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ABSTRACT 

In seismic discrimination problems one is interested in filtering out information 

carried in certain waves from noise carried in other waves.    With the use of arrays of 

sensors, this filtering can be performed in space and time.    It is quite useful to 

visualize the filtering in the Fourier-conjugate space of wave number and frequency, 

and this point of view is developed here.    Most of the report is devoted to an expression 

of the pertinent facts about the propagation of elastic waves in the earth in terms of the 

frequency-wave number diagram.    The remainder concerns signal and noise models 

and the interpretation of filtering techniques in frequency-wave number space. 

This technical documentary report is approved for distribution, 
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I.    INTRODUCTION 

The successful development of statistical decision procedures for seismic data 

processing depends directly on the accuracy with which the signal and noise models em- 

ployed reflect the properties of the actual seismic waves.    In detail these models must 

be empirically determined, but there are certain general principles to which they must 

adhere, and a study of these principles themselves provides valuable insight into the 

problem of model construction.   The general principles follow in turn from the fact that 

seismic signals and noise are elastic waves propagating in a nearly spherically sym- 

metric, radially stratified medium, and that they are produced and observed at (or very 

near) the surface. 

The salient features of the elastic properties of the earth are its high degree of 

spherical symmetry and the fact that the continuous variation of propagation speeds 

with radial distance is interrupted by a number of discontinuities, giving the medium a 

spherically layered structure.   The discontinuity which separates the mantle from the 

core (at a radius of 0. 548R, where R is the mean earth radius) strongly affects the 

propagation of body waves, and must, of course, be analyzed with due regard for the 

spherical geometry involved.   However the Mohorovic'ic discontinuity at the base of the 

crust and various discontinuities within the crust lie very near the surface, and they 

give rise to waves confined to the immediate vicinity of the surface.   As a result, the 

propagation features associated with these layers are well described by an equivalent 

plane-layered model earth, consisting of one or more layers overlying an infinite half- 

space. 

A source in the layered region will send energy along the surface in various wave- 

guide modes, some of which (trapped modes such as Rayleigh and Love waves) confine 

the energy flux rigorously to the surface, while others (leaking modes such as PL) leak 

energy slowly down into the half-space.    In addition to these waves, the source will send 

ordinary body waves down into the half-space.   We then interpret the half-space as the 

interior of the earth, and superpose on the plane-layered model the refractive and other 

effects that will allow energy to re-emerge at the surface. 

The theoretical determination of the elastic field produced by a given source dis- 

tribution constitutes, in general, a very difficult wave-propagation, or diffraction problem. 



One must solve the elastic wave equation for prescribed sources and given boundary 

conditions (at the earth's surface and at the layer interfaces).   However, by means of a 

suitable Green's function, this solution for given sources can be expressed as a super- 

position of simpler solutions, the eigenfunctions of the problem.    These eigenfunctions 

are generalized plane waves (and they reduce to simple plane waves for an infinite 

homogeneous medium), with harmonic time -dependence, and they satisfy the boundary 

conditions as well as the source-free elastic wave equation.   The eigenfunctions con- 

stitute a three-parameter family of functions.   One parameter is frequency (which 

governs the time-dependence) and the other two are often taken to be the plane-wave 

direction angles.    However, in the seismic problem with its horizontal plane bounding 

surface, it is more convenient to use azimuth and horizontal wave number (defined 

below) for parametrization.   The representation of an arbitrary elastic field as a super- 

position of eigenfunctions is analogous to the use of the Fourier integral for functions of 

time.    However, here the analog of the transform function of frequency is a function of 

the three parameters:   frequency, horizontal wave number and azimuth.    For remote 

sources in a plane-layered medium, the role of the azimuth parameter is trivial, and 

it relates only to the source distribution.   However the frequency, uu, and horizontal 

wave number, K, are intimately related to the properties of the medium as well as the 

source, hence the representation of elastic waves in terms of their density in the uu — K 

plane provides a convenient focal point for the discussion of the general principles men- 

tioned above.    In the case of seismic noise, the appropriate description is in terms of a 

spectral density in the uu — K piane. 

In the following sections we discuss the form of the basic eigenfunctions and the 

significance of regions of the uu—H plane beginning with a simple example and ending with 

a qualitative discussion of the actual earth.   A final section then deals with models of 

seismic signals and noise, emphasizing the fundamental restrictions imposed by the 

physical nature of the medium.    The discussion is expository throughout, and contains 

no new results.   Sections II, III and IV are intended as aids in the understanding of 

some of the basic facts of theoretical seismology. *  Section V provides the framework 

within which models can be made and processing techniques can be evolved and analyzed. 

*   See References 1 and 2 for further details. 



II.   ACOUSTIC WAVES IN AN INFINITE HALF-SPACE 

Let the scalar quantity, cp(r,t), be the velocity potential of an acoustic field, 

satisfying the wave equation 

Cz Ot 

-* -» -» 3cp(r t) 
The velocity field itself is   v(r,t) = v^r.t) and the pressure is p(r,t) =-p —^— , 

where p is the density of the medium, 

For an infinite homogeneous space, the basic eigenfunctions are simple plane 

waves: 

I*   x        A    i(k-r-uut) ,_  n> 
cp(r,t)   =  A e (2.2) 

where A is a complex constant and the real and imaginary parts of (2.2) are each solu- 

tions of (2. 1) provided 

|k|2-   (OJ/C)2   =   0 (2.3) 

According to (2.3), the eigenfunctions are a three-parameter family, which may be 

indexed by the three components of k (in which case uu = |k|c), or by uu and the two 

direction cosines of k (in which case |k| - OJ/C). 

Although we always keep the frequency real, Eq. (2.3) does not force the com- 

ponents of k to be real.    For example, kg (the z-component of k) might be pure imaginary, 
2 

so that kg   is negative, without violating (2.3).    The solution (2.2) would then have the 

form 

cp(r,t)   =   Aexp(±|kg|z)   exp [i(k x + k y - uut) ] 

and would increase exponentially in either the positive or negative z-direction.   Since this 

cannot be permitted in an infinite medium, it can be seen that only k-vectors with real 

components are possible solutions of (2.3).   Such solutions are called real plane waves. 



In the problem of the half-space, we suppose that the boundary is the plane,z = 0, 

and that the medium lies in the upper space, z a 0.   We now form the eigenfunctions of 

this problem out of the plane waves (2.2).    First we solve Eq. (2.3) for k : 

k, = ±y^)2-H2 (2.4) 
d c 

where K, defined by 

/  2 . ,  2 
K   = VI k,   +kn       , (2.5) 

is the "horizontal wave-number. " We let H be the vector, in the x-y plane, whose com 

ponents are k and k , and whose magnitude is H. We also let p be the projection of the 

position vector, r, on the x-y plane, so that 

kjX + k2y  =  K •  p (2. 6) 

Then the plane wave (2. 2) can be written in the form 

7*    x        A    ik^z     i(K • p -uut) ,„  _. 
cp(r,t)  =  A e   J    e        H (2.7) 

which is especially suited to a treatment which emphasizes the values of the field on the 

boundary plane itself. In fact, we now choose to index the eigenfunctions by the param- 

eters frequency (uu), horizontal wave number (K) and azimuth (direction of H). 

According to (2.4) there are two plane waves for each set of parameter values. 

However, only a single combination of these two will fit the boundary condition on the 

plane z = 0.    It can be shown that the field is uniquely determined by either of two con- 

ditions at the boundary: 

a) cp(r,t)   =   0 at    z - 0 (2.8a) 

or 

b) ^|^=0 at    z = 0 (2.8b) 



Sen 
It follows from condition a) that  -srr vanishes at z = 0, hence the pressure is zero on 

the boundary.   This is called a "soft boundary" condition and corresponds to the pres- 

ence of a free surface.    The other condition, (2.8b), says that v      the z-component of 

velocity, vanishes on the boundary, and this is called a "hard boundary" condition, 

since the boundary surface is not allowed to move.    It is also possible to determine a 

unique solution by means of a mixed boundary condition 

acp(r,t)  + b   9c^r,t)   =0 on  z = 0, oz 

or equivalently, in terms of pressure and velocity, 

p(x,y,0,t) 
v3(x,y,0,t) 

=   Z 

This is called an "impedance boundary condition, " and Z is the mechanical independence 

(per unit area) of the surface.    It is useful, for example, when the bounding surface is 

a piston of finite mass and compliance. 

To satisfy any of these boundary conditions for a fixed parameter set (UU,H), a 

combination of the two real plane waves (2. 7) must be used.    If we take, for k  , the 

positive root 

k3   = J(w/c)2 - K2 

then we obtain the basic eigenfunctions: 

a)   Soft boundary 

.-   . .     ik^z     i(K-p-uut) .     -ikciz     i(K. p-uut) 
cp(r,t)  =  A e   J    e - A e     Jev 

=   (2iA)sin(k3z)ei(H'P"UJt) 



b)   Hard boundary 

cp(r,t)  =  Aeik3z  ei(H'P-uJt)+Ae-ik3z ^(K-p-ajt) 

=   2A cos (V z)  e1^'^0 

o 

In these equations, A is complex, and the real and imaginary parts of cp(r,t) provide 

independent eigenfunctions which differ only in the time origin.    For example, in the 

soft boundary case (which corresponds to the seismic problem) the two real solutions 

are 

and 

sin (k z) cos (K- p-uut) (2. 9) 

sin (k_z) sin (K-p-uut) (2.9') 

The representation in terms of the difference of plane waves shows that each eigen- 

function may be thought of as an incident and reflected wave, with equal angles of 

incidence and reflection, and a reflection coefficient (for velocity) of (— 1).    For 

economy of writing, we use only the soft boundary condition from now on, although 

perfectly analogous results hold for the hard boundary or (more generally) the impedance 

boundary condition problems. 

It is interesting to derive the particle motion that obtains for one of our eigen- 

functions, say (2.9).    The component of velocity in the x-y plane is given by 

- K sin (k z) sin (H* p-uut), 

which vanishes on the boundary.   The "vertical" component, however, is 

dcp(r, t) -* — 
v     =       -: =   k   cos (kz) cos (K-p-uut) 



which is a maximum at the boundary.   Thus the particle motion at the boundary is 

linearly polarized, perpendicular to the boundary, and has the form of a wave traveling 

over the surface with frequency uu, apparent wave number K (wave length 2TT/H), 
—* 

direction H, and horizontal phase velocity UU/H.   Since we always have 

H   <   uu/c (2, 10) 

for real plane waves (real k-vector), the horizontal phase velocity is never less than 

the speed of sound. 

For each point in the uu-H space satisfying (2. 10), we have an eigenfunction 

formed from real plane waves.    This region clearly forms a cone about the uu-axis, and 

in the uu-H plane has the form of the shaded region in Fig.   1.    In this figure, the slope of 

the boundary line is just c, the sound speed in the medium.    The shaded region, which 

contains all eigenfunctions, is called the continuum. 

The forbidden region in Fig.  1 is defined by the condition H s uu/c.   By Eq. (2.4), 

this corresponds to plane waves with pure imaginary values of k .   We have seen that 
o 

these so-called complex plane waves were excluded in infinite space because they 

become infinitely large in the ± z-direction.   However, for the half-space, we always 

have z s 0, so that the case k   = lp where 

p  =  +7K
2
-(UU/C)

2 (2. 11) 

is not excluded.    For this case, 

cp(rst)  =  e pZ cos (K- p-uut) (2.12) 

and it appears that we have another solution.   However, without the other complex plane 
4"DZ 

wave (which has z-dependence e      ), we cannot fit any of the boundary conditions dis- 

cussed above.   Nevertheless, because of the importance of such waves in the elastic 

case, it is interesting to derive the associated particle motion.   We take the x-axis 

along H, so that the disturbance propagates along the x-axis with phase velocity (UU/H) < c. 

Then 



dcp(r.t) -pz    .    . . 
v    =      ? = -He *    sin (Hx-uut) 

x ox 

and 
—* 

Scp(r.t) -pz . , 
v     =      ^ =  -pe        cos (Kx-uut) 

z oz 

These components of velocity are out of phase, so that the resultant, although a pure 

sound wave, is not longitudinal in the ordinary sense. The fact that the z-component 

of velocity is out of phase with the pressure, 

/      \ dcp(r.t) -pz . . 
p(r,t)  =  - p    V =   puue ^   sin (Kx-uut) , 

implies no flux of energy in the z-direction.   At a given point on the boundary, the 

particle trajectory is given by the parametric equations 

x(t)   =   -H cos U)(t-t ) 

(2. 13) 

z(t)   =   -  p sin uo(t-t ) 

The particle motion is elliptical (prograde), with major and minor ellipse axes along the 

x- and z-axes. 



III.    ELASTIC WAVES IN AN INFINITE HALF-SPACE 

—*   —¥ 

Elastic waves are described by a vector field, u(r,t),which represents the dis 

placement from equilibrium due to the elastic disturbance.    Instead of discussing the 

rather complicated equation which u obeys, we make use of that fact that any elastic 

field may be expressed as the sum of two fields: 

u(r,t)   =   u (r,t) + u (r,t) (3.1) 
P b 

each of which satisfies a simple wave equation: 

v
2^)t)-4   ^&±=   0 (3.2a) 

P az 3t' 

J_   5 us(i 
P2      "dt3 V2: (r.«)  - £  ^S^   =  0 (3.2b) 

and an auxiliary condition: 

V *u (r,t)   =   0 (3.3) 
P 

V uq(r,t)   =   0 (3.4) 

The partial field u (r,t) is irrotational, describes dilatational disturbances, and prop- 

agates with phase velocity a-    Plane waves of this type are called P-waves.    The partial 
—*       —» 

field u (r,t) is solenoidal, describes equi-voluminal disturbances (pure shear), and 

propagates with phase velocity 3 < a.   Plane waves of this type are called S-waves. 

*<r,t): 

It follows from (3.3) that u (r,t) can be derived from a scalar potential function, 

u (r,t)   = V^(r,t) , 

diKr t) 
which satisfies the wave equation with velocity a-    The time-derivative,    —^—'-— , is 

entirely equivalent to the velocity-potential, cp(r,t), of Section II.    The u   field is therefore 
P 

identical in properties with the acoustic velocity field discussed above.    In infinite space, 

the basic u„- waves are real plane waves: 



~* 7*   \        n     ific-r-uut) f„  cx u (r,t)   =   U   e , (3.5) 
P P 

where 

|k|2-(uj/a)2   =   0 (3.6) 

and the components of k are real. For given values of uu and K, there are two waves, 

(u ), one corresponding to each sign of k3- According to condition (3.3), which must 

hold everywhere and for all time, the polarization vector, U  , satisfies 

k x U     =   0 (3.7) 
P 

Although U   may be complex, it follows that the real and imaginary parts are each par- 

allel to k, so that U   itself has the form 
P 

U     =  A k , (3.8) 
P 

where A is complex (by redefining the time origin, we can make A real).    Equation (3. 8) 

expresses the fact that P-waves are longitudinal. 

In the half-space in addition to real plane waves, with K < uu/a, we again consider 

the complex plane wave, (u )  . which is obtained if K > uu/a.   We can still write this 
P 

wave in the form (3. 5) if we interpret k as a complex vector: 

k  =   H +ipez (3.9) 

—» —» —• 

where e    is a unit vector in the positive z-direction, K is the horizontal component of k, 

as before, and 

p   =   + V^ - (uu/a)2 (3.10) 

L0 



-pz 
The z-dependence of this wave is given by the factor e       .   Now condition (3. 3) is still 

equivalent to (3.7) (although k and U   are both complex), and it may be shown that (3.7) 

still implies (3.8).   In the algebraic sense, the wave is still longitudinal, although the 

particle motion is quite different from that of a real P-wave.   Substituting, we find that 

.- ,o        .7*    i(k-r-uut)        . .- -» .     -pt     i(K-p-uut) .„   ... 
(u  )     =   A k e =   A(K + ipe7    e F    e . (3.11) 

P z 

We choose the time origin to make A real, set it equal to unity, and take the real part 
—• 

of u.    The result is the wave 

(u )°   =  K e PZ cos (K •  p — uut)  -  p e„ e F     sin (K •  p — uJt) (3. 11') 
P z 

which describes prograde elliptical particle motion. In fact, except for a constant fac- 

tor, the particle motion described by (3. 11') is identical with that obtained in Section II 

for complex acoustic waves. 

In infinite space, the basic ug- waves are real plane waves: 

r*      i(k-r-uut) ,        . 
u     =   Us e (3. 12) 

where 

|k|2 - (uu/3)2   =   0 (3. 13) 

- -   ± - 
and the components of k are real.    There are two waves, (u ) ,   for each set (uu.x.) and 

for each possible polarization.    Condition (3.4) now reduces to 

k • Us   -   0 (3. 14) 

—» 
which means that Ug is an arbitrary complex combination of two independent real vectors, 

each perpendicular to k.    Thus S-waves have transverse particle motion.    In the half- 

space, it is natural to choose these two directions so that one is perpendicular to both 
—» —* 
k and ez, while the other is in the (k — e ) plane.    For simplicity, we take the x-axis 

along K, and make use of the unit vectors ex and e   , along with x and y axes, respectively. 

1 1 



Then the first type of S-wave is called an SH-wave, is polarized in the horizontal plane, 

and has the form 

-      i(k-r-uut) . 
u ,    =   A e    e , (3. 15) 

sh y 

for either sign of k~.    The other wave is called an SV-wave, is polarized in the vertical 

plane containing k, and can be written in the form 

—» —» 
A /?    ~* \    i(k-r-uut) .      ,. 

u       =  A(k xe     e (3. 16) 
sv y 

again for either sign of k„. 

Now in the half-space, in addition to linearly polarized real plane waves, we 

have the new possibility of complex S-waves, (u . )   and (u0,,) .   We must have K > uu/3 sn sv 

(which exceeds uu/a), and we still use (3. 12) with the complex k-vector: 

k   =   K + iq e     =   He   + iq e (3.17) 
z x z 

where 

q   =   + V*2 - («j/0)2     • (3. 18) 

It is not difficult to show that condition (3.4) is still equivalent to (3. 14) which is still 

satisfied for two types of wave, again of the form (3. 15) and (3. 16) (although there is only 

one complex SH-wave and one complex SV-wave, since the sign of q is fixed).    The com- 

plex SH-wave is still truly transverse, although the complex SV-wave is only formally 

transverse, in the sense that (3. 14) remains true.    The complex SH-wave has the 

specific real form 

(ugh)°   =  ey e'qZ cos (H . p -u,t) (3. 19) 

with simple harmonic linearly polarized particle motion along the y-axis.    The corre- 

sponding form for the complex SV-wave is obtained by substituting (3. 17) into (3. 16) and 

taking the real part (A may be taken real and ignored): 

12 



(u    )°   =  K e   e qZ cos (Hx — uut) + q e   e qZ sin (Hx - uut) (3.20) 

It may be seen that (3.20), like (3. 11'), describes prograde elliptical particle motion 

(had we taken A to be pure imaginary--a shift of time origin -- Eq.  (30) would have 

come out resembling (3. 11') even more closely.)   Thus complex P-waves and complex 

SV-waves are very similar and can be combined without destroying the character of the 

particle motion. 

In infinite space, only the real plane waves can exist (as we have seen, there are 

three pairs of waves).    In the half-space problem, we can expect the boundary condition 

at z = 0 to determine the waves, or combination of waves, which can exist.    The elastic 

soft-boundary condition is that the force exerted by the medium on the boundary surface 

(the "surface traction") is zero.    This force is a vector which, for our plane boundary 

at z = 0, is given in terms of the displacement field by the relation 

f(p,t)  =  A-ez(v u) + n ^ +u vuz (3.21) 

-* —* 
The derivatives of u are evaluated at z = 0, uz is the z-component of u, and the constants 

X and ^ are the Lame coefficients which characterize the stress-strain relations of the 

medium. * 

For SH-waves, whether real or complex, v* u = 0 and u   = 0, so that   f  is given 
—• —» 

by [i du/dz and has only a y-component.    Thus the boundary condition, f = 0, reduces to 
—» 

a single equation in this case (P- and SV-waves with the same value of K do not give rise 

to surface forces with y-components).    If K < uu/(3, we have two real SV-waves:   (u , ) 

and the combination 

-. -.     + -» 
u   =   (u . )    +   (u u) v sh' x sh' 

*   In terms of X, \j. and the density,  p, the propagation speeds are given by 

a2  -  (X+2u)/p, 32  = u/p . 

13 



results in f = 0.    Thus a single real SH-wave can exist in the half-space, consisting 

of an incident wave, (ugn)  , and a reflected wave, (u . ) , with reflection coefficient 

equal to (+1).    If K > uu/3, there is only one complex SH-wave, for which f ^ 0, hence 

this wave cannot exist.    Thus the uu-H diagram for SH-waves looks just like that for 

acoustic waves (Fig.   1) except that the dividing line has a slope equal to the shear 

velocity, B. 

We now consider P- and SV-waves together, since it turns out that the boundary 

conditions cannot be satisfied with either type alone.   Since we are dealing with two 

phase velocities, a and 3, there are three (U)-H) regions to be considered, defined by 

the relations 

K <  uu/a (3.22a) 

uu/a <   H <  UJ/B (3.22b) 

uu/8  <   H (3.22c) 

These are shown on Fig. 2.    The slope of the line between A and B is a; the other line 

has slope 8.    In all cases, the force, f, has two components (in the x and z directions), 

hence the boundary condition, f = 0, provides two homogeneous equations to be satisfied 

by the various wave amplitudes, 

In region A, both P- and SV-waves are real, hence there are four waves in all. 

The general combination 

u   =   A(u )+ +  B(u )~ +  C(u    )+ +  D(uBV)~ p v  p v   SV SV 

can be made to satisfy the two boundary equations and at the same time, two of the four 

coefficients can be chosen arbitrarily.    For example, the choice A = 1, B = 0 corresponds 

to an incident P-wave and reflected P- and SV-waves.    The independent combination 

C = 1, D = 0 corresponds to an incident SV-wave, together with both kinds of reflected 

waves.    The reflection coefficients for the waves of the incident type no longer have 

magnitude unity, because energy is removed by mode conversion to the other type. 

However, in each of the two cases given above, the amplitudes of both reflected waves 

14 



are real.   This results m a linearly polarized particle motion in the vertical plane. 

Region A corresponds to all possible angles of incidence for P-waves, and the reflected 

SV-wave travels in a direction closer to the normal to the surface, as in Fig. 3.   How- 

ever, for incident SV-waves, region A corresponds to angles of incidence no greater 

than 9C, the critical angle at which the reflected P-wave is parallel to the boundary; see 

Fig. 4. 

In region B of the uu-H plane, there are two real SV-waves, but only a single, 

complex, P-wave.   The general case is a superposition: 

u   =  A(up)°  +  B(usy)+  +  C(usv)~ 

Again, the boundary equations can be satisfied and at the same time one of the three 

amplitudes can be chosen arbitrarily.    For example, we may take B = 1, and we have an 

incident SV-wave (with angle of incidence greater than 9 ), a real reflected SV-wave 

(angle of reflection equal to angle of incidence), and a "reflected" complex P-wave. 

In this case the reflection coefficients, A and C, are complex, although |C| = 1.    The 

particle motion is elliptic in the vertical plane. 

In region C, we have only two waves:   a complex P and a complex SV.    The com - 

bination 

u   =   A(up)°   +  B(usv)° 

describes a complex wave with elliptical particle motion in the vertical plane.    The 

boundary equations are a pair of homogeneous equations in the two amplitudes, A and B. 

Thus a non-vanishing solutions exists only if the system determinant vanishes, and this 

amounts to a relation between uu and H.    In fact, this relation simply gives the ratio, 

c    - UU/H, as a function of the phase velocities a and |3.    In other words, surface waves 

of this type, called Rayleigh waves, can exist only for one value of H at each frequency. 

For the homogeneous half-space under study here, this "dispersion relation" giving H 

as a function of uu, is linear: 

*  =  w/cR, 

15 



hence, Rayleigh waves have a characteristic velocity and there is actually no dispersion. 

For all values of n and 3,   c    < 3, and for most practical cases, c„ is nearly equal to 

8. 

We can now summarize the state of affairs in terms of two uo-H diagrams, one 

for SH-waves and one for both P- and SV-waves.    These are shown in Figs.  5 and 6, in 

which the labels on the lines give their slopes.    For all points in the uu-H plane to the 

left of the line 8, in Fig. 5, we obtain an eigenfunction representing real SH-waves.   In 

the same region of Fig. 6, we get eigenfunctions representing combinations of P- and 

SV-waves, with at least two waves real.    To the right of line 8, in Fig. 6, we get a 

family of eigenfunctions, all of which correspond to points on the line cR, representing 

Rayleigh waves, made up of complex P- and SV-waves.   All SH-waves are linearly 

polarized (transversely) in the horizontal plane.    Eigenfunctions of the P-SV type are 

linearly polarized in the vertical plane for points to the left of line a.    To the right of 

line a, the particle motion is elliptic* in the vertical plane.    For any eigenfunction in 

the uu-H plane, any azimuth is possible.   This exhausts the possibilities for the case of 

a homogeneous elastic half-space. 

*   In Rayleigh waves, the P and SV components are separately prograde in partical 
motion at the surface, although the combination may be retrograde (as in the actual 
earth). 
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IV,    ELASTIC WAVES IN A LAYERED HALF-SPACE 

As mentioned in the Introduction, most of the observed features of seismic wave 

propagation can be accounted for by a hybrid treatment which consists of ray methods 

for body-wave phases traveling through the interior of the earth, and the rigorous dif- 

fraction theory of plane-layered media for surface waves.    The methods of the previous 

section apply equally well to the case of n plane layers (of arbitrary type and thickness) 

overlying a half-space, although the analysis is tedious and the results are complicated 

in detail.    Many of the observed features of surface waves can be explained by assuming 

only one, or at most two, layers,   With infinite parallel plane layers, moreover, SH- 

waves never mix with P—SV-waves; hence the two cases can be handled separately, and 

two OJ-K diagrams still suffice to describe the possible eigenfunctions.   Since the surface - 

wave or body-wave character of an eigenfunction depends entirely on its behavior in the 

half-space, one need only plot the line uu = 3K on the SH diagram, and the two lines uu = ax 

and uu = 3K on the P-SV diagram, to separate these two classes of waves.    Here, a and 3 

are the P-wave and S-wave velocities, respectively, in the underlying infinite half-space. 

First, we discuss SH-waves.    If K< uu/3, we are in the continuum, and real plane 

SH-waves can exist in the underlying half space.   Moreover, there are two of these 

waves, one traveling toward and one away from the surface.    In each layer (of finite 

thickness) two waves can exist as well.    Depending on the values of uu and K (and the 

properties of the layer), the waves in a given layer will either be real or complex. 

Since ail SH displacements and forces are in a single direction (for fixed uu and K), the 

boundary conditions at an interface (continuity of displacement and surface force) amount 

to just two equations.   Again, at the free surface, z - 0, the boundary condition yields 

one equation.    Thus, for the case of n layers over a half space, there are 2n + 2 wave 

amplitudes and a total of 2n + 1 homogeneous boundary equations.    Thus we can always 

solve the system, while specifying one amplitude (say that of the incident wave in the 

half-space) arbitrarily,    The solution describes the multiple reflection of an incident 

real SH-wave by the set of layers. 

Now, if K > uu/S, we have a single permitted complex SH-wave in the half-space 

and two waves in each layer.    The boundary conditions reduce to 2n - 1 homogeneous 

equations in 2n + 1 unknowns, and solutions are possible only if the determinant of 
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this system of equations vanishes.   This condition is called the "period equation"; its 

solution specifies mas a multivalued function of H.   Thus we have a series of waveguide 

modes, called Love waves, each characterized by a dispersion relation (solution of the 

"period equation") giving uu as a function of K.    From this relation we can derive the 

equations for phase velocity (ID/H) and group velocity (duu/dH) as functions of K. 

For the case of a single layer, the behavior of Love waves is fairly simple.   They 

can exist only if the shear velocity (8) in the half-space exceeds that (8') in the layer. 

Also, for a given frequency, U), the system determinant has zeros only for values of K in 

the range 

8   *  K  *   8' (4> l) 

Thus, on the SH UU-H diagram, the dispersion curves, which also represent the loci of 

surface-wave eigenfunctions, lie entirely between the lines labelled 8 and 8' in Fig. 7. 

In this wedge-shaped region the waves in the layer are real, while those in the half-space 

are complex.   The period equation admits an infinite sequence of modes (each corre- 

sponding to an integral number of nodal planes in the layer), each confined to a dispersion 

curve of uu versus H, as shown in Fig. 7.   The first mode exists for all frequencies, and 

the higher modes exist for frequencies above the cut-off frequencies: 

fn - ~ - ^ (8/H)[(8/@')2-lf1/2 (4.2) 

where H is the thickness of the layer.    Each mode propagates with phase velocity 8 near 

cut-off, and with phase velocity 8' as uu becomes infinite.    In other words, the phase 

velocity is that of the layer for wavelengths small compared to H, and that of the half- 

space in the opposite case. 

The behavior of P—SV-waves is more complicated in detail.    We now have four 

waves in each layer and four continuity equations at each interface.   Again there are 

solutions in the continuum portion of the UU-K diagram, representing incident P- or SV- 

waves and reflected waves of both types.   There is also the region where P-waves are 

complex and SV-waves real in the half-space, as before.    For values of K greater than 

uu/8, both waves in the half-space are complex, and the boundary conditions for n layers 

reduce to 4n + 2 homogeneous equations in 4n + 2 unknown wave amplitudes.    The resulting 

period equation again yields an infinite series of modes, each with its characteristic 
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equation of uu versus H,   For a single layer, we find modes entering in pairs as uu in- 

creases past successive cut off values, and all the dispersion relations are curves in 

the uu-H plane.    Hence Rayleigh-wave propagation is now dispersive, like Love wave 

propagation, so that the non-dispersive Rayleigh waves of the pure half-space appear as 

a very special case.   Typical curves are sketched qualitatively in Fig. 8 for P—SV-waves 

in a medium consisting of a single layer over a half-space.   The three straight lines 

are labelled by their slopes, a, 8, and c   , equal to the phase velocities of P, S and 

Rayleigh waves, respectively, in the half-space.    (The indicated asymptotic slopes are 

8', the shear velocity in the layer, and c  ', the Rayleigh wave velocity in the layer.) 

Up to this point, we have considered only eigenfunctions made up of plane wave 

functions proportional to 
—+ —• 

i(K- p—out) 
e 

—* 
for real values of H and uu.   The z dependence is then either trigonometric or exponential, 

depending on the relative magnitudes of K and uu.   No other solutions are possible which 

are finite throughout all space (or half-space) and for all time.   However, the wave 

equation (for P waves, for example) is satisfied by the plane wave 

up(r,t) = Up e^+a-P-"") (4.3) 

for complex values of kg, K, and uu, so long as 

k3
2   +  H2   -  (uu/a)2   =   0 (4.4) 

For the layered half-space problem it is found that the boundary conditions can still be 

satisfied for combinations of waves with real uu and complex H,    To put it another way, 

the same conditions (vanishing determinant) which yield the dispersion relations for 

Love and Rayleigh waves admit solutions for real uu and complex H. 

In order to see the physical nature of such waves, suppose that K is in the x- 

direction and that 

a + lb 
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where a and b are real.   Then (unless a - 0) K   is complex, and (4.4) implies that k   , 

and hence k   itself, is complex.   If we put 

k    =  c + id 

then the plane wave (4. 3) becomes 

-*  r*   .        r>       — dz + icz - bx + iax — iuut .,   _, 
up(r,t)   =  Up  e (4.5) 

Formula (4.5) describes a complex plane wave of a more general type than those con- 

sidered before.    The disturbance propagates, with attenuation, in both x and z directions. 

It turns out that solutions exist for positive values of a, b, and c, and negative d.    Thus 

energy travels along the surface (positive x direction) with exponentially decreasing 

amplitude, while energy is also propagating into the half-space (positive z direction) 

with exponentially increasing amplitude.    These waves are not true surface waves 

because of the positive flux of energy out of the surface-layer waveguide into the half- 

space, and for this reason are called leaky modes.   Such waves obviously cannot exist 

in the steady state (real uu) because they have unbounded amplitude.   However, they have 

a definite place in transient wave propagation phenomena in which they enter the general 

eigenfunction expansion with complex values of uu.    These modes may be indicated on the 

uu-H diagram (for real uu) by plotting uu versus the real part of K.   They appear as a series 

of dispersion curves located in the continuum portion of the diagram. 
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V.   SIGNAL AND NOISE MODELS 

Let us suppose, at first, that we require signal and noise models suitable for 

the study of a surface array of vertical-component sensors.    The vertical component 

of earth displacement, u   , as a function of position on the surface, p, and time, t, can 

be written in the form 

«z<M>  " JIf  *<<«.*> e^'P'^dKdo. (5.1) 
— 00 

Formula (5. 1) is introduced here simply as a three-dimensional Fourier transform, 

where frequency (uu) is conjugate to time, and the components of horizontal wave number 

(K) are conjugate to the horizontal position coordinates.   Since u    is a real quantity, it 

follows that 

iK-uu.-K)   =   1|I(U),K) (5.2) 

where the bar denotes complex conjugate.   As a result of (5. 2) we can rewrite (5. 1) in 

the form 

00 00 

u (p,t)  = H dn J duu {X'(u),K) cos (H- p-tut)  -  Y'(UU,K) sin (K-p-uut) } (5.3) 
0 

where X1 and Y' are real, and 

X*((JU,K) + i Y'(UU,H)   =   2I|I(UJ,K) (5.4) 

If we use polar coordinates in the K-plane, so that H is the length of K and a is the polar 

angle, and also polar coordinates in space, with p = |p| and azimuth angle 9, then (5.3) 

can be written 

2n 
uz(p,9,t)  = J d0  JJ duudK {X(uo,H,a) cos [Kp cos (a-9) — cut] 

0 0 

- Y(iu,K,a) sin [Kp cos (a~9)-uut] } (5.5) 

where X(uu,K,a) = HX'(UU,H) and Y(uu,K,a) = HY'(U),H). 
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Now that the field is represented as an integral over azimuth (a) in the first 

quadrant of the uu-H plane, we may interpret X and Y as amplitudes in the same uu-H 

space discussed in earlier sections.    In other words, form (5.5) makes it possible to 

inject into the model such physical assumptions as "signal is P-wave only" or "noise 

is all in the first Rayleigh  mode ' etc. , simply by limiting non-zero values of X and Y 

to appropriate portions of the uu-H space.   Generally, signals contain many phases, and 

noise is present in several surface-wave modes, hence adequate models will require 

amplitudes (X and Y) which are sums of several terms, each relatively sharply con- 

fined to a portion of the uu-H space. 

The representation (5.5) is directly suitable to model deterministic signals of 

known or unknown form.    However, to describe noise, or to derive a random model for 

signals, we begin with a statistical specification and proceed to derive an analog of 

(5. 5).    Let us assume that uz is a random function of p and t with mean zero: 

Euz(p,t)   =   0 (5.6) 

The symbol E stands for expectation, or ensemble average.   We also assume that the 

noise is (wide-sense) stationary in both space and time, so that its covariance function, 

T, has the form 

Euz(p,t)uz(p',t*)   =  r(p-p',t-t') (5.7) 

(The assumption of stationarity is a convenience, not a necessity;   very similar results 

can be obtained without its use, but the analysis is more complex.)   The covariance 

function,    T(p,t), always has a spectrum;   we assume it has a spectral density, G'(UU,H) 

r(p,t)  = /J/   G>,H)   e^'P-^duud* (5.8) 
— CO 

As before, this relation is a purely mathematical one, essentially a Fourier transform, 

and we choose to call the variables conjugate to p and t by the names H and uu, respec- 

tively. 
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Because T(p,t) is a covariance, G'(UU,H) is real and non-negative. Because uz, 
—» 

and hence r(p,t) is real, we have 

G'(-UU,-K)   =  G'(UJ,H) (5.9) 

This symmetry allows us to write (5.8) as an integral over positive frequencies only: 

00 CO 

r(p,t)  =   2 J duu JJ  dK  G'(UU,K)COS (H-p-tot) (5.10) 
0     -°° 

Finally, in polar coordinates, we put 

G(uu,K,a)   =   2K G'(O),K) 

and find 

2TT        °° 
r(p,6,t)  =   f da duudK  G((JU,K,a) cos [Hp cos (a-8) — out] (5.11) 

0 0 

The well-known spectral representation theorem for stationary random functions 

of time has a direct analog for stationary random functions of several variables.    When 
—* 

applied to the random function uz(p,t) and expressed in polar coordinates, the represen- 

tation is 

2TT     °° 
uz(p,8,t)  = J    JJ {cos [Kpcos (a-e)-uut] d§(aj,H,a) 

0     0 

- sin [Hp cos (a-8) - uut] dr](uu,H,a) } (5. 12) 

In (5. 12), the processes §(uu,K,a) and r|(uu,H,a) are uncorrelated, zero-mean processes 

with orthogonal increments.   These increments have variances given by 

E[d§(uu,K,a)]2  =   E[dTi(uu,K,a)]2  =  G(uu,K!a)dajdHda (5.13) 
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Heuristically, we can continue to use the Fourier transform (5. 5) to represent noise, 

if we interpret X(UU,H,CG) and Y(uu,H,a) as uncorrelated random functions of zero mean 

satisfying 

EX(ii),K,a)X(ix)\K\a.') = E Y(uu,*,a) YOu'.K'.a') 

=  G(ui),K,a) 6(uu'-uu) 5(K*-K) 6(a*-a) (5.14) 

If we wish to model the noise as a superposition of surface-wave modes (uncorrelated), 

we may replace G(uu,H,a) by a sum of terms, each vanishing off the corresponding dis- 

persion curve of the mode in uu-H space.   Since these separate terms in G(uu,x,a) will not 

overlap, the representation (5. 12) (or (5. 5) ) may be written as a sum of terms, satis- 

fying equations like (5.13) or (5. 14) for each mode. 

According to (5.11), any assumed power spectral density in OJ-H space determines 

the correlation properties of the noise in space and time.    For example, if the noise power 

is isotropic, then G(uu, x.,a,) - G (a), H)/2TT, is independent of a and we can perform the 

a-integration.   The result is 

CO 

r(p,0,t)  = JJ GO(UU,K) Jo(Kp)cos out duudn (5.15) 
0 

where J   is the Bessel function of zero order.   Note that the correlation function is also o 
isotropic.    If, further, this isotropic noise is propagating in a single surface-wave mode, 

we can express the dispersion curve for the mode in the form K = H(UU).    Then G   will 

vanish off this curve: 

G0(UU,K)  =  P((ju) 6[H -K(UU)] 

and we obtain the single integral 

CO 

r<P,0  - J P(uu)J0[P*(w)] cosuutduu (5.16) 
0 

Since Jo(0) = 1, we see that p(uu) is the one-sided spectral density (per radian) of the 

noise at a given location, and that the cross-spectral density for the noise waveforms 
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at rwo points a distance p apart is completely fixed byP(ou) and the assumptions of 

isotropy and single-mode dispersion. 

More generally, we may expand the spectral density as a Fourier series in 

azimuth: 

G(uu,H,a) = ^ %<!»»"•) 

1      v + - + —     IJ    [Gn (ou8 K) cos not + Gn (uu> *) sin na] (5. 17) 
n=l 

When substituted in (5. il), we can perform the a-integration to obtain the correlation 

function as a Fourier series in 6: 

00 

r<p,6,t)    =   J7   G0(UJ,K)J0(KP)C0S UUtdUUdK 
0 

CO 

+    Tj    cos n 9 J [ G    (ID, «•) J (Kp) cos (out - — ) duu dK 
n=l 0     n 

CO 

+    /]     sin n 6 J * Gn ((«, H) Jri(Hp) cos (out  )   dou dK (5. 18) 
n=l 0 

Again, the double integrals may be reduced to single integrals (or a sum of single 

integrals) by the assumption of a single mode (or a sum of modes). 

The processing of the output signals of an array can be discussed in terms of 

processing the elastic fie?d itself.    For example, a general linear functional of the 

field has the form 

00 

JJJf(p,t)uz(p,t)dpdt (5.19) 
— CO 

for some fixed function f.    An actual array does not sample the field continuously in 

space, but discretely, and thus is described by an f-function which is a sum of delta- 

functions in the space variable.   However, it is easier to see what is happening if we 

use space integrals instead of sums over sensors.    Formula (5. 19) describes a single 

number based on the field for all values of time.   Actual processors provide a function 
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of real time, based on the field for the past only (i.e. , they use realizable filters).   If 

the output of such a linear processor is called y(t), we may write 

CO °° 

y(t)   =$$ dp J ds h(p,s)u2(p,t-s) (5.20) 
-co 0 

where the function, h(p,s), completely describes the processor.   In practice, many 

such linear processors may operate, in parallel, on the same input field, and their 

outputs may be combined in a non-linear manner.   However, we shall analyze only the 

linear aspect of the processing.     For an array of sensors at points   p = pn, 

n = 1, 2,  ..., N, we have 

N 
h(p,t) -    Yj hn(t) o(p-pn) (5.21) 

n=l 

where h (t) is the impulse response of the filter applied to the signal at the n'th sensor 

(including the response of the seismometer itself). 

In order to express the processing operation (5.20) in uu-K space, we use the 

original representation (5.1), which is related to (5.5) by means of 

#<UI.H)  =  ^ {X(aj,K,a) + iY(uo,K,a)} (5.22) 

Property (5. 2) is accounted for by defining X to be even in uu, and Y to be odd in uu. 

Formula (5. 1) can describe noise, as well as signal, if we employ Eq.  (5. 14).    Now if 

we substitute (5. i) in (5.20), we find 

CO 

r. p rt —> —* - * ill* —* 

y(t)  -- JJJ   H(OU,H) f(u),x)e "    duu dn (5.23) 

where 

CO CO —i      —» 

H(uu,K)   •- j;    J  h{p,s)  e
l(K'P+UJs)  dpds (5.24) 

-co        0 

Since h(p,s) is real, H(-W,-K)   -   H(UU,K), and (5. 23) may be written 
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2n °° 
y(t)  -   2 Re J  da JJ * duu dH H(uu,H,a) i|i((U,H,a) e 1(i)' (5.25) 

0 0 

Thus H(uu,K,a), for values of uu and H in the first quadrant of the uu-K plane, completely 

determines the processing.    For the array mentioned above, we have 

N 
H(uu,K)   =    £    elK'Pn   Hn((i)) (5.26) 

n=l 

where 

H (uu)   =   f   h  (s)   emS ds (5.27) 
n *    n 

is the frequency response of the filter, h (t). 

Formula (5.25) may be taken as the starting point in the design of a linear 

processor.    The desired response in UU-K space determines H(uu,H,a), which then 

determines h(p,t) by means of the inverse of (5.24) 

h(p,t)  =   (2n)'3    J^   H(«,,K)  e~i(*'P+U,t)  duudK 
— oo 

=   2 Re (2TT)"
3
  f da ]$ du, dH KH^K.a)   e"iKp C°S (a"9) " iaJt (5.28) 

0 0 

The function h(p,t) is then approximated by a discrete sum of the form (5.21), and the 

resulting processor evaluated for performance, aliasing introduced by discrete space- 

sampling, etc.    Many equivalent procedures also suggest themselves. 

As an illustration,   suppose we wish to sense only surface waves of a single mode, 

described by a dispersion curve H = H(UU), in a given frequency band.   Then we may put 

(for uu 2: 0 and H > 0) 

H(uu,K,a)  =  -  F(u>) 6[K-K(iu)] (5.29) 
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This will accept such waves isotropically, with a frequency weighting function F(uu). 

When we put (5.29) into (5.28), we find 

00 

-2   c   „, v  , .  .., x,      -i(Dt 
h(p,t)   =(2TT)"    J    F(uo)  J0[pK(u>)]   e'^dii), (5.30) 

—00 

where   F(—uu)   -  F(uj) .   The processing is isotropic, with a different filter for each 

radial distance.    For example, an array might be arranged in concentric rings of sen- 

sors, all elements of a ring being added and passed through a filter with frequency 

response 

F(UU)JO[PK(UU)]  , (5.31) 

where p is the radius of the ring.   As a special case, to pick out a particular phase 

velocity, c, we would use (5.31) with H(UU) = uu/c. * 

If we wish to think of the processing in terms of frequency and phase velocity, 

we simply eliminate K by a change of variables: 

K  =  uu/c (5.32) 

where   0 ^ c < °°, and introduce 

2 
H (uu,c,a)  =   %   H(uu,  -,a> (5.33) 

i c c 

Then h(p,t) is given by 

h(p,t)  =   2 Re (2TT)"3 f da H  dwdc H^ca)   e"iWc) C°S (a-e) " iM      (5.34) 

0 0 

For example, if we make H   independent of a and proportional to 6(c — c ), we return to 

(5.31) with K(UU) = uu/c0. 

*   Processing schemes which accept waves within a fixed range of phase velocities have 
been designed and implemented (Ref.  3).    They have proved quite useful in reducing 
microseismic noise. 
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These models of one component of earth motion can easily be extended to three- 

component models of surface motion. The displacement is now a vector, u(p,t), hence 

(5.1) is generalized to 

u(p,t)  = f^ 1(ou,K)  e
l(K"P_aJt)   duudK (5.35) 

— 00 

where the transform, \|/, is also a vector.   We think of a plane-layered model earth, 

and draw the uu-H diagram for the underlying half-space, keeping in mind that (5.35) 

describes the motion at the upper (free) surface of the first layer.   Using the results 

of the previous sections, we know that eigenfunctions are possible for all points of the 

continuum portion of the UU-H space, hence \|f(uu,H) need not vanish anywhere in this por- 

tion.    For fixed uu and H, the component of i|l in the surface and perpendicular to K 

obviously represents the amplitude of an SH-wave, and we know that there is just one 

such eigenfunction (of arbitrary amplitude'* for each point (<JU,H).    The other two com- 

ponents of I|I(UU,H) describe P—SV-waves, and we know that there are two independent 

P-SV eigenfunctions for each point (UJ,H).    Thus we may choose these two components 
—» —»     —» 

of i|z arbitrarily, and we have shown that any vector amplitude function, ij/(u),H) is 

possible for the continuum portion of the uu-H space.    In the surface-wave portion of the 
—» 

uu-H plane, ij( must vanish except along the curves describing surface-wave modes.    For 

each such mode, the polarization is a given function of uu and a, hence only a scalar 

function of frequency can be assigned arbitrarily as the amplitude of each mode. 

In a similar fashion, the model can be extended in depth to cover the general 

case, by writing 

CO —>    —i- 

u(p,z,t)   = J,J7'KU>,H,Z)  e
1(K'P~u,t)  duudK (5.36) 

— CO 

For each eigenfunction, the z-dependence is fixed, hence it is not appropriate to add a 

fourth variable of integration conjugate to z, and no new degrees of freedom are present 

over the case   z = 0.    Thus a statistical specification of the mode structure of the noise 

automatically determines the correlation properties in depth, and polarization, as well 

as in surface location and time, according to an assumed model of the earth. 
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