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ABSTRACT

Relations involving the frequency-dependent optical constants
give information on the electronic properties of solids. Power re-
flectivity measurements at normal incidence over a wide frequency
region can be utilized in obtaining the optical constants by means of a

general integral transformation known as the Kramers-Kronig trans-
formation. A computer program based on this integral transformation
has been constructed in Fortran II, version 9000, language for a
Remington Rand Solid State 90 computer. The program converts ex-
perimental reflectivity measurements into parameters containing the
optical constants.

A brief presentation of the electronic quasi-particle and collec-
tive excitation modes is given in terms of the optical constants. A
discussion of the approximations made in putting the integrals on the
computer is also given. Two tests were made to check the accuracy
of the program. First, a test reflectivity function, for which the
Kramers-Kronig integrals could be directly evaluated, was programmed.
Then, published reflectivity measurements on copper were analyzed.
The optical constants determined by the computer program were in
good agreement with both the test optical constants and the previously

calculated constants of copper.
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INTRODUCTION

There has been much theoretical speculation on the electronic
properties of alloys. An increasing amount of research is being done
on their optical properties, elastic constants, specific heat and X-ray
fluorescent emission spectra in order to elucidate their band struc-
tures. Recently de Hass-van Alphen oscillations were observed in
some IB-IIB alloys and other alloys. 1 The ordered beta-brass type
(IB-IIB) alloys are a particularly interesting family, for they exhibit
marked color changes as a function of temperature in the beta-phase
and long electronic mean free paths. Muldawer 2 has described the
color trend as going from green to yellow, to red, to gray, with in-
creasing temperature. For example, visual observations on ordered
beta CuZn reveal that it is yellow with a green tinge at -195' C, yellow
gold at Z8' C, and copper-red at 3000 C. These striking color changes
suggest that the brasses are quite amenable to optical measurements
as a function of wavelength and temperature. Also, their low residual
resistivities, which were observed by Rothwarf and Muldawer, 3 give
rise to the possibility of making Fermi surface measurements on them.

This report will be concerned with the construction of a Kramers-

Kronig computer program in order to determine the electronic proper-
ties of solids from the spectral reflectivity at normal incidence. The
program has been written by two of the authors* using Fortran II, re-
vision 9000, for the Remington Rand Univac Solid State 90 computer.
An analysis of reflectivity measurements on beta CuZn is given else-
where. I

The power reflectivity at normal incidence is not a sensitive
probe of the electronic behavior in a metal or alloy, but several re-
lations involving the optical constants give information on the nature

of the elementary electronic excitations. It is well known that elec-
trons in a solid exhibit both individual and collective aspects. 5 When
a fast charge particle passes through a thin film, it can impart a
quantum of energy to the valence electrons. The response of the elec-
trons in the valence band(s) to the high kinetic energy of the external
particle is such that an oscillation in the electron density occurs. This
organized oscillation of the valence electrons as a whole is an elemen-
ta-v excitation of the electron gas and is known as the plasma oscillation.

R,. NI. Robbins and J. N. Brown



The free plasmon (the quantum of the plasma oscillation) has an energy
equal to I-wp where wpZ = 41rNe 2 /m, and N and m are the electronic
density and mass, respectively.

Plasmons do not influence the metallic behavior under ordinary
circumstances because their excitation energies are at least a few
electron volts (e. v. ) greater than the kinetic energy of an electron at
the Fermi surface. In those metals where the quasi-particle core ex-
citation energies are comparable to the conduction electron plasma
energies, the plasmons are severely damped and considerably shifted
from their free electron values. For example, the free electron
plasmon in silver should occur at approximately 9 e. v. , but is actually
shifted to 3. 8 e. v.

To first order, it has been shown that normally incident light
does not excite a plasmon because the longitudinal plasma modes do
not couple with the transverse photons. 8, However, in the dielectric
formulation of the many body problem it has been shown that, for iso-
tropic materials, the longitudinal dielectric constant seen by a fast
moving electron is equal to the transverse optical dielectric constant
in the random phase approximation at wavelengths long compared to
the average interelectronic spacing. 8 Near the plasma frequency, the
real part of the dielectric constant approaches zero, and the imaginary
part of the inverse complex dielectric constant (Imag I/C) is a maximum.
It is just this latter quantity that is proportional to the rate of energy
transfer from the incident charged particle to the solid in the electron
characteristic energy loss experiment. Hence the plasma effects may
be investigated in normal incident optical reflection and transmission
experiments on account of the equivalence of the longitudinal and trans-
verse dielectric constants. As the plasma frequency is approached
from low energies, a non-interacting electron gas, due to its mass
inertia, is no longer able to follow the transverse oscillations of the
normal incident electromagnetic field. At this energy, a medium ex-
hibits a characteristic crossover from highly reflective to transparent
properties (neglecting interband transitions).

If a p-polarized electromagnetic wave (polarized parallel to the
plane of incidence) is incident on a metallic film at an oblique angle,
the surface plasma mode may be excited by the electric field compo-
nent normal to the film. 10 At the plasma frequency this interaction
manifests itself by a dip in the transmission or a peak in the reflec-
tion. There is no such structure at the plasma energy for light polar-
ized parallel to the piane of the film.
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On the other hand, it is well known that photons excite single
electron intraband and interband transitions. Structural changes in
the frequency dependent absorption coefficient have been attributed to
direct interband transitions at critical points in the joint density of
states for the two bands participating in the transition. 11 These ob-
served transitions at high symmetry points in the Brillouin zone serve
as a check on the accuracy of theoretical band calculations.

The transformation of the reflectivity into the optical constants
is a special case of a very general integral transformation known as
the Kramers-Kronig transformation. 12 When the principles of line-
arity and causality apply, the real and imaginary components of a
frequency dependent system are interdependent. That is to say, if
the real part of a function is known over a wide region of the frequency
spectrum, then the imaginary part may be found by a Fourier integral
transformation of the real part,., and vice versa, These dispersion re-

"lations hold for many linear systems when causality is not violated,
and have been applied to such diverse fields ass network theory', the
quantum theory of scattering, the dielectric formulation of th/ many
body problem, magnetic resonance, etc.

A system is linear if the response to two or more inputs is the
sum or superposition of each input; e. g., if

Dl (,El

and D =CE 2

then E +E 2 ) E D Dl + D2

for an isotropic medium where D is the displacement vector, C the di-
electric consiant, and E the electric field.

The principle of causality is concerned with a proper chrono-
logical sequencing of the input and output signals. It may be described
as 'no output can occur before the input"; "no scattered wave can ap-
pear until the primary wave has reached some part of the scatterer";
or "no signal can be transmitted faster than the velocity of light in a
homogeneous material. ,13 Hence if

D (t) 7 0 at t <to ,
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then E (t) = 0 at t<to.

Also the composition of the system doe~s not change with time; i. e., if

D (t) E E(t)

then D(t -to) = E(t -to).

SFTTING UP THE KRAMERS-KRONIG INTEGRALS

From Fresnel s equations, the reflection. coefficient, i., of the
electric field is complex and may be written as

r =lie =Vi (cosc - i sin ) ()

where R is the specular power reflectivity and 0' the phase angle.
Both R and 'p depend on the angle of Incidence. At normal incidence,
r is defined in terms of the index of refraction n and the extinction
coefficient k as

r n_- -k 1 (Ref '14)(2

Equating Equations 1 and 2 at normal incidence, we arrive at

n (3)
.1 + R - 2 VR cos ;

and

2 VfR-sinp

1+ R - 2 VR cosq
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Other pertinent relations are

= 1 - i = (n- ik)2  (5)

n zkZ (6)

. 2nk (7)

and
±41k

4l~k (8)

where E is complex dielectric constant, . the absorption coefficient,
and X the wavelength.

The natural logarithm of E,4uation 1 is

In r = iR . iP (9)

The .imaginary part of Equation 9 may now be written as an integral
transfcorm of the measured reflectivity by using the Kramers-Kronig
relation

1 2

P ER 0 n dE (10)
fO E2 .'Eo

where E is the energy of the incident radiation. Hence, a measure-
ment of the reflectivity over the entire energy spectrum enables one
to calculate the phase angle 1o and the optical constants at an arbitrary
output energy Eo .

In general, one cannot make reflectivity measurements over an
infinite energy interval, for experimental difficulties appear at both
low and high energies. In the soft X-ray region the reflectivity be-
comes quite small and must be extrapolated. The output energy E0
should be far removed from both the high and low experimental limits,
so that the contributions beyond these energies to (P0 are negligible.
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Reflectivity measurements on metals1 5 and semiconductorsl16 have
been carried out from approximately 0. 001 to 25 e. v.

In order to treat the singularity Of L quation 10 at E =E 0 . we
shall work with the equivalent Kramers-Kronig relationl'2

0 _E0 R dE ( 1)
Jo E2 

-E. 0 7

where R' is the reflectivity at E 0 . The equality between Equations
10 and 11 immediately follows since

0o E2 
-1d0

and R0 is treated'as a constant in the integration. For the construc-
tion of the computer program it is convenient to .divide the contributions
to (PO into different regions of the energy spectrum. Equation 10 will
be split into four parts and integrated ov 'er three intervals, the low
energy extrapolation (0 to a),. the measured region (a to b), and the
high energy extrapolation (b to o:.Hence,

'P0 o 0.1 + (2 + (P 3+ ~4 (

where

Eo i 2n R dE (13)
17 fa E 0-

In nRol I (E o - a) (b + E o)l(4
I (E0 + a) (b - E 0 )j'(4
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E a InR dE, (5
03= : I 0E 2 E.2

EEl mR d (16)

The integral er over the measured region is evaluated numeri-
cally on the computer by Simpson's rule

R

= ~ b 1n-~dE. (A_) [(YI+ 4(Y2 +Y +Y+
ifi'a EZ E- 1 Y 6

YN-1) + Z(Y3 + Y5 + Y7 + ** N-2-) + YN] .(17)

where Yji is the value of the integral at the ith point from the lower
limit of integration and At is the inc rement of E. Simpson's rule
nezess-itates that the energy increments be equaliy spaced. and that the
number of points N be an odd integer.

At the singularity point E =E 0 , R =R 0 , the integrand becomes
indeterminant. By the application of L'Hospital's rule, the. singularity
may be evaluated in the limit as

Urn Yk lim ( E11 ) 1

E-. E0  E A. (E2 - E0
2 ) 1 ZEORQ E/)E.E (8

E \0 E 0

The derivative (,dR) is obtained by the approximation for

numerical difier entiation after smoothingl 7
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(dR d.)1=Zo [(ARK. - RK+2) - 8(RK. - RK+l)1 (19)

The singularity point for a test reflectivity function was found to lie on
a smooth curve with thle neighboring values of the integrand in Equation
17 and was included in the Simpson summation.

By inspecting the sign of the integrand in Equation 13, one can tell
which parts of the energy reflectivity spectrum give a positive or nega-
tive contribution to the output phase angle. The same is true for Equa-

tion 14. p2 is positive when Eo24 ab and negative when E 0
2 > ab

since in R. < 0 as R 5 1.

The reflectivity in the extrapolated infra-red interval (0, a) is
constant to a high degree of approximation; thus it may be taken out
of the integration. Equation 1z then reduces to

Inin (a+ E)i Raa (20)

where Ra is the long wavelength value. 0 3 gives a negative contribu-
tion to the total phase angle.

The high energy extrapolation in many cases makes a significant
contribution to ihe phase angle. One usually chooses an extrapolation
such that the values of the computed optical constants agree witil those
obtained from direct measurements in the Visible and the near ultra-
violet frequency range. 15 For simplicity we choose the reflectivity
in the expression (P4 to be a constant, Rc . Three different values of
Rc are provided in this program. After integrating, Equation 16 be-
comes..

/b + E N(
217 b - E (21)

and is always positive.
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The choice of a constant cut-off reflectivity R € is valid at
sufficiently high energies, provided the range of integration for Ol
is large. In some cases it may be necessary to put extrapolated
values in O1 to get agreement with values of the optical constants
measured by direct technique s . For this particular prog'ram and
machine, the dimensionality of the input is 500 for the Ol integra-
tion (actually, 499 input points are available since N must be an odd
integer). 18 The energy input points are not entered as data but are
generated by the program. The starting point corresponds to El
inputted as WA, with delta as the increment. It has already been
noted that energy increment must remain the same.

The output points must be appropriately chosen input points
and must be equally spaced. However, the output energy increment
need not be the same as the input increment. The lowest output
energy values is E 3 . The other output, values are determined by-
chossing a desired increment (k = 1,2, 3..).
For example, k - corresponding output points

1 Ey E4P E 5 ...EN 2

2 E 3 j E5 , E 7 ...

E3, E6 , E9

E 3 , E 3 +1, E 3+21

The upper limit of the output points is not greater than EN. 2, and
the lower limit is not less than E 3. These limits are due to the.
evaluation of the output points near the upper and lower limits of.
the Simpson summation. The maximum number of output points is
495 and corresponds to the case in which there are 499 input points
and k = 1.

THE COMPUTER PROGRAM

The Kramers-Kronig transformation was programmed for
the Univac Solid State 90 computer, using Fortran II language,
version 9000. The following substitutions were made as a conven-
ience of programming:

9



PHI

RHO p

RI R, R

00

2 1

p3 p2  4 1

p4 pZ +0 (2)

= p2 + (3)

OMEGA E, Eo

DELTA =AE

WA a El

WB b E N

RC1
RC2 F = R (Assumned cutoff values at high energy)
RC3.'

RA = Ra (low energy)

CN = n

CK = k

EPSNI

EPSNZ

RATI = RATIO-i 1
12 + z2

10



RAT2 = RATIO-Z 4ffk

WLDO = X=L

The values for R are punched with nine columns per word
and ten words to a card in floating point. (If three. or four columns
make up an input word, the number of input storage locations would
still remain the same.) These data values are read by one read
statement and must be followed by a blank card.

Values for a, b, Rcl P &2o Rc 3 , delta, and R. are punched
in floating points with nine columns per word and seven words on one
card. These-are read by a single read statement. Integer, values
for N and Kare on one card which is read by a single read state-
ment.

The output program prints the following headitg: t, L, A,
PHI, n, k, EPSILON-i, EPSILON-2i RATIO-i, and iXTIO-'i for
each of the five values of RHO. After the print out for Ithe first out-.
put point, the paper is spaced and the cycle is continued ntil the
final output is calculated.

The computer programn is as follows.

C USS FORTRAN It** VERSION 9000

NO CARDS

C KRAMERS KRfONIG CAL ;ULATIQNS

-DZIENSION OMG (0 )K (0 )P I6 oH 4lCI.)C 41,PN(~ lPN (~

IkATI (5WiAT2(5)

COMMON OMEAtARl

RLAU I3. EAsWd#Rc ClR. NC3vUELTAoRA

READ J4# NoK

READ) Ile (K (1)t IUIPN)

RCI. LNULN IR( I)

RC2LN#LNWNt2)



KCJL14XLN'14C3)

ftALNxULI(RA,

DELIMI SC 14.0*UELTA)

GX.4sJlag&

SUiM2YHwj.

OMEGAI1)OWA

DO 2 1aj2oN

2 CMdGA(flUOMEGaA(Z.1I)*OE.TA

PRINT Igo

NMINN-l

00. 7 ,J93 NM4I$K'

SUM'4YNUs

ROI.NNLN(I (Cj)

IGOI0I

100a2

N201

'4 00 3 lNl.N2

X#OMLGA I )**2-NoZ

60 TO t3gJ@4)01GQ2

33 SUM'4yWbUM4Y+Y

IG0a22

G~O TO

1.2



i4 SUM~yN.3UAI1y*

3 CONTINUIE

GO TU (6#9*1010 1391

SuM2Y#u.

NIM2

N 2MJ-1

GO To '4

9. NINJ+1

N2MN

GO TO. £4

10 SUM2YSLIZ1Y-V

J19a*JQE

18 SUM2YOUUI2Y+Y

GO TO 19

17 SUM'4YNSUMI4Y+Y

19 PHI(1)NOMEGA(J)i'3.141927*DEL2*(YI'40*SIM4Y*2.O*U48

WMVA#OMEGA(J (-sA

SAPWXUA*OMLGA I J)

DXLN(OMWA/NAPW)

13



WSNOaWSO/9910)

PHI(6),VROLN/'G*IO

RHO I3 XPHI i I +PHI JA)WWMA

HLNIWMW/UPNI

RHQW.~laMI(2)+PM(4)

SIGMANii.*5QRT(N (,J))

WLU0Oa 2396C04/MkGA.j)

WLU)O1t2.b&37jLLO

DO 6 !I21.S

Z..RCJ$-SIGMA*CQS(RMOII))

CK()4GMA*SIN(RH0JU))/Z

EPSNlI !)jCN( I)*'m2-CK( I **2

EPbN~ I )1$2o*CN( I *K(:)

RAT2 ( I )*JdL6)0ISCK ( I

6 CONTINuE

PRINT l2I0MEwiAhJ).3LDORI(J)e(NMQ(I),CN4(11,CK(L)tEPSNI(I)eEPSN(itslRATIl)



7 CONTINUE

11 FORMAT (IOL9.3oll

j2 FORMAT F.,AL....(XL.(37Ig15)

13 FORMAT(7F6*3)

14 FOIAMATi213)

*IN-a96XHNAATIQ-1,.eX7MRATIO-2)

STOP

[ No

COMMENTS ON THE ACCURACY-OF THE PROGRAM AND METHOD

The. accuracy of the program was verified by putting a known
tes t function into the computer. The tabulated input reflectivity was
evaluated from the expreassion

and pl was integrated by Siriaon a rule in the interval (ab.). Suit-
able approxcimations were made ior 03 and 0~4 so that no discontin-
uities in the selected output values appeared. From Equations 13
and 2Z, (p may be directly integrated

b [B(EEdE (E +b
go. n? I 2E 0  dn a E+ Eoi

(23)
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The Univac computer values were in agreement with hand calcula-
tions from logarithmic tables to the third decirn' 1 place.

We also ran Ehrenreich and PhillipIs ref) ' ctivity data on
copperls 19 up to 24.4 e.v. on the computer. We obtained excellent
agreement with their results for the optical constants in the regions
from 0 to 10 e. v. after a suitable value of Rc was chosen for the 04
extrapolation.

The cut-off reflectivity can drastically change the values of
the optical constants determined by the Kramers-Kronig program;
for as Rc goes to zero, P4 approaches infinity. Since the reflectivity
cannot be measured at extremely high energies,..the Kramers-Kronig
transformation -is used in conjunction with values Of the optical con-
stants measured by direct methods. These include Drude-type vari-
ations employing polarized light, 20 the transmission interference
filter method of Schulz,- 2l ,2.,2 and a measure of the unpolarized re-
flectivity at four different angles. 23 The average cut-off reflectivity
(more correctly, the average P4 contribution) is found by bracketing
the known optical constants by successive approximations. Hence,
one can give a reasonably good estimate of the 'optical constants in
the regions beyond the energy interval covered by direct measure-
ments, but well within the reflectivity limits.

When a material exhibits a sharp reflection edge, the input
points must be closely spaced in order for the Simpson approximation
to be accurate. The (a integration will then extend throughout a
limited region of the energy spectrum, and the optical constants may
be evaluated only within this region. The. reflection edge in silver
drops from 90 percent to less than 1 percent between 3. 4 and 3. 8
e.v. 7,15 If equal energy intervals are chosen every 0.02 e.v.,
the high energy input would be about 10.0 e.v. Free electron plasma
edges which appear in the infrared for doped semiconductors are
more extreme. The reflectivity of extrinsic InSB goes from 100 per-
cent to 1 percent in an energy interval of 0. 05 e. v. -4 In such cases
it is necessary to increase the dimensionality of the input or to break
up the Ol integration into two different energy intervals.

It is interesting to note that from our choice of the phase
angle (0 in Equation 1, to be physically meaningful,

0 7 IT. (24)

16



Otherwise, the attenuiating absorption coefficient 4ffk/). becomes
negative and the transmitted light is greater than the incident beam
at a given wavelength. This is immediately seen from Maxwell's
equations, which give the %mplitud1e.of a wave travelling in the x
direction throuigh an absorbing medium as

The sign and/or magnitude of. p may, therefore, be used. as a check
to detect whether a card has been miupunched or the energy interval
chosen for the numerical integration is too large*-

17
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