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ABSTRACT 

This report treats the design of discrete filters for 

the detection of signals caused by nuclear explosions on 

digitized seismic recordings. The theoretical aspects of 

filter design a e treated, together with the setting up of 

the necessary formulas for realizing the filters on digital 

computers. Specific discrete filters so treated are:  (1) 

matched filter, (2)modified matched filter, (3)modified 

matched filter for a multiparameter model, (^)fliter for 

the elimination of trend components, (5)time-invariant 

filter, (6)time-invarlant filter in the noiseless case, 

(7)splke filter, (8)time-varying filter, (9)detection 

filter, and (10)squared magnitude devices. The normal 

equation forms in optimum filtering problems for the deter- 

mination of the filter coefficients and the error are 

developed for (l)3lngle processes, (2)multi-channel pro- 

cesses, and (3)multi-dimensional processes. Recursive 

computational schemes are presented for normal equations 

of Toeplitz form. For single processes the Levlnson 

recursion for the extension of the prediction error operator 

and the extension of the general filter is developed, as 

well as the recursion to move the output origin. A corres- 

ponding development is given for multi-channel processes, 

as well as a development of the recvrsion to larger 

operators for the multi-dimensional processes. 

The prediction problem for single stationary time 

series is reviewed and the least square and Kolmogoroff 

solutions given. Extension is then made to the multiple 

case, the least squares equations set up and the Wiener- 

Masani factorization described. Heuristic use is made of 

the Hilbert space property of time series. A digital 

computer program for performing the Wiener-Masani factori- 

zation is discussed. 
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ABSTRACT 

This report treats the design of discrete filters for 

the detection of signals caused by nuclear explosions on 

digitized seismic recordings. The theoretical aspects of 

filter design are treated, together with the setting up of 

the necessary formulas for realizing the filters on digital 

computers. Specific discrete filters so treated are:  (1) 

tatched filter, (2)modlfied matched filter, (3)modified 

natohed filter for a multiparameter model, (4)filter for 

the elimination of trend components, (5)time-invariant 

filter, (6)time-invariant filter in the noiseless case, 

(7)spike filter, (8)time-varying filter, (9)detectlon 

filter, and (lO)squared magnitude devices. The normal 

equation forms in optimum filtering problems for the deter- 

mination of the filter coefficients and the error are 

developed for (l)3ingle processes, (2)multi-channel pro- 

cesses, and (3)multi-dimensional processes. Recursive 

computational schemes are presented for normal equations 

of Toeplitz form. For single processes the Levinson 

recursion for the extension of the prediction error operator 

and the extension of the general filter is developed, as 

well as the recursion to move the output origin. A corres- 

ponding development is given for multi-channel processes, 

as well as a development of tne recirsic to larger 

operators for the multi-dimensional proc. .es. 

The prediction problem for single stationary time 

series is reviewed and the least ^uare and Kolmogoroff 

solutions given. Extension is then made to the- multiple 

case, the least squares equations set up and the Wiener- 

Masani factorization described. Heuristic use is made of 

the Hllbert space property of time series. A digital 

computer program for performing the Wiener-Masani factori- 
zation is discussed. 
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I  INTRODUCTION 

The detection of weak aignals from nuclear explosions 

on seismic recordings presents an important and difficult 

problem, both from a practical and theoretical point of 

view. As a result every effort should be made to keep 

theory and practice coordinated and in balance with each 

other. 

Much has been written on the design of filters for 

signal detection, not only in seismology but in all branches 

of science. The present report is unique, however, in that 

here the theoretical aspects of filter design are treated 

simultaneously with the practical setting up of the neces- 

sary formulas for realizing the filters on digital com- 

puters. Therefore by making use of the material developed 

in this report one can right away analyze seismic data 

by use of some of the most advanced filters known. The 

seismic data is required in digitized form, and such data 

is now readily available to Vela Uniform Projects from the 

Vela Uniform Data Center in Washington. 

One of the most important contributions of this Report 

is the development of practical ways to design multiple- 

channel and multi-dimensional filters. This Report repre- 

sents the first least-squares treatment of this problem. 

Also included is the first practical investigation of the 

Wiener-Masanl multiple spectral factorization. Another 

important contribution of this Report is reflected in its 

completeness. Here one can find detailed treatment of 

many important types of filters, some presented for the 

first time from the digital point of view. 
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NOTATION CONVENTIONS 

In order to preserve a general consistancy in the 
notation used In this report, we have adopted the fol- 
lowing conventions. 

1)    Division of the alphabet 

Specific use of the letters of the alphabet 
are assigned in the body of the report. However, 
a general division is 

A 

B      >     Transients (wavelets, operators, 
c      J filters, etc.) 

X 

Y ^      (Stationary)    Ganeral Processes 
Z 

2)    Use of Subscripts and Superscripts 
A  discrete multi-dimensional process is 

designated by 

X t 

where t is the time index 

•^•".•(are space indices 

and A/ is open to any particular interpretation. 

The dimensionality of the process is given by the. 

total number of super- and sub-scripts to the right of 

the letter. Thus, the example above has 4 dimensions 



The order of a process is given by the number of 

equivalent one-dimensional processes in a multiple pro- 

cess. Thus, it is given by the product of the maximum 

values assumed by the superscripts. 

3) Upper and Lowtt case; Script and Non-script tetters 

Unless otherwise defined, the following conven- 

tions for upper and lower case, and script and non- 

script letters will be used: 

Single 
Process 

Multiple 
Process 

Time 
Domair xt rt   rt ^t       ^t     Sit 

Frequency 
Domain X(»K y(-) M 
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2. Discrete Filters for Digital Data 

2.1 Matched Filter 9 

2.2 Modified Matched Filter 15 

2.3 Modified Matched Filter for a 22 
Multiparameter Model 

2.4 Elimination of the  trend components      25 

2.5 Time-invariant filter 32 

2.6 Time-invariant filter in the 
noiseless case 36 

2.7 Spike Filter 37 

2.8 Time-varying filters 38 

2.9 Detection filter 45 

2.10 Computational aids 58 

2.11 Squared-magnitude devices 6l 

2.12 References 63 



DISCRETE FILTERS FOR DIGITAL DATA 

1. Matched filter 

Assumptions; 

(a) The signal s. has a known fixed shape. 

(b) The noise nt is a normal random process. 

(c) The mean value E-fnA is known to be equal 

to zero. 

(d) The covariance <^>tr = E {ntnr} of the noise 

is known. 

(e) Time t is a discrete, integer-valued parauater. 

(f) The observed random process is x. . 

(g) The time period under observation is t ■ 1,2,...^ 

Problem: 

We wish to test whether hypothesis H is true or 

hypothesis H, is true, where 

H .: VN 
Matrix notation; 

X ■ V^i '^p *•••'^M/ 

n = (n2>n2,...,n^) 

B = (SQ, Sp , • • • , Si, J 

-f /n4 

IxN row vector 

IxN row vector 

IxN row vector 

* 
A.X. 4-. 

IN 

K hi"' K 

=|<p  J:NxN covariance matrix of w 
the noise 

(assumed to be non-singular) 
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det <p : determinant of the covarlance matrix <jj 

^ "ly^t/x) ~  T    •• inverse of the covarlance matrix ^ 

A prime Indicates matrix transpose. 

Probability density 

Under hypothesis H0,  x Is normally distributed with 

mean zero and covarlance matrix ^ ; that is, the probability 

density f0(x) Is 

[~i*s*'\ exp [-1 *;*- 

Under hypothesis Hj, x is normally distributed with mean s and 

covarlance matrix $>     ; that is, the probability density f1(x) 

is 

Likelihood ratio 

The likelihood ratio ii, (x) la formed by taking the 

quotient of these two density functions, that is 

' ^^ri j^^' 5^5- */**'+S/lS - yt/lt'^l 
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(since  ^s'-S/^'). The observer will choose hypothesis 

H when 

where A-0    is a constant determined by the decision criterion 

used. Setting A  (x) - A0  ,  and talcing logarithms, we obtain 

the inequality A (x) < 1, is the same as the inequality Thus 

-{{-ayu.*'* s^s'} < jlyA 

or, what is the same thing. 

.^ < x*jji, * i^' 

Decision rule; 

Setting 0 - log 7L^ i S^s' > we have the following 

decision rule: 

Choose H0 (that is, say that the signal is not 

present)  if 

Choose H-L (that is, say that the signal is present) 

If 

t/4.5' > &, 

That is, the decision is based on the test statistic 

AL ff 

*/■*'* I^AA.
S

A 
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computed from the observed process 

^=   (*i>tv "'>**) 

and the known signal 

5=     ^5^^;  •-. **) 

Hence we may say that the observed process x is compared with, 
or matched to,   the signal s.    For this reason,   the filter which 
performs  the computation   *>s'   is called a matched filter. 

Distribution of the test statistic; 

Since  the test statistic x^s'     is a linear combination 
of normal random variables x,  it follows that ^/o'itself is 
normally distributed, with mean and variance as follov.-: 

Under H0   (i.e.  x = n): 

=    £ [  SJL*.'4L its'] 

-       SMS 
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Under Hj (i.e. x = s + n): 

varf-^s'v« ^a?' (the same as the variance under 

H , because the variance of a random variable 

doesn't depend upon its mean). 

Relaxation of the normplitv assumption 

Let us now drop assumption (b), that is, we no longer 

assume that n. is a normal random process, but Instead, we 

assume that: (b-^ nt is a random process with unknown distri- 

bution. 
We now consider a filter with coefficients given by 

&, 

^ 

(L= 

OL. 

Nxl column vector 

H 

The input to this filter is the observed random process x and 

the output is xa, that is: 

Filter 

a 

The mean-square output is defined to be 

£{£*/}-  £{^ä/^}- £{ÄV^aj 

- a! £{*'%] CL . 
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Under hypothesis H0 (x - n, or no signal present), the mean- 
square output Is 

Under hypothesis ^ (x - s + n, or signal present), the mean- 
square output Is 

since 

^H -O >   £{^}*0 ^    £{,;LU] -- J> 

We wish to determine a such that the ratio 

'  / 
Mean-square output under H,         O-S S(L + <l.<pCL        .      O-'s'sa. 
Mean-square output under H      "  7~ s    '"^   ~ri— 0   a. 4>CL *■ r*- 

Is a maximum, or equlvantly such that the ratio 

Is a maximum. 

Hence we require 

£J    (&'£<*.) 3'i'5 4.    - (itfa.) d's'sa. 
da' La-'**-)* 
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or 

a'(J>^ 

or 

The solution Is 

The output of the filter is   / 

which is the same as the test statistic obtained under 

the assumption that n was normally distributed. 

2. Modified matched filter 

Assumptions 

We now wish to modify assumption (a) given in 

Ocotion 1 as follows: 

(a,)  The signal st is given by 

St- c^ 

where c  is an unlaiown constant and ft is a known 

fixed function. 

Problem 
We wish to test whether hypothesis H0 or hypothesis 

H,  is true,  where 

H, : % -cftt/nt   (c^0) 
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Matrix notation 

f » (fp 1*2' ••• * fN^ : lxN row vector 

s = cf 

Likelihood ratio 
The likelihood ratio Is 

The observer will choose H when the likelihood ratio A 
satisfies A< Ae     for some fixed threshold A0     . 
Because c Is unknown, we consider 

instead of A {/%) <A 0     .    The maximum occurs when the 
negative of the exponent of A (t)       is a minimum, that 
Is, when 

J*   ~C   Jt/L-f' +■  JL*/*/'* stovu*^^ 
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We have 

^ = 0-- jC/L-f ' 4-   C  tM •Fu-f' *o 

or 

Hence 

-o»<C'oo 
/nut Ait) = <?^ [c^/'- A.   //tA J 

'•'^'^■^«'''] z(W 

-' [ ^ ^i 
Taking logarithms, we have 

-L(&£1Z c ^A, 
W      y 

Decision rule 

Letting 0-2 log A.0 ,  we obtain the decision rule: 

—— ■ 
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Choose H0 (that is, say that the signal is 

not present) if 

//</' 
< a 

Choose Hj (that is, say that the signal is 

present) if 

(^l\o t^r 

That is, the decision is baaed on the test statistic 

rr£i ^AA it 

computed from the observed process 

and the known 

f- (t.i.-Jj- 
We see that the test statistic is u quadratic function of the 

observations x - (x^^,^,... ,xN). 

Maximum likelihood estimates 

Let us now find the maximum likelihood estimates of c 
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and s. We recall that the density function of x, under the 

normality assumption, is 

The maximum-likelihood estimate of s, denoted by s, is that 

value of s = cf for which f(x) is a maximum. The maximum 

occurs when the negative of the exponent of f(x) is a minimum 

that is, when 

P- (lC'S)lL   (t'S)'   - minimum, 

subject to the constraint that s - cf, We shall now use the 

method of Lagrange multipliers to solve this constrained 

minimization problem. We therefore introduce the undetermined 

multipliers 

^ = (  .*- I   :  Nxl column vector. 

We now wish to minimize 

with respect to s, /^ , and c. We thus obtain: 

-U-hjL +7.'*0 

a-c-f -o 

^.0 
9C 

m-o • 
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Solving these equations, we have 

5'= fr-shl.  - (jC-t-f)/*- 
6/ r l 
* * =   (t-ZD^f = o 

or 

■^f'-zi^' =o 

Hence 

where s Is the maxlmum-llkellhood estimatP of s. 

Let us now find the maximum-likelihood estimate of c. By 

the above reasoning, it is that value of c obtained by requir- 
ing 

^  (^-S^t^-S)'^   6t- c/^^-C-f/" ^imum 

We thus have 

it 
dC A ; JA? 

which is the same c as found above, as we would expect. 

Miscellaneous notes 

We recall that 
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A  6 
t* 

'Z 4>, w 

4> 

(non-aingular matrix) 

Naw it may be shown that the quadratic form ^a/'is  (where| 

indicates determinant): 

yityU. 4' - 
2/     ^ZZ 

hi   & "Hi A/Z 

*,* t, 
*** 4 

• 

^-v    f/v 

^     ^ '/V/ 

i/V 

/V-V 

Similarly 

^/'= - 

4   ^ 
a 

f.   h 
4>    4 
f„   o 

hi    ^2.   '" bn 

• • • • • • 

Hence 

A 

C ' 

4 /) /A. 

• • • 

...      ^     Ö 

• •. > • • 

t    £    -  Ä  * 
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3. Modified matched filter for a multlparameter model 

Assumptions 

Instead of assumption (a-^ given at the beginning 

of Section 2,  let us Introduce assumption 

(a2) The signal st Is given by 

where c1,c2>...,cp are unknown constants and flt,f2t>...,f 

are known fixed functions. 

Problem 

We wish to test: 

fi :   /t ^ %ci^t*'^   (sä***. *#drfu 

Matrix notation; 

ji   ^    ■■  C\ 

\   f      /    ... 1     I 

Likelihood ratio 

The likelihood ratio Is 

 :— 



The 
when 
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maximum of A (x) with respect to all values of c 

^r-   tptf   -0,       or 

occurs 

This maximum is 

■&<<<<* 

ex. 

where we have u..d   [{fArr,y--lfufr an^'y* 

Dpcision rule; 

As before, we let Q - 2 log A0 .    We thus obtain the 

decision rule: 

Choose H0 if      Ou/'Xf uf'}' £"*' ^ 

Choose «.if UAr)(f^r^'7 6, 

L 
Maximum-likelihood estimates 

As before, we find the maximum-likelihood estimates of 

c and s are 
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Let us now find the expected value of c. It is 

Hence E {cj- c so'c is an unbiased estimate of c. Also 

E{%\- £{£*]'   c-f -s 

so s is an unbiased estimate of ». 

The covarlance matrix of c Is 

But under both hypothesis H0 and hypothesis H,, we have 

<^-cf = /ft. . 

Hence 
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Hence c has mean c and covariance matrix {pM.f') '\-l 

The covariance matrix of s Is 

Hence 3 - cf has mean s »cf and covariance matrix r \tu.f  )   t. 

Miscellaneous notes 
A 

We note that the maximum likelihood estimates c and 

's are independent of the scale of the covariance matrix. That 

is, suppose 

s known ^ * (fy      *n/yU.= ft'~ ^y'      ^ere ^ i 

but the scale factor (T is unknown. Then 

independent of CT* . Thus assumption (d) may be so relaxed. 

4. Elimination of the trend components 

Assumptions 

As a preliminary step in the analysis of random processes, 

one might try various methods to eliminate as well as possible 

any trend components. One approach to this problem is to make 

use of the models discussed in the foregoing sections, with the 
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following changes in terminology. 

(1) st. Instead of being called the signal, is now 

called the trend component. 

(2) nti instead of being called the noise, is now 

called the trend-free component. 

(3) As before, the observed random process is x. . 

We shall make assumptions (a2), stated in Section 3, and (b), 

(c), (d), (e), (f), (g), stated in Section 1. 

Problem 

v 
Qlven that xt - 8t + nt, estimate the trend component 

Maximum likelihood estimates 

As a solution to the problem, the maximum likelihood 

estimates of c and s may be used. They were given at the end 

of Section 3, and we recall that they are: 

where ^ 1» the covarlance matrix of the trend-free component 
n     on/-* i^UAMA nt, and where 

/.*  <f' 

Also we recall that we may relax assumption (d) to 

(d1) The covarlance ^f^^,] is equal to 

where 7^ is known and J^ls an unknown scale factor. 

Then we let fi^f ,  and hence/c- ^f1  . Substltuting^.^f""' 

■B  ^ 
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into the expressions for c and s we obtain 

which shows that the maximum likelihood estimates are independent 

of the unknown scale factor, j-A . 

Relaxation of the normality assumption 

Instead of (b) we now assume: 

(b,) nt is a random process with an unknown distribution. 

Least-squares estimate 

We have 

and we wish to estimate c. The least-squares estimate c is 

that value of c such that the sum of squared errors 

T- (■/}t~C-f)('X'Ci'/   - minimum. 

We have 

f'O     :    (4-tfX-SO'O, 

or 

c-fr- */' 

Hence the least-squares estimate is 

C = /^ f' r/f 0" A-/ 

,« 
■ .... ... 



need to know the covarlance matrix 4*  of nt in 

To compute c |*e see that we do not need assumption (d); that 

Is, we do not 

order to obta 

the least 

The lea 

Ln the least-squares estimate c.    This fact makes 

luares estimate «xtcemely useful In practice. 

st-squax'es estimate Is unbiased since 

(and using E\ 

£&- 

Since 
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fU}- Ef^rm'i* £{*}f w)' 
}- cf) 

The covarlance matrix of c Is defined to be 

O'tf-O] 

we h&ve 

<f-c 

Hence the cov4riance matrix of  c is 

- m 
e$-i>(c.ty = 

     

which is 

wr'-f + fwy 
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Best unbiased linear estimate 

We wish to find an estimate c which 

(1) Is linear In the observations. I.e. 

where 

^    4   ^    ^ 

(2) is an unbiased estimate. I.e. 

(3) Is best in the sense that the covarlance matrix 

of c is "less than" the covarlance matrix of any other 

linear unbiased estimate "c", i.e. 

E{Ct-<.)'a-c)} <  £{(t-c)'(?■-')} 

(More precisely, the "less than" aim  <  as used 
here means that 

£{(?-<■)'(?-<•>} - £{(t-cy(£-<)} 

is a positive definite matrix.) 

Using (1) we have 

Using  (2) we have 

c-/f{cA]^ äicUi+E^} 
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Thus we have the constraint 

•fyfi- ' J   *     -/*■/•    Identity matrix. 

Also we have    c-c=nb    so the covariance matrix of c is 

£{(£-c)7£-c)j =    E{(,a)'UJ-)} 

Hence b may be determined as follows: 

Minimize the pxp matrix b ^ b 

subject to the constraint fb - I. 

We may use the method of Lagrange multipliers. Introduce the 

pxp matrix A as an undetermined multiplier. We then wish 

to minimize 

with respect to b and A  . We have 

PA 0 

Solving these equations for b and /I we have 

Thus J^   ~ P'-fV. 

Also fJ-^X gives -'-fj*   T    ~X     =7^ 
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or 

Hence 

j.-.ffi*   t-'-f't-ffi')'1. 

-i 
We recall the notation for <^"  was 

A' * 
- / 

Hence 

/W ^-^/v/>/'; 

Thus the best unbiased linear estimate c of c is 

t-  *J--    ^A/Y/>^ -I 

which, we see, is the same as the maximum-likelihood esti- 

mate obtained under the normality assumption (b). The co- 

variance matrix of c is 

-/ E{it-da-i)] =  />/ - (^f) ■Fyu.^rcf^fj y\-' 

whic> i is 

Sfc-ci (t-c)] =   (f^f)"' 
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5. Time-Invariant filter 

5.1 Assumptions; 

(a) The signal st has a known fixed shape. 

(b) The noise n. is a random process with an un- 

known distribution. 

(c) The mean value E {nA  of the noise is known 

to be equal to zero. 

(d) The covariance 4>tr ■ E {ntnrJ of the rolse 
is known. 

(e) Time t is a discrete, integer-valued para- 

meter. 

(f) The observed random process is x. = s + n. 

(g) The random process x. is observed for t = 1, 

2,   ...,   N 

(h) The observed random process x,. x„, ..., x„ 
•"■linear    " 

is passed into a time-invariant filter with 

coefficients/SQ,^, • •./3M (to be determined) 

(i) The actual output of the filter is 

(J) The desired output of the filter is Zt (t = 

0, 1, 2, ... MfN), where Zt is a known fixed 

function. 

5.2Problem; 

We wish to determine those values of the coeffi- 
cients   y^j,   ß^,  ..., &   such that the mean of the 
sum of squared-errors between the desired output 
Zt and the actual output yt is a minimum, that is, 
such that 

A1W 
•ittoin* 
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Schematically, we have: 

Filter 

/^o,^!,   ..-.^M 

5.3 Matrix notation; 
We define the (N + M +1) x (M + l) matrices: 

t *. 0 

x = 

^- 

N 

§ 

o o 
0 o 

* 

5, 0 
5. Se 

SA, 
S 

o  o 
o o 

yt, o 

0      0 

4-/ 

0 
0 

<5 

Thus 

X- ^/V 
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Let y, Z,  and e be the (N + M + 1) x 1 column vec- 

tors 

7 
y .4*Af 

Z- 

ffttAf, 

» ^-zy 

'MW. 
and let A   be the (M + 1) x 1 column vector 

/ 

A 

^ 

Thus 

.- x, 7" Y 

5.^ Determination of A 
We wish to find that value ß    oi  ß    that mini- 

mizes 

J= Ei%e 
lV^y}' £( (*-?)'fry)}-Ha-XfYfrvl 

Now 

Ma-W'M- tU'*-*'x^rt YX'VJ 

 ■m 
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Because X'5^/V    ^    £{#} *0>£(#'}*(?> 

we have 

Hence 

or 

&-0     ■   -^'S+tf'S'S+Zp'liiurt'O 

S'z  *   S'Si + EifJ'N} I 

or } - [S'S* BiMtf's'z 
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6. Tlme-lnvarlant filter in the noiseless case 

6.1 Assumptions 

The assumptions are the same as those 

given in Subsection 5.1, except that now It 

Is assumed that there Is no noise (i.e. n 3 

0). In other words, assumptions (b), (c), 

(d) are omitted, and (f) becomes 

(f,) The observed process x. Is the fixed 

function 8t, i.e. X 5 s . 

6.2 Problem 

We wish to find that value /» of /3 for which 

the sum of squared errors between the desired 

output z.  and the actual output y is a minimum, 
that is, such that 

6.3 Determination of 6 

Prom the result of the last Section (Subsec- 

tion 5.4) the desired f   is 

/ = [s's]"s't. 
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7. Spike filter 

7.1 Problem 

The spike filter Is a specialization of the time- 

Invariant filter. The spike filter is designed 

such that with the signal as Input it will pro- 

duce little or no output while the signal Is en- 

tering the filter, a large positive spike when 

the signal has fully entered the filter, and lit- 

tle or no output thereafter. The spike filter is 

also designed to have little output when noise is 

its only input. 

Suppose we want the spike to occur at time t 

Then we let the desired output «t. be 

0 uMiltt t t0 \- 

or in matrix notation 

z. - 0 
I 

0 

[0 J 

where the one occurs in the position of tf . 
^0 

7.2 Solution 
With this value of *,  the desired spike filter 
is 

/ =   [S'S+^A/'A^Vz 



8. Time-varying filters 
38 

Consider the diagram: 

Ideal: 

Actual: 

We let T be the present time.    We assume; 

(1)    The signal Bt is of the form 

where v.   is a random process with E {v   ]   =0 

and known autocovarlance $t    (t,s) = E {v
t

v
sT > 

where 

cr c2,   ... cm 

are unknown but fixed constants, and 

flt' f2t' •,•' fmt 

are known, non-random functions of time t. 

(2) Thi desired output at time T Is 

where the coefficients k. ( -1» < t < oo ) of the 

ideal filter are known. For example, in case 

of prediction U   units ahead, k. =  S m. ,  i. »i^ ^ ' t    'W- a:, t  j ■ f. 
0 UT**- 
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T ...   r^.t   <■        T** 

-'^l^Ar * u. 

(3) The actual output is given by (at time T) 

where the coefficients of the finite filter a,, r 
ap> ... aT are to be determined so that 

imum £|CzT->yT)Z] = mlnimu 

under the constraint that  the actual output y_, 
equals the desired output Ä« when x.   ■ s.   and 
for all possible constants C,, <ö0,   ...,  6   . 

id m 
This constraint may be written 

^ |Ä^ 

ui 7- 

Letting c,  = 1,  CJJ =» 0,   ... 6    = 0 we obtain s.   - f,., and 
so 

£< ^ - I \ it 
Similarly, we obtain 

2^   =^^4 Jfr. 
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Hence  the constraint is 

IS ^= I ^ ^   */">■>>■■'> />n* 

(4) The actual input is 

where the noise n. is a random process with zero 

mean E {ntj = 0 and known autocovariance 

and known cross-covariance with v^: 

tJ^' E^<]- 
End of Assumptions 

Let us now transform to matrix notation.    Write: 

row 
vectors 

1 X «o 

row 
vectors 

■ V82»   s2'   • • • *   S'p/ 

■ (ni»   n2'   • • • *  ni<) 

* \x2*  ^2'   •••'  ^r' 

) "   (f Jl       ,- 
" (a^, ag/   • •. > a,-) 
- (VJL* v2, 

- (...,  v_ 

■ (    . . . >  B_ 

■ (   ..,, k 

• • • »    I  4mj 

vT) 

Vn»    v1»    •••) 

-1 

0'   vl 
a0' 'i, • • •) 

k-,, 
( ..., fJr;L, fJQJ fJ;]L, 

f - :a mxT matrix 

Co   (c,, >   • • • > c
m) 

P m an m x   oo matrix 
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Then;     s » v + cf 
S - V + cP 

Fk'  ■ fa'     (the constraint) 

eT - Sk1 

x - a + n 

yT = xa1 

E |(zT - yT)2j   - E   ^(Sk'   - xa-)2j E(8)  - cf 

. E(S) - cP 
E{xJ   - E   { S]   » cf 

.yT » xa'  -  (3+n)al 
E(yT]     ■ E(8J a'  - cfa1 

— J^IOJ a    ■ of a' ^~^. 

(^because of constraint ^—^ 

zT - Sk' E|zt j     - E {s} k'   - cPk' 

'Let us now determine the optimum operator a -  (a,,   ..., a ). 
The mean-square-error is 

^a-lc&K' 

where 

iThe constraint Is Pk'  - fa'.    Let ^    -  (^   ,   .. .,1 • ) 
be Ugranglan multipliers.     Hence we minimize  (with 
respect to a): 



Thus 

or 

^ 

da. 
-a. 4>    + s.<Ld>    - 2li    = 0 

t'L SCI 

(1) -Xl + 4>Z7.~    CL P^ 

Necessary and sufficient condition for the con- 
strained minimum. 

Now:     Let u ■ v + n,   so that x=u+cf, E(u)=0. 
Hence 

or 

(2) bsAu+ft^   LMM t^ ^ t^Ks t /»t-n. 

Now 

or 

(3) ^   Ä   i[f{v/«.]4  F'c'c^] 

Eq.   (1)   is :*/'<£.    ^^ 

The constrains is Fk'   = fa'   or TF^TT 
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Subst (2) and (3) gives 

U.U 

Thus 

(M M + .A E(v'u.) -  A^«. 

Now define p and q to be 

(M becomes 'Xf^*  f ^u.'  ^ K Then a«. 

or 

(5) If-   *?■ - a. 

This is the desired solution except that we must de- 

termine 'X . To do so we substitute a - q + X p into the 

constraint kP' - af' . We have 

which is 

or 

*ft'- J.F'-f.f' 

2- UF'-}.■(•) (f) 
Hence the desired filter is 

*= f.+ aF'-fXffj'f 
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or 

t- JE(V*]*:1 +{Jü:'-Mm£t'XHt {")"<£ 

By letting T vary, we thus obtain the optimum time-varying 
filter a as a function of T. 
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9. Detection Filter 

Consider the following case: 

Ideal:    Signal  >Ideal filter 

Actual:  (Signal + 
\random noi; 

Finite filter 

.Desired output! 

Actual output 

(1) The Ideal System: 

We assume that the signa1 has the form 

i,-I 

• 4 *W« 

fit ! ^ ) ' ' ' *> Ut 

are p known functions of time t (t an Integer) and where 

are p unknown constants. The ideal filter is an infinite, 

non-realizable, time-varying filter described by known 

coefficients ^Tt . The desired output is 

2. 
T*-oo T^-o* 1 = 1 

= 5^1 KTtf^ = ic^t 
iff  TT-«        i-'1 

00 

where   ftt =   X   ^>   ^>t     is known' 
r--oo 
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We are interested In the desired output zt over the time 

interval t-l,2,...,N, and so we let the UCN row vector z denote 

9 (Z,* fzi"'}2*) 

Also we let g be the known pfcN matrix 

; 

I P<  fa ••• ^v 
... 

and let c be the unknown iXp row vector 

Then, clearly, the desired output over the time interval of 

interest is 

Z.- C L 
where c is unknown and g is known. 

(2) The Actual System 

We assume that the actual input is 

^   =    5^/^ 

where Bt is the signal, as given above, and nt is random noise 

with zero mean, i.e. 

where Ej--) denotes ensemble average. 
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We assume we know the actual input x^ over the time Interval 

t»-Mfl,-Mf2,.. .,-1,0,1,2,. . .,N, and so we let the I)((MfN) row 

vector x be 

K " ('^„'^.i'-' *,>*.'*:.**>->**) 

We are interested in the desired output z over the time 

interval t-l,2,...,N, and so it follows that we are interested 

in the actual output yt over th 

we let the 1VN row vector y be 

in the actual output yt over the same time interval. Hence 

Let the Nx(MfN) matrix 

£=• 

^-Af*/    \-H*Z 

a. 
**>-> M*3. 

a.       et 

a.       a 

A.      a. 

/V 

a- 
x* 

A/A/ 

denote the finite,  time-varying filter, where a is such that 
Input x and output y are related by 

Note    Prime indicates 
matrix transpose, 
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Since  ^ *   \*   %      ,  we write 

where 

-= 6 

We recall that 

Hence define the Px(MfN) matrix f to be 

f. 

S. 1 ...      f       I ■• / 

fft-M*,     -ffr^x y    ff*. ^ 
/^ 

or 

■f - L^J  ^^ i* 'A-j*' dttCts-MHsH^M. 

Then 
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SO.    + ^-a-    ■" C'Ä. * /K«, 

The actual output y is therefore 

which has ensemble average 

£{fi* £{cU'i *B(*.*:] = d*-' 
since ofa1 is a constant, and 

In summary: 

The actual output is y ■ cfa' + na'. 

The desired output is z - eg. 

The ensemble average of the actual output is E {y> cfa1 

Definition  The actual output y is said to be unbiased 

provided that its ensemble average E {y\    is equal to the 

desired output z regardless of the value of the weighting 

factor c, i.e. provided 

cfa' ■ eg regardless of c. 

It therefore follows that y is unbiased if and only if 

fa' - g 

iL This is called the unbiasedness constraint 
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Schematically, we have: 

Infinite time series: 

felgnal      S.-ic.faj  

Finite time series: 

Ideal filter 

'Actual Input for 

t- a S-f/n = cf+/ny 

Desired output  "A 

?,ieslred output for 

z = c ^ 

Finite filter Actual output for\ 

/y. s r/.*.'- Cfa.'+'na/ 

Unbiased condition: 

EW^^^cÄfV-r 

(3) Unbiased estimation of the welghtlng factor c In the case 

of white noise 

Let us first consider the special case In which the 

random noise nt Is white, I.e. 

where 0-* Is the common variance. Since x. « nt
+8t with E.^"t) = fy 

we liave 

^i/rtrS  x^Uil  E(^J = S=cf 

where 

Thus we have MfN observations 

concerning which we make the following assumptions: 
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(1) Their ensemble averages are linear combinations 

of the p unknown parameters £■(!<,,...., cO Thus 

£{*t}- f 9^       Ct'-H*i. •,//) 

or 

£{*}' c-f 
where the matrix f of order p"k(MfN) is known and is 

termed the design matrix, and where the row vector 

c is unknown. 

(2) Their covariance matrix is the product of an 

unknown scalar (T2 and a known positive definite 

matrix ^"{.^t/J  * Thu8 

or 

«•V •   £{Gt-s)'(4-s)j« ffV^tj 

(3) In the special case now under discuaslon« ^ * J - 

identity matrix, i.e. each observation x«. has the 

same variance 0"  and every pair xt>x Is uncorrelated 

(tffr). I 

(4) We assume the rank of f is p, and that p < KfN. 

According to the principle of least-squares, we estimate 

^/i^A.»-■*< ^1'simultaneously by selecting those functions 
^/»Ca>'••^•   o£/^A'",^,^"^  which minimize 



52 

with respect to c^Cg,...,^ considered &8 Independent variables. 

We have, by differentiating J with respect to c and equating 
to zero. 

|   Hi'* ^P 
or 

which are the normal equations, or equations of estimation for 
the parameter c.    Since f has rank p,  there is no non-null 
vector v such that  .ri <■ 0    and therefore (V/X/ir^ir+W i8 

positive,  so ff•   is positive definite.    Hence the normal 
equations have a unique solution. 

Since 

we have 

fc- ~z(*r-cm 

¥1   .        2 //' 

That is, the matrix of second-order differential coefficients 

of J with respect to c is 2ff', which is positive definite, so 

J has an absolute minimum when C* £ '   faf^ff-f')'! 

Now let us consider the ensemble average of c. We have 

£{c?«   £fa4'Xffy'] '  *{*}-fW 
But l{-l!.]-s--C-f.      Hence 

Hence the estimate c is unbiased, in the sense that 
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The covariance matrix of c is 

= (ff-r'-f EU-*] f'(ff'J' . 

*o-l(fn". 

Tlie least-squares estimate c of c Is a  linear function 

of the observations x.  I.e. 

O ^[ftff')"]*  **      JMi^dftte fflfJ 

Consider any other linear estimate of c, say 

rid*    (M*rf) * f-   ) 
Because 

f/c-j-- £{^i-- WL*   c-fL , 

we see that '^ Is unbiased for all c provided that 

The covariance matrix of 'c Is . 
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We now wish to show that the least-squares estimate c" 

Is better than any other unbiased linear estimate o* in the 

sense that, for each parameter c... 

Proof    We have 

A'Pi * a-A)'/2-^= UXä -Cä-XL ■* L'L 

We recall that 

Hence . >    ..-i xv 
UK-UfCff'T •   Kff)-  (ii') o 

XL - (ar = [(ff')■']' - Kfn'l" - iff')'' ® 
AlBO , 

Using (Ji @K5, «a have 

>'A+ a-A)VL-A) -- ^f/o"'- W- (ftr'ii'L 

Hence 

Each diagonal element of cov(c,c) is therefore minimized if 

the corresponding column of L-'X consists entirely of zeros. 

Hence c is the best linear unbiased estimate of c. 

QED 
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(4) Unbiased estimation of linear combinations of the 

weighting factor c In the case of white noise 

We now wish to consider tinblased linear estimates 

of the desired output z-cg, where c Is the unknown weighting 

factor and g Is a known pXN matrix (see page   ). Suppose 

that z - xi Is an unbiased estimate of Z. That Is, 

whatever c. Then 

The covarlance matrix of z Is 

Consider now the estimate 2. - Cf - AL K Q    where c is 

the best unbiased linear estimate of c. Its covarlance matrix 

18 

Now 

^f^'i -€£'(*f'yy -rm'u ^^ 
• JL'X. 1' 7 

Therefore 

c^Ä-- <r; a^ ^ xyty^a-Ya-Xf) 
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or 

^(iD- anr($fi)+ o-'u-^ymp 

.r*   A. 
Each diagonal element of cov(z,z) la always less than or equal 

to the corresponding diagonal element of co\i{z,z), which shows 
that 

7-=    C 0    =    s*   X 7 " ^ V 

is the best unbiased linear estimate of the desired output 

(5) Unbiased linear estimation of the weighting factor c 

in the case of colored noise. 

We now drop the assumption that the noise is white, 

that is, we drop assumption (3) on page 

Let T denote the lower triangle matrix such that 
4> = T/J   and define «(.--^T"'. 
Then 

and 

= (T'T'^J'TT
1
  - o-'-fr-'YT'Tr' 

- o-1 (rry IT1
 = o-% 

-( 
BO   Li* siLj'     is white noise. 
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Since T- IS non-singular, fT  has the same rank as f, which 

is p. Using the results on page    ,  we see that the best 

unbiased linear estimate of c is 

- K.L(fr')'{(fT')(fT■')']"] 

- -xr'Kr'yrlirr" r]"] 

*(r'r") I'iur'T"')*'} 
* (T'lT  f {UTr)"-f'}" , n 

c .x f /' {tirPr^ 

The covarlance matrix of c is 

^cV)-  ^[^T-'^T-O'] /n-' 

6-' [ir'T-'^T , n 

Ü^-Cc^)-      ^(fcf'-f) 
'■rl 

The estimate c is the value of c at which the quadratic form 

(j-cf) <t>"ft-cf)' 

attains its minimum. 

(6) Unbiased linear estimation of linear combinations of the 

weighting factor c in the case of colored noise 

The best unbiased linear estimate of 2 - CO   is 
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^ £; = ^^'/'{f>-'f'/'; 

with covariance matrix 

<**■(*,£)•   <rzf'{fT-'T-"f'}" 
Cl 

Uv d.z) •■<r*f'Ufj'y'/ 

(7) Determination of the finite filter a' subject to the 

unbiased condition 

We wish to find a' such that E(2-y)«(z-y) is a minimum 

subject to £<*■'-ft        •    We have 

J= E^-^/Cz-jOJ = rffc ö - c W-,*■*.')'(CJ - c -/kW)j 

Introduce the Lagrange multipliers^3 (%,-,'Xf)   and minimize 

J ■♦ Z'kt 4" {&')  . Setting the derivative of this equal 

to zero we obtain C p* ,\t   . Solving the simultaneous 

equations for a and ^ ; 

we ootain 
W - ; 

\-/ 

Hence the actual output is 

;».   f(UW 

..    J *'   */ J;iJ:'fSAr'I>\1/» ~   ~r m7,a        as given in sub 
.y*,t<L*'i'<t> f [f? -t ) f~   £ 'L? tlon  (6) above. 

10.    Computational Aides 

Suppose we wish to divide the z-transform 

sec- 
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-rr/ \       '*L 'tu.-' ,>• L-ii 
»f/'L 

of the finite operator ^J ^.-^^n by the z-transform 

.,t-/ .  y 7'
Ji--'i./... ^ ^  2 ^ ö^I 

XK- 

of the finite operator ^ ^/,<x- ....o,/. We have 

/W/^l. 
^2   ^/4rZ   i> ^z 

s)$ i -s>\.~JL »     /***■ "M ~A. 

Then 
A ' A. 

A.- <*-'. 

«. 

^   «, 

^ = 

-v 

A, 
< 

0 0 

oSt   0     0 *o 

1 *,  'S,   0 a-, 
^ *2   *.    ^o ^ 

9 
^3   ^ < % 

v0  0    0   0 o.o 

^ ^X ^ ^0 ^i 

^f «^j ^ ^ Äv 

and in general 

^^^■^^^hi 
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where 

A.- •A 

vit 0 C 6 
*t, **$ 0 o 
«^ ^ oC,      o 

* * m    *   * 

< 4-, ^ ^-i 

indicates determlnent. 

Example 1;  Divide 5Z6 + 3Z5 + Z4 + 2Z3 + 3Z2 + 6Z + 7 

by 2Z + 3Z3 + 1Z2 + bZ + 7. These coefficients are 

(3; 3, 1, 2, 3, 6, 7) and (2, 3> 4, 5, 7). The 
quotient is 

Kzf'-i- /(, 2.+ /4 
where 

or 

^.0 5 

4 B I 
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11.    Squared-magnltude devices 

11,1 Assumptions 
(a)    The finite time-series 

x0'  ^^l'   * * •'  X}(j 

represents (Nfl) consecutive observations 
from a regular stationary stochastic pro- 

cess with zero mean and with autocovariance 

<£>(r)-  E{'£      .*] 1 t-hf  t 

and spectral density ^(w). 
(b) The infinitely long time-series 

formed by letting ft » 0 for t < 0 and for 
t < N is the Input to system with Impulse 

response b.. The Impulse response b. may 

be infinitely long in both directions. I.e., 

bt may be different from zero for both t-*-00 

and t -^ - oo . 

(c) The output time-series y., which in general 
will be infinitely long in both time direc- 

tions, is 

(d) The output y. is the Input to a squared-mag- x, £- 
nitude device whose output is y^. . 

(e) Finally, y.  is the Input to a device that 
2 suma y " from t»-00 tota©0 and then 

t 
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divides the result by N*l . Thus the out- 

put, denoted by ]P , Is 

Z ^-^rlJc 
Schematically, we have 

l^t-yy^Wmt 

•'•4z ,**-.**■** ^■•l-l.rtf.i:.,, 
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3. Normal Equation Forms In Optimum Filtering Problems 

In section 2 of this report the formal equations for 

several types of filters (matched, time-Invariant least 

square, time varying, etc.) were developed. In sections 

3 and 4, we will concentrate on the time-invariant least- 

square filter. However, we will generalize this case to 

include both multi-input, and rauIti-dimensional processes. 

Section 3 develops the normal equations for single, 

multl-input, and raultl-dimenslonal process optimum filters. 

Highly efficient computational schemes for solving these 

equations are given in section 4. 

The transient autocorrelation of a complex single 
process Is standardly written as 

where x Indicates complex conjugate. 

If we think of x    as a matrix valued process (real or 

complex) and X as the transpose of X, then the auto- 

correlation of x can have the same formal definition. 

This convention will be used throughout section 3. and 4. 

in order to preserve the I'ormal similarity of the differ 

ent systems. The reader will note that this alters the 

form of the single process development as was given in 
section 2 . 

3.1 Single Process 

The single process is characterized by one set of 

numbers corresponding to discrete intervals of time. 
Thus, the series 

St3 /. , .5, .25, .U5, ... ^s'^»4. «•• 

■ 
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corresponds to the signal 

5(0 
0       t<l 

In this section we will determine the optimum least-square 
filter for operating on such a process. 

3.1.1 Assumptions 

a) The signal 5( has a known fixed shape. 

b) The noise >ie is a random process with unknown 

distribution. 

c) The mean value E {Tit]  of the noise is known 

to be zero. 

d) The auto-covariance of the noise E pi/ "Äj j is 
known. 

e) Time is a discrete integer valued parameter. 

f) The observed random process is 

g) The random process is observed for t • 0, ^ i ..,A/, 

h) The observed random process in convolved with 

the coefficients of the impulse response of 

a linear filter ft..*fn     M<■ M    (to be de- 
termined) . 

i) The actual output of the filter is 

J) The  desired output of the filter is ft t*h-l)My...N 

where tt   is a known fixed function. 

3.1.2 Statement of Problem 

Determine T  such that the sum of the errors squared 
is a minimum: 

it7H'\   ** ' y^ j  - ^ 'T'»"** 
(3.1-1) 

___. 
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^V 

n: desired output ] 
; 

\. 
Input        \ 

3.1.3    Matrix Notation 
-* N-M + 2- 

Iter j/ Actual Output^ 

S = 
SM-I     S, »H-l 

% 'w -H»| 

t 
M 

1^ 

n 
H -J 71- •n. 

^•M-i   -n 7t 
*-( "-( 

^. 7L. 
-)l M-NH 

2 - 
/ 

^"•A] 

(3.1-2) 

(3.1-3) 

(3.1-4) 

(3.1-5) 

(3.1-6) 

(3.1-7) 

(3.1-8) 

(3.1-9) 
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Thus 

r X • y (3.1-10) 

3.1.4 Determination of the filter T . 

Let «< be the expected value of the sum of the 
squared errors 

£Etce} e-^e    transpose    (3.1-11) 

= E {u~fX)uZTx)} (3.i-i2) 
Now, if we take the derivative of oC with respect 

to r and equate it to zero in order to minimize eC    , 
we find 

£{cXJ-0 (3.1-14) 

Thus,   the condition that  aL   be minimized is equiva- 
lent, to saying that the error   e    must be nornal to the 
process     *   .    For Uiis reason, this equation is known as 
the normal equation for    f    . 

Now expand the terms in the normal equation: 

£ / *X - f xx} »ö. (3-1-15) 
But, 

X * S + N 
E {N} • 0. 

and 
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Thus 

^( SS +  Z{NR]) -- z 5 
If we examine the multiplifiation    S S      In detail 

(3.1-16) 

(3.1-17) 

5 5 -- 

SH-I    5 n 

>n-i    bn-i 

5* 

SV-I 

D i      •  •  •     3. ̂    ri'-i 

S « S«-» «• •    5 i 
• • • 
* • • 

5* Stt't •••    S»f-rt-t\ 

(3.1-1C) 

we see that the multiplication of the first row of    S    by 
the first column of    D   ,  the second row by the second col- 
umn, etc.,  is like the   0   la^ of a transient auto- 
correlation of a portion of     S  .    Since each multipli- 
cation is taken over different limits, the terms along a 
diagonal of    5 5       will not be the same. 

For ease in computation, we desire that the term 
SS i'£\Hfi}   be Toeplitz,  i.e.,  that the elements along 
each diagonal be the same.    This can be accomplished in 
two ways: 

1)    lfh/»f1 and     S    is a stationary random process, 
then we make the approximation that 

N 

^777   L M' -E(s.vs,j (3.1.19) 

The normal equation becomes 

f [E(5S   -A^jj  «  E[?S] (3.1-20) 

or 

f    R 3 
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where   «'Eiss+m (3-1"21) 

g ' t{ts) 
2)    We assume 5 is a transient. We then redefine 

the matrix S to be 

S' - 

So   S,   . . .    s*   0   .  . .    0 

0    So . . • Sv-, s« 0 .. ö 

: ■ • • .     ' .0 
o • ■- 0 s* s, . . .   Sv 

and the outputs 

y  : 
/' '♦"a-i j 

['. v**t '] 

The normal equation now becomes 

(3.1-22) 

(3.1-23) 

(3.1-24) 

(3.1-25) 

(3.1-26) 

or 

where 

H = 

f H   - 3 (3.1-27) 

Us    S'S' *E{ ^^j (3.1-28) 

5 ;   3'5' (3.1-29) 

re   r    ... rM-( 

: 
r,   r0    ... 

1 (3.1-30) 

r         K          ... r. 
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r   pr (3.1-31) 

^  [3. 3. ...   jJ ^2> 
3.1.5 Determination of the expected error ^C . 

From equation (3.1-11) we defined ^ to be 

^ - E(e e } (3.1-lla) 

If we substitute      e -   2 - ^ X       .we find 

öC  -   E ( C (i -/Xj ) (3.1-33) 
But,  since    e   is normal to     ^    and     f    is a linear op- 
erator, we get 

*  - E[ e  *) 

-- €{{i- (*) *) 

* E { *i '   f* *} 

=    H i  -   f 3 (3.1-34) 

since    f fij  - ^ . 

3.1.6 Prediction 

A special case of interest is that of predicting future 

values of a series from past values. For this case we set 

the desired output to be the signal at some future time: 

Z ' Sk (3.1-35) 



72 

where k      Is the prediction distance. The normal equation 
becomes 

Now, if there Is no noise, this takes on the form: 

(3.1-36) 

r. 

.^ ^ ••■ ^ • »i J 

(3.1-37) 

3.1.7 Prediction Error 

In many cases we are more Interested In the error In- 
volved In predicting rather than the actual prediction. 
Equation (3.1-8) defined the error to be the difference 
between the desired output and the actual output. This 
can be written as 

e » z - f X 

-  sk- (5 
(3.1-38) 

since we have assumed that there Is no noise Involved. If 
we define 

K-l er^s (3.1-39) 

and expand 5  suitably, then the error can be written 

'    '   f'S (3.1-*)) 

nämiiiNin IHM,,!?!  
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3.2 Multi-Input Processes 

The multl-input process is characterized by having 

several separate time series. These time series are ar- 

ranged so that each point in time is represented by a 

column matrix where each term in the matrix corresponds 

to a specific time series. This leads to the idea of a 

matrix-valued time series for which we wish to find a mat- 

rix-valued least-square optimum filter. 

3.2.1 Assumptions 

a) The  ^x/    matrix-valued signal   St   has a known 

fixed shape 

% -- 

b) The nxl matrix valued noise ^t  is a random 

process with unknown distribution. 

c) The mean value of the noise ^(V) is known to 

be zero. 

d) The covarlance of the noise ETf^. ^ j is known. 

e) Time is a discrete integer valued parameter. 

f) The observed random process is 

Xt -■ 5t + n, 

g) The random process is observed for t : ^, ', ... A' 

h) The observed random process is convolved with a 

yfxn  -f« H matrix-valued linear filter 

{,...£, "* v (to be determined), 

i) The ^«1  /sn matrix-valued actual output of 

the filter is M 

J) The JPx / ./4 >i  matrix-valued desired output is 

Zr t ^ /I-/, A7, . , ., A/ 
where  ^  is a known fixed function. 
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Using these assumptions we can now determine the fil- 

ter f by following the development for single processes 

(3.1.3-3.1.7). Each term of the matrices that are defined 

there will now be a matrix rather than a scalar. This 

is essentially only an interior .grouping of terms within 

the matrix. If this grouping is removed, leaving the in- 

dividual scalar terms arranged as they were, the matrix will 

have a normal configuration and interpretation. 

The normal equation is 

U ^•■■^J 
r, 

'•»»»I '-t "'i r. 

U'^--- 3-] 
(3.2-1) 

where the expected error is 

(3.2-2) 

Now   r-    is a   n * H    matrix which contains all terms of 
the    iu   lag of the autocorrelations and crosscorrelations 
of the input series.     (Note that     K; • r.     ).    Likewise    a, 
is a   X* r\     matrix. 

The restriction in the assumption 3.2-  h)/  l)(   aM</   •) 
tliat    >f« Ki     follows from the fact that we can'make 
only   KJ     linearly independent combinatib is of the inputs. 

3.3 Multi-Dimensional Processes 

A multi-dimensional process will be characterized 
by a multi-dimensional data array.    In two dimensions a 
jf*"''1      array might have the form 
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* *''*       •     ■ .         X""1 

*'•' *il      .     . x*.~> 

K^' *-''    •     • y~-'m> 

(V/e make use of script symbols in order to emphasize the 

multi-dimensionality of the process.) 

For some applications, one of these directions may 

be thought of as time. With no loss of Generality, we will 

suppress this interpretation for the development, 

3.3.1 Terminology 

a) Dot Product 

[*^J = £ .-•"^'••••• 
(3.3-1) 

b) Displaced Dot Product 

r c. .. -.v-W-J = ^ <'•" y-^'--^-    (3.3-2) 

c) Reversed Dot Product 

(3.3-3) 
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d) Convolution 

*""'   - [ y'"-1'. y-*«••;«•'-] 7'   '  "J (3.3-4) 

3.3.2 Assumptions 

a) The signal x3     -oo «: ^ < -o   has a known 

fixed shape, 

b) The noise  V' ^ - — <.,<-   iS a random 

process with unknown distribution. 

c) The mean value £ { yx''   '■"j   of the noise is known 

to be equal to zero. 

d) The covariance £ [v{'  ** n*'   '"j of the noise is 
known. 

e) The dimensions are discrete, integer-valued 

parameters. 

f) The observed random process is 

^t     -   ^a -  TT. 

z)    The observed random process If1'   *"   is con- 

volved with a linear filter with coefficients 

/ ' " I « (| * >»f4     (to be determined). 

h) The actual output of the filter is 

i) The desired output of the filter is ^,''' '" 

v/here ^  is a known fixed function. 

«> < tjl < 
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3.3.3 Statement of Problem 

We wish to determine those values of the coefficients 
/'•■'•' I i tA s »nj,   such tliat the mean of the sum of the 
squared-differences betv;cen the desired output ^   and the 
actual output 'M is a minimum; that is, such that 

<K   --   £  l^-^y} = minimum (3.3-5) 

Vie define this difference to be 

g1'"'"     .- -,''■ '*  - n/'"'* (3.3-6) 

3.3.'l Solution 

We wish to find values for /'"    \ * t't * m< 

that minimizes en  ; 

■ El { (^ '" -^', ")* j (3.3-7) 

Takinc the derivative, we find 

^   -o ^ c(«'•■'■ •—''■, s--} -0 (3.3-8) 

Thus, we see that this minimum criterion implies that the 
error %    is normal to the process 36 when dotted with 
it over the dimensions for which / is to be defined. 
For this reason, this equation (3.3-Ö) is known as the 
normal equation for  / . 
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We can expand this equation to find 

(3.3-9) 

But since 

and 

v/e have 

y*'\([^"j',k' '•■;-'-^'-'"j*c[v>"'^-.^...j)] 

oi',  if we let 

"<-11 • • k* • ■j» •• \w-j«/  - 

and 

3 
j-     j« 

(3.3-10) 

(3.3-11) 

(3.3-12) 

Then v/e have 

[r",v-j,k"-j~j ^ f ^  IN^-^ (3.3-13) 



79 

3.3.5 Error Estimation 

We can also find a value for <?( 

<* ; ^[(f '--[/'■"",*'■■'• '•■'"])']    (3.3-14) 
But, from the normality condition, this Is 

<* = Ely- r" [*■'■'-'',?■'■']] 
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4.    Recursive Schemes for Normal Equations of the Toeplltz 
Form, 

The solution of the least-square optimum filtering 
problem as shown In section 3» Involves solving a set 
of simultaneous equations.    In general, there will be 
one equation for each coefficient In the filter.    The 
time and space requirements of a standard simultaneous 
equation computer routine for such filters Is prohibitive 
for almost all non-trlvlal problems.    This section out- 
lines several more efficient schemes for arriving at the 
desired filter. 

These schemes take advantage of the special forms 
of the autocorrelation matrix /?..    in the single and 
multi-Input cases,   R    has the form 

r,    r, r,    . . r...l 
C.     r. r. r„., 

^      K, r.    . . ■    r„.t 

^•««t • 

where     r,- -• 7:,-     .    In the multl-dlmenslonal case we could 
formulate a multl-dlmenslonal matrix that would have the 
same property.    That Is,  In each case, all terms along 
each diagonal are the same.    Thus, given the top row 
( and possibly the left column If    r, t -ft r,)   ) the mat- 
rix Is fully specified. 

The recursive technique involves beginning with a 
filter of length    1    ,  using this to find a filter of 
length   2,    etc.    At each step of the process, we first 
find a vector  (the prediction error operator) of length 
»»     that is normal to each row of the matrix.    In the 
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multiple cases we must find more, than one such operator, 
This operator Is then used to increase the length of 
the filter and of the operator Itself. 

Once the prediction error operator for an auto- 
correlation matrix    R    and the optimum filter for a par- 
ticular    $- [$>       $ **   ^    inhoraogeneous part of the 
equation have been found,  the optimum filter for which 
the Inhoraogeneous part is shifted by one    (to, say, 

S'* ^3° " 3*-'J  ^ can be d^wlned by a recursive step. 

The principal advantages of using the recursive tech- 
niques are time and space savings.    The standard solu- 
tion of simultaneous equations requires time proportional 
to   "      and space proportional to     n *...,    The recursive 
technique reduces these requirements to    «1    and      M 
for time and space,  respectively. 

An Important side benefit of using this scheme is 
that we can compute the expected error at each step of 
the process.    This allows us to formulate a criterion 
for determining the length of the filter.    As the filter 
becomes longer,  the expected error will decrease and 
then level off at some value.    The shifting of the de- 
sired output  (the inhomogeneous part of the equations) 
may also produce a decrease in expected error. 

The development of  ine recursive scheme for slngle- 
and multi-Input cases will be made using two different 
notations.   The first notation (labeled Expanded Nota- 
tion)    will be the matrix notation used in section 3. 
The second notation (labeled Compact Notation) will in- 
volve the use of a set of vector operators,    "mus, we 
will define the vectors: 

*)    r   -- fr,, r, .., r„ ) autocorrelation 
b) *Ci   •Cfl./'a,, ..."*„) prediction error operator 
c) Hb  ' (Mb,,%,, ...rtbH)        hindsight error operator 
d) V   :  imf,,\,-*f»)       optimum filter 
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(The prediction error operator and hindsight error opera- 
tors will be defined later In this section. The super- 
script to the left of the symbol indicates the length 
of the vector as defined above. Thus "V, "a. ,      and  b 
are of length M - »  and *f    Is of length  M ). V.'e 
also define the operators 

a) Reversing   ft. ("4 )     -     \ ^M('
1^„.,, ...'1^«) 

b) Zero (increases the length by one) 

Z(^)   - {"*.,. ..,"*-.<» 

c)    Sliding            D'(H« )     -    (   ^. , ^« ♦ »,    • • •  ;       ^l'*« / 

d)    Inner Product ■ Dot Product 

fwl   •■ "a.r. ♦ •+'««   r„ 

The recursive scheme for the single process was 
first formulated by N. Levinson (1950). S. M. Simpson, 
Jr., proposed the recursion for shift of the desired 
output. E. A. Robinson extended ehe single process to the 
multi-input case. Finally, R. A. Wiggins extended the 
single process to the multi-dimensional case. 
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4.1 Single Processes 

The normal equations for a single process (see sec- 

tion 3.1) optimum filter are of the form 

IX..,XJ K r,   . .  K,., 

* 

^., ►;., 
.     K-, 

-'   Li'   •  3*1 

(4.1-1) 

where r,- .    •/■, and 3- are scalars. Associated with 

this equation is the equation of the unit distance pre- 

diction error operator n4      (see section 3.1.7). 

LV,..,^MJ r. 

L 
'",- 

[<*.<>;    :     *] 

(4.1-2) 

where  C*^ -   l        and d   is the expected error (see 

section 3.1.5). We note that the hindsight error op- 

erator "i>   ' £ "b* , . • ."t. J j"^ : /  (i.e., the operator 

which "predicts" past values of the series from future 

values) is Just the reverse of  ^  since H   is symmetric. 

4.1.1 The Levinson Recursion to larger Operators 

This development is a modified version of that given 

by Levinson. He uses the orthogonal operator C (the 

prediction operator) instead of the prediction error 

operator. 
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4,1.1.1 Extension of the Prediction Error Operator 

Expanded Notation 

The scheme for extending en      to *fl is to first 

make an approximation of M*A by " cf where  ««.< * 0 , 

We substitute this new vector into the equations and 
examine the solution. Then, by adding a similarly ex- 

tended hindsight operator to ^   we can get the 

real solution. 

Thus, first we extend <*     by adding a zero to the 

right end 

["fl.,..^,,, o]   [r.   .   K-*.,     =  [<**, o .. o, <xi ■] 

r*.,   ■ •    r, / (^.1-3) 

where   ^J :   «. r„„ r ■• ♦ X r,     . 

Since H is symmetric, the hindsight error operator is 

Just the reverse of "tf . Thus, the extended hindsight 

operator is the reverse of  a   ,    Thus if we weight and 

<?  and substitute we find add  ' ^  reversed to '* <f 

^. 

'11*1 

r, 

lo(„*k,cCtO.. 0,*„'<.*,<*„] 

(U.l-4) 

Now, if we choose ^  such that 

O^ ' -i    h,   <**     - 0 (^.1-5) 
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Then we have formed a new     a 

HHfl   a[M^., .."«*.^J   *"   ^[^^...V J (4.1-6) 

Note that the new expected error is 

Compact Notation 

(4.1-7) 

The formula corresponding to (4,1-5) is 

0(n (4.1-5a) 
to (4.1-6) la 

(4.1-6a) 

and to (4.1-7) Is 
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4.1.1.2 Extension of General Filter 

Expanded Notation 
We now use the prediction error operator Ha     to 

extend the length of the filter  ^  . Here, as in 
section 4.1.1.1 we make a first approximation to  f by 

adding a zero to the end of ¥    to form   ^ 

\.x...xM''-r' 
'-. 

-' [l'.- >3~. r~J 

(4.1-8) 

where   ^ ? f, rM ••-  ^ +„   r 

If we weight and add  ^ reverse to 

[*>*/«„.      fa* l<t\ h\] 
'„ 

^      we get 

(4.1-9) 

Now,  if y,,   -r   ^ O^M  -   ^«*/ (4.1-10) 

Then the new filter is 

"■'(. - ['(....."L.O]' kA'*-.-:*-"*']  (*.i-ii) 

Compact Notation 
The formulae corresponding to (4.1-10)  is 

and to (4.1-11)  is 

'f .-   zcn -^ ^^«) 

(4.1-10a) 

(4.1-lla) 
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4,1.2 Recursion to Move Output Origin 

We wish to find a filter V  that satisfies the 

normal equation 

" /- i 

where 

r /? - 3 

the equation 

where <\  ■   L*), Q *  J 

(4.1-12) 

from the solution of 

(4.1-13) 

Note that we could 

Just as easily have chosen to shift ^ to the left 

rather than the right. 

(Xir first approxlnation to the desired filter 

Is to shift the filter ~-f    by one. 

[o;(.... x..] r,  r„., l*»,3,-X *--',  ■•. ^..- X rj 

K..      K-, 

where ^ X  r 
(4.1-14) 

V„ . r„., 

Two types of inhoraogeniety have been added to the 

right side. The first is a weighted version of the "r 

vector. This can be removed by subtracting the negative 

of the hindsight operator ( [ 0 ,*'**., ,.r\ ,*'*, ]     ). 

[o.X'Va  ,X-X-aJ 

(4.1-15) 

where 

r. (4.1-16) 
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Now we add the prediction error operator to alter 

to the desired value. Thus, let 

C   * k<> **-.   -   2 (4.1-17) 

Then 

[o.X.-X.. ]   -XU'-'* %J 

*,, 

Compact Notation 

The formulae corresponding to (4.1-17) is 

^.fp''m-x.YKf^)];o-'rv)J^ 
(4.1-17a) 

and to (4.1-18) is 

where   ^,  = "'^  = ^ . 

4.2    Multi-Input Processes 

The normal equations for a multi-input optimum 
filter  (see section 3.2) are of the form 

[VAJ r;.. 

^-, 

r0 

=  t^,., ?J 
(4.2-1) 
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where    ^(  ;   Jr".        is an    n x n      matrix 
*,/(     Is a    /»i    /sn     matrix 

and        a^   is a      X*l  t**    matrix. 

The unit distance prediction error filter "a and 
unit distance hindsight error filter "fe are associated 
with the    %       matrix: 

L *" , - -,   a~i 

i 
KV 

r. 

i*'„l0   .   *] 
(4.2-2) 

[X,..;"bJ K, 

•C« v^. 

[^   ••    ^   /?.] 
(4.2-3) 

where «»,,/., »<« and fn    arc  M « ^ 

^„-"b,- X >  the unit matrix. 

matrices. 

and  o^, and  /?„ are the expected error matrices 

respectively. for "a    and b 

The only formal difference between this case and 

the single process case is that the R    matrix is no 

longer symmetric. This causes the hindsight error op- 

erator to differ from the prediction error operator 
reversed, 

4,2,1 Recursion to larger Operators 

4,2,1,1 Extension of the Prediction and Hindsight Error 

Operators 

Expanded Notation 

We proceed here as in the single process case. The 

first approximations to the new, longer operators are 



91 

made by simply adding a zero to the present operators. 

Then they are added together to remove the Inhomogeneity 

caused by the zero. 

When we add the zero, we find 

L^..^,^] 

l>,X../bJ 

*    ■ r     ;  {.»(-..O-f.'i*'} 

r-*-t  •■      '• 

*  ^^ ^ 

(4.2-4) 

(4.2-5) 
r:n., ,.  r^ 

•   n 
l>* r., +  *h,  *:„,, 

* ~ 
Now we weight  b and add to a    and vice versa: 

fv.V'O^.., /."t.j '1.1 

JCn-i •• f» (4.2-6) 

W*'X'*r* ^Ih • ^U'^.*..*.^:] 
*»',. /,] (4.2-7) 

and 

If we choose     ^    and   ^     such that 

p: * k<cKn -.o 

(4.2-8) 

(4.2-9) 
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H*l n*i 
Then the new filters Cf   and  * h     are 

^ :[**.>..>***,(>]  + kolcX,^*^] (4.2-10) 

ru •fc . [ ö,X,..,"kJ ♦ ij-w., ..,''«„öj («.2-11) 

and the new ^,    and ^^ are given by 

(4.2-12) 

(4.2-13) 

are 

Compact Notation 

The compact forms for equations (4,2-8) and (4.2-9) 

k,   •- -["t , O^Tr)   ]    OC 

and for equations (4.2-10) and (4.2-11) are 

n*/ 

(4.2-9a) 

q     *    I   (\)    +  #[k,   Z(Hb)] (4.2-10a) 

h      - Z ("^  +/?[*, Z^^)?      (4.2-lla) 

■   



93 

4,2.1,2 Extension of the General Filter 

Expanded Notation 

We can now use the hindsight error operator to ex- 

tend the right end of the general filter. The scheme Is 

to add a zero the the operator as a first approximation 

and then weight and add the hindsight error operator to 

remove the Jnhomogenelty. These steps give 

[VO*,-/X'^/OJ [""•   ^ 
r   r' 

-' i^lr. ># yn***/3„] 

(4.2-12) 

where  ** • +. ►% ♦ ••* ♦•" ^   , Thus, If we set 

rnl~ 

then  ^  Is given by 

V  : [V.,..,X^J ^^ ["t^.rb.fi.]   (4.2-14) 

Compact Notation 

The compact forms of equations (4,2-13) and (4,2-14) 
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4.2.2    Recursion to Move the Output Origin 

The desideratum here is  the same as  in the single 
process.    From the filter   *f      that satisfies 

V   H 3 
where $   -■  I $,  ■ ■    g ~ ]   > ^ 
operators we wish to find  Mf' 

(4.2-15) 

and the error 
that satisfies 

« r ' f'R   -   3' 

«here   ?' . [^ ^.,] 

Proceeding as in the single input process, we find 
that shifting and adding the filter and the hindsight 
error operator gives 

(4.2-16) 

[orf.-'f(r'L..,..x..-x^i r, . . r„ "-,' 

vr_ •• * (4.2-17) 

where ^ - (*(,-"L""L.,) K, *•••+( "f^., ""X. " '^J r.^* , . 

Now solve the equation 

^  * V OCM
-'  "'  ^ (4.2-16) 

to find the weighting for addition of the prediction 
error operator. The new operator is 

Ms' r -  [o rf ,x..] - 

+ kf I  «... ^, , ■ • • ^M.,J 

(4.2-19) 

... — 
    ■  
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Compact Notation 

The compact forms of equations (4.2-18) and (4.2-19) 

are 

v - fj.-b"N -xD-{HC\)], D-{Hi-r)] ]) *::. 
(4.2-17a) 

(4.2-l8a) 

4.3 MuIt1-Dimensional Processes 

In this section we will consider only the 2-dimen- 

sional process in order to simplify the notation. All 

of the^techniques given are readily extendable to higher 

dimensionality. 

The 2-dimensional optimum filter is given by the 

equation (see section 3.3). 

[/'■■", *■■'■"■■>•] - z'-'- ';;;::. (*-3-i) 

where  **i,    and wa    are the dimensions of the filter 
^''''v        .   We will seek to extend the filter In the 

c t      direction by one unit. 

To accomplish this we will need   ^   prediction er- 

ror filters    «'•'" 

■ 
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0 <' «r . . «;••:' 
0 «J" «r . . .   aj""» 

1 <** • •   «*' ■' (4.3-2) 

where   ^•4  » S(<.-k)   , 

that satisfy the equations 

Here, as in the single process, the autocorrelation 
array has sufficient (centre-) symmetry so that If we 
reverse the predictors  tfi,"'1 to become ^"•■'••'i "'"•»♦/ 
they will still obey the equation. 

4.3.1 Recursion to Larger Operators 

4,3,1.1 Extension of the Prediction Error Operators 

Following the philosophy of the previous sections, 
we make a first approximation  « *•'"'  j t «.. i .*,    to 

the extended prediction error operators  fl^**  / . i, i „ 
0 1 c j 1 -nat.| 

by adding a column of zeros after the >*,**  column: 

Since the K
1
''' array Is centre-symmetric, reversing 

both co-ordinates of a   has the effect of reversing 
both co-ordinates of the right hand side: 

((4.3-4) 
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Thua, we can remove the T terna-by-«Riding weighted, 

reversed predictors to the original predictors. That 

is. If 

(4.3-6) 
Then 

*2'; .- zr * HL Kv zr •"•"•^ 
»i c, * ~.       (^.3-7) 

0 1 Cj t ***! ^/ 

and a new error matrix   «*'   is given by 

^.-/..», <.  •   *<-.',..,,{  f   ^7>f,,",   ^^       /4# 3-8) 

4.3.1.2 General Filters 

Now we will use the prediction error filters that 

were found In the proceeding section to exterxl the length 

of the general filter. The general filter obeys the re- 

lation 

U  ,V-""-'J- g-"   ,.;..„<     («.3-9) 
If we extend the length of / by one In the t . 

direction by adding a column of zeros to form 
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r r ■■■ /■-• o 
?.-,.,     r c ... r- " 
5      -"    ; (4.3-io) 

Then the normal equations become 

(^.3-11) 

where 

r J a    : 

[ 7'"' /)
,'j<*" v» / i i j. * *. (4.3-12) 

/ 

The last colunn of f   can be changed to a given 
column of ^  by adding weighted values of the reversed 

prediction error operators. Thus, if 

*"••—' - *; ^-..;...,< •• f-'     <',-3-i3) 

' «J' * »^1 

then the new  / is given by 

y    -- /    ^ 2_. ^v ^i. (4.3-14) 

The choice of the end of /  to extend was quite 

arbitrary. We could have chosen to form a new /*'',, 'L  '< * ,*1' 

by adding the colunn of zeros to the other end. For 

this case, we would then use the unreversed prediction 

error filters and a slightly altered form of the  ex. 
matrix. 
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In the same manner, the c,    dimension of £     can 

be extended if we are given ^ prediction error filters 

in that direction. The development proceeds exactly as 

that shown above. 
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THE WIENER-MASANI TECHNIQUE  OF  MULTIPLE 

SPECTRAL FACTORIZATION 

Abstract 

The prediction problem for sinßle stationary 
time series is reviewed and the least square and Kolmogoroff 
solutions given. Extension is then made to the multiple 
case, the least squares equations set up and the Wiener- 
Nbsani factorization described. Heuristic use is made of 
the Hilbert space property of time series. A digital 
computer program for performing the Wiener-Masani factori- 
zation is discussed. 

1.1 Introduction 

The problem of prediction (extrapolation) of 

a stationary stochastic process has been under intensive 

study for over 20 years. Since the earliest work of Wiener, 

Wolc"., Kolmogoroff and others, a considerable literature 

has developed in the theory and techniques of single time 

series, be it to predict it an arbitrary distance into 

the future, to Interpolate it, or solve one of the mani- 

fold filter problems. The theory of single time series 

may be said to be nearly complete. 

The problems inherent in handling more than 

one time series simultaneously are, however, far from 

solved, and the mathematical apparatus necessary is in 

many ways cumbersome. Since the case of the single time 

series has been so well resolved, one might question the 

necessity of treating the multiple case. The reason is, 

of course, that we are interested in a group of time 
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series where the members are related to each other, I.e., 

correlated. 

An example of such a ^roup where information 

Is contained In the cross-correlations is the 3 compo- 

nents of motion of a seismograph. Clearly the motion 

In a given direction will bear some relation to that in 

a perpendicular direction. The information contained In 

the cross-correlations ought to be of aid in predicting 

or filtering such a process. 

In section 3.2 of this report, a method of 

handling multiple prediction by least squares techniques 

is given. An alternative method (due to Wiener and Nbsani) 

will be discussed here from a basic approach. The method 

relies on very abstract geometric properties of time series 

The use of this method will help illuminate these proper- 

ties. In addition, since the method is computationally 

feasible, we will achieve a useful chock  on the least 

squares approach. 

Since much of what we will do has a close ana- 

logue in the well-understood scalar series case, a brief 

review of the prediction-factorization problem will be 

helpful to clarify the analogies, and the difficulties, 

that arise in higher dimensions. 

The discussion will be confined to the dis- 

crete case. The approach will be intuitive and heuristic 

as rigorous documentation is amply available In the 

literature. 
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2.    Single Time Series 

In what has become known as the Wiener- 

Kolmogoroff theoryj we consider a stationary time 

series    Xt  , and for the most part deal directly with 

two quantities,  the correlation 
i    fN 

V^ **7T  5N
Xt>^7 (1) 

and the power density spectrum 

$ (to) = T ^r € 

Ty and $ {<*))  are clearly Fourier transforms of 

each other. In the most general case, the function $ 

will not exist as such. Instead, it becomes necessary 

to use the spectral distribution function A(w) , where 

the relation to the correlation is 

the integral being taken in a Riemann-Stieltjes sense. 

If A  is absolutely continuous then,  $  exists, 

and v ,   . 

In circumstances where  $  does not exist, 

the theory is more complex; as Wiener (1950, p. 58) 

points out, however, in practice the behavior of nature 

is not such as to give pure spikes in a spectrum, nor to 

give pure Jumps at neighboring points—corresponding to 

a non-absolutely continuous spectral distribution. Later, 

we will give an explicit criterion for the existence of 

an absolutely continuous distribution. 
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Let the entire past of a time series be given, 

lig^ at time t, the set of numbers (Xt)Xt., V,. ' ' ' • ) 

Is known. We wish to predict the value of Xt at time t+o< . 

At best this can be done with some smallest 

error. There will always be an error, since by defini- 

tion no random process can be exactly predicted. We 

thus seek an Xt + 0< such that the difference (Xtt«-Xtt*)* 

is as small as possible. 

The procedure (Levlnson, 1950) is to assume 

that Xtt« is given by some linear combination of the 

past of the time series, i.e. 
N 

^t** "" 2. ^K Xt 

where N is made larger for a better fit. Note that it 

suffices to consider o^ - l. Any other distance can be 

determined similarly. Note, too, that statlonarlty in- 

sures that ÄK will be the same no matter what choJce 

of origin Is made.1 

The square error is 

and Its mean over the times-T to  + T is 

'     ts-r       ttz-r    *ri        ^ 

To minimize, differentiate with respect to CLK   and set 

the derivatives equal to zero. 

1 
Snh^i?n^y H metnt'  loo8ely' that the underlying 
probabilistic structure is Independent of time. 
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Thus 

o^-rWf j>_(«KX.-*VrMw) 

or 

"t-"-T "tx-T 
(2) 

^TH^wTl l^t ^4 3- ^ ^      ' the 

autocorrelation. Hence eqn. (2) becomes 
N 

^aKrK.r » rT (3) 

These equations are discussed in section 3.1 of 

this report. 

Note that we could have obtained the same re- 

sult directly by requiring that the error t t be uncorre- 

lated with the time series: 

tTTt ttr-r KTI t»-T 

or 
N 

^ ** r*.r  = rr 

The identity of the two approaches is signi- 

ficant and we will return to this point later. 

In the above prediction, no estimate of the 

error involved was obtained. To find an estimate, a 

deeper knowledge of the nature of time series is necessary, 

The cornerstone of this knowledge is a theorem 

of Wold (Doqb, 1953, P. 576). 
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Th. 1.  (Wold Decomposition) A stationary 

stochastic process Xt may be uniquely represented as 

the sum of two processes, Xt 
=: U <. + Vt 

where  Ut = J aK 3t.K 

such that  ^o;^-!, 4-*., • • • Is minimum-delay 

where f°'K'>k<co,     «o  >  0, 

£(%%)* Sn W       and  ^(^-0,  (5). 
Vn  is deterministic and E (UtVt )z Q. 

By "deterministic"is meant. In a loose sense, 

that a knowledge of the zeroes of V-fc in some finite 

interval is sufficient to determine its zeroes in any 

other interval, it is Just the absence of such a process 

Vf in At that will insure that the spectral distribu- 

tion function is absolutely continuous. 

Por the present, it will be assumed that 
ao 

^t=Za^^-K (6) 

The transient, or "wavelet" has "minimum phase 

characteristic"    (Robinson,  195^,  1962)    i.e. for all 

other transients   b*  into which we could decompose Xt   ^K 

has  the property     >.^«^2-bK        0 4: N < & * 

An   has an additional, very important,  property. 

If an inverse wavelet ^K  is defined such that 

21 ^K a*'*    r    | ,   >£ = 0 

then  ^5 JLK     ^ oo     , i.e. the inverse wavelet 
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Is stable and eqn.   (6)  can be inverteä to give 

^    is the only wavelet with this property. 

The prediction problem,   in the light of the 

Wold Decomposition,  can be given a more explicit form. 

Suppose an estimate at time t of X^f-ot   is wanted. 

At     t-t-i-c^, 

t-o 

At time t, the terms ^o^rt»; Ä, J+^ok-i, • • ' • Ä« Jt 

are unknown. The best prediction is thus based on the 

known terms and        QO 

where the missing terms are a measure of the error. 

The expected mean square error is 

ot-l    x 

But by ( U ) this is  ^> ^t 

and we have an explicit expression for the expected error. 

In order to actually make the prediction, the 

^t must be known. Hence a solution to the inverse 

problem       ^ 

is sought.    Since   <£K   is inverse to d ^    ,  a knowledge 

of   <lK    will suffice. 
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The autocorrelation of   Xt   is 

-to»   »*TH 

- r-» 

2:2- ^t« ap ^- -^t-K^ti-T-p 

H    P 
/i^i rJ— "5 ^ d^ Q I      -   ^»^ -^- ^ Ä      a 

(7) 

which is the autocorrelation of at      alone.    Hence 

$(w)s5. rTe
iwr 

and depends only on aK    .    An alternative means of 

computing $ (^ is to take the Fourier transform of 

a = A (^) and 

All phase information about at is lost in 

oomputinc AM /\ (U)) , anci there are an inflnite number 

of wavelet transfonns &(<*>),  such that ßMß*(w)Ä A(«o)A ^i 

In order to find AO**) from the spectrum (whose transform 

Is the desired wavelet) use must be made of the unique 

property of 4K ,  — it is the only invertible wavelet. 

Theorem 2.  (Jensen's Formula, Ahlfors, 1953* 

P. 185) 

Consider an analytic function f Cl) and suppose 

f (i)/0, 111 4 | , Then ln the reglon |i(^ , ^ ^ |f (j)! 

satisfies Laplace's equation and by the standard theorems 

of complex variables     ^ 

(8) 

(Cauchy integral formula). If there are zeroes of f(z) 

_^___^^__^ 



109 

inside |"il— I , then equation ( 8 ) must be modified. 

Suppose the zeroes are located atTt' ^ s I •• ^rj > where n 

Includes multiplicities. Denote their complex conju- 

gates by J,-    . The quantity 

has poles at the zeroes of l it) and Q (c ) - ' • 

F(l)-(SlU)-f(^  is analytic for \-*l ^ I 

and by ( 8 ) gr 

Hence, ^ 

^y- If<»l=-|^ri^ ^/V^*)! rfe (9) 

This is sometimes also expressed as an inequality, 

where equality holds if I ^f, | ^ |  (the condition is suf- 

ficient, but not necessary). 

The representation is unique is the sense that 

no other function 9-(l) has the property that 

Suppose ^  is factored in some arbitrary way 

|0;6)=FCete)F*(.O 
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By Jensen's formula, jjr 

if  FC-») has no zeroes |^|fe |   ,  then strict equality holds 
and .     & 

' ^   ^ (n) 
The absence of zeroes of FC«) implies that 

F(B) ~ G t*)  is analytic ( */i / and the Fourier transform 

of &= ^   exists. By the convolution theorem of 

Fourier transforms, ^ is    inverse to the Fourier 

transform ft of F:       Cö    ± -to 

Hence f t is invertible and must be Just the 

wavelet of the Wold Decomposition. Therefore, we have 

proved the following theorem: 

Theorem 3 . 

If f(ei»;=A(e"'M*(ei'')  .then 

(a)   lACMl^e^r^1^** 

(b)    Equality holds  if and only if A Mis 

the minimum phase wavelet of the Wold Decomposition. 

We now have sufficient inforiration about A(w) 

to generate it. 

From the uniqueness part of Jensen's formula, 

AU)    is analytic |*|t |    , and   |A(o)|*"=:  e^iW*^'^, 

such that nm  |A(pe:*}|x-   $(e^; 
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Therefore, (Robinson, 195^ P. 125) let us 

seek a power series expansion of A(2) such that 

and a Fourier series expansion of log ^ (e6*) 

Hence for 1*1 ^ | , 

-»liO 

or 

AWl = e- (12) 

Thus, the procedure is to expand log $ (e1'*) in 

a cosine series and solve for the power series co- 

efficients of |A0s)| in ( 12 ), and ^ 

This is called the Kolmogoroff factorization procedure. 

3. Multiple Time Series 

3.1 Preliminary Considerations 

Notation; The "order" of a time series will refer 
to the number of sinnle time series which make it up. 
Thus, the single time a«r es of the previous sections have 
order 1 (scalar cast). 

The "dimensioi.' of the time series will refer 
to its physical display, llius, a single time series has 
dimension 1. Pour single time series displayed as a 
square array have order k  and dimension 2, etc. 

Quantities which are matrices or vectors, and 
which may be confused with corresponding s.galar quanti- 
ties are barred: X» is one time series; x«. ls of dimen- 
sion 2 or more, etc. 

Outwardly many of the techniques for handling 

multiple time series are the same as in the scalar case. 
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We will make use of this similarity as far as possible in 

what follows.    There is as yet no complete solution to 

the problem of multiple prediction, and there are at 

least two related,  but different, approaches  to the prob- 

lem (Wiener and Masanl,   1957,  1958;  Helson and Lowden- 

slager, 1958). 

This paper will discuss the Wiener-Masani 

technique, as It lends Itself to an intuitive approach. 

The two papers of Wiener and hbsanl are clear and elegant; 

at the risk of oversimplification, we will,  therefore, 

restrict this paper to a purely heuristic treatment. 

Restriction will be made to 2-dlmen8ional pror 

cesses of order n,  i.e. n-scalar time series written as 

a vector   Xt   * where the 1th scalar series is denoted 

Xt •    Thi8 la no restriction on the mathe- 

matics and avoids the cumbersome notation necessary in 

handling arrays of time series. 

Definition:    A function   F (»)   will be said to be 

YUTn   matrix valued if FiB) is given by anTlXll^     natrix. 

Definition:    By ß(>)s|  PC©)^©   will be meant 
the 7j x>n   matrix whose elements are the integrals of the 

corresponding elements of P(9)   . 

Consider a set of matrix valued functions \F] 

such that 
A 

f •a» .      ■»■ 

0 
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Then the set I F J  is said to be in L^ over [.0) AJ . 

Suppose P> G c L^ . Then define the "inner 

product" of Fa^vifi. G  as 

which will be denoted ((F") G )/. 

Define the "norm" of a function   ^ L-j. as 

the square root of its inner product with itself, written 

HP« -- JWjT) - [i frwT^vd'fi        (W) 
o 

Notice that the inner product can be interpreted as a 

dot product—it gives a measure of the "overlap" of pcmn^ Q 

over their region of definition—the interval [0, A^] 

The norm of P is interpretable as the "length" 

of F, It has all the properties normally associated 

with a length—i.e. 

\\f\\>o >   T* 0 (a) 

|| a. F ||   =    H   IITH (^ ^5) 

The "distance" between 2 functions P <vn^&   is 

(15a) 

The  triangle inequality exists: 

UF-SH ^ llF-HH + IIH-SII (15b) 

Using the definition of inner product, we can speak of 

2 functions as being orthogonal if and only if (( F  G)) —0 . 
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If the functions [ P| \ obey these rules, and 

if every Cauchy sequence In L^ converges, then the 

space Lj. Is called a Hilbert space (Halmos, 19^1, p. 17). 

Notice that in such a Hilbert space, given a 

sequence of non-zero functions it an orthonormal sequence 

can be generated, i.e. if 

IITill = /i 
then G^- jjr  Pi will have "length" 1 and the Gram- 

Schmidt process with the definition (13) can be used 

to construct the next function. 

Suppose two time series Xf and ^ of order 

n are taken as 71 * I matrix valued functions where Xj. ***■ ^l 

are each in Lx . Define the matrix;
1 

where     u'.' _    J-        fci   . J ,f (16) H:, - & 1 < w ^ 
-7 

This term is Just the cross-correlation between 

A  and U,     ,    The matrix H  is called the Qramian of 

A and ^  . In time series analysis, it is a cross- 

correlation matrix, where H - H  . If, as here  X 

and W,  are stationary processes, H  depends only on 

h-i , not on T  and  S  individually. 

The inner product ( 13 ) then becomes 

The integral should really be defined in terms of an under- 
lying probability space, but the effective result is the 
same as eqn. (16) . 
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In the scalar theory of time series, a funda- 

mental role was played by the correlation. Suppose we 

attempt to use the Gramian matrices in an analogous way. 

Instead of taking the inner product of X, ^ to be t+v**. Hj 

let the inner product be given by H  itself. 

Then  X».  will be said to be orthogonal to U,x 

if, and only if, H^.j = 0  , and that Xh ha3 unit 

length if, and only if, (X,- X».) - 1 

This new space, to be denoted ^ >. , is no 

longer a Hllbert space. It differs from a Hilbert space 

in a very profound fashion. It no longer satisfies 

( 15 ) or ( 15a ). Moreover, consider the generation of 

an orthonormal sequence of functions f't. 

Suppose (^i,^i.) ::: K  . Then presumably the 

quantity fi-JPc"J "fi 1 will have unit length. But h" Is 

a matrlx--lt may not be invertlble, and, if it is not, 

a normalized sequence cannot be generated, though an 

orthogonal sequence may be, of the form such that 

(^ ^ Xt») =   ^ ^ 
The underlying distinction between the spaces 

Xj. and ^-x » ls that '-x i8 a Hllbert 3Pace' whereas 

^.^ Is the Cartesian product of a set of Hilbert spaces. 

Each X,.  individually satisfies the requirements of a 

function in Lx . In creating X^ we have adjoined the 

X.   in groups of n. This is the relationship and the 

"^Por the definition of square root of a matrix see 
Appendix A. 
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distinction. 

The difficulty with singular matrices is one 

of the problems of the multiple theory. 

Despite this difficulty, it is still convenient 

to think o£ X. ^  as defining a linear vector space. The 

visualization of a time series as a vector in a linear 

vector space is a very useful concept. 

The past of a time series )(t can be thought 

of as "spanning" a subipace oC X. ^ . 

Let IM^ denote the subspace spanned by An 

and its past. At a later time t, the series and its past 

spans a new subspace Mj where nt^)Mn , and we are 

able to speak of the difference space Mt- M„  . This 

concept can be given a rigorous formulation. 

In this same sense one could speak of unit vec- 

tors (^ cJ in A.^ , much as we use unit vectors in ordi- 

nary Euclidean 3-space or use eigenvalues as "unit vectors". 

If a complete set |g V could be found, any time 

series A. could be expanded as 

However, as we have pointed out above, it may be that 

normalization is Impossible. This simply implies that 

though we may seek a complete set, we may not be able to 

normalize it. 

In summary, for conceptual purposes, a time 

series will be regarded as defining a linear vector space. 
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X. x ,  with inner product given by the Gramlan, with X-L W- 

ifj and only if, C K, ^-) - 0 . As time increases, a series 

spans a larger and larger region of X^ - , i.e. a new 

"basis vector" is added with each time interval. ^^ , 

of course, has the property that the number of its dimen- 

sions is infinite and the even more unusual property 

that non-zero vectors may not be normalizeable. These 

two properties are a reminder that the picture of a time 

series as a vector is purely for purposes of intuitive 

argument, and has only a very rough truth. 

Consider the prediction problem once again. 

Given A-t its entire past, and Its Gramian, we wish to 

predict in the best possible way  X^ok  • In terms of 

the vector space picture, what we have in Xt and its 

past is a portion, Mt of X^ . in order to know Xt+Ä , 

we would have to know M^^ . The question Is how to 

best represent MtfÄ with a knowledge of Mt  only, 

lacking Mt^'l,. 

In ordinary Euclidean 3-8pace, we could think, 

in analogy, of the problem of how to best represent a 3- 

dimensional vector with only 2 unit vectors, i.e. 
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The best representation of }$■  in terms of £ 

and ex will necessarily leave as error a vector that 

is perpendicular to both e, , and e^. . To find the 

best representation we seek constants a and b such that 

^raO.S^be^ and A^-V is perpendicular to both 

6-, and e^ . This elves 

^- = C^ • c,) et + (^ • ?J ^ . 
To represent    X^g^ in  terms of its past,  we 

seek matrices   5R   suchthat   AttÄ=   5"ä ' X 
H--0 

where   X^ai   \f*i5 to be perpendicular to Xe  t'O^T^.tij) 

The effect of using matrix coefficients is to- make use of 

the past of all the time series to represent any one of 

them—thus increasinc the number of basis vectors. 

Using  ( I? ) as a condition and the  inner pro- 

duct,   (  13  ) we have 

or 

K  *  * '      " (18) 

Eqn. (15 ) will be recognized as a multiple 

version of eqn. (3) for the scalar case. It was pointed 

out above that the requirement that the prediction error 

be uncorrelated with the time series is equivalent to 

minimizing the mean square error. This can also be 

shown to be the case here (see Section 3.2 of this report). 

"U 
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In practice, of course, the entire past of the series is 

not known and  fr 0, • • • > N ,  some N . 

3.2 Wiener-Masani Technique 

In considering a scalar time series, we sought 

another formulation of the prediction problem—in terms 

of the Wold Docomposition and the Kolmogoroff factori- 

zation technique to gain insight into the nature of the 

time series process and to determine the error involved. 

A solution completely analogous to the Kolmo- 

goroff spectral factorization is not known. The Wlener- 

I*tesani technique, however, provides a similar exact 

factorization—though the method of solution is quite 

distinct. It is more complex than the Kolmogoroff solu- 

tion due to the matrix nature of the quantities involved. 

A first step in thic technique is the determination of s 

generalized version of the Wold Decomposition. 

Consider Xr, and its past nn.,   . The pro- 

jection of Xn on its past we will denote as (Xr^ 1 ^h-|)  ' 

where the projection can be interpreted as a vector 

projection—onto a plane, for example. 

If ^-(Xnl ^V.) ^ 0 , we will say, following 

Wiener and Masani, that the time series is non-deterministic 

and define 3,, = ^"(X^lhn-i)  • (^ 
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"For obvious reasons, 3^ Is called the "innovation" pro- 

cess of Xn 

The Gramlan of  ;jh  Is 

The vector interpretation of this is that the innovatlore 

must be orthogonal to each other—by definition. 

The "rank" of the process is the rank of G. If 

U   exists, then the process is said to be of full rank 

and we can normalize the Jt\    • Here is a demonstration 

of the critical importance of the matrix nature of the 

inner product of 3C^ . The prediction problem for pro- 

cesses where G   is of less than full rank has not been 

solved (Helson & Lowdenslager, 1961, discuss this problem). 

The important point is that for full rank pro- 

cesses a Wold Decomposition exists. A decomposition for 

processes of less than full rank is not known. Therefore, 

in the remainder of this paper, unless otherwise stated, 

G will be assumed to have full rank. 

Theorem ( ^ ). (Wold Decomposition. See 

Wiener and Masani, 1958, p. 137 for a proof). 

If 7^ is the innovation process of a non- 

deterministic time series of order q, then 

(a)  X^ =Uh "♦" %> such that 
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and  IIÜJI^ iCCäK^))^ 0° 
n'O 

where ^ - 0» , 5e^ . The-matrlces 4K  are the Fourier 

coefficients of  U^  with respect to the ctK     ,  the 

OiK       are minimum-delay, and IT   is deterministic. 

Note that this is a complete matrix analogue to 

theorem 1. As in theorem 1, It is required that there be 
00       —       .   -i \^ 

an Inverse matrix wavelet     dK     , such that   ^ (C^«^   y^jj^oo 
n-o 

The matrices 0.^      are determined by 

r Vj.G = (Ue ,?>,.•.')  by stationarlty. 

or  ^K G  = (UO>5-K) - (XO^-K) . 

For a time series of order 2,  a picture of the 

structure of such a process is given by Robinson (1962, 

P. 9^). 



122 

Since G is Invertlble, we could normalize 9n 

to a sequence "f h , suppressing all mention of the G 

matrix, since it is sometimes convenient not to norma- 

lize, we will use the 7^    sequence. 

Define the past of the lrK  process by fj K . 

Then, in the vector space analogy, the meaning of fy 

is that llrn^ TU ^ (0} and *],„ . ^ all  k. Thu8# the 

"remote past" of -^  is 8ome finite volume in ^ and 

does not change in time. 

If a process has  M, „, r (0}  , then it is sa 

to be "regular." All processes of the form of I7K are 

regular. Such processes will have absolutely continuous 

spectral distribution matrices. We will discuss only 

these processes; 1^, from now on XK IS assumed to be 

of the form 

(20) 

The prediction problem In these terms is the 

problem of finding thejjest representation of 

where we do not know the terms 5,%^, ä,?^-^^, . 

If, however, we can find the % , and the wav'elet *< 

we can make a best prediction. 

The Oramian of ( 20 ) is 

„j-. 
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oo oo 

=  ^ a
s 

5
StT G 

£«o 

depending only upon (7  and Aw , and not explicitly 

on the Jt • Thus, the power density matrix  9 ^^ 

depends only upon CLK   and G,  $ (w)   could also be 

computed directly from the Fourier transform of the 

wavelet #„ , were It known, by $(«*))= AO^^A (««) (21) 

Since there Is no phase Information In ( 21 ) about A(u'), 

there are an Infinite number of wavelets which will give 

the same power density matrix^ However, ä,n  Is Invertlble. 

, must 
_        1       t wit 

Thus,   Its transform    AO") ^   ?   ^ G    € 

have an Inverse transform 

Apply Jensen's theorem ( 2  ) to det    AMb AO*^» 

If   A(w)ls a well-enough behaved function, the theorem 

will be applicable.    Then 

0 

0.   is  invertlble,  hence    AX G *0    .    If   <ß^ A(*)#^ lzl*'> 

we have strict equality and L. 

0 
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o 

This application of Jensen's formula suggests 

attempting a Kolmogoroff factorization of $ Cu>)    ln 

the same manner as was done for the scalar case in Part 

II. A complete analogy would be to expand  Ä*"(^ in a 

matricial power series 

where the BK  are matrices. Unfortunately, equation 

( 22 ) is a scalar relationship-it relates the determinant 

of the wavelet with the exponential of the integral of the 

determinant of $ W  . ^^ ls n0 glmple relatlon8hlp 

between a determinant and the elements of the matrix 

involved. Nor is there any hope that the elements of A 

cannot individually vanish for 111 ^| . Furthermore, as 

Wiener and tosani point out, even if we were led to 

consider an expansion in matrices of the form 

there is a difficult problem of uniqueness, since 

e^ e*ee ^  eaeA 
^- and commutativity has 

broken down  ( eA        would be defined by Sylvester's 

formula,  appendix A). 

Though it is conceivable that these difficulties 

may be overcome by proper definition, we are instead led to 

consider an entirely new approach. 

Since   aK = (Xo^^ '  a knowledge of   ?_ ^    iS 
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sufficient to get a best fit to the prediction 

Xt + Ä= ü *K %^-K («) 
Therefore, v;e consider the inverse problem 

3-t - 22/^-^ (2«) 
A solution to ( 2^4 ) determines the Jt    and the Cl,K 

from _ oo ä 

5K G - (*. ^-K^CX.,^ ^ = l./K.X,.^* .(25) 
By statlonarity, it would suffice to find  ^   , for 

( ii )  becomes  ^(X,,.,/.,)^/ , 

The key to the method is a Hllbert apace theorem 

and corollary of Von Neumann (1950, p. 55-56) which we will 

assume applies to »C^ and interpret In terms of a vector 

space. 

Theorem ( 5 ) 

Let Q. and I* be projection operators onto the subspaces 

H, and Mj. , respectively, of ^t^ . Let 7j  be the 

portion of Xj, orthogonal to M, t" M^ and let G(    be the 

projection onto 7l . Then 

q^I-E'F-E(-F)-F(-E)^E(-F(-E))-Pr-6C-F)).... 

= I-E-F + EFi-FE-EFF-FEF .... 

(This is hardly a rigorous statement of the theorem, but 

it conveys the meaning.) 

The projection operators are Just the Hllbert 

space version of ordinary vector space projections—i.e. dot 

products. The theorem, if interpreted in vector space says 

the following: 
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Consider a vector V'^T^vJ and two other vec- 
torB^(JlJA)o')     and/^^,/i/o)(/ not necessarily ortho- 
gonal to     z0       ) . 

Let the projection of a vector Into J     be given 

by E and the projection onto "^ by F . 

Then E v ^ C-v-J Jc/' and f T • (Sr./* J^ . 

Repeating, F E vr = (~]r \/}(j^')~' 

etc. This is pictured In Figure 2. 

(Fig. 2) 

Clearly the tefms EFEPt ••• are growing smaller and smaller 

as projections are made, back and forth. In the limit, 

Q^-^-Evr-fE NT + EPEV-^ .... 
is Just the component of "V  normal to both J and /*" 

Note that in this space EF «FE , and so we need consider 

only one or the other. In a more general space, the pro- 

jections do not commute, and both terms are necessary. 

If a third vector, X  not in the plane of/ 

and f    ,  and the projection onto it had been considered, 

the sequence would have gone to 2ero--a reflection of the 

3 dimensions of this space. In a space of higher dimensions, 

a 3rd operator, or even more, is permissible. 

By analogy, the projection operators in ^f 

must by the inner products—the Qramlans—and the vectors 

J and f    must correspond to the component one-dlmenslonal 

time series. If X^. has order 3, a sequence of the form 
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j.£_P-(; + £FtFE + GFtG&-EFE ■      (26) 

must be considered, and similarly, for a series of order n. 

In applying the Von Neumann theorem explicitly 

to the prediction problem, restriction will be made to a 

process of order 2—since from ( 26 ) the projection 

sequence for higher orders is very complex. 

Let Xt" ( y»6 )  and let the projection on Xt
c l! 

and the projection on  X^P». . Then  Pj, =   >Xp} Kp 

and the operator applied as P^ Xt 
a (Xt ^pjXp 

fJXtMx^x^x;      and PXVC^M.X^X? 
(analogous to f?-.?) J   ). Let  (X, , X!|) = ^  (2?) 

(not a restriction. See Part IV below), and let  M.t 

and M,t  denote the pasts of  Xt  and Xt  respectively. 

Then the portion of X*. ; ^ = 0» '" ' ^ "~00 normal to N.t
+'vl-t 

must be 

)^-(*.|M:t+M.t) = 9. 
Thus, the innovation 70 is what will be 

determined if we can find  M,, - (M.^ + M.^ )  • Let 

then under the condition ( 27 ), the projections commute, 

and 

i 7':K-1***.* ^IK^X 

7   ^ X0"-   •   • • 
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Factoring A-p out of each term, this* can be 

written in matrix form as 

1- 0 -rt\ l 
o ^ 

-1 
•»_ 

^ A^ (28) 

which is seen to be precisely J -   Z-  ^_ ^-i 

of eqn. (24 ). 
'r>i 

(28) 

.    Then  ( 28  ) becomes 

Since    J,    is now explicitly determined,  the prediction 

problem is solved.    The expectation of the prediction 

error is^as in the scalar case, 

x 5: 
E (U- U = s A: 

4.  Computational Procedure 

The Wlener-Masani technique has been programmed 

in Fortran for the IBM 7090 computer at M.I.T,, making 

as great use as possible of existing programs. 

There are two main difficulties that present 

themselves in consideration of a computational procedure. 
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The first involves the question of convergence of the 

sequence in eqn. ( 29),    If the "vectors" are parallel, 

there will be no convergence; if they are nearly so, 

convergence may be very slow. 

The second difficulty occurs in connection with 

the condition eqn. (2? ). To show how this Is achieved 

in practice. It Is necessary to consider the computing 

procedure. In actually solving the problem, the method 

used is a slight variation of the one outlined. 

If the power density matrix of  X^  is $ (^J 

and if   ?* = ^ ^ ^t-^ ,  then it can be shown 

(see Appendix B) that the power density spectrum of Vt 

0r * 
GMr^iY (3i) 

But 

i =1 AGA* (32) 

Hence j       ^_1 

G = A"$A 03) 

and from ( 31 ) 

A" = ^ ^ UM 

If ^ can be determined, we can find  A = >       (35) 

The problem is then to use the Von Neumann theorem to 

determine 
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The   aH   are given by the matrices of eqn.   ( 29 ). 

Hence    ^ - EK^ Ep EK.p4-...,  and   ^-^ ^ eWt- 
n-e 

In order to insure that condition ( 27 ) holds, 

it is necessary to prefactor the diagonal elements of  <£ 

That is to say, if  $„ and $ia. are the autopower 

spectra of Xt  and t\    ,  then we find their minimum 

phase factors such that 

The spectral matrix is then 

1.  i \Q-        0 
1 

P     H 

^  0 

0  ^ 
=7ll}l* 

The problem is worked with $ (lo)     . At the end, the 

answer is re.nultiplied by Y]  and >]* . This prelim- 

inary factorization is done by either a least squares 

technique (routine WLLSPP) or the Kolmogoroff technique 

(FACTOR). 

There is some ambiguity about the definition of 

the wavelet. If one defines A -^^G^^^   ,  then 

of course,  $ = AA     , a somewhat neater factorization. 

But with this definition, A=H'" G , an explicit know- 

ledge of G is required (which can be obtained from & - 

y $ f    ) -- an extra burden on the method. 
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If a  solution is attempted  In the time domain 

alone,   one also finds a  knowledge of  G necessary,  for we 

have   90   = 1 rf„   X., .    Then     (XK , ^0) "- AK G 

™   AnQ=^A*(K,*.n) Th'j 

and the wavelet Is defined only up to the missing factor 

G^ or 

In practice,  of course,  one might wish the 

wavelet  inverse to    A    and the definition    A3   J-IAK" 
K 

introduces an asyranetry into the relation between  A and 

its inverse. 

If we do choose to normalize JL to ^   ff* ^)-3 

then we can seek a factorization Xn-^-^n 7«-»,  where 

C^ = (^^ . ^ h )  » and then the relation between the 

C^  and the ct^   is completely symmetric. 

As a convention. It is perhaps best to require 

an extended Kolmogoroff normalization  Ao " ■*- . Then 

G and its square roots (see Appendix A) must be positive. 

Then there is no ambiguity about the factorization. 

nie matrix nature of the process introduces 

certain complications into the computations. A flow chart 

of the complete procedure is appended (fig. 3). The process 

is still not fully debugged, but the computations carried 

out thus far indicate that the method is a valid one. 

The procedure outlined in the flow chart is 

carried out by the subroutine WIMAF1.  Inputs to the 

subroutine are two time series, xl and x2, their lengths. 
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the lengths of the Internal spectral computations, and 

two cut-off parameters for the Von Neumann projection 

process—a maximum allowable error in each term, and 

a maximum number of tries permitted in attempting to reach 

that error. 

Subroutine MACOPS computes the auto- and cross- 

correlations of the two-time series, (subroutine QXCORR), 

weights them with a Daniell spectral window (ADANL), and 

sets up the appropriate power density matrices (ASPECT, 

XSPECT). 

V/IMAF1 then calls subroutine FACTOR, which 

performs the scalar Kolmogoroff factorization of the 

diagonal members of the spectral matrices. The two 

resulting wavelets are then taken back Into the frequency 

domain, by COCISP. Subroutine PDDIV performs the division 

on the spectral matrix, outlined above, that whitens the 

diagonal elements. 

WIMAP1 then drops the constant diagonal terms, 

and calls COSISP once more taking the now modified 

spectral matrix back into the time domain. The result 

ic the correlStion matrices in the proper form for use 

in the Von Neumann projection process. The Von Neumann 

projections are formed by VONEPS (Fig. ^) to within the 

allowable error set by the input, or until the maximum 

number of projections permitted is exceeded. The result 

is the time domain inverse of the variable ^ . This 

(«■MM 
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Is again Fourier transformed by COSISP, and then 

inverted point-wise In a loop by subroutine COMAIN. 

The process is them completed by multiplying 

j      by the wavelets previously taken out by FACTOR. 

This is performed by COMftML. The result is then the 

Wold Wavelet. 

A program, MARGOT, has also been written for 

taking the square root of a matrix, if the more complete 

factorization in terms of 0 is wanted. This is not, 

however, currently part of WIMAF1. 

The procedure is immediately expandable to 

orders greater than two with a modification of MACOPS, 

the setup routine. The key Von Neumann projection 

subroutine VONEPS, will accept a process of any order. 

The number of computations to be performed, of course, 

goes up very rapidly with increasing order. 

Since certain processes are best performed 

with the variables In matrix form (the projections, for 

example), and some must be done with the variables in 

linear form (the Fourier transforms), there are a number 

of conversions Into and out of matrix form. This process 

is rendered considerably earler by a matrix transpose 

routine, MATRA. 

/ 
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Appendix A 

The Square Root of a  Matrix. 

L3   U   -  Ü        Is clearly defined when G is a 

diagonal matrix,   if one makes  the convention that all 

roots are positive.    Since G  is always non-singular 

Hermitian,   it can in principle always be diagonalized. 

To obtain the square root when G  is not in 

diagonal form,   use may bo made of a  formula  of Sylvester, 

(Hildebrand,  1952, p. 66). 

Let   AK ^   K-   I, •• • >  h be the elgenvaluea 

of an arbitrary Hermitian matrix "w.     Let      F (*)      denote 

a polynomial In    "X    .    Then Sylvester's formula states 

that ^ 

P(w)=  iP(Ar
,)2K(w) 

where 
T-( 

7 M =     ^ (w-Xrl) 

In cases of degeneracy,  the limit can be evaluated by 

l'Hcpltal^s rule. 

Let       5 =   W- I 

Then      W ^ =    / I + B ) * 

The corresponding polynomial is     PC^) -   ( '^^l X 

= / + >^-^^.... 

Assuming the series converges, it can be cut off at 

A      ;  some m, and treated as a finite polynomial. 
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Then / j\ - 

f(B) = i+iß-i-JT0''-1- ' '' ■ 

By Sylvester's formula,   this becomes 

-^     K)   „VCVX.) 
where now the A ^ are the eigenvalues of W- X 

Hence to evaluate G   we need the eigenvalues of (7 "i- , 

a relatively simple process when G is 2x2. 

^B—m^Bmssa^smaat'k 
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Appendix B 

A  brief,   heuristic  proof  that     G -   ^ $ ^ 

Let    ?h = l£.  «^  ^h-K 

Then 

Hence (7   /^ is the Fourier Transform of 

But  Wh ^ 7p) - j  G  • Therefore, the Fourier 

Transform of (j   9 N - ß • Hence by Fourier's theorem. 
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