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ABSTRACT

Targets of transparent plastic have been impacted with
jectiles at velocities up to 25, 000 ft/sec. Photographs mad:
of approximately 6 x 105 frames per second show the projec
luminous flash, crater formation, and shock waves in ine ¢
gation of the waves and their reflections, and the fractures °
produce, are analyzed. Spalling near the rear surface of th
seen as the shock is reflected as a tensile wave. Studies of
laminated targets show transmission and reflection of shock
each interface together with details of thé complex fracture
These are also analyzed. A theory of fracture is presented
cates that the fracture of Plexiglas or Lucite is time-depenc
effects of the-target's réar surface and the target temperatu
cussed, It is shown that most of-the effects of hypervelocit
be simulated by the usé of explosives placed in small holes :
face. This not only results in savings of both time and cost,
crater location with an accuracy that would be impossible to
the use of a gun, These studies of transparent targets give
insight into the nature of cratering and fracture by hypervel
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1.0 INTRODUCTION

One of the difficult problems presented by flight through the environ-
ment of space is the protection of spacecraft against disastrous impact
damage by meteoroids and projectiles, Considerable research is being
directed to defining and reducing this hazard, Speeds of interplanetary
debris are estimated to average about 50, 000 ft/sec and to go as high as
200, 000 ft/sec (Refs. 1 and 2)., The pressures produced by impacts at
such velocities may reach several million pounds per square inch, Little
is known about the properties of materials under these conditions, Ob-
servations of the effects of hypervelocity impact upon targets of trans-
parent materials such as Lucite¥* or Plexiglas* contribute to an under-
standing of the physical nature of the mechanism of this phenomenon,

The high-velocity impact test résults were obtained in the impact ranges
at the Arnold Enginéering Development Center (AEDC), Air Force Sys-
tems Command (AFSC). Most of the tests simulating impact conditions
by explosions were carried out at the Tennessee Polytechnic Institute.

2,0 BRIEF DESCRIPTION OF MATERIAL FRACTURE

A simplified description of the effects resulting from high-velocity
impact of plastic targets may be divided into the following stages, each
of which is analyzed in greater detail later in this study.

1, The projectile is imbedded only slightly in the target
material and then appears to explode, causing the pres-
sure applied to the target face to rise very rapidly to an
extremely high vaiue.

2, A spherical shock wave is formed within the target,
centered upon the point of first contact, Crushing and
melting of the target material results, The melted
region is approximately hemispherical. Some of the
material near the surface is ejected, produciiig a rough,
irregularly shaped crater.

3. The spherical shnck wave decays very rapidly into a com-
pressive elastic pulse, the strength of which decreases as
it continues to move through the target,

*Acrylic (methyl methacrylate) resin manufactured urder the trade
names Lucite (E. I. du Pont de Nemrours “lo.) and Plexigias (Rohm and
Haas Co. )o

Manuscript received February 1964,
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4, A large number of needle-like fractures are formed,
radiating outward from the hemispherical region of crushed
and melted material. The melted portion of the tzrget
solidifies and contracts, producing radial tensile stresses
and fracture around this region.

5. If the elasiic compression pulse reaches a free surface
(such as the rear face of the target), it will be reflecied as
a tensile pulse, If the magnitude of this reflected tensile
pulse is equal to or greater than the fracture strength of
the target material, fractures will occur. If the pulse is
of sufficient magnitude, the portion of the target between
the fracture produced by che reflected wave and the rear
face of the targct may shatter; and in some cases this portion
may become detached from the target and fly off at a high
velocity, Fractures may also be formed if two or more re-
flected waves meét and the sum of their amplitudes equals or
exceeds the target strength.

Most of the stages outlined above may be observed in Fig. 1 which
shows frames selécted from a film made of a 30-cal x 0, 15-in. Lexan
projectile impacting a 2-in. target at a velocity of 21, 800 ft/sec. These
photographs are silhouettes made with a Beckman & Whitley camera
{model 192) capable of a speed of 1.4 million frames per second. The
target was backlighted by méans of a high-intensity xenon flash.

3.0 INITIAL STAGE OF IMPACT

The fa~t that the projectile behaves explosively after it is imbedded
only slighiiy in the target is demonstrated in Figs, 2 and 3, The photo-
graphs in Fig. 2 are of plastic targets which have been impacted with
projectiles having velocities ranging from 11, 000 to 17, 600 ft/sec. Those
shown in Fig, 3 are blocks of plastic which have been fractured by the
exploding of No. 8 Hercules blasting caps. These caps were inserted in
holes drilled to various depths in the plastic after 1/4-in, aluminum
hemisphere. were placed in each hole, It is difficult to distinguish
between the {ractures produced by impact and those produced by explo-
sives,

4.0 FRACTURES INDUCED BY IMPACT

The fracture of the target shown in Fig. 1 w..s formed at a very
irregular rate. Figure 4 shows this in detail, T-.¢ camera speed for
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this test was 5.8 x 105 frames per second., The number which icentifies
each contour denotes the frame number; the contour its-1f indicates the
limit of the fractui'e seen in that frame. It should be kept in mind that
these limits were determined from silhouettes and, therefore, may not
represent the actual fracture limits. Through frame 3, the fracture is
hemispherical in shape. In frame 5 the fracture becomes wider at the
target face, and this continues through the frame 11. These are prob-
ably the needle-like fractures which radiate out from the point of im-
pact. The fractures alcng the axis then cease, and apparently the radial
fractures elongate and move inward toward the axis through frame 17,
They continue to elongate but ai a much slower rate. Figure 5 shows
the fracture location along the axis as a function of time. Photographs
of a sector of this target are shown in Fig. 6. The clear portion is that
which apparently was meltied and then resolidified, Figure 7 shows the
fracture formation in a target which was impacted by a projectiie at a
velocity of 14, 000 ft/sec.

Th: photograph of a thin séction cut from the center of a taxgel is
shown in Fig. 8. The impacting velocity here was 17,600 ft/sec. The
various stages of the fracture are clearly seen. The fine radial frac-
tures are probably caused by the strong tangential tensile stress which
has been shown to accompany the high radial compressive forces
(Ref. 3). A photoelastic analysis of the clear hemispherical portion of
the target shows it to be in a state of high residual stress. Figure 9 shows
this stress patiern and the 0-, 15-, 30-, and 45-deg isoclinics. This
seems to confirm the theory that this portion of the target has melted
and resolidified. The contraction during resolidification produced
cacks around this region.

it has been shown that the velocity of crack propagation in this
material is about 5, 0060 ft/sec (Rerf. 4). As this is approximately one-
half of the velocity of the stress pulse, cracks initiated by the leading
edge of the pulse are unable to spread more than a short distance before
they are overtaken by the pulse's trailing edge and the stress is removed,
thereby arresting crack formation.

5.0 SHOCK PROPAGATION AND REFLECTION

Referring again to Fig. 5 for the case of a 30-cal Lexan projectile
impacting a 2-in. Lucite target at 21, 800 ft/sec, it is seen \hat the
shock becomes detached from the ex} wndiiy; crater approximately one
microsecond (4 sec) after impact. At that rime its velocity is approxi-
mately 17, 000 ft/sec and the pressure at the shock front is about
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90 kilobars (kb) (Ref. 5), This spherical shock rapidly decays into an
elastic wave, the velocity approaching a value of 10, 00 ft/sec after
about 3 usec, This wave velocity is independent of the projectile
velocity, as may be seen in Fig., 10, but depends only upon the proper-
ties of the target material,

As this elastic pulse travels through the target, its stress ampli-
tude attenuates at a raie inversely proportional to its radius (Ref, 3),

Upon reaching the rear surface of the target, the compression wave
is reflected as a tensile wave, FKigure 11 illustrates the development of
this radial tensile stress when a compresgsion pulse of arbitrary shape
is reflected from a free surface, The resultant stress at any point
during reflcction is obtained by adding the stresses caused by the inci-
dent and reflected pulses, At (a) the pulse is approaching the free
surface and reaches tke surface at (b)., Part of the pulse has been re-
fleted at (c), but the tension is very small, The value of the tensile
stress continues to increase, and at (g) one-half of the pulse has been
reflected and the stress is entirely tension, At (1) the reflection is
complete, Except for attenuation, the reflected tensile pulse is of the
same form as the incident compression pulse,

Figure 12 shows the {racture formation when the magnitude of the
reflected pulse is greater than the tensile strength of the target, The
pulse shown in (a) through (e) is the same as in Fig, 11, At (f) the
tensile stress reaches the critical value necessary to produce fracture,
For Lucite this value has been estimated to be about 1 kb (Ref, 6), At
{g) the fracture occurs approximately 1 s sec after the critical stress
is 1 2ached, This is not in agreement with obgzervations of sthgr {pvesti-
gators who report that there is no time delay between the attainment of
the critical stress and the fracture of the material (Ref, 6), Figure 5
shows that the wave front has passed before fracture occurs, and this is
pictured in Fig, 13, (It will be pointed out later that the formation of
additional fractures which form under certain conditions would be diffi-
cult to explain if there were no time delay between the attainment of the
critical stress and the fracture.,) At (h) in Fig, 12 the fractur< follows
about 1 u sec behind the tensile peak, The portion of the pulse trapped
between the fracture and the rear surface is reflected from the fracture,
In (i) and { the fracture continues to follow the tensile pulse, The
trapped po. :ion is now a compression pulaz, At (k) the tensile pulse has
attenuated in magnitude to less than the critica. stress and the fracture
ceases to form, This pulse continues through the target until it reuches
another free surface (from which it will be z«flected as a compression
pulse), It is possible that this pulse may intei'sect another tensile pulse,
and although neither is of sufficient magnitude to produce fracture their
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sum may exceed the tensile strength of the material, I'ractures formed
in this manner wiil be pointed out later. It has been shown thut a pres-
sure wave is probably followed by tensile components (Ref, 3). 1n this
case the reflected tensile pulse may combine with the 1urward moving
tensile portion of the incident wave to create a stress greater than the
material strength, This is probably the explanation of the fracture indi-
cated by the arrow in Fig. 14, The trapped pulse continues to oscillate
between the fracture and the rear surface as shown in (1) and (m) of
Fig, 12, Although its magnitude is decreasing, another fracture is
sometimes forined as shown in (n), and this is probably attributable to
fatigue of the material,

6.0 FRACTURE OF LAMINATED TARGETS

It has been observed that laminated metal targets offer more resist-
ance to fracture from hypervelocity impacts than do solid targets of the
same material, In order to obtain information concerning fracture in
these targets, photographs were made of a 30-cal Lexan projectile im-
pacting a laminaied Lucite target,. The target was constructed of three
sheets of 0, 75-in, plastic. A thin coating of oil was smeared on each
surface, and the three pieces were bolted together at their corners. The
projectile had a velocity of 21, 100 ft/sec, and the film was exposed at a
rate of 5.9 x 109 frames per second, Selected frames are shown in
Fig, 15, Both the incident and reflected pressure waves, as well as the
fractures, can be seen., Details of the fracture formation are shown in
Fig. 16. During thc early stages, the fracture of the first sheet re-
sembles that for solid targets (Figs, 4 and 7), but the trapped energy
produces a final fracture which is much greater in the lateral direction,
Figure 17 shows a plot of the observed shock and fracture propagation
along the axis of the target, The letters at the top of the graph corre-
spond to the photographs in Fig, 15,

Several interesting observations may be mads from Fig, 17, When
compared with Fig, 5, it is seen that the two are very similar during
the early stages, The shock detaches itself after about 1 4 sec and
decays into an elastic wave at a distance of about 0, 76 in, within the
target after about 5 u sec. The initial fracture rate is about the saine
in both solid and laminated targets; however, the fracture does not cross
the first lamination, and the nueedle-like radial fractures which are 30
prominent in the solid target are contined to the first sheet of the
laminated target,

The pressure pulse continues through the target at a velocity of
10,500 ft/sec. No change in velocity cun be detected as the pulse crosses
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a lamination., Reflections are seen to occur at the second lamination and
from the rear surface. These reflected tensile waves have velocities of
8, 000 ft/sec. The decrease in wave velocity upon being refic.cted is
probably caused by a decrease of Young's modulus of the material be-
cause of an increase in its temperature,

Fractures are formed by the reflected waves just as they are formed
in solid targets. These fractures become much more complex in form,
however, than do those in sclid targets, as evident in Fig, 17, The
explanation of the mechanism involved in the formation of these more
complicated fractures is theoretical and is based upon a study of these
experimental impacts, It is probably not accurate in all details, The
dashed lines shown in Fig, 17 do not represent observed shocks but indi-
cate only those which might be expected and which would account for the
very complex nature of the fracturing,

At about 11 ¢ sec, the reflection from the second lamination has in-
creased in amplitude to the critical fracture strength of the material and
a fracture begins to form, A portion of this wave continues as a reflected
tensile pulse and is again reflected from the first lamination at about
17 u sec as a compression pulse. It reaches the fracture at 24 u sec, It
is then again reflected as a tensile pulse, causing additional fracture as
shown, In the meantime, a portion of the original reflected tensile wave
was trapped between the second lamination and the fracture which started
at about 11 ¢t sec and was reflected rearward from the fracture as a com-
pression pulse, Upon again reaching the second lamination, a portion
continued in the forward direction through the third sheet of plastic, A
portion of this pulse was reflected from the lamination as a tensile pulse
back i1 to thé sécond layer of the plastic, This pulse apparently contrib-
uted to the fracture that began to occur at 15 i sec.

Returning rnow to the main wave as it proceeds through the target,
it is seen that it reached the rear surface (a littlé after 15 p séc) from
which it is reflected as a tensile wave, building up to the value of the
fracture strength at about 18 1 sec, As the fracture is formed, the tail
of the pulse is reflected toward the rear surface as a compression pulse,
reflecting f-om the rear free surface at 22 u sec and producing the
fracture nearest the rear of the target.

Meanwhile, the main wave was being followed by the reflected wave
which crosseéd the second lamination at 13 u cee, This compressicn wave
reached the fracture being formed at 20 4 sec and was again reflected as
a tensile pulse, producing the third fracture in this rear layer of plasiic.

At about 23 1 sec, five of the fractures have merged into two along
the axis of the target; however, their separate identities may stiil be
observed in photograph G in Fig, 15,

6
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At 31 1 see, the fracture may be seen breaking through the rear of
the target, This target was compleiely destroyed,

7.0 SIMULATION OF IMPACT CONDITIONS BY THE USE OF EXPLOSIVES

The exact conditions of hypervelocity impact cannot be duplicated
in all details By the use of éxplosives, Because of the savings in both
iime and cost, however, this simulation method is very useful in making
preliminary studies, Another advantage is that the accuracy restriction
involved in impinging a projéctile upon a target st the desired impact
point is no problem,

Photographs of targets which have been fractured by the firing of
blasting caps are shown in Fig, 18, These are interesting since the
explosions were identical for all three, the only difference being the
target thickness (1,00, 1.25, and 1.50 in,). The fracture produced by
the reflectéed ténsilé wave is barely séen in the 1,50-in, targét, As
this threshold of fracture-is found to occur at a distance of 0, 3 in., from
thé rear Surfacé, it indicatés that the léngth of the stress pulse is twice
this distance, or 0.6 in. This conclusion présumes that the stress
amplitude at the leading édge is not exceédéd by stréess anmiplitudes else-
where in thé pulse, If:thé fracturé strength 6f 1 kb (Ref, 6) wére
correct, this indicates that this explosion (E-94 du Pont blasting cap
inserted in a 1/4- x 1/4-in, cylindrical hole) produces a stress pulse
having an amplitude of 1 kb and a length of 0,6 in. when thé wave front
is 1.8 in, (1,5-in, target thickness plus 0. 3-in, refléction distance)
from thé front surface of the target,

If the target dueés not hdave large lateral dimensions, so many
fractures are caused by intérnal reflections that the résult will be con-
fusing. PFigure 19 shows two views of a 4= x 4= x 2-in., Luciteé block
that was fractured by éxploding a cap in the center of one of the
4- x 4~in, faces, These fractures are very helpful in studying the
nat-ve of shock geometry or "optics', No attempt will be made to
explain the formation of all the fractures, but a few of the more com-
‘mon ones which occur in a rectangular block are isolated and shown
in Fig., 20, In A, the fracture near the rear surface produced by the
reflected tensile wave is shown, The fractures shown in B are formed
in a inanner similar to that in A, by reflection of tensile waves from
the four sides. Those shown in € and D are produced by the ccmbina-
tion of the tensile puvlses reflected fromn; two surfaces. As the waves
are reflected from three intersecting surfaces, momentum is trapped
at the corners of the block, producing tie fractures shown in E. (The
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cornérs usually fly off at high velocity.) Fractures located at the mid-
point of the edges of the block are usually formed as shown /i F. The
mechanism involved in producing these mid-edge fractures is not clear
to the author. Their appearance is not the same as that of the other
fractures described, This type of fracture is more clearly seen in

Fig. 21, This target was approximately one-half of a 4~ x 4- x 2-in,
block. The explosion was placed at the céntér of thé hypoténuse. Most
of the other fractures shown in Fig, 20 may also be seen in this target.
In addition to the fractures produced by reflected tensilé wavés, fan-
like fractures radiating out from the crater are often seen if the dimen-
sions of the target are small. These usually extend toward the sides or
toward the corners of the block,

Five blocks of various geormetrical shapes are shown in Fig, 22,
These were designed so that all plane surfaces were of equal distance
from the point of the explosion, This provided a means for observing
the relative strength of the shock in various directions, The explosions
were identical for the five targets,

8.0 EFFECT OF TARGET SURFACE

As much of the damage to a material is caused by the shock reflec-
tion from the rear surfacé, it would be helpful if the rear surface could
be designed so that the wave would be dispersed upon reflection, thus
reducing the extent of the damage. In order to learn sométhing of this
possibility, thrée surfacé conditions were investigated. The target
ghown in Fig, 23-A had small V-shaped grooves cut in its réar surface,
The form of theé fracture was considerably different from those pro-
duced vy <hock reflection from a smooth Surface, and cracks weére
formed at the root of each V. The blo¢k shown in Fig. 23-B also had
V-shaped grooves in thé rear surface, but they were larger than those
shown in the previous figure. The fracture produced by the reflected
pulsé was concentrated as shown. Fractures were also formeéd at the
bases of the V's, Except at the corners, none of the target surface
beeame detached, The target shown in Fig, 23-C had semi-circular
grooves in its rear surface. Although the explosion was identical to the
two previous ones, considerable material was broken loose from the
surface, The fan-like fractures described previously may be seen in
thesé targets, Their exact cause is not known, but they do not appear
in targets having large lateral dimensions,

9.0 REFLECTIONS FROM CURVED SLURFACES

Pressure waves are reflected from curved = arfaces in a munner
similar io light rays, For irrotational waves of dilatation the angles of
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incidence and reflections of the longitudinal components are equal
(Ref. 7). The targets shown in Fig. 24 are 2,5~in, -diam cylinders
with various amounts of material removed from c.:e side, Some of the
fractures appear very odd and complicated; however, they may be
easily éxplained by theé principles of geometric optics.

If a blasting cap is explodéd at the cénter of one énd of a long
cylindrical red, the pressure wave will be réflécted from the sides of
the rod. All of the reflécted '"rays" will méét along the axis of the rod,
producing very high tensile stresses., The pulse Atréngth will attenuate
at a rate invérsely proportional to the distance to the wave front, and
the ratio of the amplitudes of the reflected and incident waves is a
function-of both the angle of reflection and the matérial properties, One
would expect, thérefore, that the variation in stress along the axis of
the rod might be véry irregular, This fracturé along the axis may be
seén in thé photographs of thrée rods having diametérs of 1,25 in,
shown in Fig, 25. If theé rods are short, ténsile waves will be reflected
from the end as well as from the side, résulting in multiple fractures
as may be seéen in Fig. 26,. In someé casés, the fracturé may extend
entirely across the rod, breaking off the eénd as shown in Fig. 27, If
larger and shorter cylindérs are used as targets, more fracturés are
formed, Figure 28 shows fractures in a 2,5-in, -diam cylinder. Still
shorter cylinders appéared to be compleétély shattered intérnally, When
these shortér cylinders (2,5 in, in diameter by 1.5 in, long) were
sectioned and polished, the appearances wére as shown in Fig. 29,
where the individual fracturés can bé obsérved., Theseé include the
needle-like fractures radiating out from the peint of the explosion, the
¢lear portion which had melted and resolidified, the fractures ¢aused
by thé reflection of tensile waves from the end, similar fractures
around the sides caused by reflections from thé cylindrical surface,
and, in the longer cylinder, the fracture along the axis, There is also
seen a conical f1acture in each, ¢aused by the-addition of waves réflécted
from the side and end. Theé tangent of the anglé made by an élement of
this cone and the axis should be equal t6 the ratio of the cylinder's léngth
to radius, This is found to be true,

10,0 EFFECT OF TARGET TEMPERATURE

There will be great variatione in the surface temperature of a
gpacecraft. As the properties of material are functions of temperature,
it would be expected that the damage from hypervelocity impact would
also vary, depending upon the t¢ mpar-ture. A knowledge of the way that
fractures in plastic depend upon tempe-ature and material properties
might be useful. In Fig. 30 areé shown two blocks of Lucite which have




AEDC-TDR-64-49

been subjected to identical explosions. Thé blocks were the same except
for their temperature, The block shown in Fig, 30-A was al approxi-
mately 0°C, and the one in Fig, 30-B was at 70°C', The result of heating
the target is apparent; fracturés of all typés are either reduced sub-
stantially or entirely eliminated.

11,0 CONCLUSIONS

It is hoped that the observations reported in this study will add to
the understanding of the mechanics of fracture resulting from hyper-
velocity impact, This has béen largely a qualitative analysis. A quan-
titative study is required to furthei: enhance an understanding of the
efféects identified hére, and further work is also required to identify the
dégree of impact similitude which may be possible by the blasting cap
technique.

Several specific conclusions of some importance can be drawn from
the work reportéd heré, These conclusions are of a qualitative sort,
and they are summarized below:

i. An impacting hypervelocity projéctile behaves explosively
shortly aftér it imbeds itself within plastic target material,
and many of the effects of hypervelocity impact can be
simulated by thé use of explosive charges,

2. The locations of many of the fractures formed in plastic
targets of uncomplicated shape can be predicted by simple
principlés of geometric optics.

3. Fractures arising as a result of tensile failures within
plastic target materials follow the establishment of critical
stress levels by a finite time delay of the order of 1 u Sec,

4. The study of laminated transparént targets offers an
excellent means of observing the transmission and reflec-
tion of the stress waves, By using laminations having
different properties, the observed results can be com-
pared with theorétical studies,

5. Heating of plastic targets to temperatures near 70°C before
impinging hypervelocity projectiles substantially reduces
the damage they sustain,

6. The pulse length of the forcing fu~ctic. nroduced by an
impacting projectile of particular mass and velocity (or
by a particular explosive charge) can be simply determined,

10
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Target thickness is adjusted until the threshold is reached
at which the first plane fracture, parallel to tixc rear
surface of the target, just occurs. The distancc s2parating
this fracture from the rear surface may then be taken as
half the pulse lengths. Advantage can be teken of this
technique in establishing a schedule of equivalence to relate
the effects of explosive charges to the impacts which they
are to simulate,

7. Geometry of the rear surface of a target (hence, of a
shielding material) may significarntly influence the damage
sustained by the target.
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2-In. Lucite Targets Impacted
20 by 0.3-in. Lexan Projectiles Back of Target—

Projectile Velocity, | ]
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Time, t, usec 100757

Fig. 10 Pulse Velocity for Vorious Impact Velocities
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‘2zin, Lucite Target - .
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Projeéctile L
Projectile. Velocity =
) ., 173600, 2t/86c.. .. .
Fig. 13 Photograph of Reflected.Pulse Front ticving Ahead of the Fracture
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Fig. 14 Example of Secondary Fracture
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160768

Approximately OnesHalf of @ 4+ x 4 x 2:in. Lucite Block
Fractured by o Blasting Cop Exploding at the Center of
the Hypotenuse.

Fig. 21 Fractures in o Tricngular Target
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Fractures Produced by Exploding Blasting Caps at the Ends of Long Rods Having Diameters of 1.25in,

Fig. 25 Fracture Along Axes of Lor3 Cylindrical Reds
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100773

Lucite Red 1.25 in. Diameter x 3.5 in. Long

Fig. 26 Fractures Along Axis and at End
of a Cylindrice! Rod
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Lucite Cylinder 2.5 in. Diameter x 3,25 in. Long

Fig. 28 Fractures in a Short Cylinder

40




AEDC-TDR.64-49

9LL901
A=1rb=ork
20:9'Y

“

siepuyjhn) peinianig jo suoyseg 6Z iy

Buo<y -uy g*] X sesswiniq *u) G°Z JepugjhD)

Ly

Suo=] *uj G°Z X seiswoiq Ul 67 sspuljhD)

41




AEDC-TDR-64-49

0L ‘eanieisdus) jalie) °g

singriadwe) jabanyg jo >33 g 814

30 ‘sinjoiadus) jebioy °y

42




