NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
HYDRONAUTICS, incorporated
research in hydrodynamics

Research, consulting, and advanced engineering in the fields of NAVAL
and INDUSTRIAL HYDRODYNAMICS. Offices and Laboratory in the
Washington, D. C., area: Findell School Road, Howard County, Laurel, Md.
AN ANALYTICAL STUDY OF THE HYDRODYNAMIC PERFORMANCE OF WINGED, HIGH-DENSITY TORPEDOES

By

C. F. Chen

October 1963

Prepared Under
Office of Naval Research
Department of the Navy
Contract No. Nonr-4083(00)
NR 277-004
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>METHODS OF CALCULATION</td>
<td>2</td>
</tr>
<tr>
<td>A. Drag</td>
<td>2</td>
</tr>
<tr>
<td>(1) Body Drag</td>
<td>4</td>
</tr>
<tr>
<td>(2) Tail Drag</td>
<td>7</td>
</tr>
<tr>
<td>(3) Wing Drag</td>
<td>9</td>
</tr>
<tr>
<td>B. Range</td>
<td>17</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSIONS</td>
<td>19</td>
</tr>
<tr>
<td>A. Lift-Drag Ratio</td>
<td>19</td>
</tr>
<tr>
<td>B. Range</td>
<td>22</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>23</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

1. Effect of Wing-Body Influence on the Total Lift
2. Weight Coefficient as a Function of Forward Speed
3. Lift-Drag Ratio vs Buoyancy Ratio, $Re_v = 12 \times 10^6$, $s'Z = 0.7$, $D_m = 0.481$
4. Drag Break-down for $\overline{C}_w = 0.010$, $Re_v = 12 \times 10^7$, $s'Z = 0.7$, (Optimum Body)
5. Lift-Drag Ratio vs Buoyancy Ratio (Optimum Body Only) $Re_v = 6 \times 10^8$, $s'Z = 0.7$
6. Lift-Drag Ratio vs Buoyancy Ratio, $Re_v = 6 \times 10^8$, $s'Z = 33$
7. Effect of D_m on Lift-Drag Ratio, $Re_v = 6 \times 10^8$, $s'Z = 33$
8. Lift-Drag Ratio vs Buoyancy Ratio, $Re_v = 4 \times 10^7$, $s'Z = 0.7$
9. Lift-Drag Ratio vs Buoyancy Ratio, $Re_v = 8 \times 10^7$, $s'Z = 0.7$
10. Increase in Lift-Drag Ratio Attainable, Wing Aspect Ratio and Span as Functions of \overline{C}_w. $Re_v = 1.2 \times 10^8$, $s'Z = 0.7$, $D_m = 0.481$
11. Increase in Lift-Drag Ratio Attainable, Wing Aspect Ratio and Span as Functions of \overline{C}_w. $Re_v = 6 \times 10^8$, $s'Z = 0.7$, $D_m = 0.481$
12. Increase in Lift-Drag Ratio Attainable, Wing Aspect Ratio and Span as Functions of \overline{C}_w. $Re_v = 6 \times 10^8$, $s'Z = 33$
13. Effect of Re_v on $\Delta(W/D)$
14. Torpedo Configurations (3000 lb. 45 knots)
15. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 x displacement) \(\bar{C}_w = 0.01 \), \(Re = 12 \times 10^7 \), \(s'z = 0.7 \)
16. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 x displacement) \(\bar{C}_w = 0.0240 \)
17. Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 x displacement) \(\bar{C}_w = 0.04 \)
18. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 x displacement) \(\bar{C}_w = 0.0625 \).
19. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 W) \(\bar{C}_w = 0.01 \), \(Re = 12 \times 10^7 \), \(s'z = 0.7 \)
20. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 W) \(\bar{C}_w = 0.0240 \).
21. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 W) \(\bar{C}_w = 0.04 \)
22. The Influence of Buoyancy Ratio on Range. (Fuel Weight = 0.5 W) \(\bar{C}_w = 0.0625 \)
NOTATION

A aspect ratio of wing = \(\frac{4(b - \sqrt{1 - \gamma^2 R_b})^2}{S_w} \)

A_t aspect ratio of the ring tail = \(\frac{D_m}{C_{rt}} \)

B buoyancy force

b distance from center of torpedo to tip of wing

t.c. specific fuel consumption: lb-fuel/HP-Hr.

C chord of wing

C_A total drag coefficient based on the wetted surface area of a body of revolution

C_D drag coefficient

C_{D_o} together with K defines the profile drag of the wing section

\overline{C}_D drag coefficient based on \((V_w) \frac{3}{2} \)

C_f friction coefficient

C_L total lift coefficient based on exposed wing area

C_{L_w} lift coefficient developed on the wing

C_{L\alpha} lift curve slope

C_{pr} prismatic coefficient = \(\frac{V_b}{\frac{\pi}{4} D_m^2 \cdot \ell} \)

C_{rt} chord of ring tail

C_s surface coefficient = \(\frac{S_b}{\frac{\pi}{4} D_m^2 \cdot \ell} \)
weight coefficient $C_w = \frac{W}{\frac{q}{V_w} \frac{V}{W}}$

total drag D

maximum diameter of torpedo D_m

$D_m = \frac{D}{V_w^{\frac{1}{3}}}$

$G(\gamma, R_b')$ algebraic function defined by Equation [30]

moment of inertia I

constants K, K_1

lift L

length of torpedo l

length of central cylindrical portion of the torpedo l_c

circular distance from the c.g. of torpedo to the c.p. of ring tail l_t

pitching moment M

dynamic pressure q

buoyancy ratio R

radius of body R_b

$R_b' = R_b/b$

Re$_l$ Reynolds number based on l

Re$_t$ Reynolds number based on C_{rt}

Re$_V$ Reynolds number based on $V_w^{\frac{1}{3}}$

range in miles S

surface area of body S_b
HYDRONAUTICS, Incorporated

- vi -

\(S_w \) wing planform area

\(S'_v \) ratio of the wetted area of the supporting vanes to area of ring tail

\(S_t \) surface area of ring tail

\(s \) maximum allowable stress

\(s' = sV_w^{\frac{3}{2}} W \)

\(T \) thrust

\(t \) thickness ratio = \(D_m / \ell \)

\(U \) uniform stream velocity

\(V_b \) volume of the torpedo

\(V_w \) volume of water whose weight is \(W \), \(V_w = \frac{W}{\rho_w g} \)

\(W \) total weight of torpedo

\(W_F \) total fuel weight

\(\bar{x} \) distance from the nose of a body of revolution to the transition point

\(y_{max} \) distance from vertical axis to the outermost fiber

\(\bar{z} \) nondimensional sectional modulus = \(\frac{I}{y_{max} C^3} \)

\(\alpha \) angle of attack

\(\gamma \) \(\gamma R_b \) is the distance from the centerline of the torpedo to a horizontally mounted wing.

\(\eta \) propulsive efficiency
HYDRONAUTICS, Incorporated

θ climbing angle
ρ_b density of body
ρ_w density of water

subscripts
b body
r wing root
t tail, or wing tip
w wing
ABSTRACT

The hydrodynamic performance of winged torpedoes has been investigated. It is assumed that the wing is mounted such that its center of pressure coincides with the center of gravity of the body, and that a ring-tail stabilizer is used. The resulting overall lift-drag ratios are presented as functions of the buoyancy-weight ratio. The advantages of the winged torpedoes over those with neutral buoyancy become more pronounced as the nondimensional parameter \bar{C}_w becomes smaller, and as the buoyancy-weight ratio decreases. \bar{C}_w is defined as $W / \frac{\rho W U^2 (V_w)^3}{2}$, where W is the weight; $\frac{\rho W U^3}{2}$, the free stream dynamic pressure; and V_w is the volume of water with weight, W.

Parametric studies of the lift-drag ratio obtainable have been carried out with respect to the following quantities: the Reynolds number based on $(V_w)^{\frac{1}{3}}$, the nondimensional strength factor of the wing material, and the maximum allowable diameter. In conclusion, the ranges obtainable for the ascending, level, and descending flights are calculated. It is found that if the fuel weight is assumed to be always one-half of the displacement, winged torpedoes have longer ranges than those with neutral buoyancy only for descending missions. If the fuel weight, however, is assumed to be one-half of the total weight, the winged torpedo has longer ranges for all missions except steep ascending ones.
INTRODUCTION

Up to now, torpedoes have been generally designed with neutral buoyancy. If one departs from this concept and considers a winged torpedo, for which part of the weight is carried by the dynamic lift generated on the wings, a more efficient torpedo, depending on the design weight and speed, may be evolved. In this report, a preliminary investigation has been made on the overall lift-drag ratio obtainable, the size of the wing needed, and the range of travel for winged torpedoes at different values of buoyancy to weight ratios.

In the calculations, it is assumed that the wing is mounted such that its center of pressure coincides in axial position with that of the center of gravity of the torpedo. The assumption simplifies the tail selection for which considerations of stability must be made. We also assume that a ring tail is used to provide the required stability. Two types of bodies are considered: one is the optimum body for a given volume; the other is a diameter-limited body (i.e., limited to the maximum allowable size for use in existing torpedo tubes). In the following, the methods by which the component drags and the range are calculated are developed and the results of such calculations are presented and discussed.

METHODS OF CALCULATION

A. Drag

Let the weight of the torpedo be \(W \); let the drag due to the body, tail, and wing be denoted by \(D_b \), \(D_t \), and \(D_w \), respectively. The overall lift to drag ratio is
The buoyancy to weight ratio, or in other words the ratio of the density of water ρ_w, to that of the torpedo, ρ_b, is denoted by R,

$$R = \frac{B}{W} = \frac{V_b \rho_w g}{V_w \rho_w g} = \frac{V_b}{V_w}; \quad R = \frac{B}{W} = \frac{V_b \rho_w g}{V_b \rho_b g} = \frac{\rho_w}{\rho_b},$$

where B denotes the total buoyancy force. To normalize the forces, we use the dynamic pressure of the uniform stream, $\frac{1}{2} \rho_w U^2$, and $(V_w)^{\frac{3}{2}}$, where V_w is the volume of water whose weight is W:

$$V_w = \frac{W}{\rho_w g}.$$

For a constant weight and constant forward speed U, the normalizing force, $\frac{1}{2} \rho_w U^2 (V_w)^{\frac{3}{2}}$, is constant. Let

$$\overline{C}_w = \frac{W}{\frac{1}{2} \rho_w U^2 (V_w)^{\frac{3}{2}}};$$

It then follows that

$$\frac{W}{D} = \frac{\overline{C}_w}{\overline{C}_{d_b} + \overline{C}_{d_t} + \overline{C}_{d_w}}.$$
In the following, we examine each drag component separately.

(1) Body Drag

In the total drag of the body, (skin friction plus form drag), we use the results of Young (Reference 1). Young's calculation of total drag coefficients based on wetted surface area, C_A, are presented in graphical form. To facilitate computation by the IBM 1620 digital computer, the process of curve-fitting has been carried out to give the following formula:

$$C_A = 10^{-2}x [0.035(g - \log_{10} Re_t) + 0.215 - 0.24 \frac{x}{l} - (0.2 - t) Y].$$

$$Y = \begin{cases}
0.78 - 0.28(\log_{10} Re_t - 6) + 0.12(\log Re_t - 7) & t > 0.2, \\
0.37 - 0.12(\log_{10} Re_t - 6) + 0.04(\log Re_t - 7) & t < 0.2,
\end{cases}$$

in which Re_t denotes the Reynolds number based on body length l; x, distance from the nose to the transition point; t, the thickness ratio. In the optimum body, $t = 0.2$, and the expression for C_A is considerably simplified.

Since the comparisons will be carried out at constant speed and weight, the Reynolds number based on $V_w^\frac{2}{3}$ is considered known:

$$Re_v = \frac{UV}{V_w^{\frac{2}{3}}}.$$ \[8\]

To calculate Re_t from Re_v, we first define the (logitudinal) prismatic coefficient C_{pr} as
HYDRONAUTICS, Incorporated

\[C_{pr} = \frac{V_b}{\frac{\pi}{4} D_m^2 t} \] \hspace{1cm} [9]

where \(V_b \) is the volume and \(D_m \) the maximum diameter of the body.

By the definitions of the buoyancy — weight ratio and the thickness ratio, we obtain from [9]

\[V_w = \frac{\pi}{4} C_{pr} t^2 l^3. \] \hspace{1cm} [10]

The Reynolds number based on body length is then

\[\text{Re}_l = \frac{\text{Re}_V}{\left(\frac{\pi}{4} C_{pr} t^2 \right)^{\frac{3}{2}}}. \] \hspace{1cm} [11]

To obtain \(\overline{C}_{D_b} \), we define a surface coefficient \(C_s \)

\[C_s = \frac{S_b}{\pi D_m l}, \] \hspace{1cm} [12]

where \(S_b \) is the wetted area of the body. By simple algebra, we obtain

\[\overline{C}_{D_b} = C_A C_s \left[\frac{16 \pi^2}{C_{pr} t^2} \right]^\frac{3}{8}, \] \hspace{1cm} [13]

where \(C_A \) is obtainable from Equations [6] and [7].

For definiteness, we shall consider that the optimum body is a spheroid of thickness ratio 0.2, and the diameter-limited body
is made up of a central cylindrical section of length \(l_c \) and two semi-spheroidal noses. In such a composite body, the prismatic and surface coefficients are easily computed to be

\[
C_{pr} = \frac{2 + l_c/\ell}{3}. \tag{14}
\]

and

\[
C_s = \frac{l_c}{l} + \frac{1}{2} \left[(1 - \frac{l_c}{l}) (1 - t^3)^{-\frac{3}{2}} \sin^{-1} (1 - t^3)^{\frac{1}{2}} + t \right]. \tag{15}
\]

For a spheroid, \(l_c/\ell = 0 \),

\[
C_{pr} = \frac{2}{3}, \tag{16a}
\]

\[
C_s = \frac{1}{2} \left[(1 - t^3)^{-\frac{3}{2}} \sin^{-1} (1 - t^3)^{\frac{1}{2}} + t \right]. \tag{16b}
\]

Let \(\overline{D}_m = D_m V_w^{-\frac{1}{3}} \) be the nondimensional maximum diameter. By the definition of the prismatic coefficient, we can write the thickness ratio \(t \) as

\[
t = \frac{\pi}{12} (2 + l_c/\ell) \overline{D}^3_m. \tag{17}
\]

The volume of the body is

\[
V_b = \frac{\pi D^3_m}{12} \ell (2 + l_c/\ell) = \frac{\pi}{12} \overline{D}^3_m l^3 \left[\frac{\pi}{4R} C_{pr} t^2 \right]^\frac{3}{2} \left[2 + l_c/\ell \right]. \tag{18}
\]
HYDRONAUTICS, Incorporated

-7-

In the optimum body, \(t = 0.2 \), and \(C_{pr} = 2/3 \). \(C_s \) may be calculated according to [16b]. Equation [13] together with [6] gives the required value of \(C_{D_b} \). For a diameter-limited body, \(\ell_c/\ell \) and \(D_m \) must be specified. From these values, \(C_{pr} \) and \(t \) are calculated according to [14] and [17] respectively. \(C_s \) may be obtained by [15], together with the value of \(C_A \) obtainable from [6] and [7], and \(C_{D_b} \) can again be calculated.

(2) Tail Drag

We assume that the position of the wing is such that it does not contribute to the moment when the entire configuration is pitched. According to experience, the static restoring moment generated by the tail is usually some fraction of the static destabilizing moment generated by the body. The configuration must be dynamically stable. We design the tail such that

\[
M_t = K_1 M_b, \quad K_1 > 0, \tag{19}
\]

where \(M_t \) and \(M_b \) denote moments due to the tail and the body respectively; \(K_1 \) is a constant. \(K_1 > 0 \) implies that the moments are opposite in sense. By slender body theory, at a pitch angle \(\alpha \)

\[
M_b = \rho_w U^3 V_b \alpha. \tag{20}
\]

The moment generated by the tail may be written in terms of the lift curve slope of the tail, \(C_{Lat} \), the dynamic pressure \(q \), the
tail surface area, S_t, and the distance from the c.g. of the body to the tail center of pressure, l_t:

$$M_t = C_{\text{Lat}} q S_t l_t a.$$ \[21\]

Equation [19] gives then

$$C_{\text{Lat}} = \frac{\pi K C_{\text{Pr}} l^2 l_t^3}{2 S_t l_t}.$$ \[22\]

For a ring tail

$$\begin{cases} S_t = \pi D_m C_{\text{rt}} \\ A_t = \frac{D_m}{C_{\text{rt}}} \end{cases}$$ \[23\]

in which C_{rt} is the chord of the ring tail. The diameter of the ring tail is taken as the maximum diameter of the body. Using the definition S_t and A_t, [22] becomes

$$\frac{C_{\text{Lat}}}{A_t} = \frac{1}{2} K C_{\text{Pr}} l/l_t.$$ \[24\]

Weissinger (Reference 2) gives the effectiveness of a ring wing approximately as

$$\frac{A_t}{C_{\text{Lat}}} \simeq \frac{1}{2} + \frac{1}{\pi} \left(A_t + \tan^{-1} \frac{1.2}{A_t} \right).$$ \[25\]
Solving [24] and [25] simultaneously, we obtain the aspect ratio of the tail A_t, thence

$$\left(A_t + \tan \frac{1.2}{A_t} \right) = \frac{\pi}{2} \left(\frac{K C_{pr}}{t/l} - 1 \right).$$ \[26\]

To determine the frictional drag, we calculate the Reynolds number of the tail

$$Re_t = \frac{UC_{rt}}{v} = \frac{t}{A_t} Re_w. \hspace{1cm} [27]$$

The drag of the tail non-dimensionalized with respect to q_{V_w} is

$$\overline{C_D} = C_f \left\{ \frac{128 \pi t^2 R^2}{C_{pr}^2} \right\}^{\frac{1}{2}} \left(1 + S' \right), \hspace{1cm} [28]$$

where S'_{v} is ratio of the wetted surface area of the supporting vanes to that of the tail, and C_f is the friction coefficient.

(3) **Wing Drag.**

The drag of the wing can only be determined after the wing has been sized. Preliminary considerations show that the wings may be of small aspect ratio, say near 1, and of small span. The interference effects between the wing and the body must now be considered.

At the design condition, the body is considered to be at zero angle of attack, while the wing is set so that the desired
amount of lift is developed. Lawrence and Flax (Reference 3) have considered the interference lift generated on an infinite circular cylinder due to a finite lifting line of arbitrary lift distribution mounted therein. The problem is solved in the Trefftz plane by the use of Green's theorem. The interference lift generated on the body can be obtained by an integration along the wing of the product of the lift distribution and the velocity component normal to the wing due to a vertical translation of the cylinder. In their paper, Lawrence and Flax (Reference 3) calculated the interference lift on the cylinder due to a constant, elliptic, and optimum lift distribution on a centrally-mounted, horizontal lifting line. The results do not differ appreciably. Furthermore, they have shown that the lift on the body subsides in about two diameters in either direction from the lifting line; the idealization of an infinite cylinder for the body is thus not without justification. In the present case, we have calculated the total lift of the wing-body system (lift on wing + interference lift on body) for a horizontal lifting line of constant lift distribution, whose tip to tip distance is 2b, mounted γR_b above the center of the cylinder of radius R_b. Defining the lift coefficient with respect to the wing area S_w, we obtain

\[C_L = \frac{L}{qS_w} = C_L g(\gamma, R_b'), \quad [29] \]

\[g(\gamma, R_b') = \frac{1 - (1 - \gamma^2)R_b'}{[1 - (1 - \gamma^2)^{1/2} R_b']^2 (1 + \gamma^2 R_b')}, \quad [30] \]
where $R_b' = R_b/b$. For wings of large span, $R_b' \to 0$, $G(\gamma,0) = 1$, then

$$C_L = C_{L_w}.$$

The function G is shown in Figure 1 for different values of γ. It is seen that centrally mounted wings are the most efficient in producing the interference lift on the body. However, for the present application, the wings will necessarily be stored within the body prior to and during the launch and a centrally mounted wing may not be feasible.

Before we select the wing which will carry the required lift while incurring the least amount of drag for our present winged torpedo system, it is instructive to consider briefly the optimum design of an isolated wing. In general, the drag coefficient of a wing may be written as

$$C_D = C_{D_0} + KG^2 \left(\frac{C_L}{\pi A} \right) (1 + \delta),$$

where the first two terms are the profile drag of the wing section and the last term is the induced drag; δ is the factor introduced to take into account that the loading may not be elliptical. Dividing [13] through by C_L, and finding the minimum C_D/C_L we obtain

$$\left(\frac{C_D}{C_L/\text{min}} \right) = 2 C_{D_0} \frac{1}{\pi} \left(K + \frac{1 + \delta}{\pi A} \right) \frac{1}{2},$$
in which the optimizing components are

\[
\left(C_L \right)_{\text{opt}} = \left(\frac{C_D}{K + \frac{1 + \delta}{\pi A}} \right)^{\frac{1}{3}}
\]

\[
\text{[33]}
\]

and

\[
\left(C_D \right)_{\text{opt}} = 2 C_D
\]

\[
\text{[34]}
\]

It is seen that the larger the aspect ratio, the smaller the resulting drag for the same lift. However, the aspect ratio is limited by the bending stress allowable at the mid-span. For elliptic loading, the bending moment at the mid-span is

\[
\frac{2}{3\pi} Lb = \frac{I}{y_{\text{max}}}
\]

\[
\text{[35]}
\]
in which \(I \) is the moment of inertia and \(y_{\text{max}} \) is the distance from the neutral axis to the outermost fiber, and \(s \) is the tensile stress at the outermost fiber. Rewriting and transposing, assuming a rectangular wing we obtain

\[
C_L A^2 = 3\pi \frac{z}{q} s
\]

\[
\text{[36]}
\]
in which \(z \) is the nondimensional sectional modulus

\[
\bar{z} = \frac{I}{y_{\text{max}} C^a}
\]

\[
\text{[37]}
\]
When the working stress of the wing material is given, Equations [33] and [36] determine the optimum aspect ratio and C_L.

Returning now to the winged torpedo, we follow the same procedure as above with the added complications that: (a) the profile drag is only found on the exposed wing, while the induced drag may be calculated according to the full span $2b$, (b) the maximum bending stress is at the wing-body juncture, (c) the lift developed by the wing is some fraction of the total lift required depending upon the position of the wing with respect to the center of the body, and (d) we allow the wing to be tapered. With these considerations, the counterpart of [33] is

$$C_{Lw} = \frac{C_{D_{/2}}}{\left\{K + \frac{1 + \frac{6}{\pi A} G(\gamma, R_d') \left[1 - (1 - \gamma^2)^{\frac{1}{2}} R_d' \right]\right\}^{\frac{1}{2}}}$$

and that of [36] is

$$C_{Lw} A^2 = \frac{24\pi}{(1 + C_t/C_r)^3} \bar{z}_r \frac{s}{q},$$

where C_t and C_r denote the chord at the tip and the root respectively, and \bar{z}_r is the nondimensional sectional modulus of the root section. The aspect ratio A is that of the exposed wing. Let now the working stress be nondimensionalized with respect to $WV_w^{-\frac{3}{2}}$, and writing it as s', [39] becomes
HYDRONAUTICS, Incorporated

\[C_{L_w} A^2 = \frac{24\pi}{(1 + C_t/C_r)^3} \overline{z}_r s' T_w. \] \hspace{2cm} [40]

Because of the added variable \(R_b' \), another equation is needed. This is obtained by considering the relation between \(C_{L_w} \) and \(W \):

\[C_{L_w} = \frac{W(1 - R)}{G(\gamma, R_b') \sigma W} \]

\[\Rightarrow \frac{\overline{C}_{w}(1 - R)}{G(\gamma, R_b')} = \frac{V_w^2}{S_w}. \] \hspace{2cm} [41]

Rewriting the wing area \(S_w \) in terms of aspect ratio and \(V_w \) according to [10], we obtain

\[C_{L_w} = \frac{R_b'^2 (C_{pr} \frac{\pi R_b^2}{4R^3})}{[1 - (1 - \gamma^2)^2] R_b'^3} A. \] \hspace{2cm} [42]

Equations [38], [39], and [42] determine \(C_{L_w}, A, \) and \(R_b' \) for given values of \(\gamma, C_{pr}, t, C_t/C_r, \overline{r}, \overline{C}_w, R, \delta, K, \) and \(C_{D_o} \).

Now it is an easy matter to determine the drag contribution due to the wing:

\[C_{D_w} = \frac{2C_{D_o} S_w}{q V_w^2}. \] \hspace{2cm} [43]
By the use of [41], we obtain

\[
\bar{C}_{D_w} = \frac{2C_{D_0}}{q} \frac{\bar{C}_w(1 - R)}{C_L G(\gamma, R_b, \nu)}.
\]

These expressions have been programmed for computation on the IBM 1620 Computer for the following values of the constants:

\[
\begin{align*}
K &= 0.012 \\
C_{D_0} &= 0.009 \\
\delta &= 0 \\
C_t/C_r &= 0.5 \\
l_c/l &= 0.5 \\
\bar{x} &= 0 \\
\gamma &= 0.7 \\
K_1 &= 0.7 \\
S'_{V} &= 0.5
\end{align*}
\]

The value of \(K \) and \(C_{D_0} \) determine the profile drag of the wing which should be a function of the Reynolds number. In the present calculation, they are assumed to be constant. Since the wing drag is usually one order of magnitude smaller than the body drag, the simplification should not incur too much of an error. In order to select a suitable range of values for \(C_w \), we have calculated \(C_w \) for a 3000 pound and 6000 pound torpedo with forward
speeds of 10 to 100 knots. The results are shown in Figure 2. It is seen that the value of C_w ranges from 0.01 (at about 100 knots) to 1 (at about 10 knots). The difference in the weight of the torpedo has no appreciable effect on the value of C_w, since it is proportional to $W^{\frac{1}{3}}$.

The computation scheme is as follows: For assumed values of Re_v, the product $s' \bar{z}$, and D_m, the value of C_w is systematically varied. For each value of C_w, the buoyancy ratio R is varied from 0.2 to 1.0. In each of these cases, the component drags, the overall lift-to-drag ratio W/D, the lift coefficient C_{L_w}, aspect ratio A and the radius-span ratio R_b are calculated for both the optimum body ($t = 0.2$ spheroid) and the diameter limited body. The following six cases have been computed:

<table>
<thead>
<tr>
<th>Re_v</th>
<th>$s' \bar{z}$</th>
<th>D_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2×10^8</td>
<td>.7</td>
</tr>
<tr>
<td>2</td>
<td>6×10^8</td>
<td>.7</td>
</tr>
<tr>
<td>3</td>
<td>6×10^8</td>
<td>33.0</td>
</tr>
<tr>
<td>4</td>
<td>6×10^8</td>
<td>33.0</td>
</tr>
<tr>
<td>5</td>
<td>4×10^7</td>
<td>.7</td>
</tr>
<tr>
<td>6</td>
<td>8×10^7</td>
<td>.7</td>
</tr>
</tbody>
</table>

In cases 5 and 6, only optimum bodies are calculated. The results from cases 1 and 2, together with 5 and 6 give the Reynolds number effect; cases 2 and 4 give the effect of $s' \bar{z}$; cases 3 and 4 give the effect of D_m.
B. **Range**

Let the torpedo be ascending at an angle θ with respect to the horizontal. When in uniform motion, the thrust balances the drag and the component of the effective weight, i.e., weight less buoyancy, in the direction of flight:

$$T = (W - B) \sin \theta + D.$$ \[\text{[45]}\]

Let $l.c.$ be the specific fuel consumption in weight of fuel per unit power output of the engine, η be the propulsive efficiency. The rate at which weight of fuel, W_F, is being spent is then

$$\frac{dW_F}{dt} = \frac{l.c.TU}{\eta}.$$ \[\text{[46]}\]

Rewriting [46] and using [45], we obtain

$$\frac{l.c.}{\eta} \int_0^S dt = \frac{dW_F}{(W - B) \sin \theta + D}.$$ \[\text{[47]}\]

Assuming now both the specific fuel consumption, $l.c.$, and the propulsive efficiency, η, stay essentially constant, the left-hand side integrates out to be $l.c. \frac{S}{\eta}$, where S is the range. In torpedo applications, the weight of the torpedo is kept constant by using water to displace the fuel. If the density of the stored fuel is comparable to that of water, the buoyancy B stays constant; the total drag of the torpedo D is also a constant.
HYDRONAUTICS, Incorporated

-18-

Then [47] gives

\[
\frac{l.c.}{\eta} S = \frac{W_F}{W(1-R) \sin \theta + D},
\]

[48]

in which \(W_F\) is the total fuel weight. Writing in terms of the lift-drag-ratio, [48] becomes

\[
\frac{l.c.}{\eta} S = \frac{W_F}{W} \frac{W/D}{(1-R) \sin \theta + 1}.
\]

[49]

It is seen from [49] that if \(\theta\) is the glide angle

\[
\theta = -\sin^{-1} \left(\frac{1}{W/D (1-R)} \right),
\]

[50]

and the torpedo will travel on indefinitely without expending any fuel.

To facilitate calculation, we use the following units for the quantities on the left of Equation [49]:

- \(l.c. = \text{lb fuel/horsepower - hour,}\)
- \(S = \text{range in miles.}\)

Then the range expression becomes

\[
\frac{l.c. S}{\eta} = 375 \frac{W_F}{W} \frac{W/D}{(1-R) \sin \theta + 1} \text{ miles-lb fuel/horsepower-hour.}
\]

[51]
HYDRONAUTICS, Incorporated

Calculations of the range factor &e. S/q have been made for the optimum body configuration at Re$_v$ = 1.2 x 108 and $s'z = 0.7$ (corresponding to case 1). Two different assumptions have been made on the fuel weight: in the first case we assume that the fuel weight equals one-half of the displacement; in the second case, we assume that it equals one-half of the total weight.

RESULTS AND DISCUSSIONS

A. Lift-Drag Ratio

In Figure 3, we have presented the results of case 1; the lift-drag ratio is shown as a function of the buoyancy ratio with C_w as a parameter. The results for the torpedo with the optimum body is shown in solid lines while that for the diameter-limited body is shown in dash lines. The lift-drag ratio, W/D, is plotted along a logarithmic scale, since in this way, irrespective of the values of W/D at R=1, (W/D)$_1$, an x-fold increase thereinfrom will appear as a constant linear distance (log x) above (W/D)$_1$. The steeper the curves of W/D, the larger the relative increase of W/D. The smaller the C_w, the larger the effect of decreasing the buoyancy ratio on the improvement of W/D. The effect of limiting the body diameter is always detrimental to the value of W/D obtainable. In Figure 4, we have shown the drag breakdown for this case of C_w, which is quite typical. It is seen that a major portion of the drag is due to the body. If by some means the drag of the body can be reduced (e.g., by boundary layer suction, by the use of cavity running torpedoes or through the use of stabilizing additives), the resulting W/D can be further increased.
In Figures 5 and 6, only the results from the optimum body for cases 2 and 3 are presented. In Figure 5, intermediate values of $\bar{C}_w = 0.75$ and 0.5 have been calculated and presented. It is seen that for \bar{C}_w greater than 0.5, there is no advantage to be gained by using wings. However at the lower values of \bar{C}_w, say, 0.01 (≈ 3000 pound torpedo at 90 knots, c.f. Figure 2), the value of W/D at $R = 0.2$ is nearly 3 times that at $R = 1.0$.

Cross-comparing Figures 5 and 6, it is seen that the effect of $s^/' \bar{z}$ on the resulting W/D is quite small. The larger value of $s^/' \bar{z}$ permits the use of higher aspect-ratio wings with concomitant savings in the wing drag. However, the drag due to the wing constitutes only a small portion of the total drag, as shown in Figure 4, and the savings show up significantly only for $\bar{C}_w \geq 0.1$, and only at small R's.

In Figure 7, the effect of the maximum allowable diameter is shown. The smaller diameter body, having a surface area larger than that of the bigger diameter body for enclosing the same volume, incurs larger drag. This explains the difference in W/D at $R = 1$. However, the improvement on W/D can be made larger for the smaller diameter body.

Figures 8 and 9 refer to cases 5 and 6. Cross-comparing these two figures with Figures 3 and 5, we obtain the effect of the Reynolds number, Re_y. The W/D obtainable are smaller for smaller Re_y. However, as we shall see in Figure 13, the Reynolds number has little effect on the improvements attainable on W/D.
In Figures 10 through 13, we have shown the improvements on W/D attainable as a function of \overline{C}_w. We define the nondimensional increase in lift-drag ratio $\Delta(W/D)$ as

$$\Delta(W/D) = \frac{W/D}_{R=0.2} - \frac{W/D}_{R=1} \left/ \frac{W/D}_{R=1} \right.$$ \hspace{1cm} \text{(52)}$$

When $\Delta(W/D) = 1$, the lift-drag ratio at buoyancy ratio $R = 0.2$ is twice that at $R = 1$. In Figure 10, $\Delta(W/D)$ is plotted vs. logarithm of \overline{C}_w for case 1. It is seen that for $\overline{C}_w \geq 0.4$, the winged torpedo is less efficient than the neutrally buoyant one. At low values of \overline{C}_w, the torpedo which consists of the diameter-limited body is not as efficient as that with the optimum body.

In the same Figure, the aspect ratio of the wing A_w and the span-diameter ratio, or equivalently half-span-radius ratio, b/R_b, for the optimum-body torpedo at $R = 0.2$ are also shown. It is seen that at $\overline{C}_w = 0.01$, the wing span as well as the aspect ratio are quite small; $A_w \approx 0.5$, $b/R_b \approx 0.8$. We note here that the wing span may be smaller than the body diameter due to the location of the wing.

In Figure 11, the $\Delta(W/D)$ for case 2 is shown; the general trend is quite similar to that of case 1. In Figure 12, cases 3 and 4 are shown. For these two cases, the strength factor, s^2/z, is 33 which is about 50 times that of case 2. The aspect ratio of the wing is about six times that of case 2, although the resulting $\Delta(W/D)$ is not too much different in these two cases. This is for the reason which has been stated before, that the
contribution of the wing to the total drag is quite small. The difference in the $D_m = 0.383$ and $D_m = 0.481$ is principally due to the drag of the body. The body volume decreases while the thickness ratio increases with decreasing buoyancy ratio. For $D_m = 0.383$, the value of the body drag at $R = 0.2$ is about 30% of that at $R = 1$, while the value for $D_m = 0.481$ is about 40%. This fact accounts for the low values of $\Delta(W/D)$ for the $D_m = 0.481$ case.

The Reynolds number effect on $\Delta(W/D)$ is examined in Figure 12. It is seen that for Re_v range of 0.6 to 12×10^7, the difference is small for practical $\bar{C}_w \geq 0.1$.

It may be of interest now to show schematically some winged-torpedo configurations. In Figure 14, we have shown a diameter limited torpedo ($D_m = 21''$), and an optimum fineness ratio (5.1) torpedo both of which weigh 3000 pounds and have a forward speed of 45 knots when they are neutrally buoyant, and when the buoyancy ratio = 0.8 and 0.4. It is seen that even at $R = 0.4$, the wings needed in both cases are quite small. The small size of the wing panels makes the problem of retracting them when launching considerably simpler.

B. Range.

The results of the range calculations are shown in Figures 15 through 23. The range factor, $\ell_s S/\eta$, in miles-lb fuel/horsepower-hour is shown as a function of buoyancy ratio with the ascending
angle as a parameter. In the first four Figures (15 through 18), the fuel weight is equal to one-half of the displacement, while in the last four Figures (19 through 22) the fuel weight is equal to one-half of the total weight. Only the results for four practical C_w's are presented; they are $C_w = .01, .0204, .04, .0625$.

For a torpedo of specified weight, in the case in which the fuel weight equals one-half of the displacement, since the volume of the torpedo decreases as the buoyancy ratio decreases, the fuel weight decreases with the buoyancy ratio. Although it has been shown that the overall lift-drag ratio increases with decreasing buoyancy ratio, the decrease in the amount of fuel available more than compensates for the effect with a resulting range which is always less than that obtainable by the neutrally buoyant torpedo except in descending missions. As the C_w increases, the advantages of winged-torpedo over those which are neutrally buoyant becomes more pronounced.

When the fuel weight is half of the total weight (Figures 19 through 22), the winged-torpedo has longer ranges than those with neutral buoyancy except in steep ascending missions. It is noted that the vertical scales in these Figures are different so as to exhibit the graphs more clearly.

CONCLUSIONS

1. The overall lift-drag ratios of torpedoes may be improved by the use of wings for small C_w's, say less than 0.3.
2. For $C_w \approx 0.01$ (3000 pound torpedo at 90 knots) the winged-torpedo of .2 buoyancy ratio may give a lift-drag ratio 2.5 - 3 times of that obtainable with a neutrally buoyant torpedo.

3. The effect of limiting the body diameter is always detrimental to the lift-drag ratio obtainable.

4. Due to the small contribution of the wing to the total drag, an increase in the strength factor $s' \frac{\alpha}{\pi}$ does not materially affect the lift-drag ratio, although it permits wings of larger aspect ratio and span.

5. The Reynolds number has little effect on the improvements attainable on the lift-drag ratio.

6. Assuming that the fuel weight equals one-half of the displacement, the winged-torpedo has longer ranges than those with neutral buoyancy only in descending missions.

7. If the fuel weight equals one-half of the total weight, the winged-torpedo has longer ranges than those with neutral buoyancy except in steep ascending missions - $\theta > 30^\circ$.
REFERENCES

1. Young, A. D., The Calculation of the Total and Skin Friction Drags of Bodies of Revolution at Zero Incidence, A.R.C. Reports and Memoranda No. 1874, April 1939.

FIGURE 1-EFFECT OF WING-BODY INFLUENCE ON THE TOTAL LIFT

\[
\frac{R_b}{\sqrt{1-\gamma}} \text{ FOR } \gamma \neq 1, R \text{ FOR } \gamma = 1
\]
Figure 2 - Weight Coefficient as a Function of Forward Speed

\[\bar{C}_W = \frac{W}{q \left(\frac{1}{\sqrt[4]{W}} \right) \frac{1}{2} \left(\frac{\rho w g}{q} \right)^{\frac{1}{3}}} \]
Figure 3 - Lift-Drag Ratio vs. Buoyancy Ratio

$\text{Re} = 12 \times 10^6$, $\text{e} = 0.7$, $\text{Dm} = 0.481$
Figure 4: Drag Break-Down for $C_W = 0.010$

$Re = 12 \times 10^7$, $s \bar{Z} = 0.7$ (Optimum Body)
FIGURE 5 - LIFT-DRAG RATIO VS BUOYANCY RATIO. (OPTIMUM BODY ONLY)

\(\bar{C}_W = 1.0 \), \(C_W = 0.75 \), \(C_W = 0.50 \), \(C_W = 0.25 \), \(C_W = 0.111 \), \(C_W = 0.0625 \), \(C_W = 0.040 \), \(C_W = 0.0278 \), \(C_W = 0.0204 \), \(C_W = 0.0156 \), \(C_W = 0.010 \)

\(R_e = 6 \times 10^5 \), \(s^2 = 0.7 \)
FIGURE 6-LIFT-DRAG RATIO VS BUOYANCY RATIO
$Re = 6 \times 10^6$, $St = 33$
FIGURE 7-EFFECT OF \tilde{D}_m ON LIFT-DRAG RATIO
$Re = 6 \times 10^6$, $s^2 = 33$
FIGURE 8 - LIFT-DRAG RATIO Vs BUOYANCY RATIO
Rev = 4 \times 10^7, \bar{Z} = .7
FIGURE 9 - LIFT-DRAG RATIO Vs BUOYANCY RATIO
Rev = 8 x 10^7, s'Z = 0.7
FIGURE 10-INCREASE IN LIFT-DRAG RATIO ATTAINABLE, WING ASPECT RATIO AND SPAN AS FUNCTIONS OF c_w

$Re = 1.2 \times 10^6$, $s^2 = 0.7$, $\delta_m = 0.481$
FIGURE II-INCREASE IN LIFT-DRAG RATIO ATTAINABLE, WING ASPECT RATIO AND SPAN AS FUNCTIONS OF $\overline{C_w}$

$Re = 6 \times 10^6$, $s^2 = 0.7$, $\overline{D_m} = 0.46$
Figure 12: Increase in lift-drag ratio attainable, wing aspect ratio and span as functions of C_w. $R_e = 6 \times 10^6$, $s_r = 33$.
FIGURE 13 - EFFECT OF \(\text{Rev} \) ON \(\Delta \frac{W}{D} \)
3000 Pound, 45 KnotTorpedoes

Fixed Maximum Diameter of 21"

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 1.0</td>
<td>D = 1490 LBS.</td>
</tr>
<tr>
<td>R = 0.8</td>
<td>D = 1270 LBS.</td>
</tr>
<tr>
<td>R = 0.4</td>
<td>D = 850 LBS.</td>
</tr>
</tbody>
</table>

Optimum Fineness Ratio of 5

<table>
<thead>
<tr>
<th>Ratio</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 1.0</td>
<td>D = 1350 LBS.</td>
</tr>
<tr>
<td>R = 0.8</td>
<td>D = 1185 LBS.</td>
</tr>
<tr>
<td>R = 0.4</td>
<td>D = 810 LBS.</td>
</tr>
</tbody>
</table>

Figure 14
Figure 15 - The Influence of Buoyancy Ratio on Range
(Fuel Weight = .5 x Displacement)
FIGURE 16 - THE INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5 x DISPLACEMENT)
FIGURE 17 - INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5 x DISPLACEMENT)
FIGURE 18—THE INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5 x DISPLACEMENT)
FIGURE 19 - THE INFLUENCE OF BUOYANCY RATIO ON RANGE

(FUEL WEIGHT = .5 W)

S = RANGE IN MILES
L_c = SPECIFIC FUEL CONSUMPTION
LB FUEL/HP-HOUR
η = PROPULSIVE EFFICIENCY
\bar{\omega}_w = .01, REV. = 12 \times 10^7, SZZ = .7
FIGURE 20 - THE INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5W)
FIGURE 21—THE INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5W)
FIGURE 22-THE INFLUENCE OF BUOYANCY RATIO ON RANGE
(FUEL WEIGHT = .5 W)
HYDRONAUTICS, Incorporated

DISTRIBUTION LIST
(Contract No. Nonr 4083(00))

Chief, Bureau of Ships (25)
Navy Department
Washington 25, D. C.
Attn: Codes 210L, 300, 300HG, 1 each
300HM, 300HF, 300HW, 1 each
305, 330, 340, 341B, 1 each
342, 345, 360, 364, 1 each
370, 373, 400, 410, 1 each
420, 430, 436, 440, 1 each
442, 603, 1500, 1 each

U. S. Naval Research Laboratory
4555 Overlake Avenue, S. W.
Washington, D. C.
Attn: Code 2027 (6)

U. S. Naval Ordnance Test Station
China Lake, California
Attn: Code 753, Pasadena Annex 1

Commanding Officer and Director (6)
David Taylor Model Basin
Washington 7, D. C.
Attn: Codes 140, 500, 530, 1 each
550, 580, 700, 1 each

U. S. Naval Ordnance Laboratory
White Oak, Maryland 1

National Academy of Sciences
National Research Council
Committee on USW
2100 Constitution Avenue,
Washington, D. C. 1

U. S. Naval Underwater Sound Laboratory
New London, Connecticut 1
U. S. Naval Mine Defense Laboratory
Panama City, Florida 1
U. S. Naval Electronics Laboratory
San Diego, California 1
U. S. Naval Air Defense Center
Johnsonville, Pennsylvania 1
U. S. Naval Underwater Ordnance Laboratory
Newport, Rhode Island 1
U. S. Naval Ordnance Plant
Forest Park, Illinois 1
Aerojet-General Corporation
Azusa, California 1
AVCO Corporation
Wilmington, Massachusetts 1
Clevite Ordnance
Clevite Research Center
Cleveland, Ohio 1
Secretary of Defense
Department of Defense
Washington 25, D. C. 1
Deputy Secretary of Defense
Department of Defense
Washington 25, D. C.

Director of Defense Research and Engineering
Department of Defense
Washington 25, D. C.

Deputy Director of Defense Research and Engineering (Tactical Warfare Programs)
Department of Defense
Washington 25, D. C.

Defense Documentation Center for Scientific and Technical Information
Department of Defense
Washington 25, D. C.

Assistant Secretary of the Navy (Research and Development)
Navy Department
Washington 25, D. C.

Chief of Naval Operations
Navy Department
Washington 25, D. C.
Attn: Codes Op 03Eg, Op 07TC, 1 each
Op 07T3, Op 09E, 1 each
Op 312D, Op 322D, Op 71, 1 each
Op 91, Op 93R, 1 each

Chief, Office of Naval Research
Navy Department
Washington 25, D. C.
Attn: Codes 100, 102, 104, 1 each
105, 400, 402, 402C, 1 each
402S, 405, 406, 407, 1 each
429, 438, 461, 463, 1 each
466, 467, 468, 491, 493, 1 each
Code 492 10
HYDRONAUTICS, Incorporated

Chief, Bureau of Naval Weapons
Navy Department
Washington 25, D. C.

Attn: Codes CU, CU-2, CU-3, CU-4, CU-8, CPP-3, DLI-3, R-56, RAAD-3, RAAV-222, RAAV-5, RRE, RU, RUTO, RUTO-2, RUTO-3, SP-001

HYDRONAUTICS, Incorporated
Plindell School Road
Howard County
Laurel, Maryland

General Electric
Ordnance Division
Pittsfield, Massachusetts

Lear Siegler, Inc.
Cleveland, Ohio

Northrop Corporation
Hawthorne, California

Ordnance Research Laboratory
University Park, Pennsylvania

Texaco Experiments, Inc.
Richmond, Virginia

Thompson Ramo Wooldridge, Inc.
23555 Euclid Avenue
Cleveland 17, Ohio

Vitro Corporation
14000 Georgia Avenue
Silver Spring, Maryland

Westinghouse Electric Corporation
Ordnance Department
P. O. Box 1797
Baltimore, Maryland 21200