Group Report 1964-9

Diplexer Using Side-Wall Couplers in One-Half Height Large X-Guide

J. A. Kostriza

17 January 1964

Prepared under Electronic Systems Division Contract AF 19 (628)-500 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Lexington, Massachusetts
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-500.
DIPLEXER USING SIDE-WALL COUPLERS
IN ONE-HALF HEIGHT LARGE X-GUIDE

J. A. KOSTRIZA

Group 61

GROUP REPORT 1964-9

17 JANUARY 1964
ABSTRACT

A diplexer in one-half height large X-guide uses side-wall couplers. The analysis is based on the scattering matrix approach.

A compact unit is made possible because of an abrupt 180° E-plane bend.
I. SCATTERING MATRIX OF TWO HYBRIDS IN CASCADE

A schematic of a side-wall coupler is shown in Fig. 1.

![Side-Wall Coupler Schematic](image)

Fig. 1. Side-Wall Coupler Schematic, showing location of reference planes.

The reference planes are labeled 1, 2, 3 and 4. The scattering matrix is given by:

\[
S = \frac{1}{\sqrt{2}} \begin{bmatrix}
0 & 0 & 1 & j \\
0 & 0 & j & 1 \\
1 & j & 0 & 0 \\
j & 1 & 0 & 0 \\
\end{bmatrix}
\] \((1) \)

Now terminal 3 is moved to the right, through \(\theta_o \), to 3' and terminal 4 is moved through \(\theta_e \), to 4'. The scattering matrix for terminals 1, 2, 3', 4' becomes:
Equation (1) holds for hybrid A, whereas Eq. (2) holds for hybrid A'. If the output of A' is joined to a hybrid B whose scattering matrix is the same as that of A, a new four-port device results with terminal planes 1, 2, 3, 4 as shown in Fig. 2.

![Diagram of four-port device](image)

Fig. 2. Four-Port 1, 2, 3, 4 consisting of hybrid A' in cascade with hybrid B.

To join ports 4' with 2, and 3' with 1, the scattering equation $b = Sa$ ($b =$ reflected wave amplitudes, $a =$ incident wave amplitudes) is written for both hybrids:

\[
S' = \frac{1}{\sqrt{2}} \begin{bmatrix}
0 & 0 & -j\theta_o & -j\theta_e \\
0 & 0 & -j\theta_e & -j\theta_o \\
-j\theta_o & -j\theta_o & e & 0 \\
je & je & 0 & 0
\end{bmatrix}
\]
\[
\sqrt{2} b_1 = e^{-j\theta} a_3 + je^{j\theta} a_4,
\]

\[
\sqrt{2} b_2 = je^{-j\theta} a_3 + je^{j\theta} a_4,
\]

\[
\sqrt{2} b_3 = e^{-j\theta} a_1 + je^{j\theta} a_2.
\]

\[
\sqrt{2} b_4 = je^{-j\theta} a_1 + e^{j\theta} a_2
\]

Hybrid A', \hspace{1cm} (3)

\[
\sqrt{2} B_1 = A_3 + jA_4
\]

\[
\sqrt{2} B_2 = jA_3 + A_4
\]

Hybrid B. \hspace{1cm} (4)

To "connect" Eqs. (3) and (4), the wave reflected from port 4' of hybrid A' must equal the wave incident on port 2 of hybrid B, etc., so that the following must hold:

\[
b_{4'} = A_2 \quad \text{and} \quad b_{3'} = A_1
\]

\[
a_{4'} = B_2 \quad \quad a_{3'} = B_1
\]

(5)

Using Eqs. (5), (3) and (4), the composite structure of Fig. 2 may be characterized by Eq. (6) where small case letters are used throughout for reflected and incident wave amplitudes.

3
II. DIPLEXER REQUIREMENTS

To achieve diplexer action, the following conditions must be met:

1. A signal of frequency f_1, incident at port 1, emerges out of port 3 (or port 4) with negligible coupling to port 4 (or port 3), and

2. A signal of frequency f_2, incident at port 2, emerges out of port 3 (or port 4) with negligible coupling to port 4 (or port 3), and

3. Zero or small coupling between ports 1 and 2.

If the signal f_1 is applied at port 1 (i.e., $a_2 = 0$), then:

\[
\begin{align*}
\text{b}_3 \text{ (at } f_1) &= \frac{a_1}{2} \begin{bmatrix} -j\varnothing_0 & -j\varnothing_e \\ e^{-j\varnothing_0} & e^{-j\varnothing_e} \end{bmatrix}, \\
\text{b}_4 \text{ (at } f_1) &= j \frac{a_1}{2} \begin{bmatrix} -j\varnothing_0 & -j\varnothing_e \\ e^{-j\varnothing_0} & e^{-j\varnothing_e} \end{bmatrix}.
\end{align*}
\]

From the above:

when $\varnothing_0 - \varnothing_e = \pm 2\pi n \ (n = 0, 1, 2---)$, then $\text{b}_3 = 0$, and

when $\varnothing_0 - \varnothing_e = \pm 2\pi \left[m + \frac{1}{2}\right] \ (m = 0, 1, 2---)$, then $\text{b}_4 = 0$.

4
If the signal \(f_2 \) is applied at port 2 (i.e., \(a_1 = 0 \)), then:

\[
b_3 \text{ (at } f_2) = j \frac{a_2}{2} \left[e^{-j\theta_o} + e^{-j\theta_e} \right],
\]

\[
b_4 \text{ (at } f_2) = \frac{a_2}{2} \left[-e^{-j\theta_o} + e^{-j\theta_e} \right]. \tag{10}
\]

From Eq. (10) it follows that:

when \(\theta_o - \theta_e = \pm 2\pi \left[m + \frac{1}{2} \right] (m = 0, 1, 2-\ldots) \), then \(b_3 = 0 \), and \(\tag{11} \)

when \(\theta_o - \theta_e = \pm 2\pi n (n = 0, 1, 2-\ldots) \), then \(b_4 = 0 \). \(\tag{12} \)

III. COMMON OUTPUT IS PORT 4

Assume that \(b_4 \) is of interest at both frequencies \(f_1 \) and \(f_2 \). Then Eqs. (8) and (11) must be satisfied.

\[
P_{b_4} (f_1) = \frac{1}{4} (1 + \cos\theta_1),
\]

\[
P_{b_3} (f_1) = \frac{1}{8} \left(1 - \cos\theta_1 \right), \text{ where } \theta_1 = \theta_o - \theta_e.
\]

\[
b_3^* = b_3 \text{ conjugate, and } P_{b_3} = \text{ power reflected at port 3}.
\]

\[
P_{b_4} (f_1) = \frac{1}{4} (1 + \cos\theta_1),
\]

\[
P_{\text{in } 1} (f_1) = \frac{1}{2} a_1 a_1^* = \frac{1}{2}; \
\]

\[
P_{b_3} + P_{b_4} = \frac{1}{2}.
\]

\[
\text{I.L. (} f_1 \text{)} = 10 \log \frac{P_{\text{in } 1}}{P_{b_4}} = 10 \log \frac{2}{1 + \cos\theta_1}.
\]

If \(\theta_1 = 2\pi n \pm \delta_1 \), \(\cos\theta_1 = \cos\delta_1 \), and

\[I.L. (f_1) = 10 \log \frac{2}{1 + \cos \delta_1}. \] \hspace{1cm} (13)

\[Pb_3 (f_2) = \frac{1}{4} (1 + \cos \theta_2), \text{ where } \theta_2 = \theta_r - \theta_e, \]

\[Pb_4 (f_2) = \frac{1}{4} (1 - \cos \theta_2), \]

\[P_{in}(f_2) = \frac{1}{2} a_2 \cdot a_2^* = \frac{1}{2}; \text{ } Pb_3 + Pb_4 = \frac{1}{2}. \]

\[I.L. (f_2) = 10 \log \frac{P_{in}(f_2)}{P_{b_4}} = 10 \log \frac{2}{1 - \cos \theta_2}. \]

If \(\theta_2 = 2\pi \pm \pi \pm \delta_2, \cos \theta_2 = -\cos \delta_2, \text{ and} \)

\[I.L. (f_2) = 10 \log \frac{2}{1 + \cos \delta_2}. \] \hspace{1cm} (14)

\text{Input mismatch at } f_1, f_2.

At \(f_1 \): \(a_2 = 0, a_3 = \Gamma_3 b_3, a_4 = \Gamma_4 b_4 \) where \(\Gamma \) is the voltage reflection factor,

From Eq. (6):

\[b_1 = \frac{a_1}{4} \left[\Gamma_3 \left(e^{-j\theta_r} - e^{-j\theta_e} \right)^2 - \Gamma_4 \left(e^{-j\theta_r} + e^{-j\theta_e} \right)^2 \right], \]

\[\Gamma_{in}(Q) = \frac{b_1}{a_1} = \frac{e^{-j2\theta_r}}{4} \left[\Gamma_3 (1 - e^{j\theta_r})^2 - \Gamma_4 (1 + e^{j\theta_r})^2 \right], \]

with \(\theta = \theta_r - \theta_e \).
But \(\theta_1 = 2\pi n + \delta_1 \), \(e^{j\theta_1} = e^{j\delta_1} \),

\[
\begin{align*}
\therefore \quad \Gamma_{in} \Theta &= \frac{-e^{j2\theta_0}}{4} \left[\Gamma_3 \left(1 - e^{j\delta_1} \right) \right]^2 - \Gamma_4 \left(1 + e^{j\delta_1} \right)^2.
\end{align*}
\]

At \(f_2 \): \(a_1 = 0 \), \(a_3 = \Gamma_3 b_3 \), \(a_4 = \Gamma_4 b_4 \).

From Eq. (6):

\[
\begin{align*}
b_2 &= \frac{a_2}{4} \left[-\Gamma_3 e^{j2\theta_0} \left(1 + e^{j\theta} \right) \right]^2 + \Gamma_4 e^{j2\theta_0} \left(-1 + e^{j\theta} \right)^2,
\end{align*}
\]

with \(\theta = \theta_0 - \theta_e \):

\[
\begin{align*}
\Gamma_{in} \Theta &= \frac{b_2}{a_2} e^{j2\theta_0} \left[-\Gamma_3 \left(1 + e^{j\theta} \right)^2 + \Gamma_4 \left(-1 + e^{j\theta} \right)^2 \right].
\end{align*}
\]

But \(\theta_2 = 2\pi n + \pi + \delta_2 \), \(e^{j\theta_2} = -e^{j\delta_2} \),

\[
\begin{align*}
\therefore \quad \Gamma_{in} \Theta &= \frac{e^{j2\theta_0}}{4} \left[-\Gamma_3 \left(1 - e^{j\delta_2} \right)^2 + \Gamma_4 \left(-1 - e^{j\delta_2} \right)^2 \right].
\end{align*}
\]

IV. COMMON OUTPUT IS PORT 3

At \(f_1 \), from Eq. (9), \(\theta_1 = \theta_0 - \theta_e = 2\pi \left[m + \frac{1}{2} \right] + \delta_1 \), \(\cos \theta_1 = -\cos \delta_1 \).

I.L. \(f_1 \) = 10 \log \frac{P_{in} \Theta}{P_{b_3}} = 10 \log \frac{2}{1 - \cos \theta_1} = 10 \log \frac{2}{1 + \cos \delta_1}. \hspace{1cm} (15)

At \(f_2 \), from Eq. (12), \(\theta_2 = \theta_0 - \theta_e = 2\pi n + \delta_2 \), \(\cos \theta_2 = \cos \delta_2 \).
\[
I.L. (f_2) = 10 \log \frac{P_{in}(2)}{P_{in}(3)} = 10 \log \frac{2}{1 - \cos \theta_2} = 10 \log \frac{2}{1 + \cos \delta_2}.
\]

(16)

V. SAMPLE DESIGNS

A. Design for \(f_1 = 7.75 \text{ Kmc}, f_2 = 8.35 \text{ Kmc}, \) power out of port 4.

\[\theta_1 = \frac{L}{\lambda g_1} , \quad 2\pi = 2\pi n \quad \text{or} \quad L = n\lambda g_1.\]

\[\theta_2 = \frac{L}{\lambda g_2} , \quad 2\pi = 2\pi \left(m + \frac{1}{2} \right) + \delta_2.\]

In large X-guide, the minimum L comes out 8.26", with I.L. \((f_1) = 0 \) and I.L. \((f_2) = .12 \text{ db}. \)

B. Design for \(f_1 = 7.75 \text{ Kmc}, f_2 = 8.35 \text{ Kmc}, \) power out of port 3.

\[L = \left(m + \frac{1}{2} \right) \lambda g_1.\]

\[\therefore \theta_2 = \theta_0 - \delta = \frac{L}{\lambda g_2} \quad 2\pi = 2\pi n + \delta_2.\]

In large X-guide, the minimum L is 7.245", with I.L. \((f_1) = 0 \text{ db}, \)
I.L. \((f_2) = .02 \text{ db}. \)

VI. DIPLEXER IN \(\frac{1}{2} \) HEIGHT LARGE X-GUIDE

For satellite applications, to limit weight, it was decided to fabricate the \(L = 7.245" \) design. Also, the large X-guide was decreased to \(\frac{1}{2} \) height. An MDL large X-guide side-wall coupler was decreased to half height and the capacitive dimple was replaced by a \#4-40 screw. With a screw penetration of
approximately 0.120", P_{13} and P_{14} were within 0.1 db at 7750, P_{12} was greater than 30 db, and VSWR was 1.05. At 8350, the corresponding values were 0.1 db, 23 db and 1.12 VSWR.

A second hybrid gave somewhat worse results:

\[
\begin{align*}
7750 & : 0.1 \text{ db}, > 30 \text{ db}, 1.05 \text{ VSWR}; \\
8350 & : 0.4 \text{ db}, 20 \text{ db and 1.09 VSWR}.
\end{align*}
\]

The screw sensitivity was about 0.5 db/turn w/r P_{13} and P_{14}, with a measurable but small effect on input VSWR's.

In Fig. 2, imagine that hybrid B, being pivoted at ports 1, 2 is lifted upward through 180° and then is slid over until it lies exactly over hybrid A. Ports 4' and 2, and 3' and 1 are now connected by an abrupt 180° bend as illustrated in Fig. 3.

![Diagram](image)

Fig. 3: 180° E-Plane Bend in $\frac{1}{2}$ Height Large X-Guide.

The VSWR characteristics of the bend in Fig. 3 are:

\[
\begin{align*}
7750 & : 1.05 \\
8050 & : 1.02 \\
8350 & : 1.02
\end{align*}
\]

The complete diplexer appears in Figs. 4 and 5. Because of soldering difficulties, it was not possible to align each $\frac{1}{2}$ height hybrid for optimum behavior prior to joining. Therefore, each hybrid has a tuning screw for power-split trimming (where the dimple had been) and a "shorting" screw in the line
Fig. 4: Photograph of Completed Diplexer
Fig. 5: Photograph of Diplexer with Inside View of 180° Bend
past ports 3 and 4. It was hoped that with the shorting screw in position, it
would be possible to set the power-split screw for minimum VSWR and so balance
each hybrid.

Circuit A was found to be somewhat worse than that experienced on the two
preliminary 1/2 height hybrids, giving VSWR's of 1.12 at 7750 and 1.21 at 8350.
Circuit B gave VSWR's of 1.38. The reason for such inferior performance of B
is not known.

In view of the poor performance of hybrid B, all four shorting screws were
used as tuning elements, in addition to the two power-split screws. By a con-
verging process, the diplexer was tuned to the following characteristics:

<table>
<thead>
<tr>
<th>7750</th>
<th>8350</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.L.</td>
<td>I.L.</td>
</tr>
<tr>
<td>0.3 db</td>
<td>0.5 db</td>
</tr>
<tr>
<td></td>
<td>(= P_{13}) (= P_{23})</td>
</tr>
<tr>
<td>P_{12}</td>
<td>P_{21}</td>
</tr>
<tr>
<td>32 db</td>
<td>27 db</td>
</tr>
<tr>
<td>P_{14}</td>
<td>P_{24}</td>
</tr>
<tr>
<td>30 db</td>
<td>22 db</td>
</tr>
<tr>
<td>VSWR 1</td>
<td>VSWR 2</td>
</tr>
<tr>
<td>1.3</td>
<td>1.28</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST

Division 6

T. F. Rogers
G. P. Dinneen

Group 61

L. J. Ricardi (10)
R. N. Assaly
W. C. Danforth
M. E. Devane
J. Kostriza
B. F. LaPage
C. A. Lindberg
J. B. Rankin
A. Sotiropoulos
Leon Niro
R. J. Pieculewicz

Group 62

P. Rosen (2)

Group 63

W. E. Morrow (2)

Group 64

P. E. Green

Group 65

H. Sherman

Group 66

R. T. Prosser