l’" and 4;‘5‘ do not involve the plasma properties. These lead to the cor-

responding relations

Fa=F" =4ivfn, (3.6)
Gu=Gn = 4V qn, (3.7)
g0 that
AY, = AVKn + O). (3.8)
Consequently
AY = T = AvK+OWY, (3.9)

which is the result to be demonstrated.

In order to make the analysis least cumbersome, it was found advantageous
to introduce a simplified notation. The functions involved are the spherical
Bessel, Neumann and Hankel functions, and the arguments of these functions that
will be encountered are kb, Agby Kyb » ko€ 5 80d kyC - These arguments will
be denoted by the subscripts 1, 2, 3, 4, 5 respectively. Since E,.“‘ and R,%% can
be written entirely in terms of the spherical Bessel (,), Neumann (7,) and
Hankel (AS") functions, the subscript , will be dropped, Consequently, for ex~
ample, j, (& is denoted by j, , etc. Thus the following scheme is used:
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Jnlkyb) = i g h8) == 7, W Ub) > b,
JnCab) —> Jy Nin (hatd) = 71, AnOkab) = hg
Inlsd) — f 7n Uy ) —> My Py )—> hy
Jn (ke = Ty (hse)—> My lkac) = hg
Inlhse) —> Jg Nalhye) —> My b keye) = hg

The details will be carried through for &M, and then the corresponding re-
sult written down for R by mspection.
From (3] we find that R, nay be written in the determinantal form

M\::::::l e
CEITES U TEAT

where
’ 4 ¢ o
A= ‘7}. bm Ba hr cuhr Ea J‘t ‘U:
2 Loy sl ja  bajs
, M 2’
_ | o l | P bm!
ny by g <o T

The corresponding expression for the free-space condition la

o
. i
t’ cyhs

- AHF
IF:- P l 44
o
: N aicy Er,t‘ bo.l:

‘-l"‘a sy
B by jf| 5 cofé s &ahl

cf= t:‘ b”:j o= I:‘ °’:I =l Fr= t; il
%3 Q { ) o’ ,‘ h’b’

The essential step is to develop the functions with arguments Aeé and 4.C

where

(subseripts 2 and 4, respectively) in a Taylor‘s series expansion in terms of the
corresponding functions of arguments kyé and 43¢ (subscripts 3 and 5, respec-
tively). Since
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kg = ";kg = k’ + (ﬂg"‘)kg = £3(|+)’),
we write, for example
Je = Jn Chnb) = jo Shab(14V)} 3 Jnlhsh) + Vhoh 4 Uy B) 4+ O == fo + Yhy 1/ + OOV,

b s et = T s (o Y OO = s vy 06

=g+ vb,[ﬁfb"-"“—‘l ~1]ia+ 06 B i3+ vpas + OO,

where
nn+l) _
b="p b
With trapnsformations of this type, we obtain
A2 AL + ubyAg + OO»Y

Ca = Cz +Vby Cs + OGP
B = 8" +vesBy + OG?
D= +vesDy + O
E = E ¢ vy Es + OO
F =FF+vbFf + OO

F
Then the difference between R,.“‘ and &“4‘ becomes simply

R"“l. - R"HL"= "'A:V‘f,"“ + O(y:),

where
He o [T 4
] Cs(ds —ﬁ,‘
A B3| L, 1A
M=ler 0l "% e, D1
5 B, &y 8
°9"F'Da+'£"lﬁf|
_ e F
4=\ o
ravd
€= | p
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A similar analysis may be performed for the electric modes. The result may
be written down at once by inspection, since only the values of s, &, & end
& are changeds

RE - 23" = _LuAE L O™,

Finally, there remains the incorporation of these results into the corre~
sponding differences A, -F,',Fand 6,,—6:, which are the quantities which appear in
the incrementel admittance

[
AY = Y- Ye = z:fAYn
ne
For these we have, on denoting functions of argument £a by the subsoript o,

" Sl
R/ = e T =TT T
P = G lhe= RA%%)  holhe - RETRD)
&Ni_ HE
T holho= R (o= R 1)
- iVt + O - -ig'f;\“ + O
Do do U= Ao ~lo(1~284M]  [mimora (&% + w7t ] Eime +48475]
AvH
- + O,
(Mo + “'.joA”')z
Similarly,
| 3 . A'-V‘f'nE g kN
Gn G = T AEE T OO

Since ¥ is a factor in F,.-F,\'andén"ﬁ,f for each value of n, it is a factor
in AY, so that we have, in general, for any electrical dimensions of the spher-
ical antenna

AY= iKY + 0B,
which is (3.9), which we set out to derive. Therefore, for sufficiently small

¥, AY is proportional to V.

3.1.1 Non-Spherjcal Gecmetries
The result expressed in {(3.9) was obtained by & Taylor's series
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expansion which is valld for suffleciently weak plasmas. Consequently, since

the harmonic series representation of the input admittance is absolutely conver~
gent for any antenna size, even though it is useful for computation only for
ontennas which are not large relative to the wavelerngth, it can be used to demon~
strate the validity of (3.9) for spherical antemmas of any size.

For other antenna shapes for which the antenna contour is a coordinate sur-
face in a separable coordinate system (1.e., one in which the wave equation is
separable), a similar type of representation of the input admittance in a harmonic
series can be carried oub. It seems rather certain that in such cases a result
similar to (3.9) would be obtained by the same kind of procedure as that followed
above.

Re-entiry vehicles generally have rotational symmetry, but seldom is the shape
"separable®. One is led to conjecturs whether s result similar to (3.9) would
apply in such cases. This would seem to be worth investigsting further by means
of a generalized analysis. We may express the feeling that & proportionality to
¥ for small v atill will be obtained,

The importance of a result of the type (3.9} for upper atmosphere probing
is worth pointing out in some detail. One of the objects of analyzing the effacts
of a plasma sheath on antenna impedance is to be able to uge in-flight impedsxce
measurements to deduce the properties of the plasme. This has led to attempts to
simulate the plasma so that pre-flight calibrations can be made of the dependence
of the plasma on antenna impedance. Since a plasmwa reduces the dielectric constant
{or real part of the refractive index) below walty, simulation of this character~
istic 1s not a simple matter, '

For weak plasmas, on the cther hand, (3.9) shows that simulation in the strict
geuse 1s not necessary. The validity of (3.9), in fact, is not limited in any vay
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to plasma sheaths, for which ¥y has a negative real part, but is valid for any
sheath for which ¥, be it positive or negative real, or complex, is small.

Hence one may use a positive real ¥ to obtain a calibration measurement. Now it
is a simple matter to cover an antenna with a sheath of, say, polyfoem, end thus
achieve a amall known value of ¥. By measuring the resulting changs 4Y, a deter-
mination of K, or calibration, of the sntenna system is achieved.

3.2 Interference Phenomenon
In Sec. 202.3 it was pointed out that the curves of AY vs. x* in Fig.
2~/ were suggestive of an interference phencmenon between waves reflected from
the inner and outer boundaries of the plasma sheath. A qualitative analysis of
this phenomenon will be developed here.
The geometry is illustrated in Fig. 3-1, where the region between a and & 1is
occupled by the insulating layer of propagation constant 4,, and the region be-

Q & c
Fig. 3-1 Geometry for Analysis of Interference Phenomenon

tween b and ¢ is the plasma of propagation constant 4 while to the right of ¢
is free space, represented by propagation constant 4;.
Assuming z= 0, we have from (2.2)
k= Mg ky = (1=x8)"%s = =L (x2-1)"%s . (3.10)
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Consequently the reflection coefficient at the boundary ¢ of waves impinging

from the left is

hake _ Lo L0=02 _ la2p
P Tarte S Tmibean® C € (3.11)

vhere

&= gonlnr-i)" (3.12)
Ab x%= 2, & = A5%, go that 26 = 90°. Consequently the reflected wave then is
shifted 90° in phase relative %o the incident wave.

For x*>1, 4, is puve imsginary, as shown by (3.10). Consequently the in-
cident wave in advancing to the right from &, as well as the reflected wave in
retreating to the left from ¢, undergoes attenuation without phase shift. The
attenuetion in a one-way passage between & and ¢ is

g=imalkgic—b)
At f = 14 me, =6 = 0,25 m, and X2= 2 this amounts only to 0.64 db. Consequently
the insulating layer effectively is terminated by a pure reactance for x*= 2,
and thils affects the input admittance markedly.

It is quite evident from (3.11) and {3.12) that the criticel value of x5
for a planar configuration, is 2, since the value of X2 controls the phase of
the reflected wave. For a von-zero value of &, the phase of the reflection coef-
Ticient is affected (as can be seen from (3:2)), and also there is an additional
phase shift znd en additionsl attenuabion in the wave travel belween & and ¢.

For a spherical geometry, there is a small deperture from the relations dig-
cussad above. The curves of Figa. 2-4 and 2«5 c¢learly show the development of

the phenomenon as a function of X2 and Z.

3.3 Large Spheres
The harmonie series representation of the input admittance as expressed

in {2,1) has been shown in Sszc. 2.2.6 to be impraotical for computational purposes
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for spheres whose circumference 1s a large number of wavelengths. In this Sec-~
tion a procedure will be outlined by means of which it appears possible to de-
rive an alternative expression for the input edmittence which is useful for large
spheres. The procedure involves the following stepst |

(a) Transformation of (2.1) into an integral by means of the
Watson transformation;

(b) splitting up this integral into two components, one of which
corresponds to the geometric optics field, the other to the diffraction field;

(c) evaluation of these integrals by appropriate methods.

The essence of the Watson transformation consists in recognizing that (2.1)

is the sum of the residues of a complex integral taken over a suitable path en~
closing the poles of. the integrand along the positive real exis. This integral

is easily seemn to be
&, 2 LY
- V1% A e .
Y go[wa] ém O:I(V‘—%)COSW\'

(B35 —[m Bo(0 ] %58} dv,

(3.13)

where
vyan+'ls,
= Zoka)/Z8 (ha),
3= 2 ka)/Z0 (k).
The contour C is shown in Fig. 3-2,
The quantities rg,; asnd g,’,‘ involve spherical functions of order n, or the
ordinary cylinder functions of order n+%= V.
In order to put (3.13) in a form more suitable for evaluation, we split the
integral into two parts by writing
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Ly®
3%377‘. = |+itanvr.

Then (3.13) splits into two parts, Y, and Yp:
vi=ZL. [Wtw(f;ﬁ: - L2380 dy, (3.14)

V=il Lon [-&l’;—%cr:@f -Zis) dv, (3.15)
in which

e\ [Vl

‘m=g, n [V(%;] '
rob

z= y Br. (cos8)sin38de,

m-?v.
. =J mA?r, (cos8) db,

-

VY- plane

O

A i .
E\‘ % %
C

®

Fig. 3-2 Contour for Watson transformation

The integral in Y, hes no poles within contour C. Consequently, asymptotic
values may be inserted for the cylinder functions in q«: and /3,,':‘ » Becauss of
the branch point at ® =y (u denoting the argument) in the cylinder functions en~
tering @5 and /*,'," » the appropriste asymptotic forms for these will have to be
selacted.

In developing the asymptotic values, the usual esymptotic expressions for
the associated Legendre fimctions generally are used. In [4] we have shown
that these functions may be replaced by a Bessel function series which is rapidly
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convergent for large spheres. This representation appears to offer greater
accuracy than the asymptotic expansions of the Legendre functions for spheres
of intermediate size.

In the most general case, Y, may be expected to be decomposable into several
components, corresponding to "lens" and "rainbow" terms due to corresponding
action of the plasma sheath. In almost all practical cases arising in the re-
entry problem, however, these terms would not be expected to be of any great im-
portance because of attenuation in the sheath.

The term Y, can be evaluated by residues, by deforming the contour C into
loops around the poles of the integrand, which are the zeros of z,;'.‘,: (ka) and

M (ka). These residues correspond to the field which has diffracted around
the sphere one or more times. Consequently, it is to be expected that Y, will be
small compared to Y. ‘

We have given only an outline of what appears to be a workable procedure for
the large sphere case, since the resulis of the computation progrem became avail-
able only toward the end of the contract period. The procedure outlined follows
in a geveral way the procedure [5] which has been found to yield satisfactory re-
sults for the computation of fields in the optical and shadow regions.
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4o NON=-UNIFORM PLASMAS

4.1 Introduction
In all the preceding work, the plasma has been idealiszed by assuming

both its refractive index and thickness to be constant. Both of these assumptions
are far from the true situetion in re-entry pi!.aun.nas° Consequently it is desirable
to extend the treatment to a more realistic approximation. In this connection,
knowledge of the plasma shape and properties probably is still only in a crude
state. Nevertheless, a more realistic approximastion than that of a homogeneous
plasma should not be difficult to obtain.

In this Section, the previous treatment will be refined to take into account
an inhomogeneous plasma, but with the restriction that the stratification be
spherically symmetrical, so that the thickness of the plasma is constant. In this
case it turms out that the previous results are modified by the replacement of the
radial functions (spherical Bessel functions) by functions appropriate to the varis
ation of refractive index with the radial distance. Beyond this, an important
difference enters, in that the radial functions for the electric modes are not
the same as the radial functions for the magnetic modes, since they satisfy dif-
ferent differential equations.

A rather general treatment of the problem of propagaﬁon in a non~-homogeneous
spherically-stratified medium was given by B, Friedman [6]. Friedman's analysis
was aimed at propagation through the earth's atmosphere. Consequently, he was
able to neglect certain terms erising from the gradient of refractive index which
are small in that problem. In the re-entry plasma problem, however, these terms
no longer are negligible. In addition, Friedman treated the case of point electric

or magnetic dipole sources at a finite distance above the surface. Here we shall
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be interested in the distributed surface source representing an excited slot.

In view of theae differences, it geems desirable to formulate the analysis
rather fully, in order to bring out the differences between the homogeneoua and
the inhomogeneous plesma. This will be carried to the point where the results par-
allel those for the homogeneocus plasma, so that similar procedures then can be fol-
lowed.

4.2 Yo ation
The underlying geometry will be the same as in the hamogemeous cases
a slotted perfectly-conducting sphere is energized by a voltage source at its
center. The sphere is covered with a uniform insulating layer of thickness 6-a
and propagation constant k,. Overlying this is a spherically stratified plasma of
varying refractive index 7tz = 7,(R), of thickness ¢—4. The plasma terminates in
free space, either abruptly if ¢ is finite, or gradually if ¢—=w, \

As in the homogeneous case, the fields may be separated into electric and
magnetic modes. The electric modes may be derived from an electric Hertz vector
potential /7% in virtue of the Maxwell equation

divg = 0,

This Hertz vector, however, does not satisfy the wave equation. But by writing

T"=k8P" (401)
then it may be shown that PZsatisfies the modified wave equation
VP +kz P" =0, (4.2)
where
Fre k-t SO0 o pn (g U g e G

The quantity 7, may be considered as an effective refractive index for the ;lcctric

modes.
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The electric and magnetic field strergihs of the electric modes are derivable

from the equations

E® = zr curleurt T® = [T + grad (r 55 ) (404)
ﬂs--‘:};ﬁ cu.rlgig-—ral;;; CU"I(,(ZBP‘)_ (405)

1t should be noted that in these equations kp appears rather than 4.

The magnetic modes are due to source distributions which are characterized by
div £ = 0. Circular current distributions have this property. The fields of mag-
netic modes are derivable from a radial Hertz vector potential [T “, which, like

IT® does not satisfy the wave equation. But by writing

It = &R P (426)
1t turns out that P" satisfies the ordinary wave equation
VP k2PY = 0. (4.7)

The electric and magnetic field strengths of the magnetic modes are derivable

from the equations

= -3- curl P =7 curl (k,,gP“) (4-8)
M= "’;25;: [z erad,,,e I=- baleget + graddelrP™].  (4.9)

The advantage of writing the Hertz vectors ]j y I Hin terms of the scalar
functions PE, PH, respectively, is that the latter quantities are soluticns of
scalar wave equations whose separation properties are well known. Thus, (4.2)

may be separated in spherical coordinates by writing

RPE = T(Q)UR(R) V(P . (4-108)
where
d2Y 4 ,
-2;; +m3V =0, (4.10p)
' ‘ 2
;';7‘.? 2%(5’"9 '%‘-) * (" - ;r.?i?) T=0, ‘ (4.10c)
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d*UE -2 _ g2
JRE + (kz - 'Rf;) Ut =o0. (4-104)
The boundery conditions demand the continuity of the &- and y—conponents of

E and 4 at the boundaries of the plasma. These lead to the requirement that

be continuous across the boundaries. _
Similarly, for the magnetic modes one obtains separsble solutions of (4.7) by
writing
RPY = T () UNR)V(p), (4-11a)

where 7 and Y are solutions of (4.10¢c), end (4.10b), respectively, as before, but

U¥(R) is a solution of

3 H x
Lix + (K- Hui=0. (4+11b)

Thus it i8 clear that the magnetic radisl functions (/¥ satisfy a somewhat dif-
ferent differential equation than the electric radial functions U% The differ-
ence resides in the appearance of the modified radial propagation constant Iz
in (4.10d), while in (4.11b) 4, appears wnmodified.
For the magnetic modes, the boundary conditions require the continuity of
U and -3%2
across the boundaries of the plasma.
If one chooses the separation constant 52 to be
s*=nn+l)
then a finite solution of (4.10¢) is
T= Bl(cosb).
Consequently, a harmonic series representétion for the fields, and ultimately of

the input admittance ¥, is obtained similar to that in (2.1). The essential dif-
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ference lies in the radial functions for medium (2). Instead of the spherical
Hankel functions which appear (2.1), the corresponding solutions of (4.10d) appear.
For the magnetic modes, the same type of harmonic series representation is
permissible, the only difference being that the radial functions are the appropriate
solutions of (4.11b).
Thus the fielde are derivable from the radial Hertz potentials
ITE = 2';‘: 2 G ke UER)B(c036) cosmg, (4012a)
mi = &5 ah, 2UNR Bmicos6) sinmg. (4.12b)
The field components are obtained from (4.4) and (4.5) for the electric modes and

from (4.8) and (4.9) for the magnetic modes. The tangential components are
(k ) m UN m 2 \
Es R ;Z aM ! P + anm ’l" } COS’”?’

£q ='JR_; E:{a"!'" "(5"2}" L:Tn&b' +an, Fi.'"/} sinme,

> (4.13)
' Bm

Hy= m' ZZ{ar LUSZE oy, U"’P;"’} sinmg,

Ho= —-—nzz{amkzu‘/?"’ - @l BB Y cosmg. |

siné

In the above, (sz,,;) denotes g-k-(/c, ) and B/ denotes .j‘b.(z"(ma)) »

Equations (Lclﬁ) are valid for the inhcmogeneous (but sphericall"y-strgtiﬁed)
plasma, medium (2), as well as the homogeneous insulating leyer, medium (1), and
the outer {ree space region @a Only the radial functicas U, , U,,“ will differ
for each region. The forms of the functions in each reglon are determined by
the differential equations which they satisfy and the boundary conditions.

In order to determine the filelds by means of the boundary conditions, we

assume the following forms for Uy and UM :

Up = hi R = RALju Ui ), UM = kR = RE kR, (4148)
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G TE (™ - o ), U T (@ - ot i), (4+14b)
U< £E P (keR), U= 8 1P (ko). (4014¢)

v,,"’ and v are, respectively, outgoing and incoming wave solutions of
(4.10d) for medium (), while w;® and w;i" are the corresponding solutions of
(4.110). KM and P are reflection coefficients at the boundaries of the

sheath, and 7,‘,’3»H and 'z:,,E’H are the corresponding transmission coefficients.

4.3 Determination of Amplitude Coefficients

The amplitude coefficients d,,Em and aﬁ,, are determined from the pre-
scribed boundary values of £y and £9 on the conducting sphere K= a:

Ey(a,6,¢) = O

% (4015)
Es(0,6,9) = k- 2y cos pp [H(0-F+) - Hl6-F-4)]

where JH(x) is the Heaviside step function. From the reciprocity theorem and the

orthogonality properties of the trigonometric and assoclated Legendre functions
['7], these coefficients are found to be

a""‘ - 2n(n+45 UE (a) fEa(an? 9’) sl'ne cosm@ d0dg

Vo A (o)z
ntn"e'-t) kiue'éf) i (40.16a)

iy Br
an, = i‘a‘%mvmfﬂe‘a'@?)%”r cos mg d6 dg

m mﬁ-"’(o)lu (4.16b)

where

”‘(cosa)
I = z‘f WSMBG‘G
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Except for the fimetions L{,'I(a) and Up™a), (4.168) and (4.16b) are the same
a8 in the case of the homogensous plaama.

By introducing the values of (4.1l5a) and (4.15b) into (4.13), expressions
for the field components in terms of the exciting voltage applied to the slot are
obtained., These then cen be used to solve for the fields and the radiation and

impedance properties of the antenna.

4ol Determination of Reflection and Transmission Coefficients
Application of the boundary conditions, i.e. the continuity of

’
KUE, u",L’fk_‘ﬁf)‘ and UM

at the boundaries of the sheath, leads to the following velues for the reflection

coefficients:
C
Png = —DJI. (4017&)
A, B,
¢ D
R== R [ 1 .
ST F.’ (427b)
¢ b
where
o Kh b
A= I ™ '
| i&""mjz ey 5=l ity
~ klz/" h; k:l); I.’
o= [f:y'{”L [kzzf"tz)]; D' = WV"O)L [kl"fnm];j
kG d \ K 0
&= k'f“*“’lz Usvicl; Fi 2 |wt], Dl

In terms of these reflection coefficients, the tranamission coefficients are
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I‘t“ﬁ - '?ne.l‘:)

al 3

7’. ol Eﬁgwm}}' . (’nﬁﬁlkalf‘" 2 $ (40188.)

,cnez Lkgut® l; En ket le TE (4.18b)
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Similarly, for the magneiic modas
fn“= "f%f: 9 (4.19a)
R <‘a @aj (4.19%)
Ba
- He
= 5,(,:;{: é?é‘ém@ ] {4.0208)
@y | . H 2} ‘

z’rzgwn L&:n L’flﬂo ,}4 T""“’ (40201))
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where

<|twe, faeety]
Cy= Ei’;',.nca’_‘u fl'&mlie

8. . p
z §d 44 ’
Ea* [, Tgeot;

45 Input Admittance

By= g’g 1, fj- ‘"l’;g
* iiv' "]4 L\fml;x

The input admittance may be formulated in the same way as in {2] for

the case of a homogeneous plasma, The admitbtance ls obtained from the relation

xrn
{ . :
Ll 7777 “ g Epla,89) Hpla,b,@) a*3ind dé dg.

The result is

Vs X 2 [Vm. 2 gam gh LB QI

n(n+1) n{nsid

Vo)l €., VL

vhere

";n ki(hg ‘;‘e}in %a};

3%

(4021)

(4.218)

(40228-)
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n "k Tho= RIS 4o22

(4021) is entirely analogous to (2.1), the only difference being in the re~
placement of the radiel functions gf, 4. (defined by

q: o Z:‘U&a) / zp\u’(kl‘) s (40238)

4
ait= 2R (kayZti ha) . (4.230)
as in Sec, 3.3) by the fumctions &5;5 and gf, respectively.

4.6 Radiation Field

The radistion field is obtained by replacing the radial functions 4’/,,E3
and 4" by their asymptotic values, Since these radial functions are the ssme
as in the homogenecus cese, except for the velues of the transmiasion coefficients,
the form of the radiation pattern is essentially the seme in both cases. Some
important differences .can arise, however, from the variation of the transmission
coefficients with direction. In some cases, cut-off can set in ait certain angles
dus to substantially total internal reflection at the plasms sheath. This phenom-
enon can be affected apprecisbly by the nature of the refractive index gradient.
This phenomenon algo can take place to a different degree for the electric and
magnetic modes, due to the fact that the corresponding radial functions for these
modes satisfy different differential equations. The difference lies in the appear-
ance of the effective refractive index 7, in the radial equation for the electric
modes, while the equation for the magnetic modes contains the refractive dndex 27
This difference will be discussed in greater detail below.

4.7 Effective Refractive Index for Electric and Magnetic Modes
To illustrate the significance of the difference between 71 and 71y,
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consider the case of a plasma which has & refractive index which is zero at its
inner radius R = 5, which grows to a maximum at a radius &, and then decays (say
exponentially) to zero. This can be represented, say, by

nZ = A(R-p) =8R8
The maximm value of 722 occurs where
Rm -b = ‘/ B,
Hence

n : =A (k__ b) e‘(k"b)/ (Ron "b),
or, on putting
R-b=r,

2=Aret/im, B (4o24)
This variation is illustrated in Fig. 4~1 by the s0lid curve.

To find 7z, we have

-I)’ 2 /2r
S ST Gy 4]

Hence
Fig = 912--7?57;{;(!/011) “
= Are —r/l:n [( &5") (_k;g;j_z.]
Since the bracketed quantity is always positive, 'h—: is always less than 'ngo This
is shown by the dotted curve in Fig, 4~1. Wheress 717 is everyuhere finite, 77,
is ~m at P= 0, Thus &f = AF77 in (4.10d) has a singularity at »= 0, whereas
ke = w3 k2 in (4.11b) s regular at r = 0.

As in the above example, the magnitude of the difference between 7§ and 7§
depends on the "curvature"” of the reciprocal refractive index measured in terms
of the free-space wavelength. Thus at sufficiently high frequencies (small k,)
this difference becomes small except very near » = O (the inner boundary of the

plasma), where the model given by (4.24) has discontinuous derivatives.
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0f course, the above example is an extreme one which is not likely to be
encountered in practice. A more plausible assumption would be a case where 91;~|
vag zero at K= § and R = @, Nevertheless, in any model in which 7, becomes zero

at any point, 1y becomes infinite there. This is evident from
2 _m AW | mf ol
Tl haid 773 "'"‘.I ;F n’, n 2
This is certainly infinite unless nifng = 27 )
As a result of the difference in the differential equations satisfied by PE
and P’; it is to be expected that there will be a significant difference in the
behavior of the electric end magnetic modes which compose the total field when "?"l':

differs greatly from 'né o

4.8 Digcussion

In the foregoing bortions of this section, the general relations for the
fields and input impsdance Ahave been developed for sn arbitrary spherically-strati-
fied plasma surrounding the sphexrical slot antenna. It has been shown that a har~
monic series representation of the fields similar to that obtained in the case of
a homogenecus plasma can be developed in this case. The difference between these
developments for the inhomogeneous ceses lies in the form of the radial functions,
This results in corresponding differences in the reflection and transmission coef-
ficlents. Consequently such characteristics as the input admittence, radiation
efficiency, optimization procedures, and radiation pattern (especially at large
angles to the direction of principsl radiation) may be expected to be affected by
the inhomogeneity of the plasma. The extent of these effects will depend on the
nature and megnitude of the inhomogeneity, It was hoped that datz on plasma in-
homogeneity would be available for study of these effects in connection with the

present work, but, unfortunately, this information was not available to us.



Some general remarks can bs made regarding the effects of an inhocmogeneous
plasma. In Sec. 3.1 it was shown that a weak homogeneous plasma produced a
change in input admittance that is directly proportional to ¥ = (72— 1). The
proof was based on a Taylor series expansion of the radial fumctions which in-
volve the plasma characteristics. In the case of a weak inhomogeneous plasms, a
similar result will be obtained in those cases where the corresponding radial
functions (both for the electric and magnetic modes) can be expanded in a rapidly
converging Taylor's series. Thus one can conclude that the result

AY = LKV + O(¥?)

obtained in Sec. 3.1 also holds for sufficiently weak inhomogeneous plasmas. The
constant K, of course, will depend on the nature of the inhomogeneity, in gémeral,

In [2] 1t wes shown that the external efficiency of the antenna in the presence
of a homogeneous plasma is the product of three factors: the ratio of power expended
in the radiating modes to that delivered to all the modes, the power transmission
coefficient for the radiating modes, and the transmission factor at the outer
surface of the sheath (representing reflection loss at the outer boundary). In
the case of an inhomogeneous plasma, the first of these factors should remain the
same, while the other two could be appreciably different. An appreciable difference
would be expected in cases where the overall depth of the plasma Qas much greater
in the inhomogeneous case. For a given integrated conductivity (i.e. fk,dt ’
t = thickness), the attenuation would be about the same in both cases, but the
transmission factor in the inhomogeneous case would be increased appreciably from
that in the homogeneous case (if the latter were amall) if the plasma extended out
to about a body radius.
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5. VOLTAGE DISTRIBUTION ALONG THE SLOT

5.1 Introduction
"In all of the analysis of the center~fed slot antenna, it has been
assumed that the voltage dlstribution along the slot is known., For the case of
a slot which is sufficlently short compared with the wavelength, the voltage dis-
tribution cannot depart appreciably from a triangular shape, either in the pres-
ence or absence of the plasma. In the numerdcal computation program discussed
in Sec. 3, a trianguler distribution was assumed.

The assumption of a triangular distribution should be a good one for suf-
ficlently low frequencies. At higher frequencies, howewer, it is to be expected
that the voltage distribubion will depart considerably from a triangular shape.
Furthermore, the distribution may change when the plasma sheath forms, Conse~
quently, a method for determining the voltage distribution or for calculating the

input admittance without requiring the assumption of a known voltage distribution

would be desirable. In this Section, the efforts toward this end will be described.

These efforts were not enbirely successful, but a procedure which appears to hold

promise is outlined.

5.2 Formulation of the Problem

The exterior admittance of a center fed spherical slot entenna was de-

veloped in [2], with the result

e,:w.. 5 _.!‘vm &2 { Eﬁ(k,a) n o
Y )‘é 7] "'ll\fw)} Em )7‘ n(n+]y {%1[“Ea} Eﬁl (O}.ZE]
MIUD -
v LA n 2 (5.1)
ZH% (k) [m A0 L] }

Interchanging the order of ‘the summations, this may be written in the form
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Y‘_ § v(o Y¢ (502)
where

W :»:Z‘;. €.n.n(m4 {%[F" o] - z" (/«,4) Fng "O’In]} (5.3)
In (3], a procedure was given for calculating the quantitea z...“(b«yz,.“u,a)

and ZH* (k,aYZ:"(k,a) for values of n up to about 30. Consequently we may as—
sume that approximate values of ¥, are available, at least for the smaller val-
ues of k.

From the expression for the azimuthal component of the magnetic field, it
is readily seen that this may be written in the form

e
”;Z;o Hq:m cosmep,
where Ay, is independent of @ . Then it follows without difficulty from (4.21)

that
| F /
ye = —"'—chwr ff E; (2,89 Hy (a,6,9) a>sind d6 do

Z, [V(oT”. f f E; (2,6, ) Hom(2,6,§) a* 5in6 cos mp dédgp. (504)
Introducing the value of .f.-;9 (44¢) from (4.15), it follows on performing the
¢ -integration that

'3
YW = o 5 | Hom 5in8 d6. (5.5)

" In the foregoing, V. is the m coefficient in the Fourier expansion of the

slot voltage

«©
V = R 506 '
V) .?-::,V'" cosmep (5.6)
Up to now only the exterior admittence of the slot has been considered.
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Presumebly if a sufficlently simple configuration is assumed in the interior of
the sphere, it would be easy to obtain the interior field and interior admittance
of the slot in much the same manner as was used for the exterior. In this case,

the total admittance of the slot would be

0
Y= 2 [se] (5.7)
where
H Zra a i
Yo=Yt ok = é—:v- f(H,,,,,, ,,,.) sin@ dé. (5.8)

Now the mt* Fourier coefficient of the surface current density A(@) at the
boundary* between the exterior field and interior field is given by the discon=-
tinuity in the m? mode of the magnetic field strength

K (8) = HEy = Hel

Substituting the above into (5.8)

T
Q
v, = E52. A f Kon @ 5iné o, (5.9)
i

or

Yo = EXE £, (5.10).
where

T4
K= Kul®sina de. (5.10)

Since the slot is aasﬁﬁéﬁ to be marrow (s<<a), the above integrsl is ap~
proximately equal to the m*" Fourier coefficient, Km(6)[ o= OF the current

density at the equator.

#  The boundary 1s considered to extend entirely around the equator of the
sphere even though the slot extends only part of the wey around it. The positive
direction of surface current flow (and also of slot voltege) is taken to be the
ninus & Adirection.
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(5,10) relates the voltage across the slot

V@) = 7, Vin cos mep,
to the surface current demsity at the equator of the sphere

K@) = 7, Kincosme, (5.12)
through the known quantities Y;,. Conmsequently (5.10), (5.12), and (5.6) should
be sufficient to determine the input admittance completely without making any
assumptions regarding the voltage distribution, since it should be possible to
determine the latter through these equations,

5.3 Derivation of an Integral Equation for the Current Density
An integral equation for AK(p will be obtained in this section through
use of (5.10), (5.12) and (5.6). If the mt* mode radiation impedance, Z,, is

defined to be the reciprocal of the mt mode radiation admittance, (5.10) can be

written as
aQ
Vm = %‘Zm(m . (5:;13)
Since K, is the mth coefficient in the Fourier expansion (5.12) of K(g) , one
has
I«
Kn= Eélj/((:p’) cos me’de! (5.14)
T o

Substituting (5.14) into (5.13) and multiplying both sides by cos/mg, there
follows
~”
Ypcosmg = Zima wsm¢f/((m¢’)wsm¢2/¢i (5.15)
7
By summing (5.15) from ;= O to ®, end interchanging the order of summation
and integration, (5.15) becomes

r
eg) = f [éo Z COSM@ C05‘m¢’]k(¢p’) ady’, (5.16)
-
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This equation holds for all values of ¢ in the range -¥< @ £ 7. The in-
tegral on the right hand side of the equation may be split into two parts, one
representing integration from - ¢, to +¢ along the slot, while the rest repre-
sentis integration along the conducting surface of the sphere. Over the face of
the slot the current density must be zeroc everywhere except at the center where

it is fed. Here we set
Klg) = I, 5 §(@),
where § (q>’) is the Dirac delta function and Z, is the impressed current, Then
Y o -
) :r[ [ ;Z._o Z,, cosmgp cosme’|Kig') adyp’ = T, %o Z,, cos mp

[}
(5.,16) then can be written as

V(tp) sz,,,mm +Z/[Z Zy cOsmg casm]K(r,'/ aaﬂy; (5017)
¢
where use has been made of the fact that the integrand in (5.16) must be an even
function of @', from symmetry.

If the summation in (5.17) is written as

G(qv,<p’)='—-'z°z,..‘cosm¢ cos mp’ (5.18)
then (5.17) becomes
-«
Vig) =L GO + 2afG(<p,¢') Kp?) dp’. (5.19)
[ )

When @ lies in the range ¢ < /¢l <, V(@) 1is zero since the conducting
strip in back of the slot (see Fig. 5-1) is assumed to be a perfect conductor.

Consequently (5.19) becomes

x
0= a0 + [ alg,e) Z25L 4y (5.20)
L 4]
if ¢<l@l<m, while if @ =0
= Vo) _ 3 A 2a K@) , ,
3
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Equations (5.20) and (5.21) bogether with (5.18) complete the mathematical
formulation of the problem- (5.20) is a Fredholm integral equation of the first
kind with a symmetric kernel, &{e@’) < The unknown is the quantity 2a K@)/ Te,
which is Za timgs the current demsity per wunit impremsed input current. If
(5220) can be solved, the input impedance, &y, » will be given by (5.21). The
kernel, G(®,4'), [as can be seen by substituting L 5(e-g¢")+ %.;s‘(aw q"d for
Kp)in {5,16)] is numerically equal to haelf of the voltage at @ due to two wndt
source currents, symmetrically placed at + g’ and -¢% It is necessary to use
symuetrically placed sources in {(5.16) since K(¢)} was taken to be an even funce
tion of ¢ when it was expanded in a cosine sevies, If this assumption had not
been made an integiral equation would have been oblained with a kernel
Z A, eo5 m(p—g? » This kernel is a Green's function, and G(@¢) is the even

part of thie Urean's function.

%s4  Solution of the Intspral Equalion for Some Special Cases
One stendard rﬁethod for the mumerical solution of integral equations
is to approximate the integral by means of o summation, and then to solve the
resulting set of linear algebralc equstlions. Physically this corresponds, in the
case treated here, to replacing the conducting strip shown in Fig. 5-1 by a number
of connecting wires as shown in Fig. 5~2. The conducting surface hag been re-
placed by 2V shorting wires located at @ =2q@, @=%t@, « « « P =iPy koo

The current density in the ragion @, £ £ can now be written as

Moo

K= Z, 7 slp-g), (5.22)

J=i
vhere I; is the current in the wire at # = @y,

5.4ol  Formal Solutdon

Substituting (5.22) into (5.20) and (5.21), and using the notation
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Gle, o) =G, (5.23)
with ¢,=0 one obtains for <=1, 2, o « « N
2= Gogt g; e K, (5.25)

or in matrix form

Geo Goi * * * Gop ! Zinl
6m G Gix ZI/Io O

o 02 e o
“—
=

(5.26)

. ¢ e a & O o

I * ¢ s & o .

G Guy* G ZL/Io o
Solving for 'Z.;n by multiplying by the inverse of the matrix of the equations
[ G ] there results

Goe Go* **Goy
Gﬂo G.N: ::‘:'I
in= : (5.27)
Gu 61;"‘6"‘
5Nc(\a: * Gy
where
Q“
=”?;bzmcos me; cos mg: . (5.28)

Equations (5.27) and (5.28) provide a formal solution for the imput impedance
for the physical situation depicted in Fig. 5-2. This solution is correct, how-
ever, only if the matrix [&; ] in (5.26) has an inverse, i.e. if the numerator
of (5-,27) does not vanish,

Let us consider the case where the element &, defined in (5.28) is approxi-

mated using M+ 1 modess
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GA}- x "2‘_0 Z cos Mme; cosmgy . (5.29)
Then the matrix [G ’» ] can be written as a matrix product

‘600...&0“ ws QR "'WMQ. 200 ~01}i} | }

Gio* * * G ) cosqy o oo cosMa|[© 2,00 [|cosqy cosq < ¢ * cosqy
I SO | SO | I N CX )|
6:5“’6‘ 'm%"'m* ‘oo.o. ‘cotMg . c--mﬂ'”

as can be verified by taking the indicated product. Now the first matrix is of
order N+ 1 by M+ 1, If A is greater than/, then the determinant of the product
vanishes. [See W. L. Ferrar, "Algebra" Oxford University Press, 1957, Theorem 15].

One special case to which the formal solution (5.27) may readily
be applied is that of a slot extending all of the way around the circumference
of the sphere. The conducting strip in back of the slot is reduced to a marrow
strip located at ¢, = v, as shown in Fig. 5~3. In this case the strip evidently
i8 equivalent to a single wire at ¢ =@, or to a single pair of symetrically

placed wires at ¢ =t . Taking ¢2q =x (5.27) becomes
Geo c...| 'zz.. 2z |
2, = Gio Gu ZZuc)" ZZa-02")
TG EZat0rm
2Z2F2,Za[1- ~0™"]
= 5.31
zz. (5.30)

zozu"zoz"’zozl* 4 ZZg AL Lyt t DaZy b
Lo+ Z+2Zat

5.4.3 Impedapce for Two Pairs of Wireg
Some sdditional light is shed on the gemeral problem of the slot
backed by a conducting strip if the input impedance of a slot backed by two pairs
of symmetrically placed shorting wires, one pair located at @ = and the second
pair at @ = @, , is compared with the case already caloculated above in Sec. 5.2,
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vhere the slot was backed by a single pair et ¢~ x only. These two solutions

for the input impedance should approach each other as @ approaches .

be shown.

That

. this is true only if some resistance is included in the shorting wires will now

If each shorting wire is replaced by a resistance R, then V(¢;) is equal

to -RIL;, and equations (5.24 and (5.25) become
I'— N 21I;
R = &, +Zey -:I‘
= ZI.
2‘-. G, + é&oj —ﬁ-

The solution is \
Goo Gia Qog * ' °
G (Gu*%) Gig v -

e o g ¢ s s e .+ o

[ (emz)

Zin =
G«*%) Gia *TC Gy
GN (eu*%)o o o 6‘”

i I - » [ [ L . » » L

Y W2 )

In the case of shorting wires at ¢ =@, and ¢, = ¢, = 7, this becomes

'Goo 600 Gn
G [T (6 ut z) G';
G Gay  (6uat)

Fin= T e B G )I
Gay (6208
Expanding as a polynomial in R/2
Goo Gor G@er Go. G“ Gon R
Go Gu Gu G” G +-4—6.,
|Gae €2 G» ‘o "‘“ »
in =
Gu Gls

& {CTENES 3
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As @@, the first terns in the numerator and denominator approach zero, since
each determinant contains equal rows. If R is small, but not zero, the last
term may be neglected. AR cancels out of the ratio of the middle two terms leav-
ing an expression identical to the first of equations (5.31). The limit of the

indeterftinate form represented by the ratio of the two leading terms of the series,

however, can be shown pot to approach (5.31)

This suggests that the resistance of the conducting strip plays a vital part
in the determination of the input ﬁpqdance, and that the approximation used in
obtaining (5.27), namely that the resistance of the conducting strip is sero,
must be made with care.

5.5 Attempted Solution of the Integral Eguation
One method for obtaining a solution for the input impedance Z%; in
(5.21) in the general case (where the conducting surface is not approximated by
wires) is to approximate the kernel in (5.20) and (5.21) by a degemerate one,

G(e,P) = 2"..: Z, COSMP O3 mep’,

vhere the sumation now extends over a finite number, A, of the modes instead of
to infinity. This is the natural methcd to use since only a ﬁnite number of
modes can be calculated in any case. When this is done the integral equations
reduce to a set of linear algebraic equations.

If the order of summation and integration is reversed in (5.20) and the
resulting equation is multiplied by cosng and integrated from ¢, to mr, one
obtains

M- M-
0= ZomTom * o TomZm ¥+ (5.36)
Using the same procedurs, (5.21) reduces to
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Zin = T 2m * T D Yoms (5.37)

where the quantities x,, and 7nm are defined by

L3
Xm B fcosmq"—é—a{-’ﬁgzd‘”“

e,
om = f cosmg’ cosng’dq’.
Inspection of ( 5.36) shows that a solution is given by X, = =1 so that
Zin =2 EZn~EZy= 0. (5.38)
This result obviously is incorrect. The reason why an erroneous result is
obtained by the above approach will be made clear in the next sectior where the
problem will be fomlatad in terna of mfinite matriceaa

5.6 Matrix Formulation
The problem may be summarized by the-five equations

V@) = Z. Vin Unah (5.39)
K@= . Konle) U (5.40)
Viy = (14 bp) Zm 2K (5.41)
Vi¢)=O, q<igl<cm (5.42)
K@= 256, Igl<eq, (5043)

whers the orthonormal functions U,(y)= l/l(usm)f are used for mathematical cop-

venience.

(5.41) can be written in matrix form as

V. ZL . . L] . ‘
V' o z‘ - - » K‘
.| =ajo o0oz,. .||. (5.44)

. & . ] L [
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or
V=azk.

To express (5.42) and (5.43) in matrix notation, use is made of the idem-
potent matrix A which has the following propertys A is an infinite symmetric
matrix vhich, when it premultiplies the column matrix of the coefficients of the
Fourier expansicn of a given function, produces = new set of coefficients which
correspond to a new function identical with the old in the region li<@, but
equal to zero if ¢,< @l <. In other words, multiplication by the matrix
annihilstes the portion of the function which lies on the back of the slot.

The derivation of the elements of A is as followss:

Let

@IS £@), Iql<a,
20, e<Klen.
Let the Fourier expansions of f,(¢) and f(p) be
0@ = 2 FamUn(@)s

fp)= g.ofm Un (9.

AL &) .fQI
fam = | F(@)Um(@) dg = é £, Un (@) Un(®) do,
e h
®
fam= T [ Un@ Unio) do,
or in matrix notation e
‘FA = A‘F, (5945)

where
+€)
Apm = f Un (@) Um @) d@
-'3‘(1

.1 sno do.
} -‘{. qus...)mr...) T Os M cosne de
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Integrating,

%
Aso = f -z-l"dq» = @i/, (5.46a)
-3
(] '
Aop = f—{/—_cosmpdq JZ'snnnn¢ , (5.46b)
~d
A = f -%-c_osmq?casmpdtr = [sm(mmM: + sm(m:”nh?a] (5.46¢)
Anp = "'_' cos*ngde =k [2inZnet ] (5.46d)

If the fumction £ (@) 1is defined by
fa () = f(@), @i <lol<m,
= Q, lpl< @y,
then it follows from
(@) = £(@) ~ fo ),

‘Fsmg fn - 'FAM)
so that
f5= (I- AV =Bf,
where I is the identity matrix and £ is an idempotent matrix that annihilates
that part of a given function that 1ies on the slot,
To write (5.43) in metrix form cne also needs the Fourier expansion of

§(e) =m‘2§° S Um (@)
Then
o
S = [ 5) U@ =1n(0)
-
Thus

S
3,,, = W . (50108)
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In matrix notation, then, (5.27), (5.28), and (5.29) become
V=azZ'’K |
BV =0 ‘ ' (5.49)
AK =225
where a and I, are scalars, V and K are colum matrices whose components are the
coefficients in the expansions (5.39) and (5.40), § 1s a column matrix with
components given in (5.48), Z’4is the infinite diagonal matrix displayed in
(5044)5 the matrix A has components given by (5.46), and the matrix B equals the
identity matrix minus A.
Equations (5.49) complete the matrix formulation of the problem.
The unknown matrix V can be eliminated from (5.49) by substituting into

the second equation, giving

BZK =0
(5.50)
AK = Zeg
If in (5.50) we let AK=Ks+ 155/1 we get
5z’/(,=-—-%—323’
(5.51)

AKB=O.

The matrices in (5.50) are infinite, so it is not strictly correct to speak
of their rank or of matrix inversion. Roughly speaking, however, it is evident
that the matrices A and & are in a sense singular matrices, for in (5.50) there
are twice as many equations as umlkmowns, at least if all of the matrices involved
are truncated after M modes, says

It is now interesting to write the integral equations (5.20) and (5.21) 4n
terms of infinite matrices: They become
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0= —fg—az’: + BZ'Ka (5.52)
~ a ’
Z, =mEZE + -% §2°Ky (5.53)
Here
l
/(3,,, = ;[Ll,,,(ep’)/((q)’)d@" (5.54)
[}

corresponds to the quantities Xm,obtained in (5.36), where the notation used is

slightly different. (5.51) can be written as

BZ'[K,+ 25] = 0. (5055)
This leads to the solution
z
K=~ 5= (5.56)

which corresponds to the solution x,, = -1 obtained earlier. When the infinite
matrix BZ'1is truncated by using only M modes, as 1s done when solving the in-
tegral equation using a degenerate kernel, the truncated matrix is non-singular
and (5.56) is the only solution to (5.55). It happens, however, that the trun-
cated matrix is very nearly singular, i.e. its determinant approaches zero quite
rapidly as the number of modes used is increased. This has been verified numer-
ically using determinants of order 2, 3, and 4. '

The nature of the difficulty encountered in the solution of (5.20) at-
tempted in Sec, 5 is now clear. In approximating the infinite matrix 8Z by a
finite one involving Mmodes, the singularity of the matrix has been destroyed
and all of the nc;n-trivial solutions to the homogeneous set of equatioms (5.55)
have been lost. There is one more point that should be observed: the solut:lonv
(5.56) 4is not consistent with (5.54), since § is a matrix that corresponds to |
a function that venishes in the region ¢,< |¢| <M, while (5.54) requires that
the coefficients KBm correspont to a function that vanishes in the region

|9l < @. The above discussion makes it clear that the solution we seek is a

61



non-trivial solution to the homogeneous equations (5.55) that also satisfies
requirement (5.54). But this soluti‘o‘nﬂis precisely the solution to the pair of
equations (5.51).

The procedure that should be uéed to solve the problem is now clear. The
required solution satisfies (5.51). If (5.51), which contains infinite matrices,
is epproximated using M modes, it reduces to a set of 2Mequations in A unknowns.
It is not expected that these equations will be exsctly cqnsistento They should
be approximately so, however, and a zlmmerical solution should be possible. One
method that suggests itself for solving (5.51) both mumerically and theoretically
is to use the method of least squares. The equations are first weighted by mul-
tiplying by suitable diagonal matrices Wz and W), :

WeB2' | WeBZ '
e [Ka ="£a“"",'.".‘,' | (5.57)
WaA L t o)

By premultiplying by the transpose of the magrix of the equations (5.57),
there results

[zBwgBz + AM'A]/G"%Z'B%‘BZ?. (5.58)
(5.58) above are the least squares equations for (5.51). The matrix of the
equetions in (5.58) is easily shown to be non-singular; [see W. L. Ferrar,
loc. cit., Theorem 14], so that (5.58) may be solved using Cramer's rule. One
problem that must be investigated is the proper selection of the welghting
matrices W4 and Wg. That some kind of weighting is necessary is obvious on
physical gromnds, since the first equation in (5.51) is a relationship between
voltages, while the second has the dimensions of current. Also, the results ob-
tained in Sec. 5.4.3 suggest that it must be necessary to replace (5.50) by
something 1ike
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e
BZK =5 6K
AK= %_ ‘ (5059)
where 0 is the resistivity of the conducting strip per square, and p/ﬂ'—-cp, is

the total resistance of the strip, which must remain emall as @, —» .

5.7 Summary
A formel solution for the impedance of a circumferential slot in a

sphere which is fed at one point and short circuited at a nmumber of other sym-
metrically located points (as in Fig. 5-2) has been given [equation (5.27)]. 4
simple formula (5.31) for one special case (Fig. 5-3) has been obtained. A method
of attack is suggested for the general case of the impedance of a slot in a sphere
(Fig. 5-1). This has not been carried through as yet.
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6. THE EFFECTS OF PLASMA RADIATION ON RECEIVER NOISE

6.1 Introdugtiop
One of the problems included in the investigations conducted under the

subcantract is the analysis of the effects of & re-entry plasma upon receiving
antennas aboard e hypersonic vehicle, with particular emphasis upon noise gen-
erating processes occurring in the plasma. This problem will be dealt with in
this Section.

In the radiation of electromagnetic waves from a radio transmitter within
a re-entry vehicle, it has been shown in previous reports that the plasma sheath
produces two principal effects. These are (1) an attenuation of the transmitted
wave, and (2) a lowering of the input impedance. The second effect in most cases
would lead to an additional loms above that in (1) due to dissipation in the im-
pedance matching device that would be required“ Sstween the transmitter and the
antenna, or to increased reflection losses if no attempt were made to restore an
impedance match in the presence of the plasma sheath,

From the previous analyses, it 1s possible to calculate the field strength
produced at a recaiving point (on the ground, say) by a known voltage impressed
across the antenna terminals in the vehicls. Since the imput impedance of the .
antenns has been determined, the received field strength also can be expressed ’
in terms of the power delivered to the transmitting antenns terminals. By the-
reciprocity theorem, therefore, the voltage received across the antenna terminals
in the vehicle from a ground transmitter can be determined.

Although the reciprocity theorem allows the previous treatments of the trans~
mission problem to be extended to the reception problem, this applies only to
the (desired) signal. Reciprocity is strictly a two-terminal relationship, how-

ever, so that it does not consider the signal from any other source which may be
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active in the received signal band. In particular, noise generated by some
other source, including noise generated by the plasma, is not taken into account
in such a treatment.

In determining vhether a radio circuit is capable of providing reliable
commmication of intelligence, a criterion is adopted for a minipum signal-to-
noise ratio. The noise, in many cases, is that generated in the receiver by
thermal and other fluctuations in its circuits and components. The magnitude of
this internal nolse is dependent on the temperature of the noise-generating com-
ponenté, which usually is taken to be that of the surroundings. In the case of
a low-noise receiver, the limiting noise is that received from external sources
which radiate to the antemna. Thus a natural question arises when a high-temper-
ature plasma surrounds the antemma of the vehicle: Is the effective noise temper-
ature of the receiver equal to that of the plasma?

In this Section this question will be examined. It will be shown, in fact,
that the effective noise temperature of the receiving system depends not alons
on the temperature of the plasma, but also on the attenuation through the plasma
at the frequency in queation. As a consequence, a lower optimum frequency usually

will exist for reception through such a plasma than for transmission.

6.2 Equivalent Noige Temperature
In dealing with the noise contributions from various sources, it is

convenient to use the concept of equivalent noise temperature. It then becomes
a relatively simple matter to determine the noise receivéd by the antemma from
the plasma.
The situation is identical to that encountered in the field of radio astronomy

in the reception of emissions from radio nolse sources. The derivation of the
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well-known relations will be given here, both for completeness and to bring out
the principles involved.

An antenna receives an amount of power from a radio source which depends on
the emission characteristics of the source, the attenuaticn in the space between
source and receiver, and the receiving characteristics of the antenna. The amount
of power received usuaslly is expressed in terms of an equivalent source tempera~
ture 7. This temperature is that of a black body which would produce the same
received power at the frequency of obgervation, #. From Planck's law of radia-
tion, unit area of such a black body would radiate an 5mount of power per unit
frequency band per unit solid angle equal to

< 2hf___| ‘
E= "y e AT_|’ (6.1)

where A is Planck's constant, and .f is Boltzmann's constant. This radiation is
randomly polarized. Since in most radio work A##1<< 1, the above equation re-
duces to the Rayleigh-Jeans approximation
E= -z-;ﬁr . (6.2)
Thus the tted power dengity £ may be expressed in terms of the equivalent
temperature 7 by means of (6.1), or the simplified form (6.2) if applicable, £ is
also called the brightness of the source.
The above concept of an equivalent brightness and equivalent temperature
also may be applied to a coherent or modulated type of signal.
In observationa of discrete sources, the source will subtend a solid angle
L. at the receiver which is smaller than the solid angle Sfdg of the antenna beam.
The received power then is given by
p=1e60a=LL aels = #76.0/0 (6.3)
vhere B is the receiver bandwidth, A =63’,4nis the effective receiving area of
the antenna, G its gain, and (2, = #/G. The factor % arises from the fact that
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the antenna responds only to a fixed polarization, whereas the emitted fadiation
is assumed to be randomly polarized.

If the signal received from the desired source is to be detectable, it must
be sufficlently large to produce an observeble increase in the noise output of
the receiver when the antemna is pointed at the source. Receiver internal noise
frequently is expressed in terms of an equivalent noise temperature 7y. The
nolse output of the receiver in the absence of any incoming radiation from space
then is the same as if a noise power -

R = ,&7;3 . (6.4)
were supplied to the input.

This noise power also is frequently expressed in terms of the recelver Mnoise
figure® F. This 1s the ratio of the actual receiver output when supplied with
an available power £ from a resistor (or other noise source), at a referemce
equivalent temperature 75, to the output if 7, were zero (i.e., if the receiver

generated no internal noise). Since noise powers are additive,

F= Putrfe _ Tu+To
=5 =
° To

.

From this,
Tw= (F-DTo. (6.5)
The reference temperature 7; usually is taken to bs 290° X, F frequently is ex-
pressed in decibels.
It is evident from the above discussion that the addition of noise powers
is equivelent to the addition of the corresponding equivalent noise temperatures.
(6.4) may be used to define an equivalent temperature for the radiation re-
ceived by the antenna. Denoting this by 7, it follows from (6.3) that
Ta = T0/12,. (6.6)
In the above discussion, it has been assumed implicitly that there ias free-
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space transmission from source to receiving antenna., This means, among other
things, that no attemuating regions between source and receiver ares supposed to

be present. The effect of attenuation will now be considered.

6.3 Effect of Attenuation on Receiver No Temperat
In considering the effect of radiation from the plasma on the noise

at the input of the receiver, it is convenient to think of the plaama as a trans-
ducer. A transducer composed wholly of reactance elements generates no noise,
since it possesses no mechanism for ﬁparting rendom motions to the electrons
circulating in its elements. Noise generation in a traasducer thus is synonymous
with dissipation. A transducer having a very large (~»=) loss would impart noise
of temperature 7, to the receiver, where 7, is the transducer (ambient) temperature.

Consider, for example, & transmission line which connects an antemns to a
receiver. Let the line loss factor be L (i.e., Bue/F: =L), and the noise temper—
ature of the receiver be /. The transmission line, through its dissipation, re-
duces the temperature 7 of the signal passed to the receiver to L7z, and also con-
tributes noise of equivalent temperature (I-Z)7 , where 7. is the line temperature.

Hence the total noise input to the receiver is

T+ (-LT. (6.7)
The signal~to-noise ratio thus is
(B/R) =L 0/ [T+ I-OT ], (6.8)

vhereas in the absence of line loss it would be
4
B = TafTu.
The reduction in signal-to-noise ratio thus is
L= (P/R) [B/RY = L/L1+(-L) T/RI<L, (6.9)
and thus is greater than the line loss factor itself.
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Some numerical examples at this point may be helpful in assessing the order
of magnitude of the above effect. Consider & line having an effective noise
temoerature of 4000°, and a receiver with a noise figure of-6 db (F=4. Then from
(6.5)

T~m=3T, = 87° K.
Suppose the line attenuation at the operating frequency is 10 db, {.e. & = 0.1,
Then from (6.7) the effective receiver temperature is
7. =870+ 0.9+4000 = 4470° K. _
Consequently the signal-to-noise ratio (in the absence of external noise) which
existed in the absence of line attenuation is reduced by the factor L/, which from
(6.9) 1s
L = 0.1/[1 + 0.94000/870] = 0.0194 = -17.1 db
On the other hand, if the line attenuation is only 3 db, then
TV = 870 + 0.5°4000 = 2870° K
and
L' = 0,5/[1 + 0.5+4000/870] = 0.152 = -8,2 db.

In a similar way, a plasma surrounding a receiving antenna contributes noise
to the receiver input. This noise depends both on the equivalent temperaturs of
the plasma (7;) end on its attenuation (L) at the frequemcy to which the antenna
is tuned. Ccnsequently, in a determination of an optimum frequency for reception
through a re-entry plaama, the following factors are involved:

(a) the signal transfer characteristic, including
(b) the plasma attenuation;
(c) the equivalent temperature of external noise sources;

(@) the plasma temperature.
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6.4 Optimization Procedures
In optimizing the power radiated from a vehicle through a re-entry

plasma, only factors (a) and (b) above are involved. For the case of a strong
uniform plasma, for example, we have shown [2] that the optimum frequency is the
one for which the plasma thickness is 2k skin depths.

In the receiving case, the transfer characteristic for the signal and for
externel noise is the same. Consequently the ratio of signal to external noise
is not affected by the plasma. But in the absence of external noise, the signal-~
to-ncise ratio is decreased when an attenuating plasma is present, as shown by
(6.8), Hence the decrease in signal-to-noise ratio due to an attenuzting plasma
is not as great when externai noise 1s present than when no external noise exists.

The level of external noise is a composite of contributions from terrestrial
and cosmic sources, Approximate values as a function of frequency for various
locations and times are available [8] for use in planning or design purposes. In
view of the great variabiliiy in external nclse level, it is not possible to make
an exact specification of optimum frequency for all situations. However, a typi-
cal procedure that can be followed will be illustrated below. ‘

. To 11lustrate the optimization procedure, consider the case of a strong uni-
form plasma of constant thickness. For this situation, the analysis of [2] may
be used to determine the radiated fields, etc. The various factors listed at the
end of Sec. 6.3 will be considered in turn.
(a) Signal transfer characteristic

For the case of a strong plasma sheath, the radiation character-
istics (including sheath attenuation) are such that the high-frequency range is
of interest. A slotted sphere antenna then has a radiation pattern equivalent

to that of a loop whose plane is perpendicular to the center of the slot. The
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far field then is given by [2, p. 22, eq. (27a)]

v, ikyr _
Egr =%ﬂ-'§' lnl-;\ er' sing’s e=tkele?) (6.10)

where
x - k:. (b-a) .
For the usual cese of a slot length small relative to the wavelength, the voltage
distribution along the slot is approximately trianguler, so that
£
V, =z V().
The last factor in (6,10) represents the sheath attenuation., Denoting this

attenuation by L2

L'/z___ ie-ik;‘c"‘b’l (6011)
we have
_ 3¢ £ V(o 8’
el = Za 7 iqu g (6.12)

(6.12) gives the free-space field. The actual field at the receiver (which we
assume ground-based) will be modified by propagation conditions. In order to sim-
plify the treaiment here, we will assume free-space conditions to exist 'in the en-
suing discussion,

Let the receiving antenna have an effective gain (i.e., including line losses)
of Gy, so that its effective sperture is

A = Gy A%/4r. (6.13)

Furthermore, assume the antenna is matched to a 50-ohm line, so that the load

impedance is 50 ohms. Then the power delivered to the load is

po= {E?'[‘A - lE?.I)\z Gy
R™ 207 4x / 30
and consequently the load voltage is

T-TV( Gr[-)

K=L152 el sing’

8rta r
where the magnitude of K is independent of frequency. Hence
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Vi K ‘51'[-)”"
Vzo) Heixt (6.14)

(6.14) gives the voltage ratio between the slot and the input to the ground-
based receiver.

The coupling between the antemnas in tranamission from the slot anterma to
the ground-based antenna can be represented as a mutual impedance, so that we can
drav the equivalent circuit shown in Fig, 6~1 (a). The mesh equations are

V()= 1MZ, + 1.°Z, = V2,
z,;"z.n +I%Z, =V, = -n"z,g ,
For Z&= Zy, = 50 ohms,
o= —IfZg, = ¥VIO) Z2y/Z0,
8o that
2 = 2V Z,/V(0). (6.15)

For the reverse case of transmission from the ground-based antenna to a re-

ceiver connected to the .a‘lot antenne, we can draw the equivalent circuit shown

in Fig. 6~1 (b). In an analogous way we obtain

W o Zis (32) ~___Zr_ Zia .
Z Zi\ + &g, L Zaa Zn*zx (6:26)

By the reciprocity theorem, Z,=2Z, 8o that from (6. 15) and (6.16)
vy 2 2 Yea 2, Z
= -1 LS| Ll TR T2 1 {E.
W= 2 = Tt Ze, = VO Zas Zy+2g "
Assuming that the receiver input is tuned optimelly (by an automatic tuning device,

for example) so that
x

z‘. = Z"‘ ,

the above equation roducos to 7
| = V:Va ] ‘
% Vo) 100R, ]v* _ Vo) 1ooy >  (6:17)

vhere % = X(Y) 1s the 1nput conductance of the slot. In the above we have taken
Za= ”ﬂ ‘
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Vr may be expressed in terms of the tranmmitted power A, since

Pr = Ve'/Zza. (6.18)

Since the signal power 2 at the receiver input is ¥*g, we have
i | K6 K* \ ‘
A= (ﬁml. = 9L, (6.29)

where § may be called the signal transfer characteristic. 4’is equivalent to a
signal temperature 7;'.
%'z BIRB. (6.20)
In the absence of the sheath, the signal power would be
RrGy 32*sin*8’ _ £ Gy ‘
’3 = 4&’ 8“"‘ -’— 43/ /(I‘)‘;, (6!21)
where / )
2._3_ SMG')"
K= ar( r/-

The frequency-dependent terms in I of (6.19) are Gy, and x. For a ground-

based antenna of constant effective aperture, Gyoc A while <A™ § may be found
from calculated values of Y. Consequently we may calculate the signal transfer
characteristic S and plot a curve of it as a function of frequency.

(b) flaam attenuation

The plasma attenuation is given by
L =|e-+ole-®)

But for a highly conducting plasma
Sy e wysw\a
b= (CLwpos s = (—-—ﬁ-‘—"’-&jl—“ﬂ) = --v-':-/(-,-,-) e™ ”/4;
where wyis the radian plasma frequency, » the collision frequency, and v the veloc-

ity of light. Hence “
L = e-—zﬁ(h)'{c-b) =e"%(%) (C“b) (6022)

L thus decreases exponentially as the square-root of frequency. Frow kmown (or
estimated) values of wy and », L may be calculated and plotted against frequemcy.
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(c¢) Equivalent temperature of external noise

External noise is a combination of terrestrial (natural + men-made)
ond cosmic noise. The noise level is a complicated functiom of location, time
(of day and season), as well as of frequency. For planning purposes, ourves pub~
lished by the CCIR [8] may be used. These curves actually give the squivalent
noise temperature, A;, expressed in db relative to 7,= 288° as a reference. Hence
a curve of. external noise temperature vs. frequency may be selected for the loca-
tion and time of interest. This noise temperature, however, applies for a re-
ceiving antenna which is a short (relative to the wavelength) gro@ded vertical
rod. Since such an antemnna has a gein of 3/2 relative to an isotropic antemma,
the CCIR noise temperatures should be multiplied by 2/3 (i.e., decreased by
roughly 2 db).

In msking uase of the CCIR curves, it is necessary to assume that the external
noise is uniformly distributed over all directionms. This actually is not true,
since, for example, natural terrestriel noise is due to thunderstorms, which are
not uniformly distributed; nor are propagation characteristics, which are super-
imposed on the source distribution, independent of direction. In accordance with
the above assumption of a uniform distribution of extermal noise, the solid angle
£ of the source is ix. Hence from (6.5) and (6.6) the external noise temperature
at the antenna is

== (R-)7% 4:;'6 - %U—: -i)-288 =432(F-1), (6.23)
where the gain of the antenna has been taken to be 3/2.

Since external noise experiences the same reduction in passing through the
plaswa sheath as does the signal, the temperature of external noise at the receiver
may be obtained by mmltiplying (6.23) by the ratio P,/P,’obtained from (6.19) and
(6421)1
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VR ZP K% L .
e = & Te KAy +ixa 432(Fy - 1) (6.24)

Values of 7 may be caleulated from (6.24) and plotted as a function of

frequency.
(d) Equivelent plasma temperature
The equivalent plama. temperature already has been discussed in
Sec. 6,3. 1If we denote the plasma temperature by 7p, then from (6.7) the total
noise temperature of the receiver (excluding external noise) is
T =Tw +(1-L)Tp. (6.25)
Since L (and possibly 7, ) is a function of frequency, values of 7,/ may be plotted

va. frequency from (6.22) and data on 7.

From the plotted curves of the various factors discussed in {a) = (d) above,
it is a simple matter to combine these to obtain a curve of the overall signal-

to-noise ratioc at the receiver. This is given by
i Y . S
Te+ T R(T+ T, +(I-L)T]8
vwhere B’ is given by (6.19), 73/ by (6024), and L by (6.22), From such a curve,

the optimum frequency can be detsermined.

In gemeral, because of the large effect of plasma attenuation both in re~
dueing the signal level and in raising the intama; poise level, it is to be ex-
pected that the optimum frequency for reception will be lower than the optimum
frequency for transmizsion. The extent to which one can gain in reception by
lowering the frequency is determined largely by the external noisa level. The
latter is e strong function of geographical location and temporsl factors, so
that the optimum frequency for reception will vary accordingly.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusicns
7.1.1 Caloulations of Inout Admittance
A study of calculations of imput admittance of a spherical slot
antenna made by MSVD on the IEM 70, revealed two significant phenomensa and two
limitations:

(a) A linear relation exists between the change in input ad-
mittance from the froe~space value and the change in refractive index, as ex~
pressed in the relation

AY = LK, 1)
for small (My—~1).

(b) An apparent interference phenomenon takes place for small
collision frequencies around a certain value of plasma frequency.

(c) The calculations are erroneocus for certain values and
ranges of the parameters.

(d) The series formulation used is mot practical for values
of vehicle circunferance greater than about one wavelength.

7.1.2 Theoretical Extensjons
The following results were obtained in eit".mion of previocus

developments:

(a) The relaticn for AY given above in Sec. 7.1.1 (a) s
shown to exist for any vehicle size. This suggests a useful technique for pre-
flight calibration of the antenna so that m-ﬂight measurements may be used to
determine plasma properties.



(b) The phenomenon mentioned in Sec. 7.1.1.(b) is explained
as the interference produced by reflectiona from the outer boundary of the
plasma sheath, vhereby the antenna is effectively terminated by an almost pure
reactance. .

(¢) An analysis of the imput admittance which is suitable for
large vehicle sizes is ocutlined.

7.1.3 Inhomogeneous Plasmas
A general formulation is given of the problem of an inhomogeneous

spherical plasma. It is shown that the previous forms of the result are still
retained, the only change being that the radial fumctions require alteratiom.
In this connection, a significant new feature is that the alectric and magnetic
modes satisfy different differential equations,

7.1.4 Slot Voltgge Distributiop
The determination of the voltage distribution along the slot in

the general case leads to an intaegral equation. A practical solution to this
problem was not found, but a method of attack which may prove fruitful is pre-

sented.

7.1.5 FPlagma Nojse
In a discussion of the effect of noise generated in the plasma

upon the reception problem, it is shown that the sffective noise temperature

of a receiving system aboard a re-entry vehicle depends on the attemuation of

the plasma as well as on the plasma temperature, Consequently, the optimm
frequency for reception usually will be significently lower than for trasnsmission.



7.2 M&m&

1. In viev of the inacouracies of the double precision program used
in the caloculations, it is recommended that a triple precision progrex be em-
ployed in any future calculations.

x 2. The practical importance of a calibration technique besed on the
Yelation AY # /K(n,~|) makes it desirable to extend the validity of this ex-
presaion to geometries other than spherical.

3. In Sec. 3.3, a procedure was outlined whereby practically useful
formulas can be obtained for large spheres. The details of this procedure
should be worked out so that formulas suitable for numerical computation will
be avallable.

4« In Sec. 4, fornlations wers derived for inhamogeneous plasmas.
It is recommended that these formulations be applied to available information on
plasma properties, so that the quantitative effecta of plaama inhomogeneities on
antenna radiation properties can be deduced.

5. The effect of the plasma on the voltage or current distribution
along an antenna is still en unsolved problem. In view of its importance in
upper atmospheric research, further work on this problem is justified.

6. The effect of noise generated by the plasma on reception aboard a
re~entry vehicle has been shown in Sec. 6 to lead to lower optimum working fre-
quencies in reception than in transmission. It i1s recommended that experiments
aimed at verifying this conclusion be considered.
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