NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
BEARING ATTENUATION

by

J. W. Lund
B. Sternlicht

April 28, 1961

Bureau of Ships
Code 641
Rm 8751
The information contained in this report has been prepared for use by the General Electric Company and its employees. No distribution should be made outside the Company except when indicated below:
General Engineering Laboratory

BEARING ATTENUATION

by

J. W. Lund
B. Sternlicht

April 28, 1961

Technical Report

For: Bureau of Ships
Contract No.: NObs - 78930
Task Order No.: 3679, Sub Area F 131105

GENERAL ELECTRIC
SCHENECTADY, NEW YORK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Theoretical Analysis</td>
<td>3</td>
</tr>
<tr>
<td>Summary of Results</td>
<td>15</td>
</tr>
<tr>
<td>Design Information</td>
<td>18</td>
</tr>
<tr>
<td>Dynamic Operation</td>
<td>22</td>
</tr>
<tr>
<td>(a) Stability</td>
<td>24</td>
</tr>
<tr>
<td>(b) Balancing</td>
<td>29</td>
</tr>
<tr>
<td>Conclusions</td>
<td>33</td>
</tr>
<tr>
<td>Recommendations</td>
<td>34</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>35</td>
</tr>
<tr>
<td>References</td>
<td>36</td>
</tr>
<tr>
<td>Tables, 1-6</td>
<td></td>
</tr>
<tr>
<td>Figures, 1-52</td>
<td></td>
</tr>
<tr>
<td>Nomenclature</td>
<td>fold out</td>
</tr>
<tr>
<td>Figure No.</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Configuration and coordinate system for Cylindrical Bearing</td>
</tr>
<tr>
<td>2</td>
<td>Configuration and coordinate system for 4-Axial Groove Bearing</td>
</tr>
<tr>
<td>3</td>
<td>Configuration and coordinate system for Elliptical Bearing</td>
</tr>
<tr>
<td>4</td>
<td>Coordinate system for Cylindrical and 4-Axial Groove Bearing</td>
</tr>
<tr>
<td>5</td>
<td>Coordinate system for Elliptical Bearing</td>
</tr>
<tr>
<td>6</td>
<td>Rotor-bearing dynamic system</td>
</tr>
<tr>
<td>7</td>
<td>Elliptical journal center path dimensions</td>
</tr>
<tr>
<td>8</td>
<td>Dimensionless bearing reaction versus eccentricity ratio, Cylindrical Bearing</td>
</tr>
<tr>
<td>9</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>10</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>11</td>
<td>Equivalent speed ratio $(\frac{D}{d})^2$ versus Rotor speed ratio $(\frac{D}{d})$</td>
</tr>
<tr>
<td>12</td>
<td>Effective spring coefficient in vertical direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>13</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>14</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>15</td>
<td>Effective spring coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>16</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>17</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>18</td>
<td>Effective damping coefficient in vertical direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>19</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>20</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>21</td>
<td>Effective damping coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>22</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>23</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>24</td>
<td>Transmitted force in vertical direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>25</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>26</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>27</td>
<td>Effective damping coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>28</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>29</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>30</td>
<td>Transmitted force in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>31</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>32</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>33</td>
<td>Effective damping coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>34</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>35</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>36</td>
<td>Transmitted force in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>37</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>38</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>39</td>
<td>Effective damping coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>40</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>41</td>
<td>Elliptical Bearing</td>
</tr>
<tr>
<td>42</td>
<td>Effective damping coefficient in horizontal direction versus $(\frac{D}{d})$, Cylindrical Bearing, $\frac{W}{D} = \frac{1}{2}$</td>
</tr>
<tr>
<td>43</td>
<td>4-Axial Groove Bearing</td>
</tr>
<tr>
<td>44</td>
<td>Elliptical Bearing</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Continued)

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Comparison of transmitted force for the three bearing types, $L_D = \frac{1}{3}$</td>
</tr>
<tr>
<td>45</td>
<td>" " , $L_D = \frac{1}{4}$</td>
</tr>
<tr>
<td>46</td>
<td>Design Chart for critical speed calculation, Cylindrical and 4-Axial Groove Bearings</td>
</tr>
<tr>
<td>47</td>
<td>" " " " " " " " " " , Elliptical Bearing</td>
</tr>
<tr>
<td>48</td>
<td>Elliptical Journal Center Path, Constant eccentricity ratio, Cylindrical Bearing, $L_D = \frac{1}{3}$</td>
</tr>
<tr>
<td>49</td>
<td>" " " " " " " " " " bearing reaction, Cylindrical Bearing, $L_D = \frac{1}{4}$</td>
</tr>
<tr>
<td>50</td>
<td>Examples of stable and unstable journal center paths</td>
</tr>
<tr>
<td>51</td>
<td>Coordinate system for stability calculation</td>
</tr>
<tr>
<td>52</td>
<td>Coordinate system for rotor-bearing system as used in section on balancing.</td>
</tr>
</tbody>
</table>
ABSTRACT

The purpose of this report is to analyze the stiffness and damping properties of fluid film journal bearings and to determine the force transmitted to the bearing support. The results are presented in practical design charts and are given in dimensionless form to make them applicable to wide ranges of geometrically and dynamically similar units.

The analysis assumes that the rotor vibrations are of small amplitude. Thereby the non-linear oil film force is replaced by gradients, denoted spring and damping coefficients. The numerical values of these coefficients are obtained by computer calculations. Results are given for 3 bearing types: the plain cylindrical, the 4-axial groove and the elliptical bearing. Using these bearings to support a symmetrical two-bearing rotor the force transmitted to the bearing pedestals, due to a rotor imbalance, is calculated. Thus the bearings can be compared for a given rotor and for known operating conditions and the bearing with the optimum force attenuation can be selected.
INTRODUCTION

The hydrodynamic oil film force is obtained from Reynold's equation, assuming constant viscosity. The equation is approximated by a finite difference equation and solved on a computer. The resulting oil film force is a non-linear function of the eccentricity, the attitude angle and the corresponding velocity components. The non-linearity implies a complex relationship between the rotor and its bearings such that in an exact analysis the rotor and the bearing cannot be studied separately, but must be analyzed as a system. Even if an exact solution was available it would not be too useful for design purposes, firstly because of the vast number of bearing and rotor parameters, and secondly because it would be almost hopeless to tie the results in with the supporting structure. In the present analysis, therefore, the oil film force is linearized by replacing it with its gradients, mathematically expressed in the first order Taylor expansion. This is a justified approximation when it is assumed that the journal motion is small. A linear bearing force vastly simplifies the rotor analysis and makes it possible to assign an impedance to the bearing, a necessary presupposition for any overall investigation of the rotor and its supporting structure.

Three bearing types are studied: the plain cylindrical, the 4-axial groove and the elliptical bearing. The configurations are shown in figure 1, 2 and 3. The oil film force gradients are calculated on the computer as shown in table 1-4 and introducing the numerical values into the linearized expression for the oil film force (see eq. (6) and (7), page 4) yields the bearing spring and damping coefficients as shown in table 5.

Although the thus obtained data are completely sufficient for a rotor vibration calculation they are not in a too convenient form. The reason is that 8 coefficients are obtained whereas the normal rotor calculation is set up for only 4 coefficients, a spring and damping coefficient in two mutually perpendicular directions. No provision is made for taking into account the additional 4 cross-coupling coefficients. Therefore, it is a matter of
practical importance to eliminate them. Unfortunately, they are unsymmetrical and do not vanish by the introduction of principal axis. Instead another method is employed making use of the fact that linear bearing forces result in harmonic rotor motion. Thus, it is possible to replace the original 8 coefficients with 4 equivalent coefficients that will give exactly the same rotor motion. It is clear that such a reduction depends on the rotor. A symmetrical, two-bearing rotor is selected since it represents the most commonly used rotor design. As a further simplification the rotor is given only one degree of freedom by concentrating the rotor mass at midspan. The simplified system is shown in figure 6.

The procedure is as follows: a force-balance in the vertical and the horizontal direction is set up for the rotor combining the rotor inertia, the unbalance force and the bearing force represented by the computed 8 spring and damping coefficients. This results in 4 equations in the unknown amplitudes set up in a matrix. By eliminating the 8 terms, representing the cross-coupling effect, the matrix is reduced to the same form as the matrix for a rotor with only 4 spring and damping coefficients and no cross-coupling coefficients. Therefore the remaining terms in the reduced matrix are the desired equivalent spring and damping coefficients. In addition, the matrix is solved for the rotor amplitudes, and combining the amplitude with the spring and damping coefficients gives the force transmitted by the bearing. All the results are given in dimensionless form as a function of a dimensionless parameter \(\frac{1}{\lambda} = \frac{k}{\lambda_0} \cdot \frac{1}{1 - (\lambda')^2} \). In plotting the results \(\lambda \) is replaced by the speed ratio \((\frac{\omega}{\lambda}) \), see eq. (29), page 14. Curves are given for the dimensionless spring and damping coefficients, and the dimensionless transmitted force as shown in figures 12-43. The force attenuation, expressed as the ratio between the actual transmitted force and the force transmitted by a rotor in rigid bearings, is easily found from the graphs since the dimensionless rigid bearing transmitted force is also plotted.
THEORETICAL ANALYSIS

For an incompressible fluid Reynold's equation may be written:

\[\frac{\partial}{\partial x} \left[\mu \frac{\partial P}{\partial x} \right] + \frac{\partial}{\partial z} \left[\mu \frac{\partial P}{\partial z} \right] = 6 \pi \frac{\partial \bar{h}}{\partial x} + 12 \pi \frac{\partial \bar{e} \cos \phi}{\partial x} + 12 \pi \frac{\partial \bar{e} \sin \phi}{\partial z} \]

where \(\bar{h} = C + e \cos \phi = C + e \cos \left(\frac{\pi}{2} \right) \)

Introducing:

\[\bar{h} = 2Ch \quad \bar{x} = 2Rx \quad \bar{z} = Lz \quad e = C \bar{e} \]

\[\bar{F} = \mu N(1-2\bar{a})(\bar{e})^2 \quad \text{(constant } \mu \text{)} \]

Reynold's equation reduces to the following dimensionless equation:

\[\frac{\partial}{\partial x} \left[H(\frac{\partial \bar{h}}{\partial x}) \right] + \frac{\partial}{\partial z} \left[H(\frac{\partial \bar{h}}{\partial z}) \right] = 6 \pi \frac{\partial \bar{h}}{\partial x} + 12 \pi \frac{\partial \bar{e}}{\partial x} \cos \phi \]

The resulting oil film force is then:

\[F_a = \mu N(1-2\bar{a})(\bar{e})^2DL \int \int \cos (\omega \theta) d\theta \, d\phi = \lambda \omega (1-2\bar{a}) \cdot \xi (b, \bar{e}, \phi, (1-2\bar{a})) \]

where

\[\lambda = \frac{4RL}{\pi} \left(\frac{R}{C} \right)^2 \]

For the subsequent analysis it is necessary to linearize the force with respect to displacement and velocity. The first order approximation of the Taylor expansion will be used:

\[dF_a = \lambda \omega (1-2\bar{a}) \left[\frac{\partial \xi}{\partial \bar{e}} \, d\bar{e} + \frac{\partial \xi}{\partial \phi} \, d\phi + \frac{\partial \xi}{\partial (\bar{e})} \, d(\bar{e}) + \frac{\partial \xi}{\partial (\phi)} \, d(\phi) - \frac{2 \pi}{\bar{a}} \bar{e} \bar{\phi} \right] \]

Writing:

\[\frac{\partial \xi}{\partial (\bar{e})} = \frac{\partial \xi}{\partial (\bar{e}/1-2\bar{a})} \cdot \frac{\partial \xi}{\partial (\bar{e}/1-2\bar{a})} = \frac{\partial \xi}{\partial (\bar{e}/1-2\bar{a})} \cdot \frac{2 \bar{a}}{(1-2\bar{a})^2} \]

and taking as the reference for the Taylor expansion the steady state equilibrium position where

\[\bar{e} = 0 \quad \bar{\phi} = 0 \]
we get:

\[(5) \quad dF_r = \lambda \omega \left[\frac{\partial}{\partial \theta} d\theta + \frac{\partial}{\partial \phi} d\phi + \frac{\partial}{\partial \rho} d\rho \right] + \frac{\partial}{\partial \phi} d\phi - \frac{\partial}{\partial \rho} d\rho \]

To change from polar to rectangular coordinates (see figure 4):

\[
\begin{align*}
 x &= Ce\cos\alpha \\
 y &= Ce\sin\alpha \\
 d\theta &= \frac{1}{c} \left[\cos\alpha \, dx + \sin\alpha \, dy \right] \\
 d\phi &= \frac{1}{c} \left[-\sin\alpha \, dx + \cos\alpha \, dy \right]
\end{align*}
\]

Since the point \((C_e, \alpha)\) is the steady state position, \(dx\) and \(dy\) represents the dynamic displacements and \(d\theta = (d\theta)\) and \(d\phi = (d\phi)\).

Thus we obtain:

\[(6) \quad dF_r = \frac{1}{c} \lambda \omega \left\{ \left(\frac{\partial^2}{\partial \phi^2} \cos\alpha - \frac{\partial^2}{\partial \phi^2} \sin\alpha \right) dx + \left(\frac{\partial^2}{\partial \phi^2} \cos\alpha + \frac{\partial^2}{\partial \phi^2} \sin\alpha \right) dy \\
+ \left(\frac{\partial^2}{\partial \phi^2} \sin\alpha + \frac{\partial^2}{\partial \phi^2} \cos\alpha \right) dy + \left(\frac{\partial^2}{\partial \phi^2} \sin\alpha - \frac{\partial^2}{\partial \phi^2} \cos\alpha \right) dx \right\} \]

or:

\[
\begin{align*}
 dF_r &= -K_{xx} \, dx - K_{xx} \, dy + K_{xy} \, dy + C_{xy} \, dy \\
 dF_y &= K_{yx} \, dx + C_{yx} \, dx - K_{yy} \, dy - C_{yy} \, dy
\end{align*}
\]

Three bearing configurations will be analyzed. For this purpose equation (6) is not in a convenient form and must be rewritten in terms of the force components normally used in bearing calculations.

Cylindrical Bearing

The force is given in terms of a radial component \(F_r\), positive in the negative radial direction, and a tangential component \(F_\theta\), positive in the positive \(\alpha\)-direction, such that

\[
\begin{align*}
 F_r &= -F_r \cos\alpha - F_\theta \sin\alpha \\
 F_\theta &= -F_r \sin\alpha + F_\theta \cos\alpha \\
 dF_r &= -dF_r \cos\alpha + F_\theta \sin\alpha \, da - dF_\theta \sin\alpha - F_r \cos\alpha \, da \\
 dF_\theta &= -dF_\theta \sin\alpha - F_r \cos\alpha \, da + dF_r \cos\alpha - F_\theta \sin\alpha \, da
\end{align*}
\]
Expressing \(dF_x \) and \(dF_y \) by equation (6), the coefficients in equation (7) can be written:

\[
K_{wx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha + \frac{6f^2}{d_0^2} \sin \alpha + \left(- \frac{6f^4}{d_0^4} + \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

\[
\omega C_{wx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha + \frac{6f^2}{d_0^2} \sin \alpha + \left(- \frac{6f^4}{d_0^4} + \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

\[
K_{wy} = \frac{1}{\lambda} \omega \left[- \frac{f^4}{d_0^4} \cos \alpha - \frac{6f^2}{d_0^2} \sin \alpha + \left(\frac{6f^4}{d_0^4} - \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

\[
\omega C_{wy} = \frac{1}{\lambda} \omega \left[- \frac{f^4}{d_0^4} \cos \alpha - \frac{6f^2}{d_0^2} \sin \alpha + \left(\frac{6f^4}{d_0^4} - \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

\[
K_{xx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha + \frac{6f^2}{d_0^2} \sin \alpha + \left(- \frac{6f^4}{d_0^4} + \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

\[
\omega C_{xx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha + \frac{6f^2}{d_0^2} \sin \alpha + \left(- \frac{6f^4}{d_0^4} + \frac{6f^2}{d_0^2} \right) \cos \alpha \sin \alpha \right]
\]

4-Axial Groove Bearing

The force is given in terms of a vertical component \(F_v \), positive in the negative \(x \)-direction, and a horizontal component \(F_h \), positive in the positive \(y \)-direction, such that:

\[
F_x = -F_v \quad \quad F_y = F_h
\]

Using equation (6) directly the coefficients in eq. (7) become:

\[
K_{wx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha - \frac{6f^2}{d_0^2} \sin \alpha \right]
\]

\[
\omega C_{wx} = \frac{1}{\lambda} \omega \left[\frac{2f^4}{d_0^4} \cos \alpha + \frac{6f^2}{d_0^2} \sin \alpha \right]
\]
The elliptical bearing is made up of two partial arc bearings called the lower lobe, identified by subscript 1, and the upper lobe, identified by subscript 2. The radial bearing clearance is taken as the difference between the lobe radius and the journal radius. The origin of the x, y-coordinate system is located at the bearing center, midway between the lobe centers, with the x-axis vertical downwards.

From figure 5:

\[\varepsilon^i = c + m^i + 2Em \cos \alpha \]
\[\varepsilon^i = c^i + m^i - 2Em \cos \alpha \]
\[\sin \alpha_i = \frac{f \sin \alpha}{c_i} \]
\[\sin \alpha_2 = \frac{-f \sin \alpha}{c_2} \]

Furthermore

\[d \varepsilon_i = c [\cos \alpha, dx + \sin \alpha, dy] \]
\[\varepsilon_i da_i = \frac{1}{c} [-\sin \alpha, dx + \cos \alpha, dy] \]
\[de_x = \frac{a}{d} \left[-\cos \theta_1 dx + \sin \theta_1 dy \right] \]
\[\varepsilon_x \theta_x = \frac{a}{d} \left[\sin \theta_1 dx + \cos \theta_1 dy \right] \]

The two lobes are calculated separately resulting in a vertical and a horizontal force component for each lobe. Then:

\[F_x = -(F_{x1} - F_{x2}) = -F_x \]
\[F_y = (F_{y1} - F_{y2}) = F_y \]

These equations are analogous to the 4-axial groove bearing. Therefore equations (9) are also applicable to the elliptical bearing. However, a difficulty is encountered in the calculation of the derivatives with respect to velocity because a pure radial velocity \(\vec{V} \) gives rise to both a radial and a tangential velocity component for the lobes. Thus \(\frac{df}{d\theta} = -2f \) does not hold for the elliptical bearing as it did for the cylindrical and the 4-axial groove bearing, but it is still valid for each lobe taken by itself. Using eq. (5) and (7) together with eq. (11) we get:

\[-C_{xx} \dot{d}x + C_{xy} \dot{d}y = \lambda \omega \left[-\frac{\partial f_x}{\partial (\theta)} \frac{1}{\omega} \dot{d} \theta_x + \frac{\partial f_y}{\partial (\theta)} \frac{1}{\omega} \dot{d} \theta_y - \frac{2f_x}{\varepsilon_x \omega} \varepsilon_x \dot{d} \varepsilon_x \right] \]
\[C_{yx} \dot{d}x - C_{yy} \dot{d}y = \lambda \omega \left[\frac{\partial f_y}{\partial (\theta)} \frac{1}{\omega} \dot{d} \theta_x - \frac{\partial f_x}{\partial (\theta)} \frac{1}{\omega} \dot{d} \theta_y - \frac{2f_x}{\varepsilon_x \omega} \varepsilon_x \dot{d} \varepsilon_x + \frac{2f_y}{\varepsilon_y \omega} \varepsilon_y \dot{d} \varepsilon_y \right] \]

Using equations (11) we get:

\[\omega C_{xx} = \frac{1}{\rho} \lambda \omega \left[\frac{\partial f_x}{\partial (\theta)} \cos \theta_x + \frac{\partial f_y}{\partial (\theta)} \cos \theta_y + \frac{2f_x}{\varepsilon_x} \sin \varepsilon_x + \frac{2f_y}{\varepsilon_y} \sin \varepsilon_y \right] \]
\[\omega C_{xy} = \frac{1}{\rho} \lambda \omega \left[\frac{\partial f_y}{\partial (\theta)} \sin \theta_x + \frac{\partial f_x}{\partial (\theta)} \sin \theta_y + \frac{2f_x}{\varepsilon_x} \cos \varepsilon_x - \frac{2f_y}{\varepsilon_y} \cos \varepsilon_y \right] \]
\[\omega C_{yx} = \frac{1}{\rho} \lambda \omega \left[\frac{\partial f_x}{\partial (\theta)} \cos \theta_x + \frac{\partial f_y}{\partial (\theta)} \cos \theta_y + \frac{2f_x}{\varepsilon_x} \sin \varepsilon_x + \frac{2f_y}{\varepsilon_y} \sin \varepsilon_y \right] \]
\[\omega C_{yy} = \frac{1}{\rho} \lambda \omega \left[\frac{\partial f_y}{\partial (\theta)} \sin \theta_x + \frac{\partial f_x}{\partial (\theta)} \sin \theta_y + \frac{2f_x}{\varepsilon_x} \cos \varepsilon_x - \frac{2f_y}{\varepsilon_y} \cos \varepsilon_y \right] \]
\[\omega C_{y} = \frac{1}{\lambda \omega} \left[-\frac{\partial f_{y}}{\partial \alpha} \sin \alpha + \frac{\partial f_{x}}{\partial \alpha} \sin \alpha + \frac{2 \omega}{\lambda} \cos \alpha - \frac{2 \omega}{\lambda} \cos \alpha \right] \]

Thus we may use equations (9) by setting:

\[\frac{\partial f_{x}}{\partial \epsilon} = \frac{\partial f_{y}}{\partial \epsilon} \]

\[\frac{\partial f_{x}}{\partial \alpha} = \frac{\partial f_{y}}{\partial \alpha} \]

\[\frac{\partial f_{x}}{\partial \epsilon \alpha} = \frac{\partial f_{y}}{\partial \epsilon \alpha} \]

(13) \[\frac{\partial f_{y}}{\partial \alpha} = \frac{\partial f_{x}}{\partial \alpha} \cos \left(\alpha - \alpha_{0} \right) + \frac{\partial f_{y}}{\partial \alpha} \cos \left(\alpha + \alpha_{0} \right) - \frac{2 \omega}{\lambda} \sin \left(\alpha - \alpha_{0} \right) + \frac{2 \omega}{\lambda} \sin \left(\alpha + \alpha_{0} \right) \]

\[\frac{\partial f_{y}}{\partial \epsilon} = \frac{\partial f_{x}}{\partial \epsilon} \sin \left(\alpha - \alpha_{0} \right) + \frac{\partial f_{y}}{\partial \epsilon} \sin \left(\alpha + \alpha_{0} \right) + \frac{2 \omega}{\lambda} \cos \left(\alpha - \alpha_{0} \right) + \frac{2 \omega}{\lambda} \cos \left(\alpha + \alpha_{0} \right) \]

\[\frac{\partial f_{x}}{\partial \epsilon} = \frac{\partial f_{y}}{\partial \epsilon} \cos \left(\alpha - \alpha_{0} \right) + \frac{\partial f_{x}}{\partial \epsilon} \cos \left(\alpha + \alpha_{0} \right) - \frac{2 \omega}{\lambda} \sin \left(\alpha - \alpha_{0} \right) + \frac{2 \omega}{\lambda} \sin \left(\alpha + \alpha_{0} \right) \]

The above forces and derivatives are calculated by means of a computer as summarized in tables 1-3. The resulting spring and damping coefficients as calculated from equations (8), (9) and (13) are shown in table 4. These results can be used directly when calculating the vibrations of the rotor. However, the usual calculation procedure allows for only 4 coefficients, one spring and damping coefficient in the vertical and in horizontal direction. No provision is made for taking into account the 4 cross-coupling terms \(K_{xy}, C_{xy}, K_{yx} \) and \(C_{yx} \). Therefore it becomes important to eliminate them to reduce the original 8 coefficients to 4 equivalent coefficients. Due to the non-symmetry of the cross-coupling terms they do not disappear by the
introduction of principal axis. Instead, the 8 coefficients may be combined to 4 by coupling the bearing with the rotor in such a way that the resulting motion remains the same. This is the purpose of the following analysis.

The rotor is a simple, symmetrical, one-degree-of-freedom rotor. It is supported in two identical bearings and the rotor mass is considered concentrated at midspan, (see figure 6).

Let 0 be the steady state position of the journal center (i.e., at zero unbalance), A is the actual journal center, B is the shaft center at midspan and C is the center of gravity of the rotor. A force balance gives:

$$M \ddot{x}_b + k(x_b - x_a) = M \omega^2 \cos \omega t$$

$$k(x_b - x_a) = 2K_{xx}x_a + 2C_{xx} \ddot{x}_a - 2K_{xy} y_a - 2C_{xy} \ddot{y}_a$$

(14)

$$M \ddot{y}_b + k(y_b - y_a) = M \omega^2 \sin \omega t$$

$$k(y_b - y_a) = -2K_{yx}x_a - 2C_{yx} \ddot{x}_a + 2K_{yy} y_a + 2C_{yy} \ddot{y}_a$$

The following parameters are introduced:

(15) $$\omega_c^2 = \frac{1}{M}$$

(16) $$\alpha = \frac{1}{2} k \frac{\omega_c^2}{\omega_c^2 - \omega^2}$$

Furthermore the solution is taken in the form:

$$x_a = A \cos \omega t + B \sin \omega t$$

$$x_b = \frac{A \omega_c^2 + \omega^2}{\omega_c^2 - \omega^2} \cos \omega t + \frac{B \omega_c^2}{\omega_c^2 - \omega^2} \sin \omega t$$

(17) $$y_a = E \cos \omega t + F \sin \omega t$$

$$y_b = \frac{E \omega_c^2}{\omega_c^2 - \omega^2} \cos \omega t + \frac{F \omega_c^2 + \omega^2}{\omega_c^2 - \omega^2} \sin \omega t$$
Substituting eq. (15), (16) and (17) into eq. (14) yields:

\[
\begin{array}{c|c|c|c|c}
\frac{A}{\dot{x}} & \frac{B}{\dot{x}} & \frac{C}{\dot{x}} & \frac{D}{\dot{x}} \\
\hline
(K_{xx} - \omega^2) & \omega C_{xx} & -K_{xy} & -\omega C_{xy} & 1 \\
\hline
-\omega C_{xx} & (K_{xx} - \omega^2) & \omega C_{xy} & -K_{xy} & 0 \\
\hline
-K_{yx} & -\omega C_{yx} & (K_{yy} - \omega^2) & \omega C_{yy} & 0 \\
\hline
\omega C_{yy} & -K_{yx} & -\omega C_{yy} & (K_{yy} - \omega^2) & 1 \\
\end{array}
\]

It is desired to reduce this matrix to the same form as a matrix for a rotor without cross-coupling terms. Such a rotor has only 4 spring and damping coefficients which are denoted \(K_x, B_x, K_y \) and \(B_y \). The reduced matrix is then:

\[
\begin{array}{c|c|c|c|c}
\frac{A}{\dot{x}} & \frac{B}{\dot{x}} & \frac{C}{\dot{x}} & \frac{D}{\dot{x}} \\
\hline
(K_x - \omega^2) & \omega B_x & 0 & 0 & 1 \\
\hline
-\omega B_x & (K_x - \omega^2) & 0 & 0 & 0 \\
\hline
0 & 0 & (K_y - \omega^2) & \omega B_y & 0 \\
\hline
0 & 0 & -\omega B_y & (K_y - \omega^2) & 1 \\
\end{array}
\]
After a substantial amount of algebra, eq. (18) is reduced to eq. (19) with the results:

\[
K_x = K_{xx} - \frac{1}{\psi}[\delta K_{xy} + \eta(\omega C_{yx})]
\]

\[
\omega B_x = \omega C_{xx} + \frac{1}{\psi}[\eta K_{yy} - \delta(\omega C_{xy})]
\]

(20)

\[
K_y = K_{yy} - \frac{1}{\psi}[\delta K_{yx} - \eta(\omega C_{yx})]
\]

\[
\omega B_y = \omega C_{yy} - \frac{1}{\psi}[\eta K_{yx} + \delta(\omega C_{xy})]
\]

where:

\[
\psi_x = (K_{yy} - \omega C_{xy})x + (K_{xy} - \omega C_{yy})y
\]

\[
\psi_y = (K_{yx} - \omega C_{xx})x + (K_{xx} - \omega C_{yx})y
\]

(21)

\[
\delta = (K_{xx} - \omega C_{yy})(K_{yy} - \omega C_{xy}) + (K_{yy} - \omega C_{xy})(K_{xx} + \omega C_{xy})
\]

\[
\eta = (K_{xx} - \omega C_{yy})(K_{yy} - \omega C_{xy}) - (K_{yy} - \omega C_{xy})(K_{xx} + \omega C_{xy})
\]

Since eq. (19) are linear they may also be solved for the amplitudes:

\[
\frac{A}{\epsilon} = \frac{x(K_x - \omega)}{(K_x - \omega)^2 + (\omega B_x)^2}
\]

\[
\frac{B}{\epsilon} = \frac{\omega B_x}{(K_x - \omega)^2 + (\omega B_x)^2}
\]

(22)

\[
\frac{C}{\epsilon} = -\frac{x(\omega B_y)}{(K_y - \omega)^2 + (\omega B_y)^2}
\]

\[
\frac{D}{\epsilon} = \frac{x(K_y - \omega)}{(K_y - \omega)^2 + (\omega B_y)^2}
\]
The x- and y-amplitudes are found by substituting eq. (22) into eq. (17):

\[\frac{x_a}{e} = \frac{\omega B_x}{\sqrt{K_x - \omega^2} + (\omega B_x)^2} \cos(\omega t - \phi_x) \]
\[\tan \phi_x = \frac{\omega B_x}{(K_x - \omega^2)} \]

(23)

\[\frac{y_a}{e} = \frac{\omega B_y}{\sqrt{K_y - \omega^2} + (\omega B_y)^2} \sin(\omega t - \phi_y) \]
\[\tan \phi_y = \frac{\omega B_y}{(K_y - \omega^2)} \]

\(x_b \) and \(y_b \) may be found similarly from eq. (17).

The force transmitted to the bearing pedestal is given by:

\[P_x = K_x x_a + B_x \dot{x}_a \]
\[P_y = K_y y_a + B_y \dot{y}_a \]

(24)

Substituting eq. (23) into eq. (24) yields:

\[\frac{P_x}{e} = \omega \sqrt{\frac{K_x^2 + (\omega B_x)^2}{(K_x - \omega^2)^2 + (\omega B_x)^2}} \cos(\omega t - \phi_x + \gamma_x) \]
\[\tan \gamma_x = \frac{\omega B_x}{K_x} \]

(25)

\[\frac{P_y}{e} = \omega \sqrt{\frac{K_y^2 + (\omega B_y)^2}{(K_y - \omega^2)^2 + (\omega B_y)^2}} \sin(\omega t - \phi_y + \gamma_y) \]
\[\tan \gamma_y = \frac{\omega B_y}{K_y} \]

In the calculation the above equations are made dimensionless by dividing through by \(\frac{\omega}{\omega_0}(\lambda \omega) \) in order to make them general. As an assistance in plotting curves of the derived equations the following auxiliary expressions are set up:

-12-
Instead of expressing the rotor amplitude in x and y-coordinates a better physical picture is obtained by finding the corresponding elliptical path of the journal center. Combining the first and the third of eq. (17) we get:

\[
\begin{align*}
\varphi & = \sqrt{\left[\frac{A}{a}\right]^2 + \left[\frac{B}{b}\right]^2 + \left[\frac{C}{c}\right]^2} + \frac{1}{\sqrt{\left[\frac{D}{d}\right]^2 + \left[\frac{E}{e}\right]^2 + \left[\frac{F}{f}\right]^2}} - \left[\frac{(\alpha)(\epsilon)}{(\alpha)} - \frac{(\beta)}{(\beta)}\right]^2
\end{align*}
\]

Where \(a\) is the major axis of the ellipse, \(b\) is the minor axis and \(\alpha\) is the angle between the x-axis and the major axis, see figure 7. \((\frac{A}{a}), (\frac{B}{b}), (\frac{C}{c})\) and \((\frac{D}{d})\) are given by eq. (22). Rotor resonance may be defined as the speed where the major axis is a maximum. This maximum is found by plotting the major axis as a function of \(\alpha\). The results are shown in figure 46-47. From these graphs the rotor critical speed can be found directly for a given rotor by a trial and error process.
Thus the results are obtained as a function of λ, but to facilitate the interpretation of the results, λ is replaced by a speed parameter. From eq. (16) λ in dimensionless form is:

\begin{equation}
\lambda = \frac{k}{\epsilon \lambda \omega} \frac{\omega^2}{\omega_c^2 - \omega^2} = \frac{k}{\epsilon \lambda \omega_c} \frac{(\omega_c^2)}{1 - (\omega_c^2)}
\end{equation}

 Arbitrarily setting \(\frac{k}{\epsilon \lambda \omega_c} = 5 \) (a rather stiff rotor) we get

\begin{equation}
\lambda = 5 \frac{(\omega_c^2)}{1 - (\omega_c^2)}
\end{equation}

or

\begin{equation}
(\frac{\omega_c^2}{\omega_c^2}) = \frac{5}{2 \lambda} \left[-1 + \sqrt{1 + \frac{4 \lambda \omega_c^2}{25}} \right]
\end{equation}

ω_c^2 is used instead of λ to present the dimensionless results as shown in figures 11-43. When a rotor with a dimensionless stiffness different from 5 is investigated, eq. (28) should be substituted into eq. (29) to find the value of ω_c^2 corresponding to the desired value of λ. This relationship is shown for a wide range of dimensionless rotor stiffnesses in fig. 11.

The force attenuation may be expressed as the ratio between the actual transmitted force and the force transmitted with rigid bearings. The following relationship exists:

\begin{equation}
\frac{P_a}{\epsilon \lambda \omega_c (\omega_c^2)} = \frac{k}{\epsilon \lambda \omega_c} \frac{(\omega_c^2)}{1 - (\omega_c^2)} = \lambda
\end{equation}
SUMMARY OF RESULTS

Effective spring coefficient in vertical direction:

\[K_x = K_{xx} - \frac{1}{\psi_x} \left[\delta K_{xy} + \eta (\omega C_{xy}) \right] \]

Effective damping coefficient in vertical direction:

\[\omega B_x = \omega C_{xx} + \frac{1}{\psi_x} \left[\eta K_{xy} - \delta (\omega C_{xy}) \right] \]

Effective spring coefficient in horizontal direction:

\[K_y = K_{yy} - \frac{1}{\psi_y} \left[\delta K_{yx} - \eta (\omega C_{yx}) \right] \]

Effective damping coefficient in horizontal direction:

\[\omega B_y = \omega C_{yy} - \frac{1}{\psi_y} \left[\eta K_{yx} + \delta (\omega C_{yx}) \right] \]

where:

\[\psi_x = (K_{yy} - \omega - \omega C_{yy})^2 + (K_{xy} - \omega C_{xy})^2 \]

\[\psi_y = (K_{xx} - \omega - \omega C_{xx})^2 + (K_{yx} + \omega C_{yx})^2 \]

\[\delta = (K_{xx} - \omega - \omega C_{xx})(K_{xx} + \omega C_{xx}) + (K_{yy} - \omega - \omega C_{yy})(K_{yy} + \omega C_{yy}) \]

\[\eta = (K_{xx} - \omega - \omega C_{xx})(K_{yy} - \omega + \omega C_{yy}) - (K_{xy} + \omega C_{xy})(K_{yx} + \omega C_{yx}) \]

\[\omega = \frac{1}{\xi} \frac{\omega^5}{\omega_0^5} \]

\[K_{xx}, \omega C_{xx}, K_{yy}, \omega C_{yy}, K_{xy}, \omega C_{xy}, K_{yx}, \omega C_{yx} \] and \(\omega C_{yy} \) are given in table 5.
Transmitted force in vertical direction

\[P_x = e^{\omega t} \sqrt{\frac{K_x^2 + (\omega B_x)^2}{(K_x - \kappa)^2 + (\omega B_x)^2}} \cos(\omega t - \varphi_x + \gamma_x) \]

\[\tan \varphi_x = \frac{\omega B_x}{K_x - \kappa} \quad \tan \gamma_x = \frac{\omega B_x}{K_x} \]

Transmitted force in horizontal direction

\[P_y = e^{\omega t} \sqrt{\frac{K_y^2 + (\omega B_y)^2}{(K_y - \kappa)^2 + (\omega B_y)^2}} \sin(\omega t - \varphi_y + \gamma_y) \]

\[\tan \varphi_y = \frac{\omega B_y}{K_y - \kappa} \quad \tan \gamma_y = \frac{\omega B_y}{K_y} \]

Amplitude of journal center in vertical direction

\[x_a = e^{\omega t} \sqrt{\frac{K_x}{(K_x - \kappa)^2 + (\omega B_x)^2}} \cos(\omega t - \varphi_x) \]

Amplitude of journal center in horizontal direction

\[y_a = e^{\omega t} \sqrt{\frac{K_y}{(K_y - \kappa)^2 + (\omega B_y)^2}} \sin(\omega t - \varphi_y) \]

Elliptical path of journal center

Major axis: \[a = \sqrt{\frac{1}{2} [A^2 + B^2 + E^2 + F^2]} + \frac{1}{2} \sqrt{[A^2 + B^2 + E^2 + F^2]^2 - [AF - BE]^2} \]

Minor axis: \[b = \sqrt{\frac{1}{2} [A^2 + B^2 + E^2 + F^2]} - \frac{1}{2} \sqrt{[A^2 + B^2 + E^2 + F^2]^2 - [AF - BE]^2} \]

Angle between vertical and major axis: \[\alpha = \frac{1}{2} \tan^{-1} \left[\frac{2(AB + EF)}{A^2 + B^2 + E^2 + F^2} \right] \]
where:

\[e \text{ is rotor mass eccentricity, i.e., } e = \frac{\text{Unbalance (lbs-in)}}{\text{Rotor Weight (lbs)}} \]

\[A = \frac{ex(K_x-x)}{(K_x-x)^2+(\omega B_x)^2} \]

\[B = \frac{ex(\omega B_x)}{(K_x-x)^2+(\omega B_x)^2} \]

\[E = \frac{-ex(\omega B_y)}{(K_y-x)^2+(\omega B_y)^2} \]

\[F = \frac{ex(K_y-x)}{(K_y-x)^2+(\omega B_y)^2} \]
DESIGN INFORMATION

This section has been prepared to assist the designer. The method is directly applicable and does not assume familiarity with the underlying analysis. Thus, the designer should be able to extract any desired information without further reference.

In selecting the bearing on the basis of minimum transmitted force, the designer is faced with the problem of how to choose bearing type, unit bearing load, $\frac{L}{D}$, ratio, clearance and oil viscosity. To answer these questions, the procedure below can be employed.

It is assumed that the rotor is given such that the following quantities are known:

1) The rotor critical speed, ω_c rad/sec., for rigid rotor supports (i.e., the classical critical speed calculation).

2) The bearing reaction F lbs.

3) The rotor stiffness k lbs/in. Since the results are valid only for a two bearing rotor and for rotor speeds below the second critical speed, the rotor stiffness is calculated from $k = M \cdot \omega_c^2$ where $M = \frac{\text{lbs} \cdot \text{sec}^2}{\text{in}}$ is the vibratory mass of the rotor. M is somewhat smaller than the actual rotor mass and may be estimated by methods as shown in "Vibration Problems in Engineering", by Timoshenko, Chapter 1, Article 4.

4) The journal radius R, in.

For later use, we shall define the bearing parameter λ as:

$$\lambda = \frac{\mu R L}{\pi} \left(\frac{R}{C}\right)^3 \text{ lbs \cdot sec}$$

(μ: viscosity, $\frac{\text{lbs} \cdot \text{sec}}{\text{in}^2}$ - P: bearing radius, in - L: effective bearing length, in - C: radial bearing clearance, in.)
In addition we shall define:

the dimensionless bearing reaction: \(\frac{F}{\lambda \omega_c} \)

the dimensionless rotor stiffness: \(\frac{k}{\lambda \omega_c} \)

the dimensionless speed ratio: \(\frac{\omega}{\omega_c} \)

\((\omega): \text{operating rotor speed, rad/sec}\)

Once these three parameters are known the transmitted force can be found directly. Thus, the problem is to choose the bearing dimensions in such a way that the value of the above parameters minimize the transmitted force.

Selection of bearing type and of \(\frac{L}{D} \) - ratio

The selection will be done on a basis of comparison. For this purpose it is necessary first to estimate a bearing clearance \(C \) and an oil viscosity \(\mu \).

Since the journal radius \(R \) is known it is then possible to compute \(\lambda \) for \(\frac{L}{D} = \frac{1}{2} \) and \(\frac{L}{D} = 1 \). In addition \(\frac{F}{\lambda \omega_c} \) and \(\frac{k}{\lambda \omega_c} \) are obtained. For a given operating speed \(\omega \) rad/sec the transmitted force can be found as follows:

a) calculate the speed ratio \(\frac{\omega}{\omega_c} \).

b) calculate \(\frac{\frac{F}{\lambda \omega_c}}{\frac{\omega}{\omega_c}} \) and enter figure 6-10 to get the corresponding value of eccentricity ratio \(\varepsilon \).

c) enter figure 11 with \(\frac{\omega}{\omega_c} \) to find the equivalent speed ratio \(\left(\frac{\omega}{\omega_c} \right)^e \).

d) enter figure 28-43 with \(\left(\frac{\omega}{\omega_c} \right)^e \) and the corresponding value of \(\varepsilon \) to find the dimensionless transmitted force \(\frac{P}{\frac{F}{\lambda \omega_c} \omega_c} \) for all desired bearing types and \(\frac{L}{D} \) - ratio. If the curves are spaced too far for linear interpolation it is necessary to make a cross-plot. Multiply the result by \(\frac{\epsilon}{\lambda \omega_c} \) (\(c \): distance between shaft center and center of gravity of rotor mass, inches, \(e \) may be calculated from the equation: \(e = \text{rotor unbalance, lbs } \text{in} / \text{rotor weight, lbs} \)) to obtain the transmitted force \(P \) lbs.

-19-
This procedure can be repeated for a number of operating speeds to cover the entire operating speed range. By plotting the curves of transmitted force versus rotor speed, the effect of bearing type and of \(\frac{L}{D} \)-ratio is readily seen and a selection on the basis of minimum transmitted force can be made. An example of the results obtained by the outlined method is given in figures 44-45.

Selection of bearing clearance

In principle, the selection of clearance is done by the same procedure as above. Thus the goal is to obtain curves of transmitted force versus rotor speed for various values of the bearing clearance and from that select the actual clearance value on the basis of minimum transmitted force.

As before, the rotor is assumed known. In addition, an oil viscosity must be chosen. Since the journal radius \(R \) is given, it is then possible to compute \(\lambda \) and consequently \(\frac{F}{\lambda \omega_k} \) and \(\frac{B \lambda R}{\lambda \omega_k} \) for \(\frac{L}{D} = \frac{1}{2} \) and \(\frac{L}{D} = 1 \) and for various values of the clearance \(C \).

As it would be time consuming to cover the complete speed range, it should be sufficient to base the comparison on rather few points. This is most easily done in the following way:

a) enter figure 8-10 with \(\varepsilon = .2, .5 \) and .7 (except for the elliptical bearing with ellipticity \(m = .5 \) where the values are \(\varepsilon = .15, .3 \) and .5) to find \(\frac{F}{\lambda \omega_k} \).

b) divide the result into \(\frac{1}{\lambda \omega_k} \) to get \(\frac{\omega}{\lambda \omega_k} \) and enter figure 11 with \(\frac{\omega}{\lambda \omega_k} \) to obtain the equivalent speed ratio \((\lambda \omega_k)^{\frac{1}{\lambda \omega_k}} \).

c) enter figures 28-43 with the values of \((\lambda \omega_k)^{\frac{1}{\lambda \omega_k}} \) to the intersection with the corresponding \(\varepsilon \)-curve. Read off the value of \(\frac{P}{\lambda \omega_k} \) and multiply by \(\frac{P}{\lambda \omega_k} \) to find the actual transmitted force \(P \) lbs.

Thus, for each clearance value and for each bearing type and \(\frac{L}{D} \)-ratio, three points are readily obtained on the curve of transmitted force versus rotor speed.
rotor speed. A fourth point is \(P=0 \) for \(\alpha = 0 \).

Although four points are not sufficient to define the graph of \(P \) versus speed with any high degree of accuracy, it may at least be enough to serve as a basis for comparison and a subsequent selection of bearing clearance.

The effect of oil viscosity is treated in the same way.
Attenuation of structure borne noise through bearings is only one dynamic characteristic of bearings. There are several other examples of dynamic operations, e.g.:

a.) Transient conditions during starting or shutting down.
b.) Orbiting of the journal under a constant vibrating load.
c.) Motions of the journal center under oscillating loads.

The locus of the journal may be in a closed path of fixed amplitude or it may increase. In the latter case the system may be unstable causing the journal to rub the bearing. Fig. 50 shows several cases of dynamic behavior.

The previous section which deals with the analysis of structure borne noise through bearings indicates that for most effective noise attenuation the journal should operate at low eccentricity ratio. On the other hand it has also been shown (Ref. 1) that rotors operating at low eccentricity ratio are susceptible to instability at relatively low speed. In fact it has been proved theoretically and experimentally (Ref. 2) that the threshold of instability for vertical rotor in plain cylindrical journal bearings is zero speed. These two conditions are, therefore, somewhat incompatible. Since the system must be stable it is, therefore, necessary to optimize noise attenuation without sacrificing stability.

To make the report more complete a section dealing with Stability and Balancing is also discussed briefly in this report. Several definitions are given so as to clarify the usage of some of the terms used.
DYNAMIC OPERATION

Under this condition, the journal center moves relative to the bearing center and the local fluid film pressures vary with time. (Ref. 3)

Instability

This is a dynamic condition in which the journal center moves away from the bearing center, until breakdown of the film occurs and there is physical contact between the journal and the bearing. Another condition that may be defined as unstable is that in which the journal center whirls along a random locus.

Threshold of Instability

Corresponds to frequency at which instability is initiated.

Resonant Whip

This is a resonant vibration of a journal in a fluid-film bearing which, for low eccentricity ratio, sets in at approximately twice the actual first system critical and persists at higher speeds with frequency of vibration approximately equal to the first system critical regardless of running speed. The motion of the shaft center is in the same direction as shaft rotation. Resonant whip is a self-supported vibration, as is half-frequency whirl. In the case of resonant whip, the vibration is supported by the fluid film action, while the frequency is controlled by the system critical speed.

Critical Speed

Critical speed is the rotating speed of a system which corresponds to resonance frequency of the system. The system's critical speeds include rigid body as well as bending or torsional critical speeds. (In this text when we refer to first critical we mean bending body critical.)
Synchronous Whirl

This is a whirling orbital motion of the journal at a frequency equal to the rotational frequency. The motion of the journal is in the same direction as the direction of the rotating member.

An example of the synchronous whirl is the case of unbalanced rotating load. (In the case of vertical rotor in plain cylindrical journal bearings, the whirling locus is a circle; in the case of horizontal machine with plain cylindrical journal bearings the whirling locus is an ellipse. See Fig. 50.)

STABILITY

Using the coordinate system of Fig. 51 the dynamic equations may be represented by

\[
\lambda \left(-\frac{\omega f_x}{e_o C} - \frac{2f_x x}{e_o C} + \frac{\omega \partial f_x}{\partial e} \frac{n}{C} + \frac{\partial f_x}{\partial e'} \frac{n}{C} \right) = \frac{M}{2} (\ddot{x} + \ddot{y}) = -\frac{kx}{2},
\]

\[
\lambda \left(-\frac{\omega f_y}{e_o C} + \frac{2f_y y}{e_o C} - \frac{\omega \partial f_y}{\partial e} \frac{n}{C} - \frac{\partial f_y}{\partial e'} \frac{n}{C} \right) = \frac{M}{2} (\ddot{y} + \ddot{\eta}) = -\frac{ky}{2}.
\]

Here the functions \(f_x, f_y \) and their derivatives with respect to \(e, e' \) are all evaluated at the equilibrium eccentricity ratio \(e_o \), and at \(e' = 0 \).

\[\lambda = \frac{\mu LR}{\pi} \left(\frac{R}{C} \right)^2, \quad M \text{ is rotor mass}, \]

\[\begin{align*}
\frac{dc}{dt} &= \frac{n}{C} \quad , \quad \frac{dx}{dt} = \frac{n}{C} \\
\frac{dc'}{dt} &= \frac{n}{\omega} \quad , \quad \frac{dx}{dt} = \frac{n}{\omega C_o}
\end{align*} \]

The differential Eqs. (31) are linear in the variables \(\xi, \eta; x, y \), and their solutions contain time as an exponential. These may be expressed in dimensionless form as

\[e^{\frac{\omega_o t}{\lambda}} \text{ where } \tau = \omega_o t \quad , \quad \omega_o = \sqrt{\frac{k}{M}} \]

(32)
Here ω_o is the critical speed of the simply supported shaft-rotor system whose mass is M and whose stiffness is k.

From the right-hand pair of Eqs. (31), there results

$$k = -\frac{M (\omega_o^2)}{k + M (\omega_o^2)} \xi \quad y = -\frac{M (\omega_o^2)}{k + M (\omega_o^2)} \eta \quad (33)$$

Equation (31) now leads to the determinantal equation

$$\begin{vmatrix}
\left(\omega^2 f_x + 2\omega f_t + \frac{kME_oC (\omega_o^2)^2}{2(\lambda k + M (\omega_o^2)^2)}\right) \left(\omega \frac{\partial f_t}{\partial \epsilon} + \omega o \frac{\partial f_x}{\partial \epsilon^2}\right)
\left(-\omega^2 f_x + 2\omega f_t\right) \left(\omega \frac{\partial f_t}{\partial \epsilon} + \omega o \frac{\partial f_x}{\partial \epsilon^2}\right) + \frac{kME_oC (\omega_o^2)^2}{2(\lambda k + M (\omega_o^2)^2)}
\end{vmatrix} = 0 \quad (34)$$

If we now introduce the dimensionless ratio

$$s = \frac{\omega}{\omega_o} \quad (35)$$

where ω is the angular speed at the threshold of instability, we get

$$f(v) = \omega_o^2 \begin{vmatrix}
\left(\omega^2 f_x + 2\omega f_t + \frac{AeV^2}{1 + V^2}\right) \left(\omega \frac{\partial f_t}{\partial \epsilon} + \omega o \frac{\partial f_x}{\partial \epsilon^2}\right)
\left(-\omega^2 f_x + 2\omega f_t\right) \left(\omega \frac{\partial f_t}{\partial \epsilon} + \omega o \frac{\partial f_x}{\partial \epsilon^2}\right) + \frac{AeV^2}{1 + V^2} + \omega \frac{\partial f_t}{\partial \epsilon} + \omega o \frac{\partial f_x}{\partial \epsilon^2}
\end{vmatrix} = 0 \quad (36)$$

where

$$A = \frac{kC^3 \pi}{2 \mu LR \omega_o} \quad (37)$$

By writing

$$\xi = \frac{Av^2}{1 + V^2} \quad (38)$$
Eq. (36) becomes

$$\omega^2 \left| \left(\frac{s \delta f_x + 2v \delta f_t + \epsilon \zeta}{s \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial t}} \right) \right| = 0$$

(39)

If $$\omega$$ is not, in general, equal to zero, so that the factor $$\omega^2$$ can be divided out of Eq. (39).

It was assumed in the derivation of Eq. (34) that the solutions of the equations of motion were of the form $$e^{\nu t}$$, where $$\nu$$ is a complex number. If the system is dynamically stable, the real part of the complex number $$\nu$$ is negative. Conversely, if the system is dynamically unstable, the real part of $$\nu$$ is positive. Thus, at the threshold of instability, $$\nu$$ will be a pure imaginary number.

We now solve Eq. (39) for the condition where $$\nu$$ is wholly imaginary in order to obtain the value of $$\omega$$ at the onset of instability.

Considering first the imaginary part of Eq. (39), we have

$$\nu \left| \left(\frac{2f_t}{s \frac{\partial f}{\partial x} + \zeta} \right) + \nu \left(\frac{s \delta f_x + \epsilon \zeta}{s \frac{\partial f}{\partial x} + v \frac{\partial f}{\partial t}} \right) \right| = 0$$

Since $$\nu \neq 0$$,

$$\zeta \left(\frac{2f_t}{s \frac{\partial f}{\partial x}} + s \left(\frac{\delta f_x}{\partial x} + \frac{\delta f_t}{\partial t} \right) \right) + 2s \left(\frac{\delta f_t}{\partial t} - \frac{\delta f_x}{\partial x} \right) = 0$$

If $$s = 0$$, we obtain a trivial solution; for $$s \neq 0$$, we have

$$\frac{\zeta}{s} = \frac{-2(\delta f_t/\partial x - \delta f_x/\partial t)}{2f_t + \epsilon \delta f_x/\partial x'}$$

(40)
Next considering the real part of Eq. (39), we have
\[
\left(s f_r + \epsilon \frac{\partial f_r}{\partial \epsilon} \right) s \frac{\partial f_t}{\partial \epsilon} + 2 \nu^2 f_t \frac{\partial f_t}{\partial \epsilon} = 0
\]
\[-s f_t \left(s \frac{\partial f_r}{\partial \epsilon} + \epsilon \right) f_t \frac{\partial f_r}{\partial \epsilon} = 0\]
Therefore
\[
s^2 \left(f_r \frac{\partial f_r}{\partial \epsilon} + f_t \frac{\partial f_t}{\partial \epsilon} \right) + s \left(f_r + \epsilon \frac{\partial f_r}{\partial \epsilon} \right) \left(f_r \frac{\partial f_r}{\partial \epsilon} + f_t \frac{\partial f_t}{\partial \epsilon} \right) + \epsilon \nu^2 + 2 \nu^2 \left(f_t \frac{\partial f_t}{\partial \epsilon} - f_r \frac{\partial f_r}{\partial \epsilon} \right) = 0
\]
Again, for \(s \neq 0 \), we have
\[
\left(\frac{\nu}{s} \right)^2 = \frac{-s (\zeta/s)^2 - (f_r + \epsilon \frac{\partial f_r}{\partial \epsilon}) (\zeta/s) - (f_r \frac{\partial f_r}{\partial \epsilon} + f_t \frac{\partial f_t}{\partial \epsilon})}{2 \left(f_t \frac{\partial f_t}{\partial \epsilon} - f_r \frac{\partial f_r}{\partial \epsilon} \right)}
\]
From Eq. (38) we have
\[
\zeta \nu^2 - \Lambda \nu^2 + \zeta = 0
\]
Once again, for \(s \neq 0 \), we can write
\[
s^2 \left(\frac{\nu}{s} \right)^2 = s \Lambda \left(\frac{\nu}{s} \right)^2 + \zeta = 0
\]
or
\[
s = \Lambda \left(\frac{\nu}{s} \right)^2 + \sqrt{\left[\Lambda \left(\frac{\nu}{s} \right)^2 \right]^2 - 4 \left(\frac{\zeta}{s} \right)^2} \left(\frac{\nu}{s} \right)^2
\]
(42)

The speed \(\omega \) at which instability starts to occur is now defined, since \(\omega = s \omega_0 \).

The above defined speed at which instability sets in is, in general, different from the critical speed of the shaft-rotor-bearing system. For a symmetrical, two-bearing system the critical speed may be calculated as follows:

a. Shaft stiffness \(= k \)

b. Lubricant film stiffness \(= \frac{df}{dc} = \frac{\mu L dR(R/Q)^2}{C} \frac{df}{dc} \)
\[= \frac{ok}{2A} \frac{df}{dc} \]
-27-
The critical speed of the system is then

\[\omega_{CR}^2 = \frac{1}{M} \left(\frac{1}{k} + \frac{1}{2} \cdot \frac{2A}{ks} \frac{df}{de} \right) = \frac{k/M}{1 + \frac{A}{s} \frac{df}{de}} \]

or

\[\left(\frac{\omega_{CR}}{\omega_o} \right)_r = \left(\frac{df_r/\epsilon_r}{df_e/\epsilon_e + A/s} \right)^{1/2} \] (43)

where subscript \(r \) refers to radial stiffness.

The dimensionless number \(A \) [defined in Eq. (37)], is a function of bearing geometry, shaft stiffness, and fluid viscosity. Calculations for the threshold of instability in which \(A \) was varied from 0.1 to 100 for \(0.1 \leq \epsilon \leq 0.8 \) and \(L/D = 0.5 \) and 1 were performed. The values of \(f_r, f_e, \partial f_r/\partial \epsilon, \partial f_e/\partial \epsilon, \partial f_r/\partial \epsilon' \) and \(\partial f_e/\partial \epsilon' \) were obtained from the solution of the dimensionless Reynolds equation. By introducing these values into Eqs. (37), (40), (42), and (43), we obtain the results of Table 6. The results indicate that, while for low eccentricity ratios instability sets in at approximately twice the critical speed, this number increases with an increase in eccentricity ratio. Thus, the onset of instability for eccentricity ratios of 0.8 is about four times the critical speed. This conclusion agrees with observations which show that stability increases with an increase in eccentricity ratio and also that instability may occur even at high eccentricity ratios.

The number \((1/i)(\nu/s) \) shown in Table 6 (where \(i = \sqrt{-1} \)) represents the ratio of the frequency of the oscillation of the shaft center to the running frequency of the shaft, calculated at the onset of instability. Note that this ratio is always below 0.5 and is independent of the magnitude of \(A \).
A rotor is said to be balanced perfectly when it rotates in free space about one of its principal axes of inertia, which would be an axis of symmetry if such exists, with no wobble. If circular journals are now constructed concentric with this axis, by definition, these journals would also rotate with no wobble and may be enclosed in bearing housings with no rotating forces.

From this it follows that journals which are not concentric with a principal axis of inertia tend to wobble and for a rotor to revolve about an axis defined by such journals it must be driven by a set of applied forces which rotate with the rotor. If the center of gravity of the rotor is not on the line of bearing center there must be a net force which furnishes the centripetal acceleration of the center of gravity. This force is equal to the mass of the rotor times the centripetal acceleration of the C.G. The C.G. may be moved to the axis of bearing center by suitable weight or weights. Such correction is commonly called static balancing.

Once the C.G. is moved to the line of bearing centers a rotating couple must be applied to keep the rotor rotating about an axis at an angle to that of a principal axis of inertia. This couple may be exerted by the centrifugal action of two equal and opposite weights in any two arbitrary planes. This correction plus that of the C.G. correction is known as dynamic balance and may only be determined on a rotating rotor-bearing system.

The most fundamental, but not unusual, description of unbalance appears to be that of the deviation of the line of bearing centers from the principal axis of inertia. It is important to note that the specifications of unbalance depends on the location of the line of bearing centers. The two simplest
descriptions of unbalance would appear to be the displacement of the C.G. and the angle of the inertia axis from the bearing axis or the displacement of the geometric centers of the journals from the bearing axis. (Refer to Fig. 51)

Under dynamical conditions either \(\dot{e} \) or \(\alpha \) or both may not be constant. The conditions of dynamical equilibrium give rise to the following equations.

\[
F_r = -m \left\{ \dot{\theta} \left[\omega^2 \cos (\beta - \alpha) + \dot{\omega} \sin (\beta - \alpha) \right] + \dot{\dot{\theta}} - e(\dot{\alpha})^2 \right\} + W \cos \alpha \tag{44a}
\]

\[
F_t = m \left\{ \dot{\theta} \left[\omega^2 \sin (\beta - \alpha) - \dot{\omega} \cos (\beta - \alpha) \right] + \dot{\dot{\theta}} + 2 \dot{\alpha} \right\} + W \sin \alpha \tag{44b}
\]

where

\(\dot{\omega} = \) is the angular acceleration of the rotor (generally very small)

\(\dot{\theta} = \) is distance between rotor geometric center and mass center

These are equations of motion with \(e \) and \(\alpha \) as the two degrees of freedom. Once the fluid film forces are known it is possible to solve these equations.

The fluid film forces are to be found by integrating the pressure over the projected journal surfaces normal and parallel to the plane of maximum film thickness respectively.

\[
F_r = - \int_{-L/2}^{L/2} dz \int_0^{2\pi} d\theta R p \cos \theta \tag{45a}
\]

\[
F_t = \int_{-L/2}^{L/2} dz \int_0^{2\pi} d\theta R p \sin \theta \tag{45b}
\]

The fluid film pressure satisfies the generalized Reynolds equation

\[
\frac{\partial}{\partial \theta} \left[(1 + e \cos \theta)^3 \frac{\partial p}{\partial \theta} \right] + R^2 \frac{\partial}{\partial z} \left[(1 + e \cos \theta)^3 \frac{\partial p}{\partial z} \right] = 6\mu \left(\frac{R}{C} \right)^2 \left[-c(\omega - \dot{\omega}) \sin \theta + 2 \dot{e} \cos \theta \right] \tag{46}
\]

-30-
Thus it can be shown that the radial and tangential forces are a function of

\[F_r = - \frac{\mu LR}{\pi} \left(\frac{R}{C} \right)^2 (\omega - 2\dot{\omega}) \in_r \left(\epsilon, \frac{\dot{\epsilon}}{(\omega - 2\dot{\omega})}, L/D \right) \]

(57a)

\[F_t = \frac{\mu LR}{\pi} \left(\frac{R}{C} \right)^2 (\omega - 2\dot{\omega}) \in_t \left(\epsilon, \frac{\dot{\epsilon}}{(\omega - 2\dot{\omega})}, L/D \right) \]

(57b)

Thus for a specified bearing geometry and speed of rotation once \(\epsilon, \dot{\epsilon} \) and \(\ddot{\epsilon} \) are measured the fluid film forces can be readily calculated. They may be constant per cycle \(\dot{\epsilon} = 0 \) (e.g., vertical rotor in plain cylindrical journal bearings) or they may vary from point to point along the journal locus this case corresponds to the horizontal rotor with gravity and unbalance load. Once these forces are established the magnitude and phase angle of the unbalance force can be calculated from the dynamic equations (54a,b). This permits balancing of the rotor without a trial and error procedure.

The measurements of displacement (\(\epsilon \)) and velocity (\(\dot{\epsilon}, \ddot{\epsilon} \)) of journal center can be obtained by use of two capacitive or inductive probes located at 90° to each other within the bearing bore. They would then measure the motion of the journal center with respect to the bearing center as a function of time. These capacitive or inductive probes can also serve as monitoring devices to determine bearing performance in service. Thus they serve a dual function of providing the necessary measurements for balancing and monitoring bearing performance. Figs. 48 and 49 show the locus of the shaft center that such pickups would see.

Without the use of such instrumentation within the bearing there is still another method which may be employed for balancing. The analysis presented in this report indicates that there is a relation between the driving force and the transmitted force. The difference being the attenuation.
Since the attenuation has been theoretically calculated by measurement of force transmitted it is possible to calculate the driving force and the phase angle. Once this is done it is possible to balance the rotor without resorting to trial and error procedure.

This analysis indicates that by either measurements of journal locus or transmitted force it is possible to determine the magnitude and phase angle of the unbalance. Corrections can then be incorporated to balance the system.

To illustrate this point, theoretical and experimental analysis have been carried out on synchronous whirl (e.g., whirl produced at running speed, unbalance load) with circular orbit about the bearing center (e.g., vertical rotor). (Ref. 4) The comparison between the measured unbalance force and phase angle and calculated values appear to be very good, similar comparisons will be carried out on horizontal rotor.
CONCLUSIONS

1. Attenuation of structure borne noise should be done as close to the source of noise as possible. Fluid film bearings provide the source of attenuation.

2. The report provides means for calculating noise attenuation of rotors supported by bearings of three geometries. The results are presented in dimensionless form so as to be applicable to a large range of geometrically similar configurations. The report also provides means for calculating system critical speeds and the static load carrying capacity.

3. The report shows that fluid film bearings can provide considerable amount of viscous damping which absorb the vibrational energy and in this way attenuate the force transmitted to the structure. Bearing geometry plays a major role on the level of attenuation as exemplified by the differences of the three bearings studied, see figures 44-45.

4. Since the fluid film is an elastic media, accurate predictions of the system critical speeds must include the elasticity and the damping of the journal bearings, see figures 46-47.

5. Indications are that for maximum attenuation one should operate at low eccentricity ratio, low stiffness and high damping. However, this implies low critical speed and tendency for resonant whip. Therefore, one must optimize the design to ensure stability and at the same time get maximum attenuation.

6. The dynamic response of a rotor can be measured by capacitor or inductive pick-ups. These can serve also as monitory devices for controlling bearing performance. Obtaining the dynamic response and knowing the bearing characteristics, it is possible to determine the magnitude and phase angle of the unbalance load thus eliminating trial and error in balancing.
RECOMMENDATIONS

1. Other geometries such as pivoted shoes and elastically supported members in which stiffness and damping can be controlled and varied should be investigated. These studies should be both theoretical and experimental for these geometries offer considerable potential in noise attenuation and at the same time have a tendency of being stable.

2. Further studies should be continued to determine rotor dynamics around the second bending critical and higher.

3. Computational techniques should be set up which would include, without transformations, the bearing cross-coupling coefficients.

4. The application of capacitive or inductive pick-ups as permanent measuring devices in bearings should be investigated. Such measurements provide means for continually checking rotor balance and for monitoring bearing performance.
ACKNOWLEDGEMENT

This paper is based on the work performed under Contract Number NObs-78930, Task Order Number 3679, Sub Area F131105 sponsored by the Bureau of Ships.

The authors are indebted to Miss Ann Doughty, David Taylor Model Basin for her assistance in performing the computer calculations and to Mr. Roland Racko who made most of the figures.
REFERENCES

<table>
<thead>
<tr>
<th>(\frac{L}{D})</th>
<th>(\varepsilon)</th>
<th>((\frac{\dot{e}}{\varepsilon}))</th>
<th>(f_v)</th>
<th>(a)</th>
<th>(f_x)</th>
<th>(f_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.4653</td>
<td>75.772</td>
<td>0.11436</td>
<td>0.45102</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.03</td>
<td>0.28010</td>
<td>48.125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>-0.03</td>
<td>-0.02311</td>
<td>41.915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>0</td>
<td>-0.03635</td>
<td>50.170</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>0</td>
<td>0.09149</td>
<td>40.187</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>1.862</td>
<td>54.763</td>
<td>1.0744</td>
<td>1.5210</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.03</td>
<td>1.4528</td>
<td>1.6485</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-0.03</td>
<td>0.7538</td>
<td>1.3971</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>0</td>
<td>1.2172</td>
<td>1.6367</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>0</td>
<td>0.9508</td>
<td>1.4192</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>5.160</td>
<td>40.432</td>
<td>3.9274</td>
<td>3.3462</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.03</td>
<td>5.1132</td>
<td>3.6797</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>-0.03</td>
<td>3.0057</td>
<td>3.0218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.715</td>
<td>0</td>
<td>4.3861</td>
<td>3.5934</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.685</td>
<td>0</td>
<td>3.5368</td>
<td>3.1349</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>1.504</td>
<td>76.836</td>
<td>3.4257</td>
<td>1.4647</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.03</td>
<td>0.6908</td>
<td>1.5517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>-0.03</td>
<td>0.10182</td>
<td>1.3768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.22</td>
<td>0</td>
<td>0.41810</td>
<td>1.6240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>0</td>
<td>0.27556</td>
<td>1.3089</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>5.299</td>
<td>57.502</td>
<td>2.8470</td>
<td>4.4693</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.03</td>
<td>3.9082</td>
<td>4.7825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>-0.03</td>
<td>1.9853</td>
<td>4.1527</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td>0</td>
<td>3.1858</td>
<td>4.7621</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.48</td>
<td>0</td>
<td>2.5455</td>
<td>4.2090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0</td>
<td>12.34</td>
<td>43.280</td>
<td>8.9832</td>
<td>8.4594</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.03</td>
<td>11.455</td>
<td>9.1654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>-0.03</td>
<td>6.805</td>
<td>7.7610</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.715</td>
<td>0</td>
<td>9.8687</td>
<td>8.9177</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.685</td>
<td>0</td>
<td>8.1932</td>
<td>8.0365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{L}{D})</td>
<td>(\epsilon)</td>
<td>(\alpha)</td>
<td>(\frac{k}{\nu})</td>
<td>(f_v)</td>
<td>(f_h)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>80.000</td>
<td>0</td>
<td>.2711</td>
<td>.007144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>81.647</td>
<td>0</td>
<td>.26946</td>
<td>.00218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>81.696</td>
<td>0</td>
<td>.26941</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>81.696</td>
<td>.03</td>
<td>.29197</td>
<td>.042655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>81.696</td>
<td>-.03</td>
<td>.25277</td>
<td>.022276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.22</td>
<td>81.696</td>
<td>0</td>
<td>.29980</td>
<td>.004059</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.18</td>
<td>81.696</td>
<td>0</td>
<td>.23986</td>
<td>.003245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>61.000</td>
<td>0</td>
<td>.1700</td>
<td>.004287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>60.413</td>
<td>0</td>
<td>.1789</td>
<td>.00642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>60.315</td>
<td>0</td>
<td>.1805</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>60.315</td>
<td>.03</td>
<td>1.2164</td>
<td>.010655</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>60.315</td>
<td>-.03</td>
<td>1.1482</td>
<td>.005458</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.52</td>
<td>60.315</td>
<td>0</td>
<td>1.2847</td>
<td>.019631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.48</td>
<td>60.315</td>
<td>0</td>
<td>1.0848</td>
<td>.016799</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>.7</td>
<td>36.000</td>
<td>0</td>
<td>4.3096</td>
<td>.041049</td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.181</td>
<td>0</td>
<td>4.3135</td>
<td>.002017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.139</td>
<td>0</td>
<td>4.3137</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.139</td>
<td>.03</td>
<td>4.4712</td>
<td>.010973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.139</td>
<td>-.03</td>
<td>4.1559</td>
<td>.010862</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.715</td>
<td>35.139</td>
<td>0</td>
<td>4.7899</td>
<td>.073303</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.685</td>
<td>35.139</td>
<td>0</td>
<td>3.8962</td>
<td>.059837</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>80.000</td>
<td>0</td>
<td>.52918</td>
<td>.023913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>83.881</td>
<td>0</td>
<td>.51908</td>
<td>.002508</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>83.531</td>
<td>0</td>
<td>.52004</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>83.531</td>
<td>.03</td>
<td>.55702</td>
<td>.074742</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.2</td>
<td>83.531</td>
<td>-.03</td>
<td>.49585</td>
<td>.038249</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.22</td>
<td>83.531</td>
<td>0</td>
<td>.57700</td>
<td>.005625</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.18</td>
<td>83.531</td>
<td>0</td>
<td>.46426</td>
<td>.004520</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>61.000</td>
<td>0</td>
<td>2.2295</td>
<td>.039473</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>64.123</td>
<td>0</td>
<td>2.1370</td>
<td>.003321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>64.431</td>
<td>0</td>
<td>2.1279</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>64.431</td>
<td>.03</td>
<td>2.1846</td>
<td>.022831</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.5</td>
<td>64.431</td>
<td>-.03</td>
<td>2.0730</td>
<td>.018699</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.52</td>
<td>64.431</td>
<td>0</td>
<td>2.2948</td>
<td>.030393</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.48</td>
<td>64.431</td>
<td>0</td>
<td>1.9714</td>
<td>.026434</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>36.000</td>
<td>0</td>
<td>7.7047</td>
<td>.006564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.918</td>
<td>0</td>
<td>7.7060</td>
<td>.000638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.909</td>
<td>0</td>
<td>7.7061</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.909</td>
<td>.03</td>
<td>7.9922</td>
<td>.001840</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.7</td>
<td>35.909</td>
<td>-.03</td>
<td>7.4203</td>
<td>.001750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.715</td>
<td>35.909</td>
<td>0</td>
<td>8.4906</td>
<td>.12758</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.685</td>
<td>35.909</td>
<td>0</td>
<td>7.0118</td>
<td>.10588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>η_1</td>
<td>η_m</td>
<td>$\eta_1 + \eta_m$</td>
<td>$\eta_1 \cdot \eta_m$</td>
<td>t_{10}</td>
<td>t_{01}</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1.2</td>
<td>103.797</td>
<td>0.11882</td>
<td>0.00022 0.20946</td>
<td>43.813</td>
<td>0.61757</td>
<td>0.12073</td>
</tr>
<tr>
<td>1.3</td>
<td>100.5667</td>
<td>0.30099</td>
<td>0.29178</td>
<td>42.457</td>
<td>0.64948</td>
<td>0.14102</td>
</tr>
<tr>
<td>1.4</td>
<td>105.9039</td>
<td>-0.00944</td>
<td>0.27840</td>
<td>43.270</td>
<td>0.60762</td>
<td>0.12512</td>
</tr>
<tr>
<td>1.5</td>
<td>103.797</td>
<td>0.20845</td>
<td>0.4333</td>
<td>0.79123</td>
<td>0.63616</td>
<td>0.59464</td>
</tr>
<tr>
<td>1.6</td>
<td>103.797</td>
<td>0.00595</td>
<td>0.20845</td>
<td>43.333</td>
<td>0.79123</td>
<td>0.63616</td>
</tr>
<tr>
<td>1.7</td>
<td>103.797</td>
<td>0.30742</td>
<td>0.30742</td>
<td>0.51564</td>
<td>0.61615</td>
<td>0.59464</td>
</tr>
<tr>
<td>1.8</td>
<td>103.797</td>
<td>0.48239</td>
<td>0.20709</td>
<td>0.47745</td>
<td>0.60190</td>
<td>0.59464</td>
</tr>
<tr>
<td>1.9</td>
<td>105.9039</td>
<td>0.30099</td>
<td>0.29178</td>
<td>42.457</td>
<td>0.64948</td>
<td>0.14102</td>
</tr>
<tr>
<td>2.0</td>
<td>95.861</td>
<td>4.3152</td>
<td>-0.00220</td>
<td>0.62729</td>
<td>37.953</td>
<td>4.3033</td>
</tr>
<tr>
<td>2.1</td>
<td>94.54</td>
<td>0.35916</td>
<td>0.47783</td>
<td>36.789</td>
<td>4.5213</td>
<td>0.085916</td>
</tr>
<tr>
<td>2.2</td>
<td>97.97</td>
<td>4.3314</td>
<td>-0.03583</td>
<td>0.69892</td>
<td>36.401</td>
<td>4.08035</td>
</tr>
<tr>
<td>2.3</td>
<td>98.561</td>
<td>4.3314</td>
<td>-0.03583</td>
<td>0.69892</td>
<td>36.401</td>
<td>4.08035</td>
</tr>
<tr>
<td>2.4</td>
<td>99.15</td>
<td>4.3334</td>
<td>-0.03583</td>
<td>0.69892</td>
<td>36.401</td>
<td>4.08035</td>
</tr>
<tr>
<td>2.5</td>
<td>100.74</td>
<td>4.3334</td>
<td>-0.03583</td>
<td>0.69892</td>
<td>36.401</td>
<td>4.08035</td>
</tr>
<tr>
<td>2.6</td>
<td>102.32</td>
<td>4.3334</td>
<td>-0.03583</td>
<td>0.69892</td>
<td>36.401</td>
<td>4.08035</td>
</tr>
</tbody>
</table>

Table 3

Elliptical Faring Results

Compute Results
L/D	N	a	b	c	d	e	f	g	h	i	j			
1	15	94.263	2.0616	.00001	.51122	17.014	0	3.8147	1.2483	.53959	16.312	0	1.4531	1.2483
2	93	2.1490	.04401	.51444	16.030	0	3.5679	1.2661	.52946	16.434	0	1.4183	1.2221	
3	95	2.0101	.02879	.50936	17.060	0	3.4860	1.2381	.54839	16.238	0	1.4739	1.2638	
4	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
5	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
6	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
7	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
8	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
9	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
10	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
11	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
12	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			
13	94.263	.51122	17.014	.03	.54007	1.2912	.53239	16.312	.03	2.7999	1.6634			

TABLE 3 *(Continued)*

ELLPTCAL BEARING

Computer Results
<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>$L/2$</th>
<th>m</th>
<th>n</th>
<th>a_0</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
<th>B_9</th>
<th>B_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain</td>
<td>1</td>
<td>0.2</td>
<td>75.772</td>
<td>2.719</td>
<td>9</td>
<td>2.245</td>
<td>4.791</td>
<td>-0.571</td>
<td>-0.906</td>
<td>-0.464</td>
<td>0</td>
<td>1.222</td>
<td>5.054</td>
<td>1.144</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>54.763</td>
<td>8.255</td>
<td>10.1</td>
<td>7.449</td>
<td>-2.334</td>
<td>-0.725</td>
<td>-7.638</td>
<td>0</td>
<td>6.662</td>
<td>11.65</td>
<td>4.298</td>
<td>5.838</td>
<td>4.190</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.7</td>
<td>40.432</td>
<td>11.46</td>
<td>13.5</td>
<td>14.74</td>
<td>-5.726</td>
<td>-7.371</td>
<td>-1.443</td>
<td>0</td>
<td>25.31</td>
<td>35.13</td>
<td>11.22</td>
<td>15.25</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>1</td>
<td>0.2</td>
<td>76.836</td>
<td>4.483</td>
<td>6</td>
<td>6.524</td>
<td>15.04</td>
<td>-1.676</td>
<td>-7.521</td>
<td>-15.09</td>
<td>0</td>
<td>3.564</td>
<td>16.18</td>
<td>3.426</td>
</tr>
<tr>
<td>Bearing</td>
<td>1</td>
<td>0.5</td>
<td>57.502</td>
<td>20.26</td>
<td>25.07</td>
<td>21.20</td>
<td>-6.073</td>
<td>-19.60</td>
<td>-21.39</td>
<td>0</td>
<td>15.01</td>
<td>32.05</td>
<td>11.39</td>
<td>13.83</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.7</td>
<td>43.280</td>
<td>60.79</td>
<td>72.47</td>
<td>32.26</td>
<td>-15.31</td>
<td>-17.63</td>
<td>-35.09</td>
<td>0</td>
<td>55.85</td>
<td>77.59</td>
<td>25.67</td>
<td>29.37</td>
</tr>
</tbody>
</table>

4-Axial	1	0.2	81.095	1.499	0.27	0.653	2.694	-0.153	-1.285	-1.108	0	1.222	5.054	1.144	2.496	1.035	4.653
	0.5	60.315	4.998	1.73	4.722	-0.911	-0.723	-269	0	6.662	11.65	4.298	5.838	4.190	6.054		
	1	0.7	35.139	29.79	0.39	5.255	12.33	-4.438	-3.901	0	25.31	35.13	11.22	15.25	10.96	9.561	
Groove	1	0.2	83.531	2.819	0.76	1.020	5.203	-2.54	-2.044	-1.883	0	3.564	16.18	3.426	7.878	2.916	14.65
Bearing	1	0.5	64.431	8.055	-3.39	1.860	8.512	-1.421	-1.267	-5.92	0	15.01	32.05	11.39	13.83	10.50	17.85
	1	0.7	35.939	49.29	-1.24	9.532	22.02	-7.782	-5.916	0	55.85	77.59	25.67	29.37	23.41	24.17	

Elliptical	1	0.2	133.779	2.863	-3.60	-2.72	8.921	-7.902	-2.256	-3.030	1.419	5.219	2.639	4.244	0.5556	-1.591	2.647	0.9180	0.7262
Bearing	0.5	55.789	25.13	-8.05	23.73	21.39	-5.434	-3.531	-9.471	-3.061	0	29.15	0	13.06	0	-9.954	0	0	0
	1	0.7	24.609	1321	-75.17	673.1	198.2	-108.6	-62.32	-122.2	-9.234	685.5	3.787	118.5	-135.8	4.283	-5412	1.643	
Bearing	0.5	94.510	11.70	-25.26	2.056	29.57	-2.033	-6.896	-4.758	5.652	20.65	7.229	9.539	1.488	-3.110	7.159	1.714	1.864	

Note:
For the elliptical bearing, δ_6, δ_7, δ_8, and δ_9 are not computed directly but calculated from eq. (13), page 8.
<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>L/m</th>
<th>ε</th>
<th>K_{w_0} $\varepsilon\lambda\omega$</th>
<th>ωC_{w_0} $\varepsilon\lambda\omega$</th>
<th>K_{w_1} $\varepsilon\lambda\omega$</th>
<th>ωC_{w_1} $\varepsilon\lambda\omega$</th>
<th>K_{w_2} $\varepsilon\lambda\omega$</th>
<th>ωC_{w_2} $\varepsilon\lambda\omega$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain Cylindrical Bearing</td>
<td>1/2</td>
<td>.2</td>
<td>1.93</td>
<td>16.13</td>
<td>-8.26</td>
<td>-2.93</td>
<td>6.94</td>
<td>-3.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.5</td>
<td>10.89</td>
<td>31.88</td>
<td>-17.09</td>
<td>-10.60</td>
<td>5.68</td>
<td>-11.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7</td>
<td>44.26</td>
<td>76.93</td>
<td>-41.68</td>
<td>-24.02</td>
<td>-2.33</td>
<td>-26.28</td>
</tr>
<tr>
<td>4-Axial Groove Bearing</td>
<td>1/2</td>
<td>.2</td>
<td>1.09</td>
<td>5.28</td>
<td>-2.71</td>
<td>-4.28</td>
<td>2.00</td>
<td>-2.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.5</td>
<td>6.54</td>
<td>8.48</td>
<td>-5.83</td>
<td>2.00</td>
<td>5.53</td>
<td>-2.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7</td>
<td>40.65</td>
<td>20.63</td>
<td>-27.90</td>
<td>12.24</td>
<td>-2.83</td>
<td>0.048</td>
</tr>
<tr>
<td>Elliptical Bearing</td>
<td>1/2</td>
<td>.2</td>
<td>2.18</td>
<td>9.319</td>
<td>-3.64</td>
<td>5.151</td>
<td>2.379</td>
<td>2.101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.25</td>
<td>20.82</td>
<td>31.03</td>
<td>-16.24</td>
<td>-7.598</td>
<td>-1.02</td>
<td>-7.856</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7</td>
<td>1050</td>
<td>691.8</td>
<td>-398.5</td>
<td>-98.85</td>
<td>-72.78</td>
<td>-105.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.15</td>
<td>13.21</td>
<td>24.32</td>
<td>-6.398</td>
<td>2.043</td>
<td>7.280</td>
<td>8.563</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.5</td>
<td>17.32</td>
<td>29.63</td>
<td>-10.09</td>
<td>2.824</td>
<td>6.673</td>
<td>5.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.25</td>
<td>27.470</td>
<td>9166</td>
<td>-11210</td>
<td>-3360</td>
<td>-2833</td>
<td>-1158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.5</td>
<td>39.24</td>
<td>70.78</td>
<td>-35.03</td>
<td>-16.08</td>
<td>2.029</td>
<td>-16.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.7</td>
<td>1322</td>
<td>951.6</td>
<td>-499.2</td>
<td>-139.3</td>
<td>-111.1</td>
<td>-142.4</td>
</tr>
<tr>
<td></td>
<td>.15</td>
<td>25.50</td>
<td>56.15</td>
<td>-15.92</td>
<td>4.627</td>
<td>13.38</td>
<td>17.31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5</td>
<td>32.59</td>
<td>64.57</td>
<td>-22.09</td>
<td>5.038</td>
<td>12.04</td>
<td>7.895</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.5</td>
<td>31570</td>
<td>9871</td>
<td>-12270</td>
<td>-1086</td>
<td>-3625</td>
<td>-1214</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5
Computed from Table 4 and Equation (9), page 5-6
<table>
<thead>
<tr>
<th>L/D</th>
<th>ε</th>
<th>A</th>
<th>(\frac{L}{D})</th>
<th>(\frac{L}{s})</th>
<th>(\frac{\omega}{\omega})</th>
<th>(\frac{\omega}{\omega})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.9429</td>
<td>-0.1411</td>
<td>0.3756</td>
<td>2.6096</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.1</td>
<td>3.1966</td>
<td>-0.1252</td>
<td>0.3538</td>
<td>2.8104</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.1</td>
<td>-13.4452</td>
<td>-0.05543</td>
<td>0.2354</td>
<td>4.2438</td>
</tr>
<tr>
<td>1/2</td>
<td>0.2</td>
<td>100.0</td>
<td>0.9429</td>
<td>-0.1411</td>
<td>0.3756</td>
<td>0.06678</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>100.0</td>
<td>3.1968</td>
<td>-0.1252</td>
<td>0.3538</td>
<td>0.2533</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>100.0</td>
<td>-13.4452</td>
<td>-0.05543</td>
<td>0.2354</td>
<td>1.9267</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.1</td>
<td>2.6761</td>
<td>-0.1377</td>
<td>0.37</td>
<td>2.6763</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td>4.324</td>
<td>-0.1338</td>
<td>0.37</td>
<td>2.7224</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.1</td>
<td>-18.484</td>
<td>-0.0846</td>
<td>0.29</td>
<td>3.4179</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>0.1</td>
<td>-29.2005</td>
<td>-0.04898</td>
<td>0.22</td>
<td>4.5169</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>100.0</td>
<td>2.6761</td>
<td>-0.1377</td>
<td>0.37</td>
<td>0.1951</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>100.0</td>
<td>4.324</td>
<td>-0.1338</td>
<td>0.37</td>
<td>0.3198</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>100.0</td>
<td>-18.483</td>
<td>-0.0846</td>
<td>0.29</td>
<td>1.6553</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>100.0</td>
<td>-29.2005</td>
<td>-0.04898</td>
<td>0.22</td>
<td>3.1199</td>
</tr>
</tbody>
</table>
Figure 1 Plain Cylindrical Bearing

Figure 2 4-Axial Groove Bearing
O' - Steady-state position at journal center
A - Actual journal center
B - Shaft center at midspan
G - Center of gravity of rotor

Figure 6 Rotor - Bearing System

Figure 7 Journal Center Path
Figure 22
Figure 20
Figure 37

Cylindrical Fog (10 m)

$E = 0.2$
$E = 0.5$
$E = 0.7$
$E = 1.0$

$\frac{P_y}{\gamma^2 \omega} A Y^2$

10.0
8.0
6.0
4.0
2.0

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

L^2 / ω

$\frac{L^2}{\omega}$

γ

γ
DESIGN CHART FOR CRITICAL SPEED CALCULATION

Figure 47

\[
\frac{\omega}{\omega_c} \times \frac{1}{\lambda \omega_c} \left(\frac{\omega}{\omega_c} \right)
\]
Elliptical Journal Path
Constant Eccentricity Ratio

Cylindrical Bearing $\frac{L}{D} = \frac{1}{2}$ \(\varepsilon = 0.5 \)

$\left(\frac{\omega}{\omega_c}\right)' = 0.30$

$\left(\frac{\omega}{\omega_c}\right)' = 0.629$

Critical Speed

$\left(\frac{\omega}{\omega_c}\right)' = 1.00$

$\left(\frac{\omega}{\omega_c}\right)' = 1.25$

Scale factor
1 inch amplitude corresponds to 0.5 inch rotor eccentricity
(Rotor eccentricity:
\[e = \frac{\text{Unbalance (lbs-in)}}{\text{Rotor Weight (lbs)}} \])
Elliptical Journal Path

Cylindrical Bearing $\frac{L}{D} = \frac{1}{2}$ $\frac{F}{\lambda \omega_c} = 1.171$

Figure 49

scale factor

1 inch amplitude corresponds to 1 inch rotor eccentricity

(Rotor eccentricity: $e = \frac{\text{Unbalance (lbs-in)}}{\text{Rotor Weight (lbs)}}$)
Vertical Rotor

Horizontal Rotor

a) Stable Condition
e.g. acceleration

b) Stable Whirl
e.g. Synchronous whirl, Critical speed

c) Unstable Whirl
e.g. Resonant whirl, Half frequency whirl

FIG. 50
(0, C \varepsilon_0)
Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, E, F</td>
<td>Linear and axisymmetric components of rotor vibration amplitude, eq. (11), page 8</td>
<td>inch</td>
</tr>
<tr>
<td>a, b</td>
<td>Major and minor axes of elliptical journal path, see fig. 7</td>
<td>inch</td>
</tr>
<tr>
<td>Sn, By</td>
<td>Effective bearing damping coefficient in vertical and horizontal direction</td>
<td>lb-in/in</td>
</tr>
<tr>
<td>C</td>
<td>Radial bearing clearance</td>
<td>inch</td>
</tr>
<tr>
<td>CHx</td>
<td>Damping coefficient in x-direction for velocity in x-direction</td>
<td>lb-in/sec</td>
</tr>
<tr>
<td>Cyx</td>
<td>Damping coefficient in y-direction for velocity in y-direction</td>
<td>lb-in/sec</td>
</tr>
<tr>
<td>Gxy</td>
<td>Damping coefficient in y-direction in y-direction</td>
<td>lb-in/sec</td>
</tr>
<tr>
<td>Cy</td>
<td>Damping coefficient in y-direction for velocity in y-direction</td>
<td>lb-in/sec</td>
</tr>
<tr>
<td>D</td>
<td>Bearing diameter</td>
<td>inch</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>Bearing eccentricity = Ca, see fig. 1-5</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>Distance between centers of gravity of rotor and shaft center at midspan.</td>
<td>inch</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Bearing reaction</td>
<td></td>
</tr>
<tr>
<td>(F_a)</td>
<td>Bearing force component at degrees from vertical</td>
<td>lb</td>
</tr>
<tr>
<td>(F_x, F_y)</td>
<td>Dimensionless bearing force in (x)-direction (= \frac{F_x}{F_y^2})</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{xh}, F_{yh})</td>
<td>Bearing force in vertical and horizontal direction</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{yx}, F_{yx})</td>
<td>Dimensionless bearing force in vertical and horizontal direction (= \frac{F_{yx}}{F_{y}^2})</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{yy})</td>
<td>Dimensionless vertical and horizontal force for lower lobe of elliptical bearing</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{xy}, F_{yx})</td>
<td>Dimensionless vertical and horizontal force for upper lobe of elliptical bearing</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{x}, F_{y})</td>
<td>Bearing force in (x) and (y)-direction</td>
<td>lb</td>
</tr>
<tr>
<td>(N)</td>
<td>Oil film thickness</td>
<td>inch</td>
</tr>
<tr>
<td>(n)</td>
<td>Dimensionless oil film thickness</td>
<td></td>
</tr>
<tr>
<td>(K_{nx})</td>
<td>Spring coefficient in (x)-direction for displacement in (x)-direction</td>
<td>lb-in</td>
</tr>
<tr>
<td>(K_{ny})</td>
<td>Spring coefficient in (x)-direction for displacement in (y)-direction</td>
<td>lb-in</td>
</tr>
<tr>
<td>(K_{yx})</td>
<td>Spring coefficient in (y)-direction for displacement in (x)-direction</td>
<td>lb-in</td>
</tr>
<tr>
<td>(K_{yy})</td>
<td>Spring coefficient in (y)-direction for displacement in (y)-direction</td>
<td>lb-in</td>
</tr>
<tr>
<td>(K_{xy}, K_{yx})</td>
<td>Effective spring coefficient in vertical and horizontal direction</td>
<td>lb-in</td>
</tr>
<tr>
<td>(k)</td>
<td>Rotor stiffness</td>
<td></td>
</tr>
<tr>
<td>(L)</td>
<td>Effective bearing length</td>
<td>inch</td>
</tr>
<tr>
<td>(M)</td>
<td>Vibratory rotor mass</td>
<td>lb-in^2/sec</td>
</tr>
<tr>
<td>(m)</td>
<td>Bearing ellipticity, see figure 9</td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>Rotor speed</td>
<td>RPS</td>
</tr>
<tr>
<td>(\mu)</td>
<td>Oil film pressure</td>
<td>psi</td>
</tr>
<tr>
<td>(F_{xh}, F_{yh})</td>
<td>Force transmitted by bearing in vertical and horizontal direction</td>
<td>lb</td>
</tr>
<tr>
<td>(F_{x}, F_{y})</td>
<td>Force transmitted for rigid rotor supports</td>
<td>lb</td>
</tr>
<tr>
<td>(R)</td>
<td>Bearing radius</td>
<td>inch</td>
</tr>
<tr>
<td>(x, y)</td>
<td>Circumferential and axial coordinates for oil film</td>
<td>inch</td>
</tr>
<tr>
<td>(\rho)</td>
<td>Dimensionless coordinates for oil film</td>
<td>inch</td>
</tr>
<tr>
<td>(\alpha, \beta)</td>
<td>Vertical and horizontal coordinates for journal center motion, see fig. 1-5</td>
<td>inches</td>
</tr>
<tr>
<td>(\alpha_x, \beta_x)</td>
<td>Vertical and horizontal coordinates for journal center, see fig. 1-5</td>
<td>inches</td>
</tr>
<tr>
<td>(\alpha_y, \beta_y)</td>
<td>Vertical and horizontal coordinates for journal center, see fig. 1-5</td>
<td>inches</td>
</tr>
<tr>
<td>(\alpha_y, \beta_y)</td>
<td>Vertical and horizontal coordinates for center at midspan, see fig. 1-5</td>
<td>inches</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>Bearing attitude angle, see fig. 1-5</td>
<td></td>
</tr>
<tr>
<td>(\Delta \alpha, \Delta \beta)</td>
<td>Angle between (\alpha) and (\beta) major axes of elliptical journal path, see fig. 7</td>
<td></td>
</tr>
<tr>
<td>(\alpha_y)</td>
<td>Phase angle between transmitted force and amplitude, see eq. (38), page 11</td>
<td></td>
</tr>
<tr>
<td>(\alpha, \theta)</td>
<td>Given by eq. (23), page 11</td>
<td></td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>Bearing eccentricity ratio</td>
<td></td>
</tr>
<tr>
<td>(\delta)</td>
<td>Eccentricity ratio for lower and upper lobe of elliptical bearing, see fig. 5</td>
<td></td>
</tr>
<tr>
<td>(\gamma)</td>
<td>Polar coordinate for oil film</td>
<td>inch</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Rotor parameter, given by eq. (28), page 14</td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Bearing parameter, given by eq. (41), page 3</td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td>Oil viscosity</td>
<td>lb-in^2/sec</td>
</tr>
<tr>
<td>(\phi_x, \phi_y)</td>
<td>Phase angle between amplitude and amplitude</td>
<td></td>
</tr>
<tr>
<td>(\phi_x, \phi_y)</td>
<td>Given by eq. (42), page 11</td>
<td></td>
</tr>
<tr>
<td>(\omega)</td>
<td>Rotor speed</td>
<td>rad/sec</td>
</tr>
<tr>
<td>(u)</td>
<td>Critical speed of rotor in rigid supports</td>
<td>rad/sec</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>Equivalent speed ratio, see eq. (19), page 18 and fig. 1</td>
<td></td>
</tr>
</tbody>
</table>