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INTRODUCTION

The problem of obtaining the flow around a body of revolution is
one of the most important examples of fluid mechanics. This subject
covers quite a wide range of flow speeds, from airships to missiles.
However, it is nonetheless important to treat the subject under the
condition that the fluid is incompressible.

Solution of the flow around a body of revolution may be solved
if, like many other problems of fluid mechanics, the general solutions
of the equations of motion are obtained. Unfortunately, it is very diffi-
cult to obtain the general solution of the equations of motion. Therefore,
assumptions were made to make the treatment of the problem possible.
As one extreme, attempts were made to treat the problem without consid-
eration of the effect of viscosity; that is, by means of the potential flow
theory. As another extreme, attempts to obtain the solution under the
assumption that the viscosity was predominant, encountered mathematical
difficulties. Therefore, a compromise was made and the whole flow was
divided into two parts: the one which is called flow inside the boundary
layer, in which effect of the viscosity is not negligible, and the other
flow outside of the boundary layer, where flow is considered as a perfect
fluid. Research has been made in both regions and many results have
been obtained. Treatment of the flow around the body of revolution is
quite similar to that of the two-dimensional case, and it was pointed
out that the flow around the body of revolution was more accurately de-
scribed by the incompressible potential flow than that of the two-dimensional
case.

It is planned at the Aerophysics Department, Mississippi State
University, to do extensive research about a body of revolution. For a
thorough study of the body of revolution, the boundary layer problems
must be solved clearly. Importance of the boundary layer in this field
may easily be understood from the fact that in the case of an airship,
because of its low speed and large scale, over several feet of boundary
layer have been observed.

It was reported that for the case of a body of revolution, the boundary
layer has a more stable character than the corresponding two-dimensional
case. This means that the boundary layer study for a body of revolution
will give a more accurate description of the actual boundary layer than
solutions of the two-dimensional boundary layer.

For an extensive research, improvement of the situation, in addition
to the collection of the knowledge of the given situation, is necessary.
In the case of a torpedo, separation of the boundary layer formed along
its surface may cause a problem. Irregular separation of the boundary




layer from its surface may cause, in addition to the increase of the drag,
a change of its course in the long run. Such a condition may be improved
by means of the boundary layer control method, which was initiated at

the Aerophysics Department, Mississippi State University, and which has
proved to be very effective when applied to sailplanes, power planes, and
axial compressors.




THE POTENTIAL FLOW METHODS

Many methods have been proposed for the solution of the flow
around a body of revolution by assuming that the fluid is an incom-
pressible potential flow. Roughly speaking, these methods are di~
vided into two groups: the one which uses a singularity distribution
along the axis or.the contour of the body, and the other which is free
from the assumption of a singularity distribution along the axis or the
contour of the body of revolution. In both cases, computations are very
laborious, and heaviness of the computations increases rapidly with the
accuracy of the process.

The purpose of the treatment of the body of revolution by means
of the potential flow theory in this paper is not in obtaining or using
the most accurate methods possible. These methods must be closely
connected with the boundary layer calculation methods used here. The
boundary layer calculation methods require the velocity distribution
around the body surface, and this velocity distribution is obtained by
means of the potential flow theory. Therefore, more accurate values of
velocity distribution around the body obtained by means of the potential
flow theory mean more accurate evaluation of the boundary layer. How-
ever, there should be some limitation about the choice of the potential
flow theory. Firsi, the computational means, and secondly, the heaviness
of the computation must be taken into consideration. On this basis,
some of the methods that would otherwise be treated are not used here.

In this paper, von Karman's method is used as a representative of
the singularity distribution method. The second method used is Kaplan's,
which is regarded as being one of the more accurate methods. In con-
nection with Kaplan's method, Young's method, which is a modification
of Kaplan's method, is used here. In addition to these and for compari-
son, the two-dimensicnal case is also chosen.

For ease of calculation, spheroids of various fineness ratios are
used. Especial emphasis is put on the spheroid of fineness ratio 0.3
as the representative of the spheroid. For future research, cases of
flow around the body with angles of attack will be treated.

Karman's Method

In this method, shape of the body of revolution is replaced by the
uniform flow in addition to the continuous sink and source distribution
on the axis of the body. The axis of the body is divided into small in-
tervals, and at each interval, strength of sink and source is assumed to be
constant.




'Ijhe velocity potential caused by the distribution of a source (sink)
from fr/ to ’5.2 on the z-axis of the body is given by
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where 2, &l ) is a strength of the source on the ¢ "¢/ interval of the
axis of the body. Using the relationship between Stokes' stream function
and the velocity potential, and after simple calculation, Stokes' stream
function is given by

where &, is the total strength of the singularity of the « - interval and
5 and [, = are the distances from the end points of the "</ interval to
the point on the surface of the body of revolution.

4. 1is determined by solving the simultaneous linear equations

which are obtained by putting bd = 0 on the surface of the body.
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The pressure distribution is given by
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Kaplan's Method

This method is roughly divided into two parts, one for the flow
parallel to the axis of symmetry and the other for the flow normal to the
axis of symmetry. By combining these two solutions, a general solution

of the flow around the body of revolution with an angle of attack is ob-
tained.

Coordinates of the body surface are given by coordinates
where 3 is taken along the axis of the body and ~» is the radius of the
body from the axis to the surface. ( 1, -“¢ <~/constitute elliptic cylindri-
cal coordinates and are related to the cartesian coordinates by
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where ¢ 1is a constant determined from the body shape only. o is
assumed as a function of ~° and is represented by

By solving the Laplace equation, the velocity potential function is ob-
tained. Laplace's equation is given, taking the axisymmetric character
of the problem into consideration, by means of the elliptic cylindrical
coordinates
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After simple calculations and arrangements, the velocity potential is
given by
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where 47 is a constant and /% /) and % ~/?)are the Legendre
polynomials of the first and second kind respectively.

Stokes' stream function is calculated through the relationship

between the stream function and velocity potential. Contour of the
body is given by the condition that the stream function is zero. Thus
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When fluid flows normal to the axis of symmetry, the problem is
treated quite the same way as in the case of the flow parallel to the
axis of symmetry except, here, the velocity potential is a function of

R also.
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From these results , velocity components at an angle of attack “\ are
given.
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The pressure distribution is defined as
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Young's Method

The usefulness of this method is in simplifying Kaplan's method,
which otherwise contains heavy computations. By means of applying
suitable assumptions, the calculation becomes easy and still preserves
a practical amount of accuracy.

The velocity potential which is given by equation (9) is simplified
to

S LS 9,0 ) ) A / | =
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where J 1is a chord length of the body. The second term of the equation
represents the main flow.

Assumptions are made that disturbance velocity caused by the
body is small compared to the main flow velocity, and 2 is assumed
to be constant and given by ,/ ,)y /. where is the maximum
thickness of the body.




The velocity component ..

is thought to be negligibly small
compared to <A .

The velocity distribution in this case is given by
B of s Z ,/,0/ )
A R / ’? An G () <

If the body is placed in a uniform flow with angle of attack, from
equation (14), the velocity distribution is given by
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Assuming ¢e, 2> £y and &« >2 & ee , the equation is further
simplified to
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where ¢ is an angle between the local tangent on the surface of the
body and the axis of the body.

Pressure distribution is given by

el )A ¢
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For Karman's method, calculations were carried out at 20 points
on the axis of the body. The axis of the body was divided into 20

intervals of the same length, and these intervals were represented by
midpoints of intervals.
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Both for Kaplan's and Young's methods, 43 points were chosen to
represent the profile of the body. Calculations were carried out compara-
tively easily because of the fact that the body was given by spheroid
which represented the least labor for the computations.




THE BOUNDARY LAYER METHODS

The flow around a body of revolution is accurately described by
the potential flow theory. It has been shown that the flow around the
body is more precisely described by the potential flow than that of the
two-dimensional case. However, for the calculation of drag, potential
flow theory does not give a reasonable estimation.

For estimation of the shear force, it is necessary to treat the sub-
ject by means of viscous flow theory. It is very difficult to solve the
entire flow by means of the viscous flow theory; therefore, the assumption
is made that viscous effects are confined in the thin layer next to the
body surface. Outside of this thin layer, which is called the boundary
layer, flow is described by means of potential flow theory. Like the
case of potential flow around the body of revolution, it has been shown
that the boundary layer around the body of revolution has a more stable
character than the corresponding one of the two-dimensional body.

Boundary layers are divided into two groups: laminar and turbulent.
Starting from the leading edge of the body, a laminar boundary layer is
formed. This laminar boundary layer tends to become unstable and trans-
ition takes place. A turbulent boundary layer is then formed along the
surface of the body. Since little is known about the transition problem,
it is assumed that the boundary layer is made up of only one kind of
flow status, either entirely laminar or turbulent.

Because of its simplicity of the flow state, methods for the cal-
culation of the laminar boundary layer as opposed to the turbulent
boundary layer are well established. For example, using the Mangler
transformation which connects the boundary layer over an axially
symmetric body to the two-dimensional boundary layer, Thwaites'
and Tani's methods which give momentum thicknesses for the laminar
boundary layer are transformed to exactly the same equation which
is given by Truckenbrodt as

y Bl s )///( /’/ﬁ) S )/VF'
. ) ,

except that the constant < is given a slightly different value by each
method. Since main interest is in the turbulent boundary layer, here
only Truckenbrodt's method is used for the calculation of the laminar
boundary layer. It is shown that in the laminar case, there exists a
non-zero value for the momentum thickness at the leading edge stag-
nation point. In this paper, however, this value is disregarded.

10




For the purpose of the present paper, many conditions have to
be taken into consideration for the selection of the method which will
be used here. Although the mechanism of the transition from laminar
to the turbulent is not yet fully explained, it is desirable to choose a
method which will give a calculation method for both the laminar and
turbulent flow. It will be convenient if the method can principally be
applied for the body with a transpiration surface. For these reasons,
Truckenbrodt's method is chosen as the representative method for cal-
culation of the turbulent boundary layer. For comparison, other methods
are given here. They are given for the calculation of momentum thick-
ness around the two-dimensional body but, by means of the Mangler
transformation, are transformed to that of the body of revolution. For
applying the Mangler transformation to the turbulent boundary layer
calculation, Truckenbrodt's method is first written in the form of the
two-dimensional case. Then, by means of the Mangler transformation,
it is transformed to the case of the boundary layer over the body of
revolution. Comparing these two equations, the transformation relation
for the turbulent case is determined. With this transformation relation-
ship, two-dimensional results are transformed to the case of the body
of revolution.

The equatior. given by Truckenbrodt is

) S i .
% R T2 vz A i
| P . .
& . -~ / J :‘/ /- / —l 4 A (<
/ /‘ .7 e y 14 ' / !
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where ¢ is measured along the surface and ¢ 1s the length of the

curve measured along the surface of the body. This is rewritten to
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where ' is measured along the chord line and < is the chord length
of the body. . 2 ) is given by
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1/6 is given for /7 , and

N

Cl

Other methods used here are written by a single equation,

-7
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except constants used are different from one to the other. These are
given below:

/1 = 7
Maskell .2155 .01173 4.2
Schuh .268 .0185 4,27
Spence .200 .0106 4.0
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RESULTS AND DISCUSSION

It will be convenient to think about the results from two directions:
first, results from the potential flow around the body of revolution, and
second, results from the calculations of the boundary layer. General
notation for the calculation of boundary layer methods, as well as potential
flow methods, is shown in Figure 1.

At a small fineness ratio, the pressure distribution curve is well
represented by a flat curve except in the vicinity of the leading and trail-
ing edges. As the fineness ratio of the body increases, the pressure dis-
tribution curve becomes a more rounded one. It is found that the difference
between Kaplan's method and Young's method increases as the thickness
of the body increases. As is shown in Figure 2, at a.fineness ratio of
0.3, Kaplan's method gives larger values for the velocity distribution
around the body than does Young's method. For comparison, the result
of the two-dimensional case is also included. It is shown in Figure 3
that Karman's method gives a pressure distribution close to the curve
given by Kaplan's method. The slightly wavy character of the pressure
distribution curve by Karman's method will be due to the comparatively
small number of divisions used for the calculations.

Some results are obtained for the case of flow at an angle of attack
to the body. In Figure 4 and Figure 5, pressure distributions given by
Kaplan's and Young's methods are compared at angles of attack = =5 degrees
and =< = 10 degrees. In contrast to the effect of the thickness of the
body, the pressure difference between a certain angle of attack and the
zero angle of attack by means of Young's method is larger than that of
Kaplan's method. However, an increase of angle of attack has the effect
of giving closer agreement between the pressure distributions given by

the two methods. At a large angle of attack, -=< = 10 degrees, the pressure
distribution by Young's method gives better coincidence to that by Kaplan's
method than at a small angle of attack, = = 5 degrees.

For the laminar boundary layer, Truckenbrodt's method is used, and
in Figure 6, momentum thicknesses for two- and three-dimensional cases
are compared.

For the turbulent boundary layer, Truckenbrodt's method is taken
as a representative method for the estimation of the momentum thickness.
In addition, three other methods are chosen for comparison of results.
Originally, these methods were for the two-dimensional case, but here
they are transformed to the three-dimensional case by means of the Mangler
transformation. These are compared in Figure 7. In Figure 8, momentum
thicknesses for two- and three-dimensional cases by means of Truckenbrodt's
method are compared.

13




The effect of the velocity distribution around the body obtained by
potential flow theory on the calculation of the momentum thickness is given
in the table. Momentum thicknesses are calculated from three different ve-
locity distributions; cne is the velocity distribution given by Kaplan's method,
and others are ten per cent less and more than the value obtained by Kaplan's
method. It will be noticed that these differences do not give more than two
per cent difference for the momentum thicknesses. This means that the re-
sults are not so much affected by the velocity distribution on which the
momentum thickness calculation is based. Therefore, it can be said that
from the easiness of the calculation, Young's method may be chosen as a
representative method for the calculation of the velocity distribution with
a considerable amount of accuracy.

Comparison of the momentum thickness for the laminar and the tur-
bulent boundary layers is shown in Figure 9. As Reynolds number increases,
the difference between the two methods increases.

All of the above results are obtained for the case of a spheroid.
If the body is not a spheroid, velocity distribution difference between
Kaplan's and Young's methods is large compared to the case of the spheroid.
However, it is assumed that the difference does not have a large effect
on the calculation of the momantum thickness.

14
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APPENDIX
v o”,/c

e

e O N j‘( s DX f‘: Ve ;i
0.00 0.000000 0.000000 0.000000
0.05 0.000116 0.000112 0.000110
0.10 0.000204 0.000201 0.000199
0.15 0.000293 0.000290 0.000286
0.20 0.000384 0.000377 0.000373
0.25 0.000475 0.000468 0.000462
0.30 0.000567 0.000558 0.000551
0.35 0.000662 0.000650 0.000644
0.40 0.000761 0.000748 0.000740
0.45 0.000866 0.000850 0.000842
0.50 0.000978 0.000961 0.000951
0.55 0.001097 0.001082 0.001071
0.60 0.001238 0.001216 0.001202
0.65 0.001394 0.001369 0.001356
0.70 0.001582 0.001554 0.001538
0.75 0.001829 0.001787 0.001767
0.80 0.002142 1 0.002102 0.002081
0.85 0.002640 0.002589 0.002562
0.90 0.003582 0.003519 0.003481
0.95 0.006562 0.006449 0.006316

MOMENTUM THICKNESS CALCULATED FOR TURBULENT
BOUNDARY LAYER AROUND SPHEROID OF FINENESS RATIO 0.3
FOR DIFFERENT VELOCITY DISTRIBUTIONS (TRUCKENBRODT'S METHOD)
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Figure 1. General Notation for a Body of Revolution
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Spheroid at Zero Angle of Attack
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Figure 3. Comparison of Pressure Distributions Around
Spheroid at Zero Angle of Attack
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Figure 4. Comparison of Pressure Distributions Around
Spheroid at Angle of Attack = 5 Degrees
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Figure 5. Comparison of Pressure Distributions Around

Spheroid at Angle of Attack = 10 Degrees
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Figure 6. Comparison of Two-dimensional and Three-
dimensional Momentum Thickness for Laminar
Boundary Layer
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Figure 7.

MOMENTUM THICKNESS

Figure 8.
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Comparison of Momentum Thickness for Turbulent
Boundary Layer
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Comparison of Two- and Three-dimensional Momentum
Thickness for Turbulent Boundary Layer (Truckenbrodt's
Method)
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and Turbulent Boundary Layers for Spheroid
(Truckenbrodt's Method)
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