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ABSTRACT

This report treats the design of discrete filters for
the detection of signals caused by nuclear explosions on
digitized seismic recordings. The theoretical aspects of
filter design a e treated, together with the setting up of
the necessary formulas for realizing the filters on digital
computers. Specific discrete filters so treated are: (1)
matched filter, (2)modified matched filter, (3)modified
mavched filter for a multipafameter model, (&4)filter for
the elimination of trend components, {S)time—invariant
filter, (6)time-1nvariant filter in the nolseless case,
(7)spike filter, (8)time-varying filter, (9)detection
filter, and (10)squared magritude devices. The normal
equation forms in optimum filtering problems for the deter-
mination of the filter coefficlients and the error are
developed for (1)single processes, (2)multi-channel pro-
cesses, and (3)multi-dimensional processes. Recursive
computational schemes are presented for normal equations
of Taeplitz form. For single processes the Levinson
recursion for the extension of the prediction error operator
and the extension of the general filter 1s developed, as
well as the recursion to move the output origin. A corres-
ponding development 1is given for multi-channel processes,
as well as a development of the recvrsion to larger
operators for the multi-dimensional processes.

The prediction problem for single stationary time
series is reviewed and the least square and Kolmogoroff
solutions given. Extension 1s then made to the multiple
case, the least squares equations set up and the Wiener-
Masani factorization described. Heurlistic use is made of
the Hilbert space property of time series. A digital
computer program for performing the Wiener-Masani factori-
zatlon 1is discussed.
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ABSTRACT

This report treats the design of discrete filters for
the detection of signals caused by nuclear explosions on
digltized seismic recordings. The theoretical aspects of
f1lter design are treated, together with the setting up of
the necessary formulas for realizing the filters on digital
computers. Specific discrete Filters so treated are: (1)
ratched filter, (2)modified matched filter, (3)modified
fatched filter for a multiparameter model, (4)filter for
the elimination of trend components, (5)time-invariant
filter, (6)time-invariant filter in the noiseless case,
(7)spike filter, (8)time-varying filter, (9)detection
filter, and (10)squared magnitucde devices. The normal
equation forms in optimum filtering problems for the deter-
mination of the filter coefficients and the error are
developed for (1)single processes, (2)multi-channel pro-
cesses, and (3)mult1-dimensional Processes., Recursive
computational schemes are presented for normal equations
of Toeplitz form. For single processes the Levinson
recuvrsion for the extension of the prediction error operator
and the extension of the general filter is developed, as
well as the recursion to move the output origin., A corres-
ponding development 1is given for multi-channel procecses,
a5 well as a development of tne recirsic: to lurger
operators for the multi-dimensional proc es.

The prediction problem for single stationary time
series is reviewed and the leact <quare and Kolmogoroff
solutions given., Extension Is then made to the multiple
case, the least squares equations set up and the Wiener-
Masani factorization described. Heurlistic use 1is made of
the Hilbert space property of time series. A digital
computer program for performing the Wiener-Masani factori-
zation is discussed.
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I~ INTRODUCTION

The detection of weak signals from nuclear explosions
on seismic recordings presents an lmportant and difficult
problem, both from a practical and theoretical point of
view. As a result every effort should be made to keep
theory and practice coordinated and in balance with each
other.

Much has been written on the design of filters for
signal detection, not only in seismology but in all branches
of science. The present report is unique, however, in that
here the theoretical aspects of filter design are treated
simultaneously with the practical setting up of the neces-
sary formulas for realizing the filters on digital com-
puters. Therefore by maxing use of the material developed
in this report one can right away analyze seismic data
by use of some of the most advanced filters known. The
selsmlic data is required In digitized form, and such data
1s now readily available to Vela Uniform Projects from the
Vela Uniform Data Center in Washington.

One of the most importarnt contributions of this Report
is the development of practical ways to design multiple-
channel and multi-dimensional filters. This Report repre-
sents the first least-squares treatment of this problem.
Also included is the first practical investigation of the
Wiener-Masani multiple spectral factorization. Another
important contribution of this Report is reflected in its
completeness, Here one can find detailed treatment of
many important types of filters, some presented for the
first time from the digital point of view.
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NCTATION CONVENTIONS

In order to preserve a general consistancy in the
notation used in this report, we have adopted the fol-
lowing conventions.

1) Division of the alphabet

Speclific use of the letters of the alphabet
are asslgned In the body of the report. However,
a general divislon is

A

B Translents (wavelets, operators,
e filters, etc.)

X

Y (Stationary) Ganeral Processes
Z

2) Use of Subseripts and Superscripts
A discrete multi-dimensional process 1is
deslgnated by
N n,a,
X
where t 1s the time index

m.» Lare space Indices
and N s open to any partlicular interpretation,

The dimenslonality of the process is given by the,
total number of super- and sub-scripts to the right of
the letter. Thus, the example above has 4 dimensions.
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The order of a process 1s given by the number of
equivalent one-dimensional processes in a multiple pro-
cess. Thus, Lt 1s glven by the product of the maximum
values assumed by the superscripts.

3) Upper and Lowe: case; Script and Non-script letters
Unless otherwise defined, the following conven-
tions for upper and lower case, and scrlpt and non-

script letters wlll be used:

Single Multiple
Process Process
Tlme o " - " o
Doma ir Xe Y¢ It X, Ye VP

F ", m 5 i
“Donaln X, V) | X Y
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DISCRETE FILTERS FOR DIGITAL DATA

1. Matched filter

Assumptions:

(a)
(b)
(c)

(d)

(e)

(£)
(8)

Problem:

The signal 8¢ has a known fixed shape.

The noise ng is a normal random process,

The mean value E{pg} 18 ‘known to be equal

to zero.

The covariance ‘#tr = E {ntnr} of the noise

is known,

Time t is8 a dlscrete, integer-valued paramcter.

The observed random process is Xy
The time period under observation is t = 1,2,...,N

We wish to test whether hypothesis Ho is true or
hypothesis Hl is true, where

H° . 'xtz Mf.
H|' xt: 5t+mt

Matrix notation:

]

=
I

u

(xl,xe,...,xN) ;  1xN row vector

= (nl,ne,...,nN) ;  1xXN row vector

(81’32""’SN) ;  1xN row vector

=Eﬁ }NxN covariance matrix of
tn
v oo the noise

¢WI ¢W1 ot By (assumed to be non-singular)
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det 4> : determinant of the covariance matrix 4)

-1 . '
M ‘[/“tn_] = 4’ : inverse of the covariance matrix ¢
A prime indicates matrix transpose.

Probability density

Under hypothesis Ho, x i8 normally distributed with
mean zero and covariance matrix 4> ; that is, the probability
density ro(x) is

/

(an)* (Lot ¢)

Under hypothesis Hl’ X i8 normally distributed with mean s and
covariance matrix ¢ ; that is, the probability density I‘l(x)

.6/44)-_- 7 exp[~z’ /t/ua"}

is
/

(1m)% (42 $)%

1) = e (- -]

Likelihood ra};ip

The likelihood ratio A_ (x) is forsed by taking the
quotient of these two density functions, that is

& 76(1) - | / - Y ]
Nw)= Ew = ex,o[—;z{(x-s)/a('z <) /Z/w}

expl4 {guat gus surs sus'- '

= exp[--zi {- Z/Z/a.s'+ s/as/}]
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(since g;csﬁrf/u-%'). The observer will choose hypothesis
Ho when

Ny < A,

where /Lv is a constant determined by the decision criterion
used, Setting Ji (x) = Jlo , and taking logarithms, we obtain

“i" {— 247445'4745’} = /7/1,,.

thus the inequatity  (x) <, 18 the same as the inequality

-7{-2nms'+ s s'} < ,Z?_/lo

or, what is the same thing,

gus < g A, 4 5

Decision rule:

Setting G = log ./1,0 # ‘i‘ 5/45' , We have the following
decision rule:

Choose Hj (that is, say that the signal is not
present) if

253 <Q.

Choose H, (that is, say that the signal is present)
if

*x/us'>6,

That is, the decision 1s based on the test statistic

s = 224 o

te) 2=l
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computed from the observed process

x= (%4.>?§>"')‘%v)
and the known signal

5= (5/)5.&J'”’ SA')

Hence we may say that the observed process x 1s compared with,
or matched to, the signal s. For this reason, the filter which
performs the computation %/LS' is called a matched filter.

Distribution of the test statistic:

Since the test statistic §/LS' is a linear combination
of normal random variables X, it follows that 1§Ac5'1tself is
normally distributed, with mean and variance as followc:

Under H_ (t.e. x = n):

E{xus'} E{dé}/as' = O umee L{xi=0

vl guste £ {us)} = Efteus) mus')

v s’ r' 2 us'}
s E{xn}us’ = S/a'¢/as’

S s’

Haece é'{/x'/;zvzr P = E{/»‘L’/n},
{ﬁ/¢4= I= wwlémﬁfxmuMJ

M

i
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Under H; (l.e. x = 8+ n):
Fl{tus's = F{xtus'= sus’ _unma Ffgi=s
{/u,s § ? % su unet Figf=s.
var {/iﬁ# 5/3' = su s’ (the same as the variance under

Ho,
doesn't depend upon its mean).

because the variance of a random variable

Relaxation of the normelity assumption

Let us now darop assumption (b), that is, we no longer
assume that ne is a normal random process, but instead, we
assume that: (b)) ng is a random process with unknown distri-
bution.

We now consider a filter with coefflicients given by

a,
&,

Nx1l column vector

Ay

L

The input to this filter 1is the observed random process X and
the output is xa, that is:

Lol r“|l

. j a \_*

lr" Inpru} Filter _ [Output
\ X

The mean-square output is defined to be
E{way}) = E{af2a} = E{a'x'x af

= a' E{2'%} a .
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Under hypothesis Ho (x = n, or no signal present), the mean-
Bquare output is

E{pra)t= @ E{mn}a = a'da.

Under hypothesis Hy (x = 8 + n, or signal present), the mean-
8quare output is

E{(/ta)zf = q’ E{(Shll)/(S*/ﬂj} a
= 2 E{s'sfa+ aF{sn}a s & [{4L’S}d*d'£{;¢nja,

“2'ssq + a'da

8ince
E{w} =0, E{m’f’—‘a) Efrinp= &

We wish to determine q such that the ratio

/7 7 ’ ‘7
Mcan-square output under H, _ 4554 +d_~¢(§.— /+ asSsa
Mean-square output under H PR T ’
0 a' ba 2'¢a

1s a maximum, or equivantly such that the ratio
/7 7/
;l: a5sa
a b a
is a maximum.
Hence we require

24 (a'pa)as’sa -(28a)a’s’sa -,
£ 3

a 02/¢>a921
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or

/ a’'s'sa
*5S5a — g—q)a(a/¢4 )

or

s'sa —gpa)=0
The solution is ;
a=/¢(s
The output of the filter is ,
’La.://,/(is
which is the same as the test statistlc obtained under
the assumption that n was normally distributed.

2. Modified matched filter

Assumptions
We now wish to modlfy assumptlon (a) given in

scetlion 1 as follows:

(al) The signal s, 1s glven by

Sy = Cf;
where ¢ i1s an uninovn constant and ft is a known
fixed function.

Problem
We wish to test whether hypothesis ”o or hypothesis

Hl 1s true, where
Ho . ¥ =my (c:o)
- ’y't:‘c'ft*'mt (C-'¢O)
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Matrix notation
f = (fl, £o, eon fN) : 1xN row vector
8 = cf

Likelihood ratio
The likelihood ratio is

A_@-' e)(/b[-%{'wz'ﬂ/k(ﬁ[),‘* C‘ﬂ/’.((f)’}]
= exp| ¢ rx/.-f’ - %—Lﬁu/"J

The observer will choose Ho when the likelihood ratio
satisfied N e J\, for some fixed threshold Jﬁ,
Because ¢ is unknown, we consider

max N (z) < A,
-0 LCCoP
instead of 44.6¢)<J1, . The maximum occurs when the

negative of the exponent of A () is. a minimum, that
is, when

]".___ "C/ﬂ/af’+-§'—z‘/)/(‘{'= v
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We have

QJ—:::- ! A /5'0
- 0 /x/afqtcf/a-f

or

b EAL
'f'/uf’
Hence
A / A3
‘::lfi/t&)= cx/o[c///u,f_ __cE //‘//]

It

£/ / £7)* /
[; 7/ EA 2(6“{/).1 Vi

=ex,o['%f(élz}

Taking logarithms, we have

f/
Gl < bya,

Decision rule

Letting G = 2 log J4T , we obtain the decision rule:
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Choose H_ (that is, say that the signal is
not present) if

%%
(2o t')

1['/u1"
Choose H, (that is, say that the signal 1is
present) if

(/Z/ufl)z > 4.
#/uvf

That is, the decision 1is based on the test statistic

(¢/a {/) ( s/ )-t/ ﬁﬂ)
al £ ﬁ/‘m A

computed from the observed process

E= (¢,)4£)'°'24éy>
and the known

f:' /3€) %;> T {;/>‘

We see that the test statistic is u quadratic function of the
observations x = (xl,xe,...,xN).

Maximum likelihood estimates

Let us now find the maximum likelihood estimates of ¢
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and 8. We recall that the density function of x, under the
normallity assumption, is

exp {—-ﬁ(a{—s)/l (4!-5)’] whore =t

The maximum-likelihood estimate of s, denoted by 3, is that
value of 8 = cf for which f£(x) is a maximum. The maximum
occurs when the negative of the exponent of £(x) is a minimum
that is, when

p- (/x_sz.a (/,{—5)/ = minimum,

subject to the constraint that s = cf, We shall now use the
method of Lagrange multipliers to solve this constrained
minimization problem. We therefore introduce the undetermined
multipliers

A
1= M

An
We now wish to minimize

J = (75-5;(,:(/75-5)’ + /S-Cf)x ¢ A G-cf )l

Nx1l column vector.

with respect to s, 3 , and c. We thus obtain:

9T ., (e +2 =0
55 "0 /“

ﬂ:o g-’\-F =0

JdA
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Solving these equations, we have

AN

A= (ft—gau: (/x—.’ewﬁ/a—
a/{/z (4’2‘[‘)/0.{/:0

or

]
AN

Aé/u.f”- 2{/7“’

Hence

E = fé_{: 5 g & ?«F = i&j: {
‘F/,u.ﬁc fuf

vhere 8 1s the maximum-likelihood estimate of 8.

Let us now find the maximum-likelihood estimate of c. By
the above reasoning, it is that value of c obtained by requir-
ing

P -5 Cx-5)" = (2- ¢F)u (- ¢f)'= mintmn

We thus have

/
P . A / = A = /xu{
%)-E.O : (%—C'O[)/L‘i[ 0 ; ot S —5«—?/ by

which 18 the same 2 as found above, as we would expect.

Miscellaneous notes

We recall that




(non-singular matrix)

A % !
C = ,_,A_-{
/.
fuf
Now it may be shown that the quadratic form/§L¢¢'is (wherel ,
indicates determinant):

é, ¢/;_ élﬂ i f’ ¢u é/(. N é”i
/9‘1’_{/ a - szl.”&.Z:L é.zﬂ {!. __ é&l O‘a h ‘éw
v By o B fw
y ¥ .-z, 0 é’/ éva. ‘ é’w
Similarly
‘l’u é;_ 56/# f/ ‘{3/ ‘é; " ‘Alv
fuf = - B b by | | by f
B by év,, f,,, éw Pna o
£, fu O
Hence é/ ?Sa, ¢/// 7t/ ¢“ ¢Il. ?SW f;
8 . £ ‘FI ot -

‘f/tf o B ... fow Tv G Bz €£~ fu
4 % .. %0 1f £ 4o
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3. Modified matched filter for a multiparameter model

Assumptions

Instead of assumption (al) given at the beginning
of Section 2, let us introduce assumption

(a,) The signal s, 18 given by
2
:% :gf . +ff

where °1’°2"“’°p are unknown constants and f

are known fixed functions.

Problem

We wish to test:

Ho ; ’ﬁ’z - /ﬁ'? (CI:O‘) (.lzov "',‘;g:o)
Gz A (soma or o of e
"{/ ’ft c-/ 1.‘ %

€ Gyryp #0)

Matrix notation:

S L R
S A »

%; ﬂ/ ﬁz e Av : fwM,MaEQ
b e

5= of

Lilkelihood ratio

The likelihood ratio is

K gl gu -4 ctuf]

1t2fogrees
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The maximum of Jm (x

) with respect to all values of ¢ occurs
when

,f>u.;/ ~ g'f>u'4' =0, T

= ’f,./“- ;:(fu{l)-l

This maximum 18
mar M) = exp| 2uf' €~ 4 ¢hut'e’)
-exP[¢/¢-Fl(ﬁl‘{‘)f‘_[)“«'_é%ff(#*‘,)-lf/‘{/(&‘{,)-/-ﬁu’z,}
cexp [ 4 uf (u T o]

where we have used [(ﬁuf')—‘]:(ﬁuﬁ')'l and/,u.'-/u..

Decision rule:

As before, we let G = 2 1log va. We thus obtain the
decision rule:

Choose H_ 1if (/)l/u, f’)(fu-f')-' iu,x’ <G
Choose H, if C%f’)(?‘/:uf’)-l fu/y.’ 7 &

Maximum-1likelihood estimates

As before,

we find the maximum-likelihood estimates of
¢ and 8 are
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Let us now find the expected value of ¢. It is
e} E{wuf (Fuf)'} = Efe} uf' (buf T
= cf/af’(ﬁaf')"= G
Hence E {8 = c 50?2 1s an unbiased estimate of ¢. Also

E{E}; E{é‘f}f -¢f =5

80 3 is an unbiased estimate of .
The covariance matrix of @ is

T=£{(2-cy(2-00} = Effw-chyut Gt i) f'rwf)"]}_
But under both hypothesis Ho and hypothesis Hl’ we have
H-cf = o
Hence
T= E{Loprt Cut 7 Lot ' t)])
* E{ (ﬂu")-/f/u m’m/uf’(iuf’)"f

S CRE) Bt ()}

2 RSN

S (Eud Y Gt (ff ) (wne pue1)

- Gut Y
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Hence ¢ has mean c¢ and covariance matrix (jacf’)_l.-

The covariance matrix of B 1is

E{ (3-5) (3-9)} = E{[t-cf) wt bt T [ )t Ut 1]}

fl

F(Guf b Efnd o CEat)'f
FIOFuf) fu b £ (Euf)'f

]

= A ufT'f

7\~
Hence 8 = ©f has mean 8 =mcf and covariance matrix f/(fu.f ) '\(

Mliscellaneous notes

We note that the maximum likelihood estimates 3 and
‘s are independent of the scale of the covariance matrix. That

is, suppose

i -‘-'0'8'}/ mu(/a= b’ - 6;'2’;//" where % is known

but the scale factor U is unknown. Then
- -f
e wY I (PPt | e EF,

independent of U . Thus assumption (d) may be so relaxed.

4, Elimination of the trend components

Assumptions

As a preliminary step in the analysis of random processes,
one might try various methods to eliminate as well as possible
any trend components. One approach to this problem is to make
use of the models discussed in the foregoing sections, with the
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following changes in terminology.

(1) 8¢, instead of being called the signal, 1s now
called the trend component,
(2) Ny, 1lnstead of being called the noise, is now
called the trend-free component.
(3) As before, the observed random process 1is x .
We shall make assumptions (ay), stated in Section 3, and (b),
(c), (a), (e), (f), (g), stated in Section 1.

Problem
Given that X, = Bt + n¢, estimate the trend component

stl

Maximum likelihood estimates

As a solution to the problem, the maximum likelihood
estimates of ¢ and s may be used. They were given at the end
of Section 3, and we recall that they are:

&= (apt') (fut?)

3= &f = (ut Nt ub 't

where 95 18 the covariance matrix of the trend-free component
ng, and where

s

Also we recall that we may relax assumption (d) to

(d;) The covariance #ta-E{mth} is equal to

6 = o
i tr

where ‘4 is known and 0‘2 18 an unknown scale factor.

A - = -
Then we let $=0*% , and hence/a.- 0"'74 r, Substituting/a-a?“%'
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into the expressiocns for ¢ and g‘we obtain

2V Yy
A M DN

w> O
]l

i

which shows that the maximum likelihood estimates are independent
of the unknown scale factor, cTQ

Relaxation of the normality assumption

Instead of (b) we now assume:

(bl) n, is a random process with an unknown distribution.

Leagst-squares estimate

We have
75 - C‘)( + N

and we wish to estimate c¢. The least-squares estimate < 18
that value of c¢ such that the sum of squared errors

J = (x- cf)(/t—cf)/ = minimum,

We have
Sy 3 YLy~ L) =
o0 & (#-Ef)CF) =0,
or

SEF = k!

Hence the least-squares estimate is

E = af ($£)
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To compute ¢ We See that we do not need assumption (d); that

is, we do not
order to obta
the least-squ

The lea

£A

Ne

need to know the covariance matrix ¢ of ne in
in the least-squares estimate ¢. This fact makes
ares estimate éxtpremély useful in practice.

st-squares estimate is unbiased since

Yo E{xf (1)) E{a} FIHY

(and using E{x} = cf)

E{¢

The covariance

E{(cv~

we have

EwC =

-l -
} = C 'F'F'[‘F'f l) = C.
matrix of e is defined to be

o)'(e- c)}

(L 4 (/([f')-, = ﬁ,u 5)71”({{7.’

s Y ()
FCRFY'e cFF (FF)”
Fierey s c

SV

Hence the covariance matrix of 5 is

Ef (Z-c)(@ -0} ~ gffnf (ff')"_]'[mf'(ff')"]}

CELUEY fainf (R

- ()

which 1is

f E{mh}f’(ﬁ’)#

FEg(E-0) =

Y F B FICFEY
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Best unbiased linear estimate

We wish to find an estimate ¢ which

(1) Ls linear in the observations, 1i.e.

C= 24
where
b by by
A“ éé/ d&z 5%7»
J%O {i '”'4%p
(2) is an unbiased estimate, 1i.e.
F{ef=c

(3) is best in the sense that the covariance matrix
of ¢ 18 "less than" the covariance matrix of any other

linear unbiased estimate ¢, i.e.
F{(&-cy (&)} ¢« E{(E-c)(2-O)]

(More precisely, the "less than" sign < as used

here means that

E{(&0) (T-o)) - E{(t-c)'(E-a)}
is a positive definite matrix.)

Using (1) we have

C = xbz= (st fo= (cF + n) L
= C~[44~¢/714£

Using (2) we have

c=E{2}z E{cFf I+ Efnt)
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= of &+ E{ L
s o {4 dener Elng=0

Thus we have the congtraint

fh=7 = Axp Ldentity matrix.

Also we have ¢C-c=nb 80 the covariance matrix of Q is

El(e-cy (e-)f = E{Gad) (nd)]

<l bf = Y Efmn} b = 44

Hence b may be determined as follows:

Minimize the pxp matrix b’ # b
subject to the constraint fb = I.

We may use the method of Lagrange multipliers. Introduce the
pxXp matrix A as an undetermined multiplier. We then wish
to minimize

T= LG h+2A($4-T)

with respect to b and 2 . We have

PN : 4 Af =C
oy s
ig—:_o . [A¢==1'

JA

Solving these equations for b and A we have

4= - f s
Thus A= -2

also L A=T gives -1 £ A =T,
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A's - (F' )

Hence

d= g FA )

We recall the notation for 4?’ was

ad

Hence

L (f uh)!

Thus the best unblased llnear estimate 3 of ¢ is

C= HA- @af’(ﬁaf’)’l

which, we see, 18 the same as the maximum-likelihood esti-
mate obtained under the normality assumption (b). The co-

variance matrix of ¢ 1is

E{(e-cYe-O) = Lot = (b Fugut buf)’

which 1is

E{E-cY (@) = (Fuf)




G Time-invariant filter

5.1 Assumptions:

(a)
(b)

(c)

(1)

(J)

5.2Problem:

The signal S¢ has a known fixed shape.

The noise nt is a ramdom process with an un-
known distribution,

The mean value E {nt} of the noise 1s known
to be equal to zero.

The covarilance (#tr = E {ntnr} of the roise
is known.

Time t 18 a discrete, integer-valued para-
meter.

The observed random process is xt = st + nt
The random process X¢ is observed for t = 1,
2y suws N

The observed random process xliiggér..., xN
Is passed into a time-invariant filter with
coefficients/é%,fsl, .+ By (to be determined).
The actual output of the filter is

2

The desired output of the filter is 2, (t =
0, 1, 2, ... M¥N), where 2, 1s a known fixed
function,

We wish to determine those values of the coeffi-
clents )/%, /31, ""/BM such that the mean of the
sum of squared-errors between the desired output
Zt and the actual output y,C 18 a minimum, that is,
such that

Mey
f;{ é?% (E%-;é)zj = Mmoo
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Schematically, we have:

Desired output z

t

Filter

/30,,51, e

I

Actual input

Ituat'l'l'lt

Actual output ¥y
t

5.3 Matrix notation:
We define the (N + M +1) x (M + 1) matrices:

¢¢ 0 ¢ o
LA, 0
X= | % :
O P :
o 0 <
0 0
L a,v_‘
s, 0 ‘v 0
S 36 0
S = SN i;-/
0 Sy
o 0 9,
0 o :”
L W
7, © -0 7
Ml mb 0
N= v Tyl :
9 My
o 0 ”
N=1
Lo 0 ’"'/V_

Thus
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Let y, %, and e be the (N+ M+ 1) x 1 column vec-
tors

g’o ] —zo ] £
¥ 2, e
;7= } , 2= E s e :'2—7/3 .

A
YAk Zoen] ren ]

and let /6 be the (M + 1) x 1 column vector

Thus

5.4 Determination of & .
U
We wish to find that value ﬁ of /3 that mini-
mizes

M+l

T= E1 Z G g '} = B Gl o} £{(e-pY o)

T-Efle-Xg) (z-Xp)} = £f 222X -a'xs 4 A Xxp}
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Because X= SN and E{/V} =0, E{/V’jsa,
we have
J = E{Z'Z. —,Zz’)(p +/5')(’XF }
- Elz2- 22/ (sem)p +pI(SIN) (sen) 4 f
<Elz'z-22° ‘o "
{:Zz -22.5',8 -+/5 SSﬁ*ﬁNN/s}

-_—

22z —22’8 ¢ (e , p
Hence /6 +/6 S&/H.LIB E{N’VJ,G
-g;g=0 D =225 4 .2[_‘{’5’5 + z{g’g{,v,w} _—

or S/Z = Sis,/\af o E{/V//ng
{

or ;e (55« E{wm]" 5%
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6. Time-invarlant fllter In the noiseless case

6.1 Assumptions

The assumptions are the same as those
given in Subsectlion 5.1, except that now it
is assumed that there 1s no noise (l.e. ng =
0). 1In other words, assumptions (b), (c),
(d) are omitted, and (f) becomes

(f;) The observed process X, 1s the fixed

function St’ i.e. xb = st.

6.2 Problem

We wish to find that valuelﬁ of /3 for which
the sum of squared errors between the desired
output Z and the actual output Y 1s a minimum,
that 1s, such that

M A

; ( ;,8 = (Z-?)/(z-y/) = Aunimen,

6.3 Determination of A

y
From the result of the last Section (Subsec-
tion 5.4) the deslred /3 is

p=[55]'5"%.




7.

3

Spike filter

7.1 Problem
The spike filter is a specializatlon of the time-

invariant filter. The spike filter is designed
such that with the signal as input it will pro-
duce little or no output while the signal 1s en-
tering the fllter, a large positlve spike when
the signal has fully entered the filter, and 1lit-
tle or no output thereafter. The splke filter is
also designed to have little output when nolse is
its only input.

Suppose we want the spike to occur at time t = to.
Then we let the desired output 2z, be

| qréuo t': to
t - 0 u&bf # to

or in matrix notation

~ <

-QQ

Q‘-Q \Q.

where the one occurs in the position of z, -
0

T.2 Solution
With this value of g, the desired spike filter
is

£=[S's+e{nm) 8%
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8. Time-varying filters

Consider the diagran:

Ideal 4 /ter
Ideal: @ A

Signal ples nase

il

Dﬂ'iiugl’ ov f?ﬂlaf .Z't

ﬂcfa’.ﬂ&f “?'rﬁ

Actual: E“JE fiker

We let T be the present time., We assume:
(1) The signal A, is of the form
om

5‘/2/"+Z- ‘;{‘t

4

where Ve is a random process with E {v } =0
and known autocovariance '#W(t,s) = E {"t"si ;

where

c1) c2) o e 0 Cm

are unknown but fixed constants, and

£ i)

& 2t 77 "mt

1t’

are known, non-random functions of time ¢t.

(2) Th: desired output at time T is

Zxés

2

where the coefficients kg ( ~o<t<®™) of the
ideal filter are known. For example, in case

of prediction ©{ units ahead, kt = 9 0 (e

™o, t ={' =T+«



of
80 ZT= g_‘u 57;#»4,1‘ St ) STn(

ML

- /a;*d *_if;{k {k)r+.z

(3) The actual O%Pput is given by (at time T)
Vs = V) s = + A

where the coefficients of the finite filter a
85 «oo a.. are to be determined so that

E{(ZT— 7T)Z} = minimum

under the constraint that the actual output Yo

1,

g = st and

D1t Gm.

equals the desired output zt when x
for all possible constants cl, el
This constraint may be written

T
T
T fz, % %

or
o T

ZZ 4{ S = ;E- a, s

7+ 0o ¢ T el
Letting ¢
SO

= 1, d

» =0, ... 8 =0 weobtaln s, ={f,,, and

o

£

.; T

; = a
2A e s Z 4 e
Similarly, we obtain

. yi
ZﬁfQ f © 2 2, 1y £l

=i
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Hence the constraint is

t__Z_;{* '§‘t = z‘% % é;'t %‘)"5%%@

(4) The actual iaput is
G

where the noise ne 18 a random process with zero
mean E {nt} = 0 and known autocovariance

¢ (s)= E{/ntmsj

g

and known cross-covariance with vt:

& (s) = E{m 3.

End of Assumptions

Let us now transform to matrix notation. Write:

S = (sl, Sps eees ST)
n = (nl, Moy vy nT)

X (X5 X5, ey Xq) f,

1XT fJ ) (fjl’ sz, cees rJT) f = g ta mxT matrix

row a = (al, 8os «ees aT) n

vectors Vo= (Vl’ Vos eees VT) c = (cl, Cos wues cm)
lxw V=- (..c’ V_l, VO, Vl, .c.) F‘

row 8 = ( vees B3, B, 8 .uL) F = fi' :anmx oo matrix

bl
VeCtOI‘S k = ( 0 0 k__l’ ko’ kl’ . -u) ”~

FJ = (..., erl, fJe, le, i6 )
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Then: 8 = v 4 cf

= ! =
S =V + cF : 2o Sk yT xa!

Fk' = fa' (the constraint)

E {(zT - yT)e} = E {(Sk' - xa')zj E(8) = cf
X =8+ n E{x}-E{sl
Yp = xa' = (s+n)a’ E{yT} = E{} a' = cfa?

(ecause of constraint

E{ztg - E{s}k - ch""/)

ZT = Sk!

Let us now determine the optimum operator a = (a S aT).
The mean-square-error is

E{erp)y - £ - wak] a2 xaal
e

Sk id,al v oad o
4= Bz

é»x E{zr’”f E{:Z (¥ % .

272" )

= /Ezr/y Enk ... [.'z,ra{r) Hx T o mede,
ﬁ,x: Eé?’}’) . Tx/ /”W

iThe constraint is Fk' = fa'. Let A\ = (’Al, ...,1-m)
be Lagranglan multipllers, Hence we minimize (with
respect to a):

T = ;xﬁu_gé/ta.ﬁ- ez.émza.'-—ZJL[fa.'-FA@'] ¢

vhere




s
v

r‘/’
“‘.J” /1
f'/ 4
- // /
Thus /

27 = “2¢ + Rad =-IZAf =0
da e e
or //,/.

(1) AT+ by = &Py

Necessary and sufficient condition for the con-
strained minimum,

Now: Let u = v+ n, so that x = u + cf, E(u) = 0.
Hence

¢,S¢¢= E(x)~ E{(‘Ia'+ re)ur cf)f = E{k'u}* ferer

or

(2) %‘“#"uu-HUCIC-F wht é, . ¢$$+ %+ b+ P

t

Now é = E(zT'/z) = E([S4]x) - EI([(V‘CF)'{,]’;’J;
= Ef(vs P& Tw+ <41}

sner E(a):0 E(V)=0
= E L) )} AEC) ¢ At

or

(3) 42,& = 4 [E{V’u_-}i» Fi'cf]

Eq. (1) is }f+¢z'z= “*ézx

]
The constrains is Fk' = fa' or |4 F=af’
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Subst (2) and (3) gives
Mk EVO)+AF S = ad +a fered , R
af r AE(VU) = ad + (af’- #F’)cecf
S
\o‘éw Wt’ﬁ!&ﬂ—t

Thus

WY |+ AE(VL) = ad
Now define p and q to be
_/_’:fém (76.'/7157'/)#&&;4), f'{ﬁ-u.,
LEfVu)= o 8, (g0 xT e wetn), g7 AE{Vald,
Then (U4) becomes )\/ac‘;m i }S‘&u." @ by

(5) D'/" tE :‘L—‘

This is the desired solution except that we must de-
termine A . To do So we substitute a = q + A p into the
constraint kF' = af'. We have

,‘éF"—‘ (X!— Xf)fl

or

?\7af’- ,o{F'-;,f'
A= (AF'- ) (447

Hence the desired filter is

a= 4+ (»éF"}f’)(ff')./jw R




Iy

or

2= AEVAAEL +(RE- AEVRE N 16 £7) 14!

By letting T vary, we thus obtain the optimum time-varying
filter a as a function of T.
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9. Detection Filter

Consider the folldﬁing case:

Ideal: Signal Ideal filter~———>@s ired outp%
Signal + Finite filter Actual output
random nois

(1) The Ideal System:
We assume that the signal has the form

St = § c‘;ﬂ,t

L=

Actual:

"..r}r\ ere

e o

f

It

fkt) 00') fft

are p known functions of time t (t an integer) and where

CI)C&).")C’f

are p unknown constants. The ideal filter is an infinite,
non-realizable, time-varying filter described by known
coefficients K4, . The desired output is

z =TZ_°° Tt L>-__|C Fb’r

ic,, i i, fiv = i C Fie
L= T=-

t=1

where 94“ z 'F is known.
T==-a
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We are interested in the desired output z, over the time
interval t=1,2,...,N, and so we let the 1XN row vector z denote

Z = (Z“Zz)"')z/v)

Also we let g be the known pkN matrix

jn ‘7/2. e j/,y
= y" ;Z* "',7Qt/
T Jpe P

and let ¢ be the unknown 1Xp row vector

C = ((‘/ S (2)... ‘Cf,)

Then, clearly, the desired output over the time interval of
interest 1is

Z = <:;?

where ¢ 18 unknown and g 1s known.

(2) The Actual System

We assume that the actual input is

4% = S% 4,n%

where 5t is the signal, as glven above, and ne is random noise
with zero mean, i.e,

E{m =0

where E{-n} denotes ensemble average.
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We assume we know the actual input X, over the time interval
N t-‘-ml’-ma)0001-1;0,1)2;..-’N; and 80 We let the |'K(M+N) oW
vector X be

x= (% iy B e s e Hy)

L
pep mmed

We are interested in the desired output z, over the time
interval t=1,2,...,N, and 80 it follows that we are interested
in the actual output y, over the same time interval. Hence

we let the 1¥N row vector y be

y et

Let the Nx(M+N) matrix

d/J—M; ! Q/,'Mfz 4, 2, N
a i, .
2,-M¢/ & r-Mea : A % 5y,
a =
a 2 el . eer &
My-Mel M,-M+2, d}// ﬂ,y,z, VA |

denote the finite, time-varying filter, where a is8 such that
input x and output ; are related by

Note Prime indicates

;4?; = /K ﬁl’
i y matrix transpose,
@ o) G A
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Since }g = S\'é n ""‘-c. » We write

S“""/’ -sﬂf.z’ "t % %55, 55,, "')5:v>

L = (Ab " |
M e s ’/}L/ "’Lox’xn/}ta.) $r )Afd)

We recall that

% = ‘g Cl' /(t Q/\J ¢ = (Cf) C.:)"',(}).

Hence define the px(M+N) matrix f to be

/.}.

o G e e
£ L] e e sap adteomrm
Then

s = cf

1 A X
olieh) - (1xp) Px ()
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The actual output y is therefore

! /
4> za' » (sem)a' = Sa’ +ma’ = c'fpa*/na.)

which has ensemble average
gy~ Efcheefasd -
8ince cfa' 18 a constant, and
Hn}=o0.

In summary:
The actqal output is y = cfa' + na'.
The desired output is z = cg.
The ensemble average of the actual output is E {yg = cfa',

Definition The actual output y is said to be unbiased
provided that its ensemble average E{y} 1s equal to the
desired output z regardless of the value of the welghting
factor ¢, i.e. provided

cfal! = cg regardless of c¢.

It therefore follows that y is unbiased if and only if

fa' = g

(‘—--————This is called the unbiasedness constraint-————"/,
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Schematically, we have:
Infinite time series:

Ideal filten Desired output
Signal s,= 5 c; fie 3_ f
il K‘n

Finite time series:

Actual input for Finite filter Actual output for
t:"m*“""N | al t:l‘l,...,N
b =S+tm=zCcFf+m ?:4q'= cfa’-o-ma.'

Unbiased condition:

f and ]

E{7}=2 fm‘a”conlyi fa=?’

(3)__Unbiased estimation of the weighting factor ¢ in the case
of white noise

Let us first consider the special case in which the

random noise nt is white, i.e.
2

¢ g t=§
£ fmeme} = {o Zi.w

where o is the common variance. Since Xy = n+s, with E.i’“f}:o)

we have
¥zmrs avith Ef¥}=s=cf
where
¢z (€, tn) o f = [Ra], Lzl ond it b
Thus we have M+N observations
Az (Y, 7'*N)

concerning which we make the following assumptions:
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(1) Their ensemble averages are linear combinations
of the p unknown parameters C'<2"“'°Cf”) Thus

£{n}- ég ¢ (te-mri o w)

F{rf= cf

where the matrix f of order px(M+N) is known and is
termed the design matrix, and where the row vector
¢ is unknown,

(2) Their covariance matrix is the product of an
unknown scalar 0"2 and a known positive definite
matrix ¢:[#,] . Thus

o (g 68 = E{(%- B} )z, £

= Ht- )= 508 = Ef )

or

6%¢ = Ef(t-sY (-0} = Efam}

(3) In the special case now under discussion, ¢=] =
identity matrix, i.e. each observation Xy has the
same variance O-* and every pair x ,xr is uncorrelated

(tor).
(4) We assume the rank of f is p, and that p < MtN,

t

According to the principle of least-squares, we estimate

¢,,Ca," ** 1 So. 81mMultaneously by selecting those functions
A

€,C,,:+-S,  of a4 ety %roHy which minimize

J‘ff (% - Ech) = (e ef)ach

S -Mt vat
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with respect to cl’°2""’°p considered as independent variables.
We have, by differentiating J with respect to ¢ and equating
to zero,

W

|

T . 2(2-2f)-F) =0

C 2 or
IEW'—-/M'

which are the normal equations, or equations of estimation for
the parameter c. Since f has rank P, there 1s no non-null
vector v such that .»f <0 and thererore(%r{)ﬂv4)EAr¢fﬁr is
positive, so ff' 18 positive definite. Hence the normal
equations have a unique solution.

Qs

Since
o - gl f- )
gc T TRx#-c
we have
T _ 2 ff
Jdc?

That 1s, the matrix of second-order differential coefficlents
of J with respect to ¢ is 2ff', which is positive definite, 8o
J has an absolute minimum when ¢ ¢ = (’1’-7(‘/)”"[/)-./

Now let us consider the ensemble average of c. We have

E{E0s EfGf)HY' = Efx} LG5
But fz//t}-sf-ﬂf. Hence
E{e} = £/ (FF) = o,

Hence the estimate ¢ is unbiased, in the sense that

E{éz:C.



53

The covariance matrix of 3 is

cor (5,8) = v 2L (FE), wf (HT)
- £ [tx-s) () [ (eey' 15

(F5 )¢ Elind £/G45)
G FFECEE)

- o FF Y

The least-squares estimate 2 of ¢ 18 a linear function

cf the observations x, 1l.e.

2= i [-F'(ff')-'} 7, wﬂututd?/;z?\s £'(f £y

Consider any other linear estimate of ¢, say

(L « ary sl of
ety (M*N)Xf )

F o= oxl

Because

Ele): E{latd: EHaL= AL,

we see that & is unblased for all ¢ provided that
fL=1T

The covariance matrix of C is ,
coy(’c",?')- CW{ALZ.,/X-LV? = [ W{/ll)dtf[

= %L L.
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We now wish to show that the least-squares estimate T
is better than any other unbiased linear estimate < in the
8ense that, for each parameter CJ’

N AN
L Cp £ pal €
/ / d

Proof We have
AMA+ (LN(-2) = 234 -La-2L + UL

We recall that

A= FFFY ad ded SL=T

Hence L')\:L’['(/,[')-‘ . 7 ({{l)-;g (7[7‘9-/ 0,
Also 2] = (L'A)l : l—_({‘(,).']/ & [({{/)/]‘l _ (ff’)ﬁ @
U T LR (1) ©

Using @, @, (3 we have
Na+ (L-A)(Ga) = a(fey ' = (FFY - (6F)' 4L
= ('L,
Hence
UL *NA+ ML) (1)
i S ———~r
(62 = (@) + o (L-2)(L-2)

Each diagonal element of cov('é',?:') is therefcre minimized if
the corresponding column of L-A consists entlirely of zeros,
Hence € 18 the best linear unbiased estimate of c.
QED
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(4) Unbiased estimation of linear combinations of the
welghting factor c -in the case of white noise

We now wish to consider unbiased linear estimates
of the desired output z=cg, where ¢ is the unknown weighting
factor and g is a known pXN matrix (see page ). Suppose
that 2 = x{ is an unblased estimate of Z. That is,

cjtzz £{'Z}= E{/x.[}= E{d‘;xf = 1L
whatever c., Then
7= 4L .
SR/

The covariance matrix of 2 is

v (ZT)= com(xl nt): vzl o044

”~ IN - 1 oS
Consider now the estimate 2 = C ¢ = A ; where ¢ is

the best unbiased linear estimate of ¢. 1Its covariance matrix
is

j/ Cozr(f)é\);
G By

cor (Z,2) = Co'a-('éj, ?j)

- ¢ S

1)

(Y (A0) + (€-29) (- 2g) = 200 (a) - £ g -0 ‘2 44
= / ;i" ;/ ’ g ; j ?
SRpEY g Ly - J 6T g + 42
= (Y / 7

Therefore

AL = OGO 16 20) U 2y)
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or

am(g)g) = cow(é‘, 2) + O"z (/,("Rj) /(/'R])

Each diagonal element of cov(g,g) is always less than or equal
to the corresponding diagonal element of cov(E}E}, which shows
that

'i-= /C\j = ;\;
where C= =t ()7

is the best unbiased linear estimate of the desired output

53 C;,
(5) Unblased linear estimation of the weighting factor c
in the case of colored noise.

We now drop the assumption that the noise is white,
that is, we drop assumption (3) on page

Let T denote the lower triangle matrix such that
¢:=T’T and define «=xT
Then

Ew= E{nT (= E{lu}T"'= AT
and -
orlo)s ) ity T (Y T
= 7 ) AT 7T =~ E)T T
= o (TT") 7T = o,

80 &= 4T~ 1s white noise.
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Since T ¥ 18 non-singular, £7"% has the same rank as £, which

is p. Using the results on page » We see that the best

unblased linear estimate of c is

= wl(FT T

T T ]

\

¢ﬁ"/7#0 {/{{(T-W:H){?”
w (1Y F{E T -

L}

|
| C= g o Usé"f’f’—]

The covariance matrix of ¢ is
wr(E,¢)=  FAT (T T
-1
- -1/ /
- [T ] a

CW(/C\,/&) - ’J”L('f qt;' {/)-I

The estimate C 18 the value of ¢ at which the quadratic form

(- of) &' (a-ct)’

attains 1ts minimum,
(6) Unbiased linear estimation of linear combinations of the
welghting factor ¢ ln the case of colored noise

The best unblased linear estimate of z=-cy

is




N>
1
(D)
BN
t
*
™
\4\
.
.
‘ﬁ\l
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with covariance matrix

A , -1
COZ“(2J2>: o q/{{-T_/ T-//{‘/} dq ) "
¢

2 5) = %o 7
@)« oy g4 T

(7) Determination of the finite filter a' subject to the
unbiased condition

We wish to find a' such that E(z-y)!(z-y) is-a minimum
subject to Fa"-? . We have

C/’-E{(z— )(z 7)} E{(c - fa’ —,ML)/C; c{a.,;m}}
'E{(’L&)(AL&)} a E{mm.}a. = ¢lad

Introduce the Lagrange multipliers A = /A,, ~,A5) and minimize
J+ 27\(; fa ) Setting the derivative of this equal

to zero we obtain 9’) '\f Solving the simultaneous
equations for a and A :

2 0%p = Af
fa’= J

we ovtain
az g (44T H¢ A= gAY

Hence the actual output is

(")

as given in subsec-
; tion (6) above,

7:/%&/:¢¢-/1p/(*“¢-’_{/>’{7= 2 -

10. Computational Aides

Suppose we wish to divide the z-transform
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r e I8 o
) = Iy oo A
it(.) a.? +4a,z -+ Q&Z ‘ot A2 + ftm_’z+a“_

of the finite operator &, &, ", %4 DY the z-transform

at el Avd, s
F(ZJ: Az + £z + ol 2 b * pﬁn—/'l+of<"”~

of the finite operator o(o,oduogz),‘_)“. We have

S
1% A= m-A-l N Do MMN
m.— A 2 +A z s A 27T G AL Tl
F-('y‘l < R
</
Then / )
. ] Q,
Ao - o(o ' J
.| % %, |
A'— CJ.(); 06' al ’
«, 0 a,
I
A.a: ;'3 < &L, a, ,
Sl A 4,
oy 0 0 4,
|| % e 0 a,
As: IR R AR
o ra
0(3 0L, oL, 3
> 0 0 0 «
| w, o 0 0 g
A’-I: ;‘) oéloll "000.2’
° oy ol o o a, J
0(4, 0‘3 oz;l. °li ay

and in general




where ,

60

“, 0 o6 a,

O(, )lﬂ 0 0 a,

{ oL, o, 1", 0 a,

. = = 24

f\/l- Ololel 0[! "[1. °(: ‘(. 61,
o{l b‘//{" %'2 Gl/z" o dfl ,({ AN
Be el

' indicates determinent.

Example 1: Divide 52° + 327 + 2% + 223 + 322 4 6z 4 7
by 22 + 323 + U2° 4 52 + 7. These coefficients are
(5, 3, 1,2, 3,6, 7) and (2, 3, 4, 5, 7). The
quotlent is

A 2"+ Ao+ A
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1l. Squared-magnitude devices

11.1 Assumptions

(a)

(b)

(c)

(d)
(e)

The finite time-series
XO) xl) * e s ) XN

represents (MN1) consecutive observations
from a regular stationary stochastic pro-
cess with zero mean and with autocovariance

and spectral density <P (w).
The infinitely long time-series

bor) = E{x,

7~

e e o) O’ o’dollﬂl) 00"&}"! O’

formed by letting 4% = 0 for t < 0 and for

t < N 1s the input to system with impulse
response bt’ The impulse response bt may

be infinitely long in both directlons, 1i.e.,
bt may be different from zero for both t > <°
and t » - o0 ,

The output time-series Yy which in general

will be infinitely long in both time direc-

tions, 18
;Zf :’ég;:éé/ﬂ%ad (:-oﬂ<.t <oo>

The output Vg is the input to a squared-mag-
nitude device whose output is yt§1
Finally, yggiis the input to a device that

sumas y from t = -9 to t =0 and then
t
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divides the result by N¢1 . Thus the out-
put, denoted by 2? » 18

{ &z 2
v = mt_w/c .

“‘;'a.} q%,)ﬁj.“l/ﬁ”q g o

|

Squéred- g, tule

e gy
Jl\"rf.t. ja';z ’;;tz ‘: "’,z::;/”j'l R

=
Sumamn, ng dcwch
and

’ Ja’vis«'dnby Y g
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3. Normal Equation Forms in Optimum Filtering Problems

In section 2 of this report the formal equations for
several types of filters (matched, time-invariant least
square, time varying, etc.) were developed. In sections
3 and 4, we will concentrate on the time-invariant least
square filter. However, we will generalize this case to
include both multi-input, and multi-dimensional processes.

Section 3 develops the normal equations for single,
multi-input, and multi-dimensional process optimum filters.
Highly efficient computational schemes for solving these
equations are given in section 4.

The transient autocorrelation of a complex single
process 18 standardly written as

N N

rt-'-;Z' X;,,. )?‘ (3-‘1)
where X 1indicates complex conJjugate.
If we think of X as a matrix valued process (real or
complex) and X as the transpose of X, then the auto-
correlation of X can have the same formal definitior.
This convention will be used throughout section 3. and 4.
in order to preserve the formal similarity of the diffenr
ent systems. The reader will note that this alters the
form of the single process development as was given in
section? .

3.1 Single Process

The single process i1s characterized by one set of
numbers corresponding to discrete intervals of time.
Thus, the series
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corresponds to the signal

0 U</
S5(t) « ya—

In this section we will determine the optimum least-square
filter for operating on such a process.

3.1.1 Assumptions

a) The signal S¢ has a known fixed shape.

b) The noise n, ‘1s a random process with unknown
distribution,

c) The mean value E {n‘} of the noise is known
to be zero.

d) The auto-covariance of the nolse E'{n;'hj} is
known.

e) Time 18 a discrete integer valued paraméter.

f) The observed random process 1is

Ke= 9t N,.

g) The random process is observed for t=0,/, 2 ...N.

h) The observed random process in convolved with
the coefficientsof the impulse response of
a linear filter f..-f» H<N (to be de-
termined).

1) The actual output of the filter is
yt'g f., ) S T M-1y) My.ooy N

J) The desirdd output of the filter is 2, =M1, M. N
where 2, 1s a known fixed function.

3.1.2 Statement of Problem

De termine f such that the sum of the errors squared
1s a minimum:

N
E Z (Ee_ )lc)t } = mainimom (3.1-1)

ts M-
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. r “\“\‘\
_>\ deslred output )

\,‘. 2¢

2

—

~ e

(" Input \ Filter ~_,,QAct;ual Omut.

sy ! e
3.1.3 Matrix Notation

e N-M+ L ——— >
50«-\ 5,‘ v s e SN T
Smez Sp., - 49
S I M (3.1-2)
B 5’ SU-Nvl l
r;l = ", 11”—
MNn-y '71.’“, ce - '7'1“_| (3.1-3)
n, 7L, 7IN-H'I

X+ S+ N (3.1-4)
Y : P')’n-n U Ve (3.1-5)

2=| Z., - Z, (3.1-6)
€« -.eM_| cos eJ (3.1-7)

L .
(3.1-8)

(3.1-9)
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Thus
fXe y (3.1-10)

3.1.4 Determination of the f{1!lter { .

Let & be the expected value of the sum of the
squared errors

“af { & é} En) € ‘transpose (3.1-11)

E {(i-?cX)(—;-.__{X)} (3.1-12)

Now, If we take the derivative of & with respect
to ¥ and equate it to zero In order to minimize o«
we find

g_;_"(i - 0> E {(2_.7[)(>—X'} = 0 (3.1-13)
or F { c —)Z} ) (3.1-14)

Thus, the condition that o« be minimized ls equiva
lent. to sayling that the error € must be normal to the
process X . For this rcason, this equatlion 1s known as
the normal equation for f

Now expand the terms in the normal equation:

E{-&Y‘f)(-)—(?(=0- (3.1-15)
But,

X = S+N
and Ei '{fﬂ Ts .
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Thus

E{ 2(S+N) - ’C(S*N)(ET/-\/—)} = 0 (3.1-16)

-

4( 55 + E{N/V}) =25 (3.1-17)

If we examine the multiplication S 5 in detail

- -t = ot
SH-I 5n o SN Sna 5n~), vvo Soe
59 7 || Shaz G o7 Bieg Sm Smer oer 5S4 {(3.1-18)
50 5, Ve 5u~nr~& BN gu—l gu-nn

we see that the multiplication of the first row of S by
the {irst column of E; » the second row by the second col-
umn, ctc., is like the 0 lag of a transient auto-
correlation of a portion of S . Since cach multipli-
cation is taken over different limits, the terms along a
diagonal of 5-5- will not be the same.

For ease in computation, we desire that the term
Sg +E {Nﬁ] be Toeplitz, i.e., that the elements along
each diagonal be the same. This can be accomplished in
two ways:
1) IfN>»M and & 1is a statlonary random process,
then vie make the approximation that

N

I - =1

L S — . 5 - So.o' 5; Y S

s DosuR s E(s 8} G
Cer M-y

The normal equation becomes

F[E[SS_ +NF\7” z E{zS} (3.1-20)

f R

1]
Qo
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(3.1-21)

E {55 +VMN]

)

where
R

9 < E { 2 5}
2) Ve assume & 1s a transient. Ve then redefine
the mtrix S to be .
[se 5, .. su 0 ... 0
Sl - 0 So .o SN-, Su0~' 0
ST -0 (3.1-22)
LO ©F 0 Se Sl e SN
and the outputs
v Ly v e ] (3.1-23)
2" [z. 3 zw,,_,] (3.1-24)
e : [eo C, e,“,,_,} (3.1-25)
The normal ecquation now becomes
F s - = )
ﬂS‘S t E{NN” : 275 (3.1-26)
or £ R = 9 (3.1-27)
where £z S 5_’ + E{NN} (3.1-28)
g: 2 S’ (3.1-29)
B ]
Y. I, o | grop
r’., Yo o Fn-2
R = ‘ ‘ (3.1-30)
tﬁ V‘h»z_ r°
I_ .t |
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Fos 7 (3.1-31)

. g = [3, Ga v v j"J (3.1-32)

3.1.5 Determination of the expected error X .
From equation (3.1-11) we defined X to be

x: E{e 5‘} (3.1-11a)
If we substitute e : z- §X , we find
M:E{e(z—f)()} (3.1-33)

But, since e 18 normal to X and ,( is a linear op-
erator, we get

0(=E{ez—}

cE{(e-1x) 7]

Ef{e: - fxi]

"

22 - {3 (3.1-34)
since E{n} 2@ -

3.1.6 Prediction

A special case of interest is that of predicting future
values of a series from past values. For this case we set
the desired output to be the signal at some future time:

2 Si (3.1-35)
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where k is the prediction distance. The normal equation
becomes

fls5 « e{vi}] - 5 8 (3.1-36)

Now, 1if there is no noise, this takes on the form:

iﬁt [J e FH] FVO rno.. . V;1"- = [r; rln L r;\‘”]
o A V.
TR " (3.1-37)
¥y ¥soi . ¥,
L i

3.1.7 Prediction Error

In many cases we are more interested in the error in-
volved in predicting rather than the actual prediction.
Equation (3.1-8) defined the error to be the difference
between the desired output and the actual output. This
can be written as

e = z - £X
: s5,- F5

since we have assumed that there is no noise involved. If
vie define

(3.1-38)

b e [/,&...,0,-{.,-{. .
R-l zeros (3.1-39)

and expand 5 suitably, then the error can be written

e + {'5 (3.1-40)
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3.2 Multi-Input Processes

The multi-input process 1is characterized by having
several separate time series. These time series are ar-
ranged so that each point in time is represented by a
column matrix where each term in the matrix corresponds
to a specific time series. This leads to the idea of a
matrix-valued time series for which we wish to find a mat-
rix-valued least-square optimum filter.

3.2.1 Assumptions

a)

J)

The nx! matrix-valued signal S. has a known
fixed shape

Se

S °©

S,
The nx! matrix valued noise », 1is a random
brocess with unknown distribution.
The mean value of the noise E {";} 1s known to
be zero.
The covariance of the noise E'{VL 5‘} is known.
Time is a discrete integer valued parameter.
The observed random process 1s

Xe s S+ Ny

The random process is observed for t:o,1, ... N
The observed random process 1s convolved with a
Axn £1n matrix-valued linear fllter
£, f, hew (to be determined).
The Axl L sn matrix-valued actual output of

the filter is ™
Y' ZJ prxt-s t'-r'l-l,/"l,..N
€<

The fx! AL+« n matrix-valued desired output is
E‘l’ T: n'/,”),lclN
where 2, is a known fixed function.
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Using these assumptions we can now determine the fil-
ter F by following the development for single processes
(3.1.3-3.1.7). Each term of the matrices that are defined
there will now be a matrix rather than a scalar. This
is essentially only an interior grouping of terms within
the matrix. If this grouping is removed, leaving the in-
dividual scalar terms arranged as they were, the matrix will
have a normal conflguration and interpretation,

The normal equation is

[{ 'Fa.cn] o ¥y ... Faoy 2 [31313"]
Xy oo Ve,
'. (3.2-1)
Kn.: rﬂu ' r;
where the expected error is
X : z Z— = {5
(3.2-2)

Now r: ls a nxmn matrix which contalns all terms of
the (™ 1lag of the autocorrelations and crosscorrelations
of the Input series. (Note that ¥ : r, ). Likewise g,
isa Axn mtrix.

The restriction in the assumptlion 3.2- h), (>, and j)
that 4sm»n follows from the fact that we can make
only n  1linearly Independent comblnatios of the inputs.

3.3 Multi-Dimensional Processes

A multi-dimensional process will be characterized
by_a multi-dimensional data array. In two dimensions a
¥"'*  array might have the form
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nH 4L, ",
X X D x

31 2,1 2, m
X x S b S
xm,,l xm.,t ) ) IM"“‘"

(e make use of script symbols in order to emphaslze the
multi-dimensionality of the process.)

For some applications, one of these directions may
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