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SUMMARY

The problem nf pressure fluctuations at a rigid wall under a turbulent
boundary layer has attraoted much attention in the past decade, At low
Mach numbers the theory is well established from the work of Kraichnan
and Lilley, and reascnable agreement ie obtaincd with the experiments of
Willmarth, Hodgson and others. At high Mach numbers, measurements exist
due to the work of Kiastler and Chen but so far no tlieory is avallable,
apart from that due to Phillips, which is however related to the noise
radiated from supersonic turbulent shear flows,

Thia Report reviews the theory of wall pressure fluctuationa-in
incompresaible flow, and shows how the character of the pressure fluc-
tuntions changes in passing from the flow to the wall, Attention ia
drawn to the mora important interactionm giving rise to the nresnmiire
fluctuations, as well as .to- the rogion of the boundary layer mainly ras=
ponsible for the wall pressurs fluctuations,

The work is extended to inolude the effects of compressibility. It is
found that an anelyais similar to that of Phillips im appropriate, although,
unlike the lattor work, thim new treatment is not restricted to the oame
of very high supersonioc Mach numbors, The analysis makes use of the ratio
a,/u, a8 & large paramoter, where n, 18 tho speed of mound at the wall
end u, 1a the shear velooity, This is cartainly true for a very wide
range of Mach numbers provided that the wall is not aubjeoted to large
rates of heat transfer, It is shown that the well presmure fluotuations
are now the result of flustuations in both the vortioity and sound modes,
At high Mach numbers, the lmtter contribution im {n the form of eddy Mach
waves, aa muggemted by Phillips. On making certain assumptions regarding
the dominant interanctions, estimates of the magnitude and spaotrum of the
wall pressurs fluotuations are made whioh ahow similar trends to the
mensuremonts of Kistler and Chen,
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SOMMAIRE

Lo probléme des fluotuations de pression & une parol rigide sous une
couche limitrophe turbulente a aoulevé,une,srande attention durant cette
dernidre dfoade, A des nombres de Mach peu.élevés, la théorie est bien
établic d'aprds les travaux de Kralchuan wi Lilley, et 1'on obtient une
concordance ralsonnable avec 1as expériences de Willmarth, Hodgson et
d* autres, Pour des nombres de Mach élevés, deu mesurea existent grace
aux travaux de Kistler et de Chen mals, Jusqw & présent, on ne diapose
d" auoune théorie, & part celle que 1'on doit A phillips, qui est toute~
fois apparentée au bruit émanant d* ooulements de aisaillement turbulents
supersoniques.

Ce rapport passs en revue la théorie des fluctuations de pression a
des parois dans un éooulement inaompremsible et montre comment ia nature
des fluotustions de pression se modifie en passant de 1’ dcoulement & la
paroi, On attire 1’attention sur les interactions plus importantes 'qui
donnent lisu aux fluctuations de pression, ainsi qu'a 1a région de la
couche limitrophe, qui oausent principalement les fluotuations de pression
aux parois, '

on a largl les travaux pour englober les effets de la compressibiiité,
On constate qu’ une analyse similaire & celle de Phillips est appropriée,
hien que, contraisement'd ces derniers travaux, 6e nouveau traitement ne
soit pas 1imité au caw de nombres de Mach hypersoniques tris élevénm,

17 analyne so mert du rapport /U, comme grand paramdtrs od

représente la vitesse du son & Yn paral, et u, représente la vitosse de
oisaillement, Cala est certninement vral pour uno trés grande plage do
nombres de Mach, & la condition que 1a paroi ne soit pas soumiss & de
grandes vitesmas de transfert de chaleur, On montre que les fluctumtions
de pression mux parois sont maintenent la résultat de fluctuations tant
dans 1'état de tourbillohs que dans les modalitds de son, Pour de grands
nombres de Mach, ocette dernidre contribution est sous forme d'ondes Maoh
de tourbillons, comme avancd par Phillips, En falsant certuines supposi-
tions concernant les interactions dominantes, on fait des dvaluations de
1a grandeur et du spectre des fluctuations de pression aux parois qui
révdlent des tendances similaires aux mesures de Kistler et de Chen,
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8 angle .
(k. e) speotrum function (pressure) i
u, 'm )
2,, spectrum function (veiooity compénent u,)
OB . source funotion " ” . A
0 dependent variable (Eqn.65)
Subscripts A " \
L] denotes wall value
® d;notes value external to the boundary layer :
0 incémprasaible value
1.4 tenﬁor notation
x, " streamwise direction
X, normel to the wall l
‘ %, - transverse direction
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WALL PRESSURE FLUCTUATIONS UNDER TURBULENT BOUNDARY LAYE&S
AT SUBSONIC AND SUPERSONIC SPEEDS

a.M, Lilley*

1. INTRODUCTION

The work of Heisenberg®, Obukhov? and Bntohelor has shown that in 1uotroptc turbu-
lence, the root mean square fluctuating pressure is given by

&) = et o (1)

where u? is the mean square value of any fluctuating component of the turbulent
volocity., Uberoi® has shown that a ralation of this form axists in grid turbulence,

. but the constant in Equation (1) was spproximately 0,68 over a wide ranga of Reynolds
numbers, '

The first attempt to caloulate the fluctuating pressure field in a turbulent shear
_'flow was made by Kraichnan® who found that at the wall (subsoript w)

53 o
ﬂ—z s 2 to12 ) (2)

Ty
where 7, 1is the local wall mbnn shear stress,

Experiments in pipe tlow by Wilimarth'? showed that

J6T) ~ oocoedoud " @

and that the pressure field was convected past the wall ut an average speed of

0,82 Uy, , where U, ias the speed of the uniform flow external to the boundary layer.
However, in spite of care to reduce the extraneous noise in the air supply leading to
the pipe, Willmarth was unable to obtain mccurate reedings of the power aspectral

density in the lower frequencies, Other investigators have obtained similar results

but only recently has an attempt been made to check the conatant in Kraichnan's

formula. (A more complete review of the experimental work on wall pressure fluotuations
will be given in a paper by Hodgeon® which is to be published shortly),

An additional problem noted by Willmarth was the correction necessary to allow for
tha affenta nt tha finite size of the pressure transducer oh both the root mean square
and power spectrel density measurements, With this correction applied, most of the
avallable measurements suggest

~Z\.
p') = 1.5 to 3 7y
Tl

* Lollege of Aeronautics, Cranfield, Bletchley, Bucks., Englund
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over & moderate range of Reynolds numbers at low Mach numbers, or

J!_) = |
LI = a(R) - . (5)
T,

where a(R) is a slowly varying funotion of Reynolds number at sutriclently high
Reynolds numbexs,

Racent work by Kistler and Chen7 has oxtendad the measiirements to high Maoh numbers
and their work shows that a(R) increases progreasively with Mach number, reaching a
value bhetween 8 and 6 at a freestream Mach number of 5, at least for the oase of Zzero
heat transfer. Their results suggest that, at a Mach number of 5, the function =a(R)
has nearly reached its asymptotic value for very high Mach numbers,

The work of Kraichnan (loc.cit,) hes been raviewed and extended by Lilley® and by
Lilley and Hodgson®. The latter work showed that the 1ower estimate of a(R) obtained
by Kraichnan was more correct, and this work also went some way tawards confirming that
the pressure fluctuetions in a turbulent shear flow are dominated by the mean shear,
The celoulated spectrum function for the wall pressure fluctuations showed moderate
agreement with' the measured spectra at high frequencies, but at lower frequencies, the
caloulated fall was not obaerved in the measurements made in pipes, wind tunnels ete,
The corresponding two-point pressure covariances showed marked differences between
longitudinel and transverse meparetions, while the ares under the longitudinal pressure
covariance and the related autocorrelation wes exactly zero, In fact, the theory
showed, in agreement with the work ot,Phillips‘°. e vanishing surface integral of the
two-point pressure covariance taken over the wall, The differencea between theory and
the measurements of Willmarth and others have been investigated by Hodgson®, He showed
that the i1ll-defined strong negative loop in both the measured longitudinal pressure
covariance and the autocorrelation, and the non-vanishing transverse pressure covariance
at large meparations, were the resulf of extraneous disturbances external to the
boundary layer, (The effects of extraneous disturbances were also known to Willmarth
and are also discussed at some length in the recent work of Willmarth and Wooldridge'ly,
The mersurements made’ by Hodgson (loc.cit.), on the wing of s glider in f£light, which
were frea from extranecas disturbances, confirmed the relation

J5D) > 22, 6

and showed the falling spectrum in the lower frequencies, together with

P(O;TYdT = O (M

Jetd
whera P(0;7) 18 the autocorrelation of the pressurea at the wall, On applying the

convected hypothesis, which is supported by all the measurements, Hodgson finds that
Equation (7) is equivalent to

ﬁl’(é,.o.ﬁs)déldéa =0 (8)
-0
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whioch is an experimental confirmation of Phlilips' result

If we return to the problem of wall pressure fluctuations at supersonic Mach numbers,

we find that no theory exists, apart from the work by Phillips'?, on the related
problem of sound generation by superaonio turbulent shear layers,

Phillips has shown that the ‘radiated sound ariaau trnm eddy Mach waves which are
generated by some wave-numbers of the turbulence in those layers of the shear flow for
which the difference batween the mean veloeity of the fluld outside und the looal eddy
convection velocity is greater than the speed aof sound outside the:zone, Phillipa doea
not inolude the casa of a wall shear flow, although clearly this must present an
analogous problem, ahd indeed Phillips argues that his model should he qualitatively
correct in this oase., However, measurementa by Laufer!3 of radiated sound from super-
sonic turbulent boundary layers are not in good numerical agreement with Phillips’
theory, although undoubledly some aspeats of the phenomeiion desorlbed by Phillips,
such as the production of eddy Mach waves, do exist and have been observed by many
workers, However, as Laufer points out, the experimental Mach numbers may not be high
enough for Phillips' asymptotic theory to be applicable in the range of freestream
Mach numbers up to 6. The more general problem of the sound radiated from ahear flows
at supersonic mpeeds has been treated by Ffowos Williams'‘ and Lighthiil!®,

The present paper seta out to extend the cheory of pressure fluotuations in turbulent

boundary layers in incompressible flow to that at higher speeds, and to provide a basis
for comparison with the measured results of Kistler and Chen (loc.oit.), Williams!®
and Willmarth!?,

2. INCOMPRESSIBLE FLOW THEORY

2.1 The Pressure Covariance

1t has been shown by Lilley and Hodgson (loec.oit.) that the pressure at the wall is
dominated by contributions from the turbulence in the ¢inner’ region of the boundary
layer, extending up to about 1, 881 , Where 8 is the houndary layer displacement
thiokness, In this regiof, the typloal langth and velooity seales of tha flow are

=
Lo gn u, = [~ respactively .
Polly Po

Measurements in this region indicate that all except the larger wave numbers of the
turbulence are being convected at a mean speed of near 0.8 U, , and a theory of the
sub-layer of the ‘inner’ region, based on this hypothesis, 18 given by Sternberg‘”
Hence we might expeot that the pressure at the wall is also dominated by eddies having
this convection speed of near 0.8 U, . Since the correlation lengths for the wall
pressure are of the order of a boundary layer thickness, it would seem reasonable to
neglect the rate of growth of the boundary layer in calculations of the wall pressure
fluctuations. We will assume, therefore, that the mean flow field is given by

(u 1(%),0, 0] where x, 1is measured in the direction of the mainstream and x, 18

A normal to the wall, If all terms in the equations of motion are made non-dimensional

with respect to u, and pu,/6.u, ., we find

it g el e ot ez g g L
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du du du d(uyu ‘ ap
e § i 1 i 1 j - 2

U — Y ,—8 2 e —t V
3t ax1 u"’dx2 T x‘1 Bxi TV (®)

where t =

Xl-

I.|1-

8ince the Equation of contlnuity for the turbulence is Ou, /ax =0, we find, on
taking the divergence of (9), that the Equation for the preusure' is

Cdu, 3w, Af(uu, ~ T
Ty = o.gqo b 2 1 1
P adx W; ) Xiax"

n

Ay ©) a0

The two terms contributing to A(x,t) , which defines the velocity field, ecan be
referred to as the mean shear - turbulence interaction (M=T) and the turbulence-
turbulence intersetion (T-T) respectively,

The solution of (10) can be put in the form

. ' -]
! 1]
p(xt)y = - ZF[ dx;]];ix{dxa' Ax’ 0y [og + )
0
X+

[ 4

) fr bp‘
- — ! y ——
ZWjjdx,dx; % 527 (11)

where the surface integral 1s taken over the wall at x; = 0. The Green functions
G, and G, are glven respectively by

* 1t 15 incorrect to argue that the second term on the right hand side of (10) is small by com~
parison with the firat term. Howaver, integrals involving A(x,t) orc usually dominated by
the (M - T) terma unless thir eontrihution 18 identieally zero,

I,
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(12)
6 = lx-xtl™

" where 1" . (x{,-x;,x;) is the ‘image’ point. Hoi&ver, from the Bquation of motion
(9), we mee that at the wall

@ %y ‘
'BT’ R B—xg ) . (13)

since both U, and u; vanish at the wall, and then (11) becomes

=
1 :
pnt) = ‘o dngfdx{dx;(co tGg) Axl,t)

1 4,9% '
- 2-7; dx{dx(—uax;’!) (14)

4
X,"0
' - 2

. mhowing that the pressure fluctuations can be determined once the velocity field is

known, The covariance between the pressure at any point (i't) gnd a random function
q"(x" t), such es the pressure or a component of the turbulent velocity at (x",t), 18
therefore given by

@
(]
1 —_—
—
PHOARLEY) = - o dx;”dx;dxg(ao +8y) AixNa"(x"
=0

0
o .
1 3%, kN
o | [dxtdx! (o, —2& 2 &)
Mf fdxldxa % — 5 (15)

xi=0

where the bara indicate tiﬁe means, Thus in order to determine the pressure covariance
p(x)p"(x") anywhere in the shear layer we need valuos of -

3 ! H o T 32 Tsnlisy Iy
T T S Yo PTG L R L Tl . R Ll )

dx, ox! Bx"ax'j (1)

But p"u, can be determined from (15) by replacing q” by u} so that




-]
1 du, 3 7u' 2 uZu'u"
m7 = dx}| |dx!dx!(@, + @ el a1
P2 4'rr° j Xy dx3(G, + Gy 2 ' Bx’ i Bxfa_xj

-
o

1 tix? '
-;7; dx dx Go ) (17)

'0
-0

while puiuJ is mimilarly obteined by replacing q” in (18) by ufuf , Hence the

‘determination of the pressure covariance formally involves the evnlunt on of integrals

of the form of (15) and (17) over the entire flow field, However, this cannot be
performed with any great precision since the second-order velocity correlations are-
incompletely known and little is known of the third-arder and fourth-order velocity
correlations. The mean square of the pressure at the wall, p(0)? , and the presaure-

velocity covariance, p(0)uy(x") are just two particular resulta which can be obtained
from the general relations (18) to (17).

On the essumption that the (M ~ T) and (T - T) terms are independent, Hodgeon (loe,
cit,) has shown, on using the best available data for the mean and turbulent veloecity
flow fields and making extensive numerical calculations, that the contributions to

o)« L)

from the (M - T) and (T - T) terms are respectively 2,6 and 0.8, This shows that the
contribution of the (T - T) terms to the mean square of the wall pressure is only
4 per cent, and in view of the approximate nature of the calculations can be assumed

' negligible, The accuraecy of the computations leading to the (T ~ T) contribution to

the wall pressure is poor dus to the many assumptions which must be included if &
numerical result is to be obtained, (The difference between these calculations and
the measured values is not considered to he of major importence, in view of the fact
that on each occasion a velocity flow field closer to the experimental one was used,

a value of (p(O)’) nearer to 2.2 was obtained,)

If we turn next to the evaluation of p(O)ug/V p(O) )J “2)  we find that the
contribution from the surface integral is negligible if x" >> 1 (Note that in our
notation x, = p,u x,/u,), The contribution from the (M - T) term can he obtained on
choosing o suitable form for Q,, ’u” (The contribulion from the (T - T term

cannot be obtained, even approximately, since values of ufufu, have not been measured
except for zero separation)., It is found that the contribution from the (M - T) term
gives

POl ~ X{F(X3) exp[-ﬁ(xg)(x;” + ng)*} (18)
and a comparison with the measurements of Willmarth and Wooldridge?’ is shown in

Figures i and Z. The ugreenciit 15 reasonable, qualitatively, oxcept at large separa-
tions, which is not surprlsing since the chosen form for Qs neglocted the

R
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contribution from the big eddies, A slightly modified form of (18), together with an

; n
additional term to represent the affect of the big eddies, enables Rp s;i ta he
L !

" repremented in the form

au” B a
Ry 3_{:5 ~ f(x;’)-ljxp[_a(x;m + xg'f'.)} + %-(1 - -g-a.x:{z)exp{- E(x;n N f‘;n)H (19

\

where o 1ia a funotion of x; .

) <. . 3t -
The evaluation of p(o)' can now be attempted by using Rp 5;% defined by (18).

. 1
It can be shown that the contribution from the surface integral can be neglected,
while egain it would appear not unreasonable to assume that the (T - T) contribution,
involving as it does third-order covariances, can be neglected, It is found that

J(p(O)’) has a value of the arder of 2,0 if the valuee of f£(x]) and a are chosen
appropriately, The integral on which this valua of pl(O)) in based ims

-] { .
— U/t | " §2£‘ dx,dx,
Jeod) s .u(x,mx,ﬁg,,axl(x)——-x L an
0 L

. du
where G(x,) ineludes both the mean shear distr;button and the variation of 5—3>
acyoss the boundary layer, - Xy

K 18 the von Kdrmdn constant used in defining the mean.veloc;ty shear, The con-

tributions to J(Ez) arise from layers between the wall and x,/S1 = 2,0, and if we
take 81 = 1610 (corresponding to the value used in one of Wooldridge and Willmarth's
experiments), this occurs at values of X, up to 3200, which straddles the value of
X, = 2650 , at which U, /U, = 0,83 . It must not be assumed, however, that the major

contribution to p(O)’ oceurs over a small region of the shear layer, In fact the

contributions are spread diffusely over a fairly large range of x, as shown also in
the experiments of Willmarth and Wooldridge and in the analysis of Hodgson, Blightly
different conclusions have been suggested by Corcos?® recently from an exact numerical
integration of the experimental data of Willmarth and Wooldridge. The result of this

computation gives a value of J(p(O)!) of about 1,2 compared with the value of 2.0
found above, Reasons for this differsnce are not difficult to trace but it is diffi-
cult to assess which 18 closer to the true value of the (M - T) contribution to
J(p(O)’) , BSome objections to the use of the Wooldridge and Willmarth data at large
separations in this computation can Le made on the grounds that:

() the experimental accuracy is poor;

(b) the use of a high pass filter in these experiments will affect the values of
ong

. t large aeparations:
Rpu2 gt large aeparationg;
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. 3
(c) the assumed relation between npﬁa and Rp 5-3 , involving ‘Taylor's
: b3

hypotheais', ia not correct for large seperations,

(o) is not true for douhle velosity covariances at large separations and is likely

to he even less true for ths veloolty-wall pressure covariances measured by WQo]drjdge

and Willmarth,

The extension of this work to include the evaluation of p’(xa) involves many
diffioculties, although formally it can be ohtained from (18) to (17). In view of the
fact that Bp/ax, is nearly zero at the wall, together with the rasult that the major

contribution to p(O)‘ arises fromvaluesof X, up to 1.551. leads us to suggeat
that p? imnearly constant, varying at most by a factor of 2 aver most of the ‘inner’

region, 8ince.over most of the conatant utrean'layer'lﬁf in of order unity and

- pu, = - pu /p u is of order 4, we find some confirmation in this suggestion,* An

alternntive aullestlon by Remenyik and Kovasznay!® is that the fluctuating pressure
falls rapidly outside the ‘laminar sub-layer', but this is not in mygreement with our
results, However, the results in Section 3 do show that the major contribution to the
wall pressure comes from layers closer to the wall as the Mach number is increased,
and }t is probably this effect which might have some bearing on the results obtained
by Rémenyik and Kovasznay.

We will now disouss the pressure-velocity product P, . This term, whioh vanishes
at the wall, is known to play an important role in the energy transfer across the
boundary layer, and has roughly a constant value across the antire ‘inner’ region of
the boundary. layer outside the viscous layar, Clearly the pressure-velocity covariance

p(xz)ug must have an essentially ditferant form from p(O)u , Bince, A8 we have shown
sbove, Pp(0)uj(0,x7,0) 1s zero, whereas pug(x,) is clearly finite, In addition,

the surface integral of pu” taken over a plane parallel with the wall, must vanish
if there is no disturbance outsida the boundary layer, The results of Wooldridge' and
Willmarth are in agreement with this boundary condition for p(O)ug .

The modifications to pul , as the pressure measuring station is moved away from
the wall, can be shown to depsnd on contributions from the surface integral and the
(T - T) term in (17), both of which have been shown to give negligible contributions
to p(0u; ., Indeed if Q,,(x,ix) 1is symmetrical about r, = 0, the contribution

of the (M - T) term to Eﬁ; is zero, as noted by Corcos??, and so pu, depends

-7

In the vabe oi the constant stress layer if we put

2
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_entirely on the surface integral in (17) togéther with.the contribution from the third-
order velocity covariance. Outside the viscous layer, the dominant contribution to

pu, arises from the (T - T) tems, This result is made.obvious by noting that if
structural similarity exists in the conatant stress region of the boundary layer and
outside the viscous layer -

~N

q°u ~=3/2
_?{3 = aa(R)qa
. —a/2
-pi; = &, (R)a?
T 8, 7~ 3 \
and so -pu, = —<q°u, (21)
. |

. where ;7 is the mean square ot the turbulent velocity, end a,(R) and a,(R) are

slowly varying functiong of Reynolds number.

2,2 Tﬁe Structure of the Big Eddies

The work of Townsend?! and Grant2? has suggested that the structure of the big
eddies in a turbulent boundary layer have the form of ‘mixing jets' which erupt near
the surface and spread into the outer regions of the boundary layer.- The available
experimental evidence in support of this hypothesis is scanty, although it is consis-
tent with Grant’s own measurements of nine second-order velocity correlations, and the
more recent work of Wooldridge and Willmarth (loc,cit.) in which they report extensive
measurements of wall pressure-velocity covariances, Bince the big eddies play such a
vital role in the determination of the pressure at the wall, it is of interest to
discuss the work of the present author, in which an attempt has been made to put the
‘mixing jet' hypothesis on a more quantitative basis with results in agreement with
the measurements both of Grant, and Wooldridge and Willmarth, Only the essential
details of this work will be given here, When the rate'of turbulent energy production
exceeds its equilibrium level, it.im followed by increased dissipation and an increased
rate of diffusion of turbulent energy hoth towards and away from the wall, The out~
ward flux of energy can be presented roughly hy

d
U — Aq?/2
dx2

where U 1is the mixing jet velocity and Aq?/2 is the excess of turbulent cnergy.
This release of energy from regions near the wall i{s followed by an energy deficiency,
and so the outward 'mixing jet’ must be followed by a return flow towards the surfars
Such a return flow is also required from considevations of continuity, It might be
expected that the outward ‘mixing jets’ should have a relatively high turbulent
intensity and a relatively small scale, while the return flow should have a somewhat
lower turbulent intensity and a larger scale, An overall secale of the ‘mixing jets’,
extending to about a boundary layer thickness, is clearly shown in the measurements
of Wooldridge and Willmarth, as well as those of Grant.

a
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Since the ‘mixing jet' 1s essentially a turbulent fiow away from the surface, we °
might expect the major part of the correlation En(rl.o. 0) to be the result of the
relatively simple structure of the big eddy. The results shown in Pigure 4 corfimm
this, However a falr fit with the remaining correlations measured by Grant could only
be obtained if, in addition to the mixing jets, we superpose larger eddies rotating in
planes parallel with the wall and uncorrelated with the ‘mixing jets', -The presence
of these big eddles can be demonsiraled in Figure 4, where the separate contributions
from the ‘mixing jets' and the larger scale eddies are given for i“(rl,o, 0). The
figure also shows the measure of agreement hetween the model and the measurements but "
with a relatively free choice in the values of so many length scales defining the three
part structure of the big eddies, the agreement in many of the examples shown is _

probably fortuitous, Briefly the length scales of the eddies have been found to be as
follows: .

(1) eddies rotating in planes parallel -with the wall have a scale of order &,
where 5 1s the houndary layer thickness, and have a structurc similar to
the simple form suggested by Townsend as being representative of the big
eddies prodused at random in the boundary layer; '

(11) the outward ‘mixing jet’ has a scale of order &/10 :
(111) the scale of the return flow is of order 8/3 :

(iv) secondary motions in planes parallel to the wall accompanying the ‘mixing
jet' have scales of order &/10 ,

A diagrammatic representation of the big eddy Structure is shown in Figure 5.

2.3 The Pressure snectrum

If we define the three-dimensional Fourier- Stieltjes transforms of D(,! ty and
A(x,t) respectively as

L0k % kX tat) o
p(X.t) = fe ke m)dw(xzzlg,w). (22)

: Lk xR, tat
and : ARty = fe (kg% gRgtat) dY(X, K )
where k = (ki,k y 1is the wave number vector in the (xt,xa) plane and w 1is the
frequency. then the squation for the Fourler coefficient d&b ia
de" - k% = dy (23)
where primes denote differentiation with respecl Lu x, . If we assume that the

disturbance outside the boundary layer is zero, d%(oo) dy(w) = ¢ , From the equation
of motion

da’ 0y = dz’(0) (24)
where dz, 1is the rourlsr coefticient for u, .

-
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Hence the so}utlon to (23), satiafying the boundary condition—24), is

~ dN. k -
dai(x,) = —? (e Y2, 4 “’)

Ay o
. da;;m Qu, e n,)

R
kx,

e ] o

+ T e Hdy(y)dy
0

e-kx, *a

- — ky

TR ., etvdy(y)dy (28)

and for the Fourier coefficient of the pressure at the wall

' ®
~ 4
@0y = 2@ -(.;)[ 0" Whty(yydy (26)
0

k

If we assume that wé ean negleat da’(0) ‘then the pressure spectrum function at the
wall 18 given by ’

. [ ] i
. | B g S o
Mok, )y = F] e""-"dyf e"k% Ty (yYayr (v + 2)dz 2n
: o -y
where ok, = é—;ﬂ P05, tID(0iX + Lt 4 trye ik £+m')‘d£dtr
_ - dei(0; ey i (0, 0) "
B dk  dk ,da a8

and r = (ryry) and the asterisk denotes the complex conjugate, The mean square .of
the pressure at the wall is

p2(0) = ﬁfd}g dow T1(0; ke (29)
al
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[

vl whi

'




12

Since rll wave-numbers, apart from the highest, are convected at a constant speed,
U, , the frequency spectrum can he obtained, relative to co-ordinates fixed in the
wall,” from the integrated wave number spectrum funotion, Thus )

e ; |
Mok, = j o gydk, = n(o; Ji) (30) ]
-0 UO . ]
. - . " ® : ' : .
where Mosk) = fﬂ(ok:g‘.w)dw . ,
-t

A result of the vanishing surface integral of the pressure covariance leads to'
Mooy = o (31) - ]

In theme results k and « sare dimensionless, and are given by the relations -

e

k = _hs..‘_._
po“‘rsx/“o
: - ws, /u ' ' s
and w = _...‘/_" . (32)
‘ . Pollydy /g .
If A(%t) in (10) is independent of Reynolds number, then n(b:,l\(‘,w) should be &

universal function of k and w. (Hence spectra plotted as functions of w“SI/U,, '
say, will not be universal functions). . '

If we now replace d'y(xe:j&,m) by its (M - T) temm qnly
| . - du, .
dy(x,ikw) = =21k, . dz, (%, K. (33)
2

and substitute into Equation (27) _

e [©
Moiges = | e randy
o

©
-®

o
. f e~¥splkoBr iy | 2)d (34)
-y

where ®,, is the four-dimensional spectrum function, g = (k. x,K,) , K, =k, ,

Ky, =k, and 7 =dU,/dx, ,
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If we assume that

) : l';'l!lsl?ki 1+ 213‘”2 e-(lzkz*lfwz/ug)
o By, (¥il,0) o

L - - 35
JEJly + 2 2T u_(1 + Uik @5

where 1%k? w 13k2 + I%k?

ag shown in the Appendix, and

’TJ?;' = h0ye ™ ; L, =y 1, =1, =1

we find
[o=! + e?E1(-2) + e~?E1(2) ~ e~ ?Fi(1)]
Toik @y = .
1 (ouk,lw) 773/2“( + ,3)200
212 2\ . llki 12 2m2
L zkfhfco)l°<1 ¥ -T:-’- (PR (g
[}

where the term in square brackets is equal to 0,42 approximately., (The contribution
to TI¢0;k,c)y from the sub-layer can be shawn to be negligible and since the mejor
contribution 1s found to come from layers hetween !4 to 28, , we are justified.in
putting h(0) as finite).. The integration over all frequencies can be performed and
the wave number spectrum is then given by -

1| 2,2
1.68k21*h2(0ye"! K
TI(0: k L
OB ik + B2 (37
: ke ok’ di
Y] - 2 o B8 6%
and p%(0) = l‘1.68h O (38)

0

An analysis of the contributions to 1'1(0;)5)_ from different values of y shows
that the larger contributions come from layers of order &, from the wall, at lemst
for the energy containing eddies, If we then choose values for h(0) and B to give
a good fit to h(y) near y =8 , we find

hoy = 5.4/6,; L= 8, ; p8 = 1

CINT
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The integral* can be evaluated in terms of

® H
Pl
J(x) = dk
kK +x

which is tabulated by Goodwin and Staton??,
We find, finally, that
T = a2 (39)

which shows good agreement with the experimental results,

3. COMPRESSIBLE FLOW THEORY

3.1 The Pressure Disturbance Equation (zero heat trﬂnsfer)

Bince the experimental resulta of the wall pressure fluctuations by Kistler and
Chen (loc.cit,) at high Mach numbers show only a relatively small divergence from the

linear relation between ,JSE and Ty We might expect that the dominant terms con-
tributing to the wall pressure in incompressible flow also play & domimant rele in
compressible flow, Thus, if we neglect the diffusive terms and write our equations in
dimensionless fom, we find, following Phillips (loe,oit.), if the mean values of the
density and viacosity at the wall are constant, that

a
d —
2 2 2 2
ui Dp a a: 9p
-—:—2+—2V’p+—-°-°-a—= Po agg .t (40)
aZ Dt %4 dx, X, Py
where p = -IL-,
Pylis
ou
g =ik
Hy
tuZo,
L= ]
My
T
u, = [ X
Py
* [
3
x? oK

(l + ﬁl)z () A 2/ /31') + 3([”): J(ﬁl) (ﬁ‘l“)"‘ l"‘( )
4 7 >
0 Pl
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on du; ou
t) = - 241§
A(x, t) (:!T >, + axj 3)(1) (41)
and L. ° U °
' Dt 3 43y,

where 1, = U,(x,) .
The speed of sound, a , 18 also a function of x, only,

As Phillips remarks, the left hand side of this equation neglects convection and
soattering of the sound by the turbulence and by fluctuations in the apeed of sound,
The diffusive terms can be added to A(x,t) and hence, by using (40) es the hasic
equation defining preasure fluctuations in a turbulent compressible flow, there is
11Ltle loss of generality, We msee that the effect of inoluding fluatuations in density
(sound waves) has given rise to additional terms as compared with the equation in
incompressible flow, Since diffusive effscts, however, hava.been neglected, we find
that the pressure fluctuations are the result of the fluctuating vorticity and sound
modes, where in general the-vortioity mode is the larger, If this were not so, it
would imply that the mean properties of the turbulence in a compressible shear flow
could not be derived from a transformation of the results in incompressible flow.

But both Morkovin?! and Coles?® have shown that this scaling up of the incompressible
data gives fair agreement with the limited measurements made in supersonic flows, If -
the sound mode could be ignored, we could write (40) in the form

Vp = <pﬁ'>4<x,.t) . (408)

and its solution would then follow on the lines given mbove for incampressible flow.
However, at this stage, we will continue to retain (40) in full and investigate more
fully the terms glving rise to the sound mode,

The equation for the Fourier coefficient da), as dofined in (22), is, if
k? = k2 + k3 ,
;
IS
dln-—2

. 2 .
dar' + 2 daf! - Eﬁ’ -2-"2- (@ + Ulki)"zlda = /-Jp—dy ‘ (42)

2 w

since a’/am Pw/P for constant mean pressure over the entire shear layer, and primes
denu i u,u.l.wuuuuuuu ru Ll Akuuu uu 2 .

. If, following Phillips (loc,cit,), the first derivative is ellmi;\led by the use of
the new dependent variable

then

L st g )
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’ ul a’
U= [ - q@rukp?+—[L = P \iy (43)
.8 & Paity

with {(0;k.) = deX0:k.«) . This equation should be compared with its corresponding
equation in incompressible flow (23), which is obtained from (43), when a = a,~ o,

For the case of zero heat transfer, we have

= v-1
a? = al- 7 aiu?
al = 0;
and
a! cy =1 ud ad
- ‘ 2
AN o 48

It can therefore be seén that for small wave numbers, a’/a 18 a not unimportant temm
in the left hand side of (43); However, except at the wall, it is small compared with
the source terms on the right hand side and so in general -can be neglected.

Now in his analysis Phillips chose non-dimensional co-ordinates such that the width
of the shear layer was unity and the Mach number of the external flow waa very high,
He found, finally, -the radiation of sound from the shear layer by a solution which
neglected tems of order 1M, . -

In our problem we have chosen bhoundary layer co-ordinates such that U, 2 U, a8
X, 7o, We cannot strictly estimate.phe radiation of sound from the boundary layer
since we cannot enter the far field outside the boundary layer., However we can
estimate the disturbance in the outer region of the layer if we find the solutionh to
(43) satisfying appropriate boundary conditions, By neglecting diffusive effacts, our
boundary conditions are .

Lo

43’ (o) = = 0 (48)
and either d@@ = L@ = 0
. (46)
or [ ~ e 1A%, ‘X - on

where we differentiate between the cases of zero.disturbance outside the boundary layer
“and that of outward propagating waves,

In our problem it is too restrictive to find only a sclution for large values of

My and it is desirable to choose some other parameter which defines the flow, In
(43) wo notod the oxistence of the torm u,,"f/a2 and we find that for zero heat transfer

2
ur °f> 2
O s (D2 o« g
(2‘”

"
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for all M,* . It follows that a solution to (43) is required for large values of the
parameter A = a'/u, . (This is true also for most cases with heat transfer).

Let us now define the new 1ndepen‘dent variable

v = ox, =
= X737
a'
Then with
k%2 fw+Uk)\? u?
ay) = — - (—_‘—‘) S - (am)
u, a u fy _
"where & = a/a, , we find (43) becomes
' d?f )
— = AL = HW (48)

. dye

where

'}
HY) = Cf_”‘)c_‘) dy
' 'wBw/ \Ur.

and the term in A' in H(y) ;ia absorbed finally in the velocity derivatives and wave
number tems.

If we now follow the arguments used in the incompressible flow theory, we see that -
H(y) will be negligible over the outer three quarters of the boundary layer, Also,
in this same region, &, /& will be amall, owing to the small gradients in the mean
velocity. Thus a good approximation to (43) in the outer region of the boundary layer
will be to replace U, by Uy, & l?y a,,/a.' and then ’

d? k%ad 8 e\ ;-
dy—f - X2 [,u," - (w ;: + R M f‘)]& = 0 (49)

r T

But if the convection speed of the turbulence is Uy » the frequency « is given by

w = kU, (50)

*If, following Coles, we put

¢ y-1 -1
[ 2
1 1+ M2(1 - Ke ﬂ
o, [ 2 1

for the case of zero heat transfer, where K 2 153 , we see that

u? Sery

— * ————— a8 My @
a 2(1 - Keg )

" 1
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and (49) becomes

42 k2a2 u\? al
— a1 -22) k2 Nl =
= |:u$ ( 7 e (7 4 (51)

having solutiona nf tha form

{ ~ emctalyy for q, >0
and y » K (52)
: exp(tiA|q1|*y) for g, <0

U 2
Q@) = )\2|}2 M,,,k ( -U—):| (63)
-]

The interpretation of the sacond type of solution was given by Phillips, who showed
that it is equivalent to inward and outward propegating eddy Mach waves respectively
having wave numbers such that, with k = k cosd , .

2 [ < Uc>:|-2 ’
c08%0 > |Mylt ~ T . (54)
. o

Hence eddy Mach waves are generated over wave numbers in the plane for which

o~
I4

where a,

7 - 6m <@ <n+ Gm. end - 86;<0<6,

where

1
8 = Y P
m = COS (1 5 /Uw)M ) v (58)

and when U /Uy = 0.8 , outward radiating Mach, waves occur when M exceeds 1.25 ,
The region near ¥, 0 is excluded since eddies beyond a certain s8ize do not exist,

Although these considerations give us some idea of the solution to (48), they
really only help us define conditions which have to be satisfied near the outer edge
of the boundary layer., It is shown, therefore, that the first boundary condition of
(48) is applicable for wave numbers defined by

78, <8< 6m and 7+ 6, <O<2m-6,

whila the seéonduboundary condition applies for all other values of & .

In regions closer to the wall, q(y) changes sign when*

i Y- 1IN 2 By
N v (A
=14 5 5
u(U, - U2 k*(U, - U

* The terms involving a"/a -are included for convenience only.

As already stated, it {s praferasble tn put them on the right hand aide of (48) and
to regard them as source terms.

ol MR g 2 e W

Mholifrg i oh

N

ot

126 bbby

BT e



18

and this occurs at the wall when

7—1 o
1 .2 b _
- = (M

-

zhz

Hence for ¥ = 1,4 and Uo/Um = 0.8 to 0.7 , this limiting value of M, ranges from
1.5 .to 1.8 approximately, provided that the bracket term is 0(1)., At low aupersonic
Mach numbers there still exists &n extensive region of the houndary layer where the
flow i8 subsonic relative to the speed of sound at the wall, even .though the local

flow is partly supersonic, and eddy Mach waves do not exist. At higher Mach numbers,
a8 shown by Kistler and Chen, the convection velocity is supersonic relative to the
speed of sound at the wall and at each reglon distance y from the wall, there is a
range of wave numbérs from which eddy Mach waves are generatéed. The remaining wave
numbers in the turbulence produce disturbances near the wall of the exponential type,
Just a8 in incompressible flow, The condition for the generation of eddy Mach waves is

{-‘-xl )

leosd] > (88)

Um

Even so except at very high Mach numbers, there is a large renge of wave numbers for
which the effective speed of the disturbances is subsonic with respect to the wall,

3.2 The Solution of the Pressure Equation

We have shown above that the pressure disturbance equation can be written in the
form

. d2§ . -
- a;-hmn§= HY . ~L(48)
where q(y) and its derivatives are continuous functions of ¥, This equation has a

transition point at y =y, , where a(yy) =0. If y=Y when w+ Uk, =0 where

w= Uk, ", then q(y) will be positive in the range y, <y <Y, provided that

E /EX2 cen be neglected, If a second transition point oceurs at y = y, vwhere
q(y y=0 and y, >y, , then aq(y) will be positive in the range y, <y <y, , but
q(y) will be negative for 0<y<y, end y>y, .

Case I ay) >0 0sysgy,

Since N\ isa lérge parameter, we can find an asymptotic solution to (48). On
neglecting tems of 0(1/A\) and inserting the boundary condition d{/dy = 0 at
=0 we find h .

2a’ y 1 H(Y
Ly = & cosh(hfo quy’) +X;g/.mﬁinh<Kf q"’dy”>dy' (59)
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where A’ is a constant given by

Loy = dexo) = ——;2“. (60)
q(0)% _

but can only be determined when some other boundary condition is inserted, for
instance at y = Yy . If we argue, however, that the region surrounding y =Y
provides the dominant contrlbution to the disturbance at the wall and for y >y, ,
{(y) << {(0) we find that .

Y2

40 ~ - ——p ——;"(y') xp(—)\fy’q"?dy")dy' (81)
Aq(0)+4 . a(y")4 o
2
o y _ gk
which reduces to (26) in incompressible flow when Ag? = —— and y, =®,
T

Case IT q<0 ¥, <y <

If a second transition point occurs at y =y, , then a(y;) =0 and q is
hegative in the region y, <y S

Let us put
a*(y) = -a(y)

w+UkN? k%2 & ud
< : 1) JKom Byl 62y

) a - ul :4 8y

" then a solution is required of
d?g .

ay—z + Al = H(¥) ) (63)

where 4*(y) >0 in y, <y <o and q*(yy) = 0.

Near y = ¥, we have
@~ @y Sy (84)
where a*'(y,) » 0.
If we introduce the new dependent varisble (X&) where

U
i
e

(65)

i

i




o

21

. azks
and (a;) = q*/ (66)
then from (63)

d2Q

E’_ + A0 = 7t small terms (67)

N2
vy, 2/1
with 5 &= |@®B)] oty . (68)
v ¥y

The range of & is 0 €& <o .and we take

4 qnli ’
s (7 e

1f we assume that only outgoing Mach waves exist for y > ¥, s then

y
Lyy ~ exn<—1>\f ¢q*dy’> (70)
Yi '

The solution of the homogeneous part of (67) can be written down in terms of the
tunotions

#tllﬁ Jt‘(l"")

where p* = g%.‘“” and 0 € u* <o and the solution for {(y) , which can be con-
tinued analytically into the region .y € €y, ,» follows apart from one undetermined
constant,

Case III  a4>0  y,<y<y, o

As stated above, the solution obtained in the region ¥y, <¥ <o can be continued
analytically into the region Yo <¥ <y and therefore involves terms of the form

/A”“Ié(/-c) and - #”’K%(/-c)

é)\tG/Z

Yy 2/3
e
2y

whers 7

1

and -t

 The solution for {(y) 1s therefore given in this reglon hlso, apart from one

undetermined constant, the same constant as in Case II above, This solution cannot,
however, be extended to values of y near y, where a(¥y) = 0 . A solution can,
however, he found around y =y, involving the functions
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L PO SR ST
where n = lé)\sa“"
and 8 =

5 [7 213
EL va dy! .
0

The solution contains two undetermined constants.

Case IV a<o0 0<y<y,

The solution obtained in III can be continued analytically into the region
0<y<y,, and hence it i8 given apart from the two constants. Boundary conditions
at the wall provide one relation and two more relations are obtained by matching the
solutions obtained in III at some convenient value ot y in Yo ¥ <Y, ., The three

unknown constants can now be evaluated and the solution for {(y) throughout the
entire boundary layer has been obtained, and in particular the value at the wall.
(Full details of this solution are given in a separate paper which will be published
shortly).

First of all let us find the changes that result in d&(0) as a result, of com-
pressibility effects at low supersonic and high subsonic Mach numbers and these can he
demonstrated on evaluation of (81),

If we assume, as in incompressible flow, .that the dominant contribution to H(y) B
arises from the (M -~ T) term then ’

o (@ e o

: du al  (w+Uk)?
_vhere o= L g » k’—;—(—#—
kg , dx u? T
¥y |
- oy’
: - 21k duj e K :
and de(oy = R E B | (dz,)dy (12)
. - 6(2 LY “‘r)' Ipwa'v dy g
. oa /] By
J
2.2
u
for k*> 27 .
e

We now require values of dUl/dx2 and ug as functions of the freestream Mach
number, and these can be obtained from their so-called equivalent incompressible
counterparts using Coles' transformation formulae.

——
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If quantities with & bar represent incompressible values

,12 o ]
X, = 2 dx, (73)

where ., 18 the sub-layer viscosity which, for zero heat transfer and vY=1.4, is
evaluated at the temperature Tg &lven by

(1 + 0,11M2)

T 74
o/Te (1 + 0,2M2) (14)
Also 6, = v, [P (78)

where Bz is the non-dimensional mean velocity in incompressible flow and u,-

i8 its corresponding value in compressible flow, If further we assume that the
relation between T and U, is given by the Crocco energy integral, we can perfom
the integration in (73) and so find the relation between x, and ¥, in the form

Y=1
) n 2'M°° ué )
A M. J N R PN e
Ky y-1 , U LK) K
. 1+_2_Mco

where K 18 the von Krmdn constant, In addition it is found that

pe AU a%, 7
e " dx, - —1 T an
vow 2 Y 2
Mg a2
1~ 02 =

for the case of zero heat transfer,

If we assume that EZ changes with compressibility in the same way as the mean
flow* )

'F‘;’(xz)? = Ty (78)
~ = ., |

* This relation between 'ul and 5 differs from that used by Morkovin (loc.oit.)
but neither relation is in good agreement with the available experimental data, All
that.can be said of (79) is that it qualitatively has the right trend with increase
in Mach number.
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and a similar relation is assumed to exist between the Fourler coefficienta such that

dz,(x,) = dBy(X,) J";'? | (19)

. After some reduction we find, on substituting (78), (77) and (78) into (72), that

Hg

2ik, — @, da “k£(X,)
~ . e
X0 = —— | Th 22 - o, (80)
kX¢0)%® [d¥, g [TEN\?
XX —&
0 Ty
where
. ~ P.w 2
s onf]
k2X(X2)'-2 = kz_:"_‘!lr‘g_ o Mg/
Felo | zl e Yol
" 2 o ﬁfﬁi P o
T 1
b 2=t
and —
: X2 !
- Y -1
, Ti07 —— ME
kf(,) = k| X(X) ’—;,.5 Lm <
SRR
5 .
The spectrum function is therefore given by
2 0
2/Ms :
4k1(7 T(y) e kEW) ®
M¢osk @) = L s dy . | B,y ZikKw)dK,
~ k2x(0) y [T(YN?
1 Xt T - '
Jo v
© . .
ik o <k(E(y+z)=f(¥))
T(Y +2)e ¢ e

R— dz (81)
Xy + z)"f (———(y )> '
Ty
-y

where the upper limit in (80) has been replaced by infinity, We see that (81) is
identical with (34), apart from thé term in p /i, , T/Tw , kX(y) in place of k ,
and Kkf(y) in place of ky . :
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A rough approximation to (81) is found by replacing £(y) with Ty and X(y)
with %, where T and X are independent of y ., We then find that the integrals

have the same form as in incompressible flow and have the values obtained previously,
Hence, on reference to (35) and (368), we find

2
1.eakfl“h’<0)_(fﬂ )
a4y 2
Meosky = a 7o (82)

mkE + B2

where the integration over all frequencies has heen performed on the assumption that
except at very small wave numbers.

< ' — |T '
Xy) M X ™~ X(x,at U, =U) = 1; hy) = Q}ugd% = n(0)e™AY .

The integration over all wave numbers k: end k, can next be obtained and leads to’

—— 7( (AN '
p(0) = MB(F:) h2(0) L{M) (83)
where
o
1 k%K “dk
Li(My) =3 (84)

which can be evaluated in terms of the function tabulated by Goodwin and Staton
(loe,cit,),

A1l thef remeins is to choose suitable values for h(0) , Al and F. If we

follow the arguments used in the incompressible flow analysie, we must choose h(0)
such that h(y) 18 & good epproximation to its corresponding value in compressible

flow near X, = 8,

It follows that some mdjustment to }351 with Mach npmberuis necessary and we put

AL=1, )

ho) = ——g— ' (86)
()
i

with
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y=-1r .,
2 Yo o2
1"0.6 ?
e A
3 =
Bé, = <T>.,, (86)
T.) .
ke AN
and
v-1
— M
- 2 WL/ 2\ 2
t = ﬂl‘ vt 71 CAL PSR E2or g | B
Hy Y-1 ,/Us K K /|
1+—2—Mm -
¥,
+01Mm @7
\/ 1+ 0.2M :
approximately,

If we use the asymptotic expansion for the function J(X) given by Goodwin and
Staton we find

/(0)"'6.3 a8 My~ o,

Figure 8 shows results for V; 200) evaluated from (83), together with (84) to (87),
and the experimental results of Kistler and Chen (loc.cit.) and Willmarth, Hodgson
and Mull end Algranti?® at low speeds, As already stated, these theoretical results
should only be applicable for low supersonic Mach numbers but it is here that we have
‘the greatést divergence with the experimental results., There does not appear to be
any justification for reducing the experimental res$1ts of Kistler and Chen, by a
constant factor, but if this is done, they fit both'the low speed data of other
workers and the theoretical curve throughout the entire range of Mech number,

However on the assumption that the differendt between the present theory and
expcriment is real, clearly we must find what is wrong with regard to the theory, It
is difficult to see how it is wrong at low supersonic Mach numbers and high subsonic
Mach numbers, where no eddy Mach waves can exist and where the compressibility effects
on the mean flow field and the turbulence are known to be small,

If we ignore the experimental point of Kistler and Chen at M, = 0.6 , and assume
thet at some value of M, ahove 1,25 a large increase in pressure level occurs as &
result of the generation of eddy Mach waves, then it is surprising that an ever
increaging divergence between our theory and experiment does not exist as M, 1is
increased, The fact that both sets of results appear to have the same asymptotic
behaviour at high Mach numbers seems to suggest that eddy Mach waves do not contribute
greatly to the wall pressure fluctuations, ~The significance of this will he explored
in the next section.
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Before closing this section we note that the changes in the frequency spectrum with
increase in M, will not be large and the peak should occur at near wSl/Um = 0.3,
its value in incompressible flow. In fact the results of Kistler and Chen are in good
agreement with the low speed results of Willmarth, Also, the main effects of Mach

number on 53 appear to be a reduction due to the decrease in c, with increase in
My, . &nd an increase due to the shift of the dominant source region nearer to the wall

with inerease in M, ,

3.3 The Pressure Egquation at lligh Mach Numbers

We have shown above that the solution given in (61) is restricted to the case.
q(y) > 0. If, therefore, a transition point exists between the wall and the station
where U, = U, , we must turn to the solution outlined in Case III sbove. The solution
follows the approach used by Phillips, although we find it necessary to modify that
treatment when applied to our problem, We will, however, still not comsider the full
solution which must include radiation outwayds.from the boundary layer,

The solution to (48) in the reglon atound y = Yo where a(y¥y) = 0 1s found to be

sVi[ 2 3
oy = (—9 P14 a(y) + 1 KHMB) (88)
where
/ 3 y /2
8 = <—) va dy for q20
A\2/),
0
and awy) = 0, TI=(§)>\5“"’
R
W .
ay) = A+ | HETKymds (89)
3
AN -
0
1 [®
3
® " -
By = B~ P3N T4(M)ds (90) -
AS :
0
i,
_ H) ds\?(s" 3(3”>2
and sy = (—qy f é;(y)<dy> 28? " a\a’?
8 . :

and since ¢(8) contains {(y) (88) is an integral equation for {(y)'.
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N g (dE')e /
ear y =y, , slnce (—} =q/8,
T &/ "1
8% = QT O - ¥R
H ’ § ami/a
or 8 = a'(y)’ -~ . a'p)? (v -ye

corresponding to the + or - signs respectively, However, because we have put

y 2/a
: 3 da q :
s = (=) V& i — = o= 1
<2> @y dy Va
Yo g L L
we take the plus sign, and so in the region 0 £y < Yo ‘ f
s = s*el”; q = geel” ]
with
: 3 y 2/3 |
o= (@) -Fw ;
BN
":.'
where both 8* and q* are real and positive, ]
We also have :
n = 1;"5“'"/’
where :
2 : y ?
o @mm = A -,
Yo
Hence in the region 0 €y <y,
8 s ' . :
a  aqt
4 5
nlé(n) = -7 Jé(n‘) i
' ;! PR ’ ) :
and n%Ky(m = - -;—Tei"”E*,‘“m‘) + e‘"“Hi”(n')]
3 3 5 : <

77T
= - 7’.3 'E ei‘h‘/f) 9%(77') say,
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(Jé('n‘) + J_é('ﬂ'))

where tel™8 §ymmy = -
a b

: ain ~

3

Thus the analytical continuation of the function {(y) , in the reglion 0 <y { Y, 18

w4 4 I L :
8 . by .
Uy = —(—;) Eramn'wm * ﬂe‘"’“'fl"h('ﬂ“)ﬁ'(b’{l (81)
a ] 2 ]
where
S'
4
"(¥) } :
ar(y) = A=~ ~ ¢(s'>n*°<u<n‘) + J-é(m)ds‘ (92)
: 2 sin—\3/3 ! )
3
0
. 8¢
-4
a
Iy
Py = B -] stymriagrdst (83)
0
with.

}' n AY
H(Y) q*\*| s* a/s*
L & .C(y)(;) LS,Q - ;<—5.,e>jl
®)

If we apply the boundary condition d{/dy at y.= 0 and write subscript w to
denote conditions at the wall, we find, for large values of A-, that

w0 = — Broy(1 J2~ 2y [3_ s 9
| = Ao - 207)/3.378) (94)
and é
N B o
Loy = & = di(0) = (95)
PR
A6 an¥ w2 1 armmy
¥ 12
on using the identity
77
Znng
JL(X)I(X) + I p(x)J_2(x) =
3 3 a a Kig 3
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where
i o
0O} !
Br(o) = B~ | HsM miULrIde
}\3
0
and L (98
. ‘ .
3
. 'n@) ! ”
a*(0) = A- 7| %) I + T4 ds*
va A3 : ’

0

It is convenient to approximate to these integrals by assuming ¢(a* = dptigtaht =" "

¢ (0) ; then
2"@) RICIYR
a*() ~ A~ 97
( ﬁ)ﬁ \/q’(yo) @n
and
§
(3) B(¥y) _ st
%(0). ~ B - e : . 98
B (0) . )\.5. AN ‘ (98)

noting that q(y,) = 0, and that for the value of 77;, glven by 1= 'Jz(n;)/.!_z(n;)

we must put a*(0) =0 in order to satisfy (94), and then B0y 1is ngt determined, "
But clearly this only arises because the approximation given by (94) is inadequate,
{.e, higher order terms must be retained, and therefore in what follows 7 must be
_less than unity.

Now the value of . q}. 1is found from (47) to be

-1
Q; = a)z-kz)\.z'i'lz—.

as>0 for 0<0<6

where

E

P

k= o

R L
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- /u / v-1
80, = ___a' ki P —
|cost,| <uc> Ty

which shows that at & = Gm the speed along the normal to the wave fronts is roughly
eqiial to the speed of sound of the gas at the wall. Thus the position of the transi~
tion layer at which y =y, » a(yg) = 0, changes with frequency and coincides with !
the wall when q% = 0. In the range 0 < 8 < Hm v 9y < 0, while in the range

Gm <8 <nu/2, q, > 0'. For the latter region we cen make use of the solution
obtained in (60)

247 b4
or - : &) = = Gy <f<~ _ (60)
Qg 2 .
The value of Lw when Q=0 is found from (91) and is. ;,.—_
3
m2 B
da(0) = 6=0 (99)

Similarly, from (95)

1
ROZSRNAC)
ay T 3gmp)

ded(0) 0€6<6, (100)

So far we have applied only the boundary condition that:the normal pressure
gradient vanishes at the wall when diffusive effects can be neglected, However one
further condition is required in order to determine the constants in the formulae for
£¢0) . This further boundary condition results from the disturbance level near or
beyond the outer edge of the boundary layer. If we assume that the bulk of the pressure
disturhance near the wall arises from the region around y =Y , it would seem not
unreasonable to assume that the level of the pressure fluctuations near y = ¥y
Wwhere ¥y >Y and a(y,) = 0, must be very much smaller than at the wall, in spite
of the fact that radiation outwards is taking place, As already stated, the proper
boundary conditions at the edge of the boundary layer can only be applied to the region
¥y, <y <w, where, for sufficiently high Mach numbers, there will exist & range of
wave numbers for which q will be negative, However, for our purpose, it will be
sufficient to assume that y, and y, are well separated go that we can put

L =0 for y>»Y.
(Ot course the ‘radiafion outwards can only be determined by proper matching of the

solutions around y = y, and y =y, as previously discussed). We therefore find
that a(y) =0 for y >>Y or from (89)
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i

3
® ;
A= - 20 P naxé('r))ds (101)
N
[\

Now, for Yo =0, we find H(0) = 0 and so, according to the approximations used
sbove, (0) = 0 at y, = 0 . Hence according to (98)

B =B at y, = 0

and from (94) and (97) on putting 7 =0

or

, ‘
&(8) nskgm)ds (102)

7 Al
0

which determines {_ in (98) when 0=, .

For ¥y, # 0, H(y,) 1s finite and then making an approximation to A 1in (97)
we find from (94) thet

6% H(y,
h; Va'(yy)
By = —m——— (103)
o] :

1 -
- S
2R

i K =
since %(n) dn 2

J;m M: 2%y

and therefore we can find {, from (100) in the range 0 < & < & . We note, further,
as stated previously that B*(0) 1is undetermined for that value of 7% which makes

the denominator of (103) vanish and hence we must only use (1us) for Ty < i
approximately,

For other valuss of y it will be sufficient to put £*(0) =B, where B is
given by (102). '
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The values of the constants are completed by putting in the range Bm <@ <m/3

y
H
Al = _%)\ f%— exp(—& v/q—dy'>d,v
0 0

from (59), On collecting our results together we have

] .,
o 1| HY) NG dy! n
dai(0) = = 0 , 8 <8 <¢—
a)(0) W,[ o e dy n < 2
©
§ .
. . )
de(0y = _T_z__ .._(Y_)'T;éKé(TI)dS. 0 = 6,
3
ROIOE (of
8 o
R \
~ 2° H ,
and dejo) = - 3 o) , 0<0 <6,

F PO T :
A alyy)? ast ot T = Jxnp)

(104)

(105)

(108)

(107)

- for velues of 7} <1 and by (105) with Q- replaced by qf for higher values of

.
We can approximate to (108) by putting
4 7w » ¥
7Ky(m ~ AJ—Z- 6", where m = A Vqdy!,
3
0

.and hence

VT ® u
A k. SR

3ép(§)xé (qv,’)é lo % n

having a similar form to that given in the range Bm @ <m/2.

(108%)

YRS

W b L

Ve |k Bl st

1 bbbl b o i Lo

A F bl $ i



34

The values of q; and q'(yo) can be obtained from (47) and 1f we ignore deriva-
tives of the speed of sound, noting that this is a poor approximationt! near y = o,
we find,

af = 222k, | (108)
du,
since — = 1 at y = 0
dx,
. 2x2 | '
and , i) =\ k(@ + Ukl (109)

where U, and % are evaluated at y =y, .

In (109) we find, on approximating to q(¥y) = 0, that

2A%
Cl'(yo) = _R— |k1| (110)
and from (108)
af = 22%]x,| (i
Hence, with ‘ '
b1}
B = - (L) (22) 2ikraz,
PePw/ \Ur '

as given by (71), we can find expre,asionsb for de , and the corresponding values of
the spectrum functions are .

® !
4ki\? du, pae™” . |, du, pge™” m
Mogw = 20 | aympe 322204y [ Z1PES 4 g <0<l am
% Sody % dz % 2
a4 q a%
" Jo : ~y
-] ' ,
402 du, pEe™” du, pEe "
Moike) = ————| ¥y zikew) — dy| — dz ,
V! i i B
3 33 ()3 .
(! \
8 =2 {113}
m

t The full oxpression for |°w| 18 given by
lagl = A%P[1 = w?/A2%2 = (y-1)/20%%)

but note our previous remdrks about the term a‘/a .
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i1
12.2°2%2 B(yyik s d 2
and Mok = 2 1 oik @) _Ukpa> L 0<B<8, (114
y=y '

i dy
a’ (vy)agtng <T-§(n,',) - ng;,)>

Wﬁe're throughout (112) to (114) p = P/Pw ;8= a/aw , and (114) only applies when

My <1 and for larger values of 77 we replace it by (112) with g3 in place of q,.

Now, according to our approximation,

q* = (@ + Uk)?/E2 - kA2

du
and 80 at a fixed wave number , dw=z %k, —idy at y=y corresponding to
1 dy X [} i

a(¥y) = 0., Thus for 0< @ <8, we find that the integration over frequencies is
given in terms of an integration over ¥, » provided q¢* > 0 ., However we find that
for small values of 7y the contribution from wave numbers in the range 0 < 6 < 6
18 negligible, while at larger values of Ty the contribution is of the same order a8
that for the range 6 <6 <m/2, Bince the contribution from around & =8, is
finite, we can represent TT¢o; k@) for all 6 by

0
ak2\? du, pae™"
Moigwy = —— @(y.z;,l\g.w)—lp 7— dy
qw/z dy q4
© ’
du, pae™ "
EZ‘pq‘ dz : (115) .
[

On replacing the compressible flow quantities by the Coles’ equivalent incompressible
values, we then find, as previously,

. .
m
RN s e '
1(:%) au, ‘lﬁ? "

k1"<ﬁ>2- 7L 1% - A
kA 2(1{}\) 0

oy ix, %!
. [ B(X, Rk kg 2 7 dk,

Jam

Meosk.ay =

oo | = L2l g (116)
=l

I
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We find, on making similar approximations to those used above in evaluating (81), that
the integration over frequency gives

u
0.84 kihz(O) ! —s> 1kN
B 22
Mok ~ (o) ——prL oI F‘<——> (117)
- ? &f+A Yo
where -
UAn\ | 1+ 2aﬁ)e'”2da)‘
L 3 2,2 P
Ve ] - .HSE_. — fZ.il
BETCEETOY

-0

On aepproximating to this integral, we find that

. ;
i) ~ 1.63<{?>, h3(0) 12 LiMy) (118)
N _

just as in the previous case (83). Thus, although we have taken account of the con=
tribution due to the eddy Mach waves, we see that, according to the approximations
made, they do not contribute more than those eddies which travel at subsonic speeds
relative to the wall, :

4, CONCLUSIONS

It has been shown that theory -and experiment are in fairly good agreement in the
prediction of wall pressure fluctuations in a turbulent incompressible boundary layer,
On the other hand, theory and experiment, in the case of supersonic flows, show some
divergence, although both appear t¢ tend to a similar asymptotic value and both
demonstrate the presence of eddy Mach waves above a certain Mach number, However the
theory does not show any marked increase in pressure level at the wall due to eddy
Mach waves, In fact, a simple extension to the incompressible flow theory is shown to
give similar results to the more elaborate theory in which eddy-Mech waves are approx-
imately taken into account, This result 1s perhaps not surprising when we note that
the deminant region associated with the pressure at the wall, even in the incompressible
case, is displaced away from the wall and the level of preasure is roughly constant
over an appreciable distance normal to the wall.

It i8 clear that further experimental results are required to explain thp
differences between theory and experiment, as well as to obtain further information
in the cese of flows with pressure gradient and with heat transfer
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APPENDIX

The velocity'snectrum function for u

In order to obtain numerlcal values for the wall pressure, the following form has
been chosen for the veloolty spectrum function in fixed co-ordinates

- ﬁ(xe)ﬁ("‘z + xPUTL, L 1%?
T .

2 2,2
27° U (1 + la"z)

Dy0(Xg1 Xy | RYJG K 6D

0\ 122,722 02
. (1 + 211’;5>e A

c

where U, 18 the convection speed end 2= I%2 + 13k2 . It is assumed that I,
and la" are constant, while l,‘, = %, , thus an allowance 1s made for a change in
scale of the turbulence, with increase in distance from the wall,

The integration over all values of w 1leads to

19,2
Byp(Xgi %y + Xpikokp) Ll l%kx0 L7k
Jﬁ'—z(xa) ,JtT_f_(xe +x}) 7 (1 + x3K3)

end its Fourier transform, with respect to «, gives the two-dimensional wave number

spectrum function

'] .

ik, x!
‘. 2%2
D, (X, X, + X5iKp)€ L de,

I

. N
B, (%, Xy + XKD

. o2 -ixbix, 1
_ iy fudix, + w1l 1% et R e e
m
"

which clearly displays qualitatively the correct physical properties across the
boundary layer, even though it fails to demonstrate the true enisotropic wave number

digtribution,

12,2 1yt
Liki=125/%,1

- E(xz) m(xz 1l

2,2
1+ 2lki)e
|2

. (
® VX, + x5k =
22(Xp Xp + %5iKy) P

I RTITA

.




46
which is also equal to @Qe(xa.Xé + x;: -.ayuo) in agreement with Taylor's hypothesis,

Finally the integration over all k‘ glves

w,(x ) u,(x, +x/)
Y3exp) fukx, + 20

& form for the veloolty ecnrrelation which is in fair agrecment with experiment over
most of the boundary layer. It is therefore reasonable to expeot that our caloulated
value for the mean pressure which is based on this assumed form for 9,, will be in
fair agreement with its exact value provided very high wave numbers are excluded,
Finally it is worth noting that we have a ¢omplete froedom of choice with reapect to
the longitudinal and transverse scales, I, and 1, respectively, as well as the
convection speed U, , except that in the latter case we have assumed that it is
independent both of the distance from the wall and of the wave number in the turbulence.

i

= e"l!é/!:l

R,,(0,x,0;0,x, + x},0) =
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DISCUSSION

G.M. Corcos .

5

Professor Lilley has based much of his talk upon the assumption that the pressure
field was caused primarily by the quasi linear momentum flux which results from the

interaction of the mean stream rate and one turbulent strain rate, He and I have heen

having a disagreement on this point which could hardly be more complete or more
friendly. He has advanced many arguments in favor of his hypothesis originally pro-
posed by Vralchen and this is not the place to review each one in detail as I had
originally planned to (slide down). Fortunately the discussion has shifted from the
somewhat speculative plane of the approprimteness of certain modes of things we don’t
know to that of hard faots, By this I mean that the excellent measurements of '
Wooldridge and Willmarth allow the direct evaluation of the contribution of this one
inertia term to the pressure field without recourse to models or assumptions, One
then can compare thess contributions to the characteriatics of the observed pressure
fleld, Now Professor Lilley has almost done that by trying to fit a pressure-nomal
velocity correlation model tothese experimental data, This later approach I have not
had time to check in detail, since I only got the report yesterday, But there seem
to be important discrepancies between the model and the measurement near the wall,

If there were not, which im still possible, his computation should agree with a °
detalled numerical computation I heve performed without a model and therefore without
assumptions, unless I made many numerical mistakes. Briefly the results of these two
computations are different as day and night, Professor Lilley finds that the M-T or
quasi linear term dominates, I find it does not dominate. Professor Lilley finds
that this term makes its contribution around y* = 2000 or y/8* = 1.6, I find it
makes Lts peak contribution around y = y* = 350 - 400 , -y/8* .2 . In addition I
find that the sutn-correlation of the pressure contributed by that spectrum is very
different from the observed correlation — contributing essentially only the very high
frequencies of the spectrum. The issue can clearly and relatively easily be resolved
We shall first compare the model to be used with the data in detail and if they do
sgrae, then we ahall look for numerical mistekes, .I intend to describe briefly this

afternoon how the numerical computation of that contribution is mads ‘wmrd to glve a few

details of its results, I would like to note thut even if allowance is made for this
rather important assumption with which I disagree, Professor Lilley' s talk was
thoroughly enjoyable and his’ paperWDrk on compressible flow is quite interssting,

Author’s reply

I would disagree that I had based my work primarily on the importance of the mean
shear-turbulence interaction,

J.E. Ffowes Williams

I was particularly interested to hear of Professor Lilley’s work on the wall
pressure fluctuations under compressible flow conditions,- I would like to ask
Professor Lilley if he has given any thought to onc aspcct of his theory about which
I feel uneasy. That is concerned with the problem of whether or not his assumed model
presents a well posed mathematical problem The model is that of an infinite plane
supporting a homogeneous boundary layer. The turbulence will generate sound

b gy il
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and we are interested in that sound, The-situation is such that it gives rise to an
analogue of Okert's paradox for the pressure at any one point is infinite, The
infinity is avoided in Professor Lilley's equations by restricting the analysis to
frequencies given by K,U . But the total pressure 1s nevertheless infinite because
finite contributions come from all parts on the plane, i.e. [d8/r? is singular, 1Is
the analysls still valid even though it has to cope with this infinite contribution?

-~ Author’s reply

I have looked at this ﬁrdblem and I felt it was sufficient to assuﬁe that the plate
was not necessarily infinite but large, - It would appear that the results I have
obtained for the preasure covariance do in fact converge. '
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