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ABSTRACT

A brief review of the basic processes leading to electrical
breakdown in gases is given. Formulae are derived for calcula-~
ting the breakdown.voltages of tubes filled with neble or molecular

; -gases. An electromic.computer program.for calculating complete

) voltage versus current-density static characteristics is outlined.

f The. calculated lowering of the breakdown .voltage with inereased
ultraviolet irradiation of the cathode illustrates the utility of
the time-independent computer program. The actual breakdown
transition is calculated using the Townsend model, as modified by

. space charge, in a dynamic computer program. The agreement of the

) calculations with published.breakdown data is excellent, even for 3

the short breakdown times. previously thought explainable only by

gas photoionization. streamers.

1.  INTRODUCTION

The study of the passage of electricity through gases contribu-
ted importantly to the developuent of atomic theory. Atomic physics
-has now yielded in popularity to nuclear physics, but many problems
in "gas discharges" are still unsolved. Important among these prob-
lems is the full understanding of the breakdown process. There has
recently been a rebirth of interest in "gaseous electronics," espec~
ially in the areas of plasmas, upper atmospheric Studies, and gas-

eous lasers.,

When the voltage applied across a gas between parallel elec- i
trodes is slowly imcreased above a precise value, the gas suddenly :
changes from an insulator o a conductor. The:resulting collapse
of voltage across the tube is known as breakdown. For some decades
it has been possible to calculate very accurately the breakdown volt-
age.as a function of the properties of the gas and the electrodes.
However, the breakdown transition itself is still a matter of active !
controversy. E

It is the purpose of this report to summarize some of the cal-
culations being made on an electronic computer in an e ffort to fully
understand electrical breakdown of gases,

2. BASIC PROCESSES

Let us. coftlsider a gas. contained betiween parallel circular plates
whose. separafion.is small compared with thelr diameter, so that we
may safely Aimit ourselves to & one-dimensional problem (fig. 1).
Although strong electric. fields are. incapable of ionizing atoms
(or molécules) directly, comparatively moderate fields can accelerate
. electrons. already . present in the gas to sufficient emergy to ilonize

atoms by collisions. Electrons are always availlable due to. radio-
active sources.or cosmic rays. However, to insure that electrons are
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.available without unpredictable delays, ultraviolet.light i usually
directed upon .the cathode. to produce -electrons. by the photoelectric.
effect. This results in a photocurrent, J os As indicated in. figure. 1.
These electrons will drift toward. the anode in .an .applied electric
field with.a drift velocity proportional to the field. The drift
velocity in the field is small. compared with the thermal veloeity

of the electron, hence. the path of an electron is a zig-zag one,
crudely. illustrated in figure 1. Due to the small mass of the elec~
tron, little. of the energy gained from. the applied field is lost in
collisions with the heavy atoms. Hence, with a sufficient applied
.field, an electron gains enough energy to ionize, creating a new
electron and a positive ion. The positive ion returns slowly to the
cathode but the new electron will also be able to ionize, creating a
chain.reaction, known as a Townsend avalanche. Hewever, gas ioniza-
tion alone is insufficient (except at high overvoltages) to. cause
breakdown. Secondary ionization processes-include the liberation of
electrons from the cathode by positive ions, phoktons, and metastable
(lopng-life excited) atoms. Since the numbers of photons and metasta-
bles created are proportional to the number of positive ions, we may !
(in'the time--independent case) consider a single general secondary
coefficient, v, defined as thé number of electronms produced at the
cathode, from all causes, per incident positive ion. From these |
basic -“processes the electrical breakdown voltage may be calculated. !

Townsend's primary ionization coefficient, ¢, is defined as the
number of electrons. liberated by an electron traveling 1 cm in the
direction of the field. Then, since the electron current density,
J_, is proportiomal to the number of electrons crossing an area of

1 cm® per second

af5 (x)] = alx) J_(x) dx ¢H)

where x is the distance measured from the cathode. For fields not

; too close to the breakdown field, secondary effects may be neglected
and (¢, a function of the field, E, is a comstant, since the field is
constant. Then

J_(x) = J0 exp Oox, (2a)

g = ‘J_(d) = JO exp od, - (2b)

_where d is the anode distance, and the electron current at the anode
v is equal to the total current, a constant. Then the positive ioh
current density, J;(x), is given by

I (x) =3 - I _(x) (3)

Experimentally, it is found that if the field is kept constant.
by increasing the applied voltage in proportion to the gap distance,

7.
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. & straight line is obtained when'J is plotted logarithmically as.
a finction of d, for d not too close to the sparking digtance.

This enables O to be measured experimentally. It is further found
that 0/p, where p is the gas pressure (usually. measured in torr),
is a function of E/p. Since. the mean. free path of the electron' is
inversely proportional to the pressure, E/p is a measure of the
energy gained by the electrons between collisions.

Townsend found that the primary iomnization coefficient may be
. expressed as a function of the field as

a/p = A exp (-Bp/E) (4a)

where A and B are constants for each gas. Townsend derived. this ex-
pression theoretically but erroneously. It does, however, fit the
experimental data. for most of the molecular gases over a wide range
of E/p values. It has been further found empirically that the ex-—
perimental data for the rare, or noble, gases closely fit the ex-
pression

a/p = C exp {-D(p/E)¥2} (4b)

where C and D are constants for each gas.

As the gap distance is increased further, keeping E constant,
(2) is no longer obeyed as secondary processes become important.
The electron current leaving the cathode now becomes

J_(0)

I

I+ vI (0 ‘ (5a)

also from (3)

1]

J.0) =3+ y[3-7_(0)] = 3 _+y3)/ (L) A (5b.

Integrating (1) with the boundary condition (5b)

Jo exp ad

J = I-y(exp ad-1) (6)

This shows that the current ‘increases at a rate greater than
exponentially and tends to become unlimited and independent of JO as
the denominator of (6) approaches zero.

Using (4) to eliminate @ and solving (8) for Vo = Ed, the volt-
age, neglecting space charge, as a function of current density is

_ Bpd i ' :
Vb - In {Apd/1n u°} (7a)
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for the molecular gases and

. dD3 , ,
Vb - pdD .  (7b)
(1n {Cpd/ln uo})2

for the noble gases, where
u = (1+Y)/[(JO/J)+Y] (7¢)

Consideration .of (7) shows that the voltage in the absence
of space charge approaches a limit as J increases. to the peint
where JO/J can be neglected compared with the secondary coeffi-
cient, y. This limit is known as the Townsend breakdown voltage,
and is given by

Voo = BPA/In{Apd/In(ley™)} (8a)

for molecular gases and

Vo = pdD? /[ 1n{Cpd/1n(1+y 1) }]3 (8b)

 for the noble gases. Here the subscript indicates the breakdown

voltage for no field distortion.

This criterion for the breakdown voltage is more. informative
and much more satisfactory than the usual statement that the break-
down criterion is given by equating the denominator of (6) to zero.
The latter criterion is meaningful, however, in that it expresses-
the fact that each electron leaving the cathode produces, on the
average, one replacement secondary electron at the cathode through
the various ionization processes. ’

It will be noted from (8) that the breakdown voltage for a
given gas is a function only of the pd product. This is: known as
Paschen's. law. It may be further shown by differentiating (8)
with respect to pd that V. attains a minimum value

BO
VBO(min) = B In (l+y™1) e/A (Mol gases) (98)
VBo(min) = D?® 1n (1+y™}) e®/4C (Rare gases) (9b)
at pd values of
(pd)min = 1n (1+42) e/A (Mol gases) | (108)
(pd)min =

1n (1+y*) e/C (Rare gases) (lObi




It may be further noted that for high.values of pd, the yoltage
becomes nearly proportional to pd; since the logarithmic term in
the denominator is relatively constant.

Values of (@ and v, experimentally determined to give the best
. fit to (6), used in (8) give accurate values. of breakdown voltage
over a wide range of pd values for all gases in which careful tests
-have been made.

The derivation of (7) considered @ as a constant, which is no
longer even approximately true as the current density increases
without limit, due to thge distortion of the field by space ‘charge.
When 0d is replaced by odx, the problem of determining J as a func-
tion of the applied voltage can no longer be solved analytically.
However, modern electronic computers can solve the problem to suf-
ficient accuracy. = The next section outlines such a program devel-
oped at HDL.

3. STATIC COMPUTER PROGRAM

Although it had been recognized for decades that the field dis-
tortion from positive-ion space charge accumulation near the cathode
plays some role in breakdown, mathematical complexity prevented a
quantitative study of that role. Some gualitative understanding
was obtained by making various approximations, but quantitative pre~-
dictions were sometimes not verified by experiments. These disa- i!
greements had cast some doubts on the space charge mechanism,. o

In order to include the effect of space charge in the Townsend
model for breakdown, Poisson's equation

dE/dx = e[n+(x) - n_(x)j/eo ' (11)

is used, where e is the elementary charge, € is the permittivity of
O, . .

free space, and n, and n_ are the charge densities of ions and elec-

trons, respectiveiy. The charge densities are related tc the respec—

tive current densities by the relatiomns

)
4

Ji=n+ep_|__E ) (12)

where |, are the particle mobilities, which are sometimes considered
to be. constant and sometimes, more properly, functions.of the field.
Equations (11) and (12) are combined as

dE _ 1 _ Ky - ‘
== Ty F1eS) [J (l + p_) J_(x)] ‘(13)

10




Equation (1), using (4), gives. a. secomd first-order nonlinear dif=~"
ferential equation.with the two wariables, J_(x) and B(x). This
. equation. and (13) are solved By use of the Runge-Kutta method, a
fsophisticated numerical procedure, and a digital computer.

Two boundary conditlons'arefrequired for the  solution of the .
:two equations. The current density is known .at beth boundaries:
(5b) givipg . that at the cathode while that at the anode is the total
current. density of interest. Unfortunately,.the field is unknown.at
both electrodes. Consequently, a value of the field at omne electrode
. is assumed and the current then obtained at the other electrode is
. checked with the desired boundary'condition. From this result, a
more accurate.value of the boundary field is assumed. This iterative
process is continued . until. the desired accuracy is. attained. The
initial field guess for the: lowest current density is.obtained.from
! (7), but for subsequent higher current demnsities, the use of the. last
previous currect boundary field saves iterations.

The voltage across the gap is then found by integrating the
field across.the gap. The. entire voltage current density static char-
‘ acteristic is then obtained point by point. The computer print-out
f - also includes the distribution of the field, voltage, and charge den-.
sities across the gap.

f The results of the computer program went beyond the highest ex-
pectations. Not only was the breakdown transition region accurately
calculated, but the calculations have proved to be the most accurate
yet made of the cathode fall region in the glow discharge, going well
into the. high-current density¥ abnormal-glow region at low pressures.

A few typical results of the. calculations are presented. One of
. the key tests of any breakdown theory is. the prediction of the effect
. that varying the extergally produced photocurrent,‘Jb; has upon the
breakdown voltage. One rare gas, argon, and one molecular gas, methane,
are chosen to.illustrate the calculated. lowering of the breakdown volt-
age by increasing J . The results for argon, assuming v = 0’b2, are
-shewn in. figure 2, ‘¥hile those.for methane, assuming v=1x 1078, are
-shewn in figure 3 ‘The much greater lowering of the breakdown voltage
in methane has. been observed experimentally and.is largely due to the
.low y value. This may be understood by considering (7) where. it is
seen that J is- 1myortant when JO/J ‘cannot be neglected compared with
v- Simce the J/p® value at which space charge becomes. important is
-roughly the same in all gases, this means the breakdown .voltage is
‘lowered more in gases with small vy values. The lowering of the break-
down voltage is plotted as a function of Jo/yp on a log-leg plet for
the two gases in figure 4. It is seen. that the lowering of the bresk-
down voltage is about the same magnitude for the two gases, whereas
there is a disagreement of orders.of magnitude for a plot against
J_ (ipstead of J,/yp®). It may. be further noted that the lowering of
tBe breakdown voltage is proportiomal to the 2/3 powexr of q& for small
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Jo/yp2 values but proportional to the 1/2 power for higher values
of Jo/ypz. These two individual variations had been predicted
previously by geparate conflicting approximations; the computer
results show that. there is a transition between regions where each
is valid. Experimental results have supported . this transition.

The lowering of the voltage needed to maintain discharges at
higher. currents results in an effective negative resistance. This
negative resistance leads to relaxation oscillations in gas tube
circuits. The lowering of the maintaining voltage may be under-
stood in terms of the ionization efficiency, 7|, defined as the number
of ionizations per wolt and.given by 1| = CE. 'ﬂ has a maximum when
plotted as a function of E/p. This maximum corresponds to the min-
imum breakdown voltage of the Paschen curve. Consequently, when the
pd product is greater than its value for the minimum breakdown, 17 is
less than. its maximum value. The field near the cathode is increased
due to accumulation of the slow-moving positive ions, and thus the
ionization efficiency is increased, while both E and 1 decrease near
the anode. If the gas is in the pd region where (¢ increases faster
than. linearly with E, then the increase of 1) near the cathode is
greater than its decrease near the anode. Thus the average effi-
ciency of jonization across the gap increases, requiring less volt-
age to maintain a higher current density. This bebhavior is illus-
trated in figure 5 for argon.

One of. the chief difficulties is comparing experimental data
with the calculated results is that the experimenter measures the
total current while only the current density can be calculated. As

.long as the discharge area remains constant, this does not present

a serious problem. However, it is easily seen that the negative

slope of the static characteristic leads to a contraction of the
discharge. Consider two adjacent areas of discharge, ome with.a higher
than .average..currentdensity, the other with a lower than average
current density. Since the metal electrodes force the same volt-

age drop across the gap in each area, the former area is above the
static characteristic as a result of its higher current density and

the latter below the static characteristic owing to its lower cur-
rent. . Comsequently the current density increases still more in the

region of higher current density and decreases in the area of lower

current density. This unstable condition causes a contraction of

the discharge until the current demnsity attains the normal current

density of the glow discharge, i.e., the differential resistance
becomes positive. The initial unequal current densities are caused

by diffusion to the edges at low pressures and result from the-

statistics of single avalanches at high pressures. Also, since the
negative resistance increases with increasing pressure, the contrac-
tion of the discharge is more pronounced and rapid at higher pres-
sures while it is gradual at lower pressures.

‘ 15
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4. DYNAMIC COMPUTER PROGRAM " ' S

The statlc Townsend model for' the breakdown of gases: g1Ves an
accurate value. for the breakdown voltage but cannot deta11 the -
breakdown transition itself. However, it was once generally accepted
that breakdown ‘occurred by the. avalanche process whenever an over-

‘voltage was applled the. breakdown time being shorter for higher over-

voltages. The process env151oned a number of ion or electron transit
times, depending on whether’ the dominant. secondary mechanism was due
to ions or photons: at the cathode, -

However by the middle thirties, breakdown times of less’ than an.
electron transit tlme were noted. Th1s seemed . incompatible w1th the
Townsend model and a new streamer theory of ‘breakdown was developed,
based upon photolonlzatlon in the gas. The streamer theory is ‘qual-
1tat1vely satlsfactory, ‘but too complex to' be checked quantitatively.
At present it is generally accepted that the Townsend theory is valid
at low pressures and low overvoltages while the streamer mode oper-
ates at high pressures and high overvoltages. However, most effdrts
to define the transition region have' been completely unsuccessful.

It was decided to use the computer to make accurate calculations
of the dynamic breakdown transition using the Townsend model, but
including space charge. ' A very brief outline of the formulatlon is
given.

The contlnulty equations for the electron ‘and ion current den—
sities are

3W /v /3t = alx,t) J_(x,t) - 3 _J/ox (142)
3(J+/V+)/3t = a(x,t) J_(x,t) + 3J+/BX - (14b)

where ' v_ and v_are the electron and ion drift velocities, respec-
tively, “and t {s the time. Equations (14).show that when the gener—
ation of particles (first term.on the. right side of each equation)
exceeds the equilibrium gradient of those particles (second term on
the right), charge accumulates. in the gap and the current 1ncreases
When the two terms are- equal the stationary state is- attadned in
agreement with (1) aad (3). These two partial differential. equations,
together with Poisson's equation (11) are solved on the computer by
using finite difference equations.

The role of ions and photons in the secondary ionization at the

cathodé¢ mugt be separated in the dynamic case. The electron current

density &t the cathode is given by P

: d ' »
T_(0,8) = 3 +yy I, (0,) 4, I BGx,%) 5_(x,1) ax  (16)

17
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where v, and vy, are the secondary coefficients for ions and photons ,
and § is the excitation coefficient defined analogously to Townsend's
first ionization coefficient, . For most calculations, 8 is set
equal to ¢. The ion current at the anode is zero, supplying the
boundary condition for the ion current ’ _

The boundary condition on the field is glve“ by’ requi ng that
the gap voltage plus the voltage érop across a series re51Stance be
equal to the applied voitage. The latter may be programmed to be a -
constant, have a step function, or have a 51nusoidal increment. The
last prov1sion also allows simulation of a linear rise of voltage
with time.

The initial distribution of the densities of electrons and ions
across the gap, as well as the initial gap voltage, must also be
supplied. Generally an initial equilibrium (stdtic) distributicn is
assumed and the current growth noted for a step voltage or a linear
rate of voltage rise. Another interesting initial distribition sim-
ulates the result of a short pulse of ultraviolet 1ight strlking the
cathode,

Only two examples will be chosen from the many sequences of dy-
namic calculations made thus far. The first is for a l-cm gap in air
near atmospheric pressure. The parameters were chosen to fit the
experimental conditions of Bandel, whose measurements were made at the
University of California. 1t was found caat his data could be fitted
by assuming that y; = 0.20 y and vy, = 0.80 y, Where v = vy; + vy This
is shown in figure 6. No fit coul be obtained to his data when Yi
was assumed to be zero and a delayed photon mechanism was assumed.

The latter mechanism is more generally accepted than the former at
atmospheric pressure. It is hoped that further calculations will ssat-
tle the question.

The other example is for air at atmospheric pressure and a gap
of 5 cm. The parameters were chosen to fit the experimental measure-
ments of Park and Cones at the National Bureau of Standards. They
measured the breakdown voltage as a function of the linear rate of
rise of the applied voltage. The comparison of the calculated and
measured breakdown voltages is shown in figure 7. The agreement-is
good. For the highest rate of voltage rise, the. breakdown time is
less than one-tenth the electron crossing time. This shows that the
Townsend model is able to predict the observed short breakdown times.
Furthermore, the calculated field and density distributions across
the gap in the final stages of breakdown indicate that a peak of the
emitted 1ight travels from the anode to the cathode at the velocities
attributed to the photoionization streamexr. There seems no longer to
be a reason to postulate the photoionization streamer in parallel-
plate geometry breakdown. It is of course recognized that photoioni-
zation is the dominant mechanism for point-to-plane geometries and in
lightning discharges.
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Tau is the time constant for the delayed photo
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Another facet’pf'the dynamic computer program has been the cal~-
culation of the impeédance properties of a discharge., It has. been
shown that the discharge has an inductive component that varies ap-
proximately inversely with the curremt, in agreement with observa-.

tions. The first detailed calculations of relaxation oseillatioens in
the negative glope region of the static characteristic have been made.

A further important result from thése calculations has been the
.calculation of the effect of spice charge upon the diffusion of charge
-carriers,

5. SUMMARY

A brief review of the basic processes leading to breakdown in.a

. gas tube has been given. It has been shown that although these pro-
cesses have been known for decades, it is only with a modern electronic
computer that:the quaptitative details may be learned. The static com-
puter program was able not only to fit the breakdown region but proved
also to be valid for the cathode fall portion of the glow discharge,
well into the abnormal glow region. Subsequently, the dynamic program
has shown that the Townsend model is sufficient to explain the short
breakdown times, previousiy thought inconsistent with that model. The
work reported herein is continuing and further significant results are
expected.
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