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An extension is presented of previous results of the
authors relating the parameters of an idealized two-dimen-
sional linear vehicle to stable ground roughness as describ-
ed by power spectral densities. Optimal vehicle pa{ramet-

ers are obtained relative to a ride roughness criterion for

ground contours described by power spectral densities esti-

mated from real ground survey data. It is found that the
ride is not sensitive to changes in the wheel base length
parameter when this is over 14 feet. However, the ride is

found to be sensitive to damping and speed in this wheel

base length range,




OBJECT

Determine influence of wheel base length, suspension sys-
tem damping, and vehicle speed on ride roughness of an idealized two-
dimensional linear vehicle with stable ground roughness described in

terms of simplified p. s.d. estimated from survey data.

RESULTS
For the class of vehicle, ride roughness criterion, and p. s.d.
describing ground rougness considered, ride is not sensitive to changes
in the wheel base length parameter when this is over 14 ft. It is

sensitive to speed and damping, when the base length is in this range.

CONCLUSIONS
For idealized vehicles (linear) of reasonable size, wheel base
length is not as significant a parameter influencing ride roughness as

are damping and speed.
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INTRODUCTION

One asﬁect of the task of increasing vehicle speeds under
off -road conditions is the study of the significance of various veh1cle
parameters on the roughness of the ride of the vehicle; and, hence,
on its max1mum speed . |
In previous studies conducted by the Midwest Apphed Science
Corp. on how vehicle parameter_s influence ride, hypothetical and di-
mensionless power spectral densities (roughness measures of profile
height by fr_equendy bands) ‘were employed to specify ground roughness.
These studies indicated that for idealized two-dimensional linear ve-
hicles, wheel byase‘length among other factors, was a significant
parameter when ride roughness is assumed to be specified in terms
of vertical acceleration p s d.

e




OBJECT

Information is gradually accumulating on
characterizing stable grbund roughness and those characteris-
tics of vibration which influence humans adversely. As input
information and output tolerance limits increase, it becomes
important to relate these to vehicle parameters. The object
of this study is to determine influence of wheel base length,
suspension system damping, and vehicle speed on ride roughness
of an idealized two-dimensional linear vehicle with stable
ground roughness described in terms of simplified p.s.d.
estimated from survey data. Knowledge of these relations
may, in turn, modify our approach to ground roughness
measurements as well as to studies on humans subject to

vibration.




" RESULTS

Graphs are.p‘i‘.e“sented which indicate the influence of wheel
base length, da:n"m‘psijng', ‘and speed on the variance of the vertical accel-
eration (ride rbu%ghne,ss measure) at two points on the vehicle frame.
The power sp-e;:t‘iialrdensity‘ used to specify ground roughness is the en-
velope of the p. s}.‘.d . estimates obtained from survey data taken at
Aberdeen and Kno‘x.} At the frame center of gravity and also at a point
on the frame forward of the front. wheel acceleration variance is in-
sensitive to the wheel base length parameter as long as this parameter
- has a value above« 14 ft. - At the frame c.g., the ride is worst when the
wheel base length is apprommately 8 feet.

Dampmg is a sxgmflcant parameter in determmlng the rough-
ness of a ride. . e | o

Increasitig (decreasirig)'épee’d produces a rougher (smoother)
ride at all prac‘tlcal Values of wheel base length and for all values of
damping. The steep slope of the p.s.d. curve in the. interval from
A=0tox= .085 (Xxis frequency in cycles per ft.) appears to account:
for the substantial nature of the change in ride roughness with fairly
small changes in“vveh.ir[cle speed.

The p,drtiOn of the p.s.d. curve above X = .065 has only a vefy
small influence on ride rbughnesé. ~ This suggests that if future results
on ride roughness show the same lack of sensitivity to values in the
portion of the p.s. d. eurve‘ above X = 0.065 survey, data may be taken

at spacings greater than 2 feet,




RECOMMENDATIONS

Continue the investigations for different vehicle configur-
ations and for those criteria of ride roughness which develop from
the M,A.S.C. program,
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Section I: Review of Previous Work

It will be- recalled that all previous stat1stica1
studies of 1dealizedftwo-dimensional linear vehicle response
»conductedfby M A‘S’C .hauehemployed hypothetical and di-
ground. Since that time, estimated p.s.d.'s of ground~
roughness have been obtained from survey data It now be-
comes profitgble to re~examine,some aspects of the vehicle
response using?estimated rether than hypothetical p.s.d.’
"since the former‘differ.from the latter in more than just

dimension.

‘The méin conclusions of this Report oapply only
to one idealized linear vehicle (with specific springs,
masses, geometry, base speed (10 mph), and wheels always in
contact with;ﬁhe ground) using vertical motion acceleration

variance toﬂmeasure the roughness of the ride. Briefly, the

conclusions are as follows:

a. In the wheel base length range over-14 ft., base
length is not significant in changing "ride"'
roughness o |

b. " Change in vehicle speed from 8. 33 mph to 12.5 mph
produces substantial increase in ride roughness,
lndicating for the vehicle considered, the impor-
tance of speed ‘and, thus, the shape of the ground
p.s.d. curve in the wave length range over 16 ft.

Cs Demping is a szgnif1cant parameter in controlling the

v roughness of the ride. | A
The detailed analys1s and discussion of results obtained

follow.




Section II: Linear Vehicle Model and Equations of Motion

The linear vehicle model considered in this section is

shown in Figure 1.

Y(t)
x=vt ’: Lo Pa
Col __—@(t)
/2 '
Pl M,llm
1
| ) | e
k | e Y, (1)
\*r,(t) . m __a____gzﬂzj
a' /\ |
o T @%ﬁ l
| ?A YQ(V'-{'-%'_)__
I
Figure |.

Schematic Sketch of

Two-dimensional Linear Vehicle
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Section III. Analys1s )

For the purposes of this Report (it suffices to consider a
symmetric two- dimensional veh1c1e The center of mass C, of the
vehicle frame P1 C ‘o 2 is assumed to- move with a constant horizontal
speed v; the verhcal displacement of C and angular displacement of
P C P2 are Y(t) and o{t), respectwely, the mass of the frame is M
and the moment of inertia of the frame about C,i8 L . The rear and
front suspension elements connect to the frame at P and Pz, as shown
in Figure 1; they are £/2 from C the spring elements have modulus k
and the damping (linear viscous) elements have modulus c. The wheels
have been 1dealized in a number of ways; their c.g.'s are denoted by
Ql and Q2 We cons1der their masses m but neglect moments of inertia,
The vertical dlsplacements of Q- and Q2 are Y (t) and Y (t), respectively.
There is no drivmg torque present, The tires are replaced by linear
springs and linear v1scous dampers d1strnbuted over massless bars of
length 2a Which are free to rotate about the1r centers Ql and Q2 The
angular d1splaeements of the bars are © (t) and © (t) respectwely.

The distributed springs and dampers, arranged in parallel have densities
per unit length denoted by k( £) and A(E) respectlvely, where § is mea-
sured from the bar centers.

In summery, the coordinates are
Y(t), ?(t), Yl‘(t)' _Q;(t), Yz(t)‘; 92("&)

and the parameters are

M, 1,2,k c, m, k(8 M), v

R 8 4
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The vehicle frame and wheels are confined to a moving vertical
plane; the frame can pitch and oscillate vertically; the tire masses can
oscillate vertically on the tire springs and dampers and on the suspension
system springs and dampers; the tireAsprings and dampers cling to the '
track at all times and are distributed over portions of the track each of
length 2a. Finally, the vertical plane containing the vehicle frame and
Co move with constant horizontal speed v.

For simplicity, we shall assume

k(-8&) = k(&) ; v(-§)=v(E)

The track elevation above some arbitrarily selected datum ,
is denoted by the random function Yo(x), where x is the horizontal dis-
tance measured from some arbitrarily selected origin. Because of the

constant horizontal speed of the point CO,

X = vt (1)
Thus, for example, under the point P1 (and also Ql) of the rear wheel
center, the track elevation is Yo (vt - %——). We shall have more to
say about Yo(x) in the next section. A
Before stating the equations of motion, it is convenient to in-

troduce some useful notational changes. We set

Y(t) = Y'(t)

h"._.

Y, () = Y] ()

| y—

(2)
Y, () = Yy (1), %Yo(x) = Y (o)

Nlu—a
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_2_L{_=w2p—%_e=2§w
-—IP— = 6 » Im = Mpz
M ‘ ;
2 . Yo @
"K—-ZE_ , V"—\?Q_' v v
o
A TN
2
- w %%, K= 2 k(8
91 y ;

'Y'(E) = Z‘i‘:g‘) » E = 61
K

The equations of motion are ke,‘asily‘ seen to be
Lo L 2 . A2 .
Y+ 2 Lywy{[' + wyz Y' - Lywa' -gi— Y —Lywy S.Zzl ——ZZ— Y, =0,
2. 2-2 2 22

0 + Zgywyi' G+wy K e+2§ywyx Y, wy:c Y' -28 wk X',

~0 K Y, =0, (3)
o 0 |
% 2y ) "_’y‘e.,+2‘6§.x*+-2§ w (1 +e,)

o

2 | 2 I
1 )Y = {w k' (E)Y' (vt— — + &)
w," (1+e€,) Y] —af 4{y €, & o 5
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) oo _ 2
+2§ywy€17 (’g")Y0 (vjc —2——+€)}d'§, (3) contd.

- 9
—zgywy(1+el)Y2 +wy (1+€2)Y2'

C e 2 ek , g
= I {u ek ()Y (vi+ 5+ )

r2 Lo e YUE)Y (vi+ o +&) }dE

The first equation refers to the vertical motion of CO; the second describes
the pitch of PICOPZ; the third and fourth describe the vertical motion of Q;
and Q2 , respectively.

As would be expected, the track makes its presence felt only through
the third and fourth of (3). The coordinates 9, (t)and © 2 (t) have dropped

out because of our assumption that

a a
J Ex'(§)dE& =0, [ &y'(§)d§ =0

-a -a

i. e., because we have assumed «k( &) and y (&) are symmetrical about’
Q, and Q2 . The equations are coupled together in a fairly complex man-

ner. Except with respect to t and &, (3) are in dimensionless form.
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Sectlon Iv: Ground'Profile

We shall not detail our reasons here for regarding Y (x)

as a second order statlonary random process These xeasons are
based upon the analys1s of elevation surveys of lines and squares
under off-road conditions, and are described in detail in our report
entitled, "'Statistical Studies of Stable Ground Roughness. "

We therefore write

Y () - I M azqy (5)

-0

where A has the\di'mensions 1/ L, Z is an orthogonal process with

.

E {dz}- o

E {dz19} = 1/2 pyo(x) dx

and pyo()\) is the power spectral density of Yo(x). Thus, we will
assume that the roughness of YO(X) is adequately described in terms of the
power spectral density (p.s.d.).

The p. s. d. used in subsequent calculations is shown in
Flgure 2; the absc1ssa is frequency w1th units 1/ft., the ordinate the p s.d
value with units ft. 3. In the range A g 0.055, the graph represents the
envelope of two power spectral density estimates obtained from line
survey data taken at Aberdeen and Ft. Knox. For A 20.055, the graph
is a straight line (on semi log paper) with variable slope; this line repre-
sents fairly well the general trend of the two p. s.d. estimates in this region
of low power. :, SuBsequently, we shall see that the actual value of the slope
assumed in computation is of little consequence. Thus, the region of sig~

nificance in our analysis is A £'0.055.
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Section V: Response Power Spectral Density

We have assumed the track to have statistical properties
which do not change with distance»along the track ( Yo(x) is assumed
weakly stationary). In virtue of the assumed model and the fact that
the horizontal speed of Co‘is a constant v, it follows that Y(t), ©(t),
Yl(t), Y2(t), etc.; also have statistical properties which do not change

with time, i.e., they possess p.s.d.'s.
We are interested in the p.s.d. of Y(t) and ©(t); we therefore

assume that

o
Y =5 e'taui(w)
..‘,w v )
o0 iwt '
oit)=J - e“av() | (1)
- 00 o
1 b

- 00

eiwtdwll _(w)
P et
Yt)=f e dW,Ww)

~ Q0

The substitution of these into (3) permits us to determine the ps. d. of
S Y'(t) + - o)

which is the dimensionless displacement of any point on the frame distance
z from Co' Since we are primarily interested in the p.s.d. of the ac-
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celeration of this point, we shall only write out the p.s.d. of

Y({)+z6 ; ®
it is
. . (QVI')
% 4 26 =r2 a vA Yo (9)
w 40 2 2 £
y Yo
where
2 2
A=l —%2—1—%(1 + cosavr) IIZ1
¢’ +d
- 172, 2y 12, 52y oonavE
I} (c” +d Mc +d'")
) a
i 5 5 sin rav —
+ Zz > 2+ b'—z“(l- cos avr)] ( a )’
] c'“+d' v
[0 0]

c’zYo - ‘f.o pYo( A) da
1 (11)

p'Yo(k) =:2_ pYo(M
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9)

b=2 ';yr ( € + €

c = (1-r2)(i+ € - 25r%) - 4,;2)’,_(1+ e )r? - (1-4 gzyrz)

Q.
i

2, ['(1 + e-r) 41+ ¢, - 2602 - 4L r
'—(1-'1‘2)(1{{-25142-)-4;2(1 2 - (1 -4¢ 2r2)
c' = _—K_-gz v ter cyr

| 2
d'=2 6] (1+e)a - 7,12_2 ) +1+ e, - 26r%] r - 4L r

2 2k

W 52 em— R zgw _—__2_9_
y M Yyvy M
2 2 , 2
ce =20 WK ) kg™ wZEZ
21 yy 21 y
m m
Im =Mp2 s E:...g'.__
2p
m =6 C = €
M c '
K = € o Ay
2 s
k v
o
V= Vo . S = —__.....m
v M

The algebraic manipulations required to obtain (9) from (7) and (3)
are substantial but straight forward.
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Section VI: Results and Discussion

For purposes of numerical computation we have set
14.6 rad/sec

it

W
y

\'
o

t

14. 6 ft/sec.

This amounts to the assumption that the basic or reference
vehicle speed is 10 miles per hour and the frequency of vehicle frame
on its suspension (tires rigid etc. ) is 2. 33 cycles per sec.

We have also set

I-‘r-{— = 0 (tire foot print length zero)

1 . 1
6 = 50 (tire mass 50 of frame mass)
%2 - 3. 00

€= 1 (tire damping same as suspension damping)

€y = 1 (tire spring modulus same as suspension spring modulus)
The quantities £, o, gy and z /£ will be varied in the computations.

The results of the computations are given in Figures 3-8, In
each figure, the abscissa is £ (in ft.) and the ordinate is the variance
02 of Y.(t) + Z 6 (t). The scale of the ordinate axis is only relative,
as we are only interested in relative values of 0'2. In Figures 3-5,

z./[2 = 0; i,e., the point of interest on the frame is CO. In Figure 6-8,
z./2 = 1; i,e., the point of interest on the frame is £/2 ft forward of the
front wheel. Three vehicle speeds are considered: v= 1 (v = 10 mph),
v=12(v=8.33mph), and v = .8 (v=12. 5 mph). The values of C’y used
are indicated in each Figure,

It is important to realize that the results presented and remarks
which follow apply only to a specific vehicle configureation with tires
clinging to the track at all times. If the configuration is changed geo-
metrically, or if different assumptions are made concerning the tire
behavior, different results may be obtained. Also, the variance of

Y )+ 2 e (t) is being used as a measure of the roughness of the rides
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the longer the variance the rougher the ride. Different measures of
ride roughness may change the results. A later Report will deal
with the significanc_é of this measure of ride roughness. Our point -
is that the results given must be viewed in connection with the vehicle
model and ride roughness measure. A

A number of observations follow from inspection of Figures 3-8,

First, the ride at the c.g. Co of the frame is better than the
one forward of the front wheel; the speed and {_ being the same. Thus,
the contribution of frame pitch to our ride roughness is substantial.

Second, an increase in speed from 8.33 mph (v = 1.2) to 12.5 mph
(v = .8) produces a substantial increase in the roughness of the ride.

This points to the fact that the slope of the p.s.d. curve pyo()\) in the

range 0O<d<, 068 may be an important parameter in defining ground roughness.
For, if the p.s.d. curve had a small slope or were flat in this region, the
ride roughness would change but little with these speed changes.

Third, 'the‘re is no change in ride roughness (with the same ¢
and v) with changé in £ when £ is larger than approximately 14 feet.

Thus, ride cannot be improved by a change in wheel base length if

£ > 14 ft, ‘ '

Fourth, substantial changes in ride roughness occur (with the
same §{_ and v) with changes in £ when £ is between 4 ft. and 14 ft,

In particular, there is a length fdr best ride and for worst ride. The
worst ride at C0 occurs when £ equals approximately 8 ft, The length
for best ride is too short to be of practical significance.

Fifth, damping is a significant parameter in determining the
roughness of a ride. However, differences due to damping are not as
substantial as those due to length change. Thus, artificial means of
effectively changing length merit consideration,

, ~ Additional computations indicate that drastic changes in the slope
of the "tails' portion of the curves do not significantly influence the re-
sults in Figures 3-8, Thu}s, the slope of the pyo (1) curve in the range
A > 0.06 is not important for the vehicle considered. The. possibility there-
fore exists that the two-foot spacing used in ground surveys may be lengthened

~to 4 ft., since such survey data still define the p.s.d. curve in the range

A< 0,125,
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