UNCLASSIFIED

AD 437890

DEFENSE DOCUMENTATION CENTER
FOR
SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE

RELEASED TO DDC
BY THE NAVAL ORDNANCE LABORATORY
3 MARCH 1964

United States Naval Ordnance Laboratory, White Oak, Maryland

For Release to Military and Government Agencies Only. No copies permitted for release to contractors.

Approved for release.

NOLTR 64-42

Catalyzed by DDC
As AD No. 437890

NOLTR 64-42

United States Naval Ordnance Laboratory, White Oak, Maryland

3 MARCH 1964

For Release to Military and Government Agencies Only. No copies permitted for release to contractors.

Approved for release.

NOLTR 64-42
THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE

by:
Martin B. Kraichman

ABSTRACT: Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 26% in the temperature range from 5°C to 30°C.

PUBLISHED MAY 1964

Physics Research Department
U.S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
The work reported herein was done in 1954 in the Electricity and Magnetism Division, Physics Research Department and is intended for information only.

The author wishes to acknowledge the collaboration of S. P. Haddad, who was a member of the Electricity and Magnetism Division at that time.

R. E. Odening
Captain, USN
Commander

Z. I. Slawsky
By direction
NOLTR 64-42

CONTENTS

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Measurement Procedure</td>
<td>1</td>
</tr>
<tr>
<td>Results</td>
<td>2</td>
</tr>
</tbody>
</table>

FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conductivity Cell</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Resistivity vs. Percent NaCl.</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Temperature vs. Resistivity</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Temperature vs. Percent NaCl</td>
<td>6</td>
</tr>
</tbody>
</table>
THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE

Purpose

Whereas the resistivity of weak aqueous solutions of sodium chloride are readily available in many physical and chemical tables, the values of the resistivity of concentrated solutions as a function of temperature and percentage salt are not easily found. It is the purpose of this report to supply such information for various sodium chloride concentrations ranging from 1% to the saturation value of 26% in the temperature range from 5°C to 30°C. While only engineering accuracy is claimed for these results, they should be sufficiently good for many purposes such as the modeling of dissipative media for electromagnetic studies.

Measurement Procedure

The resistivity measurements were made using chemically pure, aqueous solutions of sodium chloride and a calibrated conductivity cell with silver-silver chloride electrodes. Figure 1 shows the construction of the cell. The outside diameter of the cell is about 3 inches and the length is about 22 inches. The silver-silver chloride disc electrodes are 2-1/2 inches in diameter and are separated by approximately 10 inches.

Before each measurement, the cell was carefully flushed by repeated immersion in the solution to be measured so as to remove any previous solution from between the electrodes. The resistance of the cell was then measured with a Wheatstone bridge. The measurement was repeated with the polarity of the cell reversed, and an average of the two readings was taken.
Results

The resistivity ρ in ohm-cm. was calculated from the formula

$$\rho = 0.69 (R_m - 0.32),$$

in which R_m is the measured value of the cell resistance in ohms, the factor 0.69 represents the cell constant in centimeters and the quantity 0.32 is the resistance of the lead wires in ohms.

The results are presented in Figures 2, 3, and 4 in which the experimental points are indicated by small circles.
FIG. 1: CONDUCTIVITY CELL

NOLTR 64-42
Chief, Bureau of Naval Weapons
Washington, D. C. 20360
Attn: Library, DLI-3
 M. H. Schefer (RU 222) 2
 C. Holstrom (RUDEC-4) 2

Office of Naval Research
Washington, D. C. 20360
Attn: Dr. A. Shostak
 B. Bingham 1

Office of Chief of Naval Operations
Operations Evaluation Group (OPO3EG)
Washington, D. C. 20350

Office of Technical Services
Department of Commerce
Washington, D. C. 20230

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Commanding Officer
U. S. Naval Air Development Center
Johnsville, Pennsylvania
 W. S. Lee 2

Chief, Bureau of Ships
Washington 25, D. C.
 F. James
 Code 351 1

Commanding Officer & Director
Naval Research Laboratory
Washington 25, D. C.
 J. Barry 1
Commanding Officer & Director
U. S. Navy Electronics Laboratory
San Diego 52, California

Commanding Officer and Director
U. S. Navy Mine Defense Laboratory
Panama City, Florida
Dr. E. A. Hogge

National Bureau of Standards
Central Radio Propagation Laboratory
Boulder, Colorado

Commanding Officer and Director
U. S. Underwater Sound Laboratory
Fort Trumbull, Conn.
<table>
<thead>
<tr>
<th>BIBLIOGRAPHIC INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOURCE</td>
</tr>
<tr>
<td>REPORT NUMBER</td>
</tr>
<tr>
<td>REPORT DATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUBJECT ANALYSIS OF REPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPTORS</td>
</tr>
<tr>
<td>Resistivity</td>
</tr>
<tr>
<td>Sodium</td>
</tr>
<tr>
<td>Chloride</td>
</tr>
<tr>
<td>Aqueous</td>
</tr>
<tr>
<td>Solution</td>
</tr>
<tr>
<td>Measurement</td>
</tr>
<tr>
<td>Calibrated</td>
</tr>
<tr>
<td>Conductivity</td>
</tr>
<tr>
<td>Cell</td>
</tr>
<tr>
<td>Silver</td>
</tr>
<tr>
<td>Zinc</td>
</tr>
<tr>
<td>Electrodes</td>
</tr>
</tbody>
</table>
Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 64-42)
THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, by Martin B. Kraichnan,
3 March 1964. 6p. illus., charts.

UNCLASSIFIED

Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 20% in the temperature range from 5°C to 30°C.

Abstract card is unclassified.

Naval Ordnance Laboratory, White Oak, Md.
(NOL technical report 64-42)
THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, by Martin B. Kraichnan,
3 March 1964. 6p. illus., charts.

UNCLASSIFIED

Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 20% in the temperature range from 5°C to 30°C.

Abstract card is unclassified.
Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 54-42) THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE by Martin B. Kraichman. 3 March 1964. 8p. illus., charts.

UNCLASSIFIED

Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 26% in the temperature range from 50°C to 30°C.

Abstract card is unclassified.

Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 54-42) THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, by Martin B. Kraichman. 3 March 1964. 8p. illus., charts.

UNCLASSIFIED

Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 26% in the temperature range from 5°C to 30°C.

Abstract card is unclassified.

Naval Ordnance Laboratory, White Oak, Md. (NOL technical report 54-42) THE RESISTIVITY OF AQUEOUS SOLUTIONS OF SODIUM CHLORIDE, by Martin B. Kraichman. 3 March 1964. 8p. illus., charts.

UNCLASSIFIED

Resistivity measurements were made of various aqueous solutions of sodium chloride using a calibrated conductivity cell with silver-silver chloride electrodes. Results in the form of curves are presented for salt concentrations from 1 to 26% in the temperature range from 5°C to 30°C.

Abstract card is unclassified.