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FOREIOMD

The research work in this report was performed by Chance Vought
Corporation, Dallas, Texas, for the Vehicle Dynacrics Division, AF Flight
Dynamics Laooratory, right-Patterson Air Force Base, Ohio, under Contract
AF33(616)-7824. This research is part of a continuing effort to provide
a tore rational and reliable theoretical method for establishing design
criteria in the specific area of shock and impact for flight vehicle. cr-d
is part of the Research and Technology Division, Air Force Systems Coi~andts
exploratory developnent progr-ai. The Department of Defense Progran, Eler.ent
numV)er is 6.24.05.33.4, "Aircraft Flight Dnam.ics". This work ias perfor.:ed
under Project Jio. 1367, "Structural Design Criteria" and Task No. 136706,
"Prediction and Leasure-enL of Structural Dynaric Loads Including Fatigue
Aspects". M4r. ',. P. Dt-nn of the AF Flight Dynamics Laboratory was the
Project Engineer. The research was conducted from 2 February 1961 to
30 June 1962 by the Structures Section of the Aero Division of Chance
Vought Corporation.

The report is Volume I of a *wo volume report whicn presents the
formulation of the equations ol i:otion and defines in detail mnany applied
forces of present and future vehicles necessary for solution of the equa-
tions of motion formulation, Volume II - Exaples, presents illustrative
exmvnples with accompanying numerical solutions so that the procedure for
manipulating the equations of L,.tion formulated in Volume I can be used
as a guide when the method is utilized.

Volume I contains Sections 1 through 3, Appendixes A throueh D, and
the Bibliography. Volume II ccntains Sections 4 and 5.
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ABSTRACT

A rational method for predicting alighting gear loads during landing
irpact is discussed. The equations describing the motions of a vehicle dur-
ing landing impact are developed for an arbitrary vehicle configuration.
The method is of sufficient generality and accuracy to allow the formulation
of alighting gear dynamics problems in flight vehicles including V/STOL air--
craft, high gross weight logistic vehicles, recoverable booster vehicles,
advanced tactical and defense vehicles operating out of remote areas; and
lunar vehicles. It allows for the effects of varying coefficients of friction
and damping, combinations of initial conditions of pitch, roll, yaw angles
and rates, vertical, longitudinal and lateral motion, slippage of the gear
relative to the alighting surface, flexible alighting gear and vehicle struc-
ture, simultaneously applied triaxial ground loads, and various types and
number of alighting eie::ents. The formulation is intended for the cantilev-
ered type of gear, although the articulated type may be handled through some
extensions of the formulation. A survey of the various types of forces which
occur during landing impact is made, and the mainer in which these forces en-
ter the equations of motion is described.

The general equations uay be reduced for a particular problem by imposing
the vehicle configuration and any simplifying assumptions directly on the
equations. Several illustrative examples with accompanying numerical solu-
tions are provided in Volume II, "Examples".

The report may be used as a guide in the formulation of a landing impact
problem.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR 1M1E DIRECTOR

HOWARD A. MAG
Chief. Vehicle Dynamics Diviiior.

AF Flight Dynamics Labcratory
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The distance to the center of-mass of a component which
may rotate as a rigid body about a line, measured from
the line.

The axle offset length.

B 'The bearing separation at zero stroke.

4 The distance from the cantilevered gear centerline to
the support strut connection point.
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[ L3 ]The transfoination from panel point loads to -uppc:t

reactions.
C LJ The transformation from panel point loads to panel point

shears and moments.

V1 The vehicle mass.

The mass of a component of the vehiclu which way move as
a rigid body relative tc the bod, are (4- motion).

Mt The mass of the i-th component.

The bending moment in the J-th bay.

N The masses of the main and nose gears.

The mass of the wheel, tire, brakes, and piston in the
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NAnl) NAN Spinup moments on the main and nose gear tires.

N The sum of the applied moments and restraining (scissors)
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the 2 axis, the 3ine of modes, aad the x axis respectively.
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N The bogie, ski, or skid restraining moments.

P The total displacement of an elemental nss . the
vehicle.

p The symbolic form for the panel point displacements.

The axle total displacement.

P4 Pressure in the airchamber of the pneumatic spring.

P The undeflected Are pressure.

p. The critical pressure in a gas chamber with relief valve.

j5 The tire wall equivalent pressure.

PC The average tire contacting pressure.

Tire pressure rise on deflection.

P The total displacement of Pn elemental mass in the i-th
ccmponei.t of the vehicle.

Wile The displacement due to elasticity of an elemental mass
in the j-th component of the vehicle.

The displacement of an elemental mass in the i-th com-
ponent due to displacement of the j-th component, to
which tie i-th component iz affied.

The displacement of the lower bearing in the cantilevered
PL. gear, at right angles to the gear centerline.

P& , PL The components of PL

P. The displacement of the upper bearing in the cantilevered
gear, at right angles to the gear centerline.

P' )P, The components of P,.

The vector displacement of the instantaneous center of
mass of the vehicle from the origin of the body coordinate
system.

P, i p ' The components of I,'.

k po Pz', p .1  The panel point displacements parsllel to the component
I i coordinate axes.

jpjj peI ,e] The panel point displacements due to elasti .ity.

The panel point displacements in the i-th component due
to displacement of the j-th component, to which the i-th

"i component is affixed.
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P .* Components of the displacement of panel point t on the
P Pip piston due to displacement of the cylinder.

p D The axle fore and aft displacements of the main and nose

gears.

P, 1 P2. Pressures in the two regions of a liquid spring.

The total applied force on the vehicle.

A column vector of modal coordivater.

A column vector of modal coordinates with the higher
modes deleted.

QA The aerodynamic force on the vehicle.

Q. The generalized force associated with the generalized
coordinate ji

A generalized coordinate.

[ nThe parachute force on the vehicle.

OT Q T The thrust vector and its magnitude.

ow The gravitational force on the vehicle.

Q, Qy The coxponents of the total vehicle force along the axes
of the ground coordinate system.

Q, The components of the total vehicle force along the axes
of the body coordinate system.

JQ4 e The panel p,.nt applied force components.

I=''lII ' The panel point load components; the difference between
the applied forces and the inertial reactions.

Q 10 ,Q 14, The components of the ground force on the vehicle.

Q ,6 Q A Two component7 of the ground force oa the contacting

? 0. elements a,

(]XGMI,)G%& Two components of the ground force on the main and nose

Qx.N ,;4n gear tires.

Components of the total applied force on tLe piston.

The ground force acting along the piston '-axis.

The aerodynamic lift.
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The total stroking force; the sum of the hydraulic,
Q'Y pneumatic, bearing friction, and bottoming forces.

Q ) Ism The total stroking forces In the main and nose gears.

QXW )Q1W )Qil The components of the gravitational force.

The position vecbor of the origin of the body coordinate
system.

ir" The position vector of an elemental mass in the vehicle
relative to the ground coordinate system.

[ R ] The transformation from the E'ulerian angle time deriv-
atives to the components of the angular velocity expresced
in the body coordinate system.

TUe tire undeflected radius.

, On the cylinder; components of the support reaction along
and at right angles to the gear centerline. On the piston,
the bearing forces.

C ' The effective drag area of the parachute. The symbols
may be separately defined as the drag coefficient and
area, but no standard definition holds (See Ref. 5).
The effective area is generally measured for each para-
chute.

The strokt of the piston; the displacement of the piston
relative to the cylinder, positive as the piston enters
the cylinder.

$ ~The component of the ground force on a contacting element
parallel to the ground Y axis.

T The kinetic energy of the vehicle.

t6 Time

The matrix relating the displacements at the bearing
points to the displacements of the panel poin.s on the
cylinder. The elements of this matrix are determined by
the stroke, the position of the panel and the inter:-
lation scheme used to relate the cylinder elastic dis-
placement to the panel point displacements.

[Tij| The matrix yielding the panel point displaccn'.tc of the
t-th component as a rigid body due to displacement ,I' the
J-th component, to which t'he i-th component Is affixeJ,

LTiF ] The matrix yielding the panel point displacements of the
J-th component as a rigid body due to displacement of the
fus:lage, to which the J-th ceponent is affixed.
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The general geometrical transformation between shears
[ThrVJ and moments, and the panel point applied fcrces ;nd re-

actions.

The matrix yielding the panel point displacements of the
L!PCI piston as a rigid body due to displacements of the, cylin-

der (or the bearing points).

t t - spinup time.

The matrix yielding the panel point i -laceer.ts o. t'=
JITF3 tail as a rigid body due to fuselage panel point dis-

placements.

r The matri,. yielding the panel point distlacenents of the
IT,] vertical beam as a ri3id body due to panel zoint dis-

placements of the horizontal beam.

[TF] The matrix yielding the panel point disp.acements of the

wing as a rigid body due to panel point dis-pla. .enta cf

the fuselage.

0 The potent.a3 enerr d e to eLnstic deforzatinz.

V vollme.

V.e of pro agation cf a :o-pression w.ve.

, The veabciy of the vehicle relative to the a-oer-.

AT 7he ve1c t. of th e meered y de--a c !' I ain a d f'roC
Ber-oulli's relation.

[uv-] Defined by Zq. 2.7-12.

V/8 The veloc't, of a point B in the vehicle, relati.ve ro
-he gr =ud.

V, The component of the grourd force :n a cor-,ab:In ele-
ment parallel to the axis.

V N T. rod force on the main and nose rea-

The parel point shear load at th J-th *-a.-.

L V The cz;onents of the ski or skid te .
V -NA angles to the ee-ent.

\/M The "*o-uze of oil fetered -he-----ice.

V. The inilia value -f the v:-,;.

The "elcitv of the a:, te az.-en- -::n- re-i'e
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V:1 "e I

Ar. The speed of the tire footprint relative to the ground.

Ar, , Ar Ar The components in the body coordinate system of theSI vehicle velocity.

V 6 V The components of the velocity of a point B on the body
16) relative to the ground.

Ar The components in the body coordinate system of theS)&It_ ~1W wind velocity.

O V2 -- The initial volumes of the two regions of the liquid
spring.

aV. ; Ivs The rates at which the volume V, of the liquid spring
a cylinder changes with pressure and stroke due to cylin-

I WA PI der expansion and seal compression.

L/- The tire width.

WD)WL.) WN The compon nts of the ground force cn a ski or skid in
the coordinate systeD. of the element.

Vi5  The component of the ground force on a tire, in the
ground plane and normal to the line of intersection of
the wheel plane and the ground plane.

S The spinip force; the component of the ground force on
a tire, in the ground plane and parallel to the line of
intersection of the wheel plane and ground plane.

X A component of the position vector R in the ground
coordinate system.

A copoiuea% of the position vector IL in the body coord-
inate system.

A component of the position vector (L in a component co-
ordirnate system.

R/ A component of the position vector L to te center of
mass of a vehicle ccmponent, expressea in the component
coordinate system.

The panel point positions along the X-axis.

The component of the vehicle velocity along the ,' -axis.

5z. The component of the :oition vector to the conta..ng
element 'a' along the x-axis.

OM ) XAN The componcnts of the position vector IL to the nose and
main gear ax le al:ng the x-axis.
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7ou.e I

o..... ot.v..y of a ;oint B in the veh c-ale.
re.at:ive to the ground and along the X-axiZ,

1e-re -.onznnen; Df the velocity of the trailing end of a
s:* or -kd, rel tive to the ground and along the X-axis.

T e i. vl. e of the component of (R along the X-ax s.

P Te ccnpcnent of :he pad velocity relative to the grur.
a.ong the X-axis.

Te :an-el oint coordinates of the virg panel points.

.Rt soordina-e of the ving root.

A -=cnn - of th =osition vector fR in the ground co-
s . inate .svzstar.

A 2:Ccnenz :f the position vector IL ir the cody ccord-
irate

/ Aon ce nt of the position vector U. in a cc.-cnenz co-

A : of the position vector Lto the center of
..... v cle component, expressed in the component
r e systen.

The_ pane1 point positions alorng the -axts.

.-2 c,;o=onent of the vehicle velocity along the Y-azxis.

The zzn.caen of the velocity of a point B in the vehicle,
re.=at:e to the ground and along the Y-axis.

........ t z the velocity of the tr~iling end of a
S,.r -kd, relative to the ground and along the Y-axis.

Y. .-.- v value of the component of R along the Y-axis.

Ue a:n-pnant- of the pad velocity relative tn the ground
a'::_- h Y-axiz.

S-ae s-ance fr-i the ground to the or-gin of the tody

:.-a- systen, nornal to the ground.

.......... :nr.; of t ,e position vector 11. in the body coord-

'3...:.-e- of thte posit'c- vector IL in a component co-
: rc-ate sys tem.

' A :comonent of the position vector L to the center of
atS of a vehicle co,p.onent, expressed in the coaponentco rci.nte systen.
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7oiumoe i

The panel point positiors along the 5!-axis.

The componient off the vehicle velocity norza o-*. .
g;round- pazne.

ZA The axle height abov-,e t*.-e gr--d.

1AM) IAN The =aiz:. and nose gear axle ooordirnates a-'-. -eIg e4s

The height off ,oint B aszove tnae

The velocity off t*he trailirg en.d off a ski or skid, rel-
ative to the ground and along the- z-axio.

The pad velocity relative to tne grcound aong t'he -i.

Th'e 1:dla value off the cocaprnent off IR aong-r the -i.

-~~~ The distance along tae spike =easu-e-d ffro= h tit

Paragrap~h ^3.2.4 - The vehi -cle a--' off a-.tack.

0 pnzPoraph a.3-5.1 - T1he ang~la at wnicn -,he zant-ilevered
Sear aho2., strut. is cant-ed forward ffrthe :,- -xi

Parath~;' Th - -Z- off rotatiorn off the arzic-
"2ae ear.

- T angl-_, -e~ee ne wnee and :*.- ground olane.

~a-g~ah .2. -The veh-t2.e sideszlit a.zrle.

?sarsn .- .. ::he.le " -.rogh which the wheel

is_- rotated ac. ne gear o.a. ine due to tor-

3...-The a nSetho which a ski or
n*a a:es rear e- .. rlna due: to torsional

13 ,. 253 he sieapex sn. El.

rF' A -- ouain:rsth groun~d cocrdinate sSso.:
the c'd :codi:atesyze:.

L7] 'e 'o-m, a:naoonnonent coordinrate .stez
t~ :. ~-'d; Oorrtaesyt

rA a.*Z' '_-,etweer the aziculaned gear tansi 'n st-n-
zen terl.:na an! the wheel axc--

7,!-a *cet-ween the support strut and the zlear --e n
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ASD-QV-62-.555
Volume I

T The cosines of the angles between the thrust vector and
SV7 the ax.cs of the body coordinnte system.

£Paragraph 3.2.4 - A control surface deflection.

The tire deflection.

A roll control surface deflection, such as aileron or

spoiler.

b The tire deflection at bottoming.

4E A pitch control surface deflection.

SF A flap deflection.

AJ The displacement of an elemental mass from its undeflected
position defining component rigid body displacement with
respect to the body axes, expressed in the component co-
ordinate system in which the motion is most easily de-
scribed.

Se A rudAer deflection.

STM ITN The main and nose gear tire deflections.

A- , The panel point displacement components due to s-motion
of the component.

The rigid body displacement along the stroking axis
(I -motion along a line).

NA The displacements along Lhe stroking axes of the con-

tactiz.g elements a, b.

The displacements along the stroking axes of the nain
1 and nose gear pistons.

The fraction of critical damping of the mode of fre-
quency &).

The angle defining component rigid body mution about a
line.

The angular velocity of a component rotating as a rg)c

body about a line.

7 AU9 Wheel spinup angular velocity.

The main and nose gear wheel angular velocities :it spiv-
up.

One of the Euler angles defined in Paragraph 2.7.
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ASD-TDR-62-555
Volume I

0. The initial value of 9.

The angle between the componeat of axle velocity parallel
to the ground and the line of intersection of t*e whcc
plane and the ground plane.

An eigenvalue of the fuselage homogeneous panel point
equations.

An eigenvalue corresponding to the i-th mode of elastic
vibra ton.

The coefficient of friction between a contacting element
and the ground.

44b A bearing coefficient of friction.

A8L ' G V Th lower and upper bearing coefficients of friction.

L Atu The lower and upper liquid spring seal coefficients of
friction.

A dinension'l.ess local bay coordinate used to non-dimen-

sionalize so'ne forms .a the inteipolation schemes.

/The vehicle mass density; or, the atmospheric density.

/OM The hydraulic fluid density.

'10 A column ratrix of undetermined multipliers.

The undetermined multiplier associated with the constraint
relation Ft.

One of the Euler angles defined in Paragraph 2.7.

A column 4trix defining a mode shape; the elements are
proportional to the actual panel point displacements in
the :ode.

[ ]1 A square matrix of modal columns to]

A rectangular matrix of modal columns in which the higherL~] modes are deleted.

The initial value of 0.

'4'One of the Euler angles defined In Paragraph 2.7.

V. The initial value of V.

to The frequency of vibration of a mode.

Te vehicle angular velocity.
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ASD- fl'D-62-55.5
Volume I

SDefined by Eq. 2.7-11.

SV , ( The components of ?L in the body coordlnat, systom.

£, j1 , )1 The components of fL in a component coordinate system.

Subscripts

A Axle; axis

a A point in the vehicle; a contacting element

B A point in the vehicle

b A contacting elc!cent

a Cylinder

e Ski or ski trailing end

F Fuselage

f Final value

G Ground

H Horizontal beam

i One of 'he vehicle components, panel points, modal coordinates, etc.
This subscript must be determined in context.

j One of the vehicle components, panel points, local bays, etc. This sub-
script must be determined in context.

L Lower bearisg or seal

M Main gear

N Nose gear

.m A contacting element

o The initial value

p Pad, or piston

S Return strohe

T Tire

U Upper bearang or seal
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AD-TD-62-.555
Volume I

V Vertical beam

W Gravitat:.onal, wind, wing

j )Components along the , , and / axes; or, in a matrix,
referring to the component of displacement in the corres-
ponding kinetic energy term.

f) t Components along the and axes; or, in a :.atrix
U referring to the component of diobiacetment in the corres-

ponding kinetic energy term.
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hdJ-'Lh-6 -b55

Volume I

SECTION 1

INTRODUCTION

The procedures accepted by the aircraft industry for determining the
design loads for alighting gear were until recent years based on the assump-
tion that an adequate design could be obtained from consideration of a few
discrete conditions. These conditions ani the procedures for determining
the associated loads were established in the specific tions. The great Jn-
creases in airplane performance subsequent to World U'ar II, however, caued
the reinvestigation of many well established criteria. The introduction of
high speed computing equipment about this same time made possible the solu-
tion of problems that previously were too long and complicated to permit
economical solution on a large scale.

The aircraft alighting gear was recognized as one design area that could
benefit from the performancc of more detailed analyses and the rationalization
of procedures for determining design loads. The first efforts in this direc-
tion led to the consideration of mathematical models which had one or two
degrees of rigid body freedom. These efforts eventually led to a multiple
degree of freedom analysis basc..d )n a rigid airplane free to translate hori-
zontally and vertically and to Pitch. ThL motion of the airplane was defined
in the ground reference system. The equations of motion were simple, although
non-linear, equations.

Comparison of the nuerical data obtained from solving these equations
with the data obtained from airplane flight and drop test programs indicated
that the equatiors could be made to yield more accurate answers provided
additional physical mechanical d-etails were considered in the analytic form-
ulation. It eventually became apparent that considerable simplicity could
be gained by using the body axis system as the primary coordinate system in
lieu of the ground reference system. Subsequently, the equations of motion
were written in the body reference system and due to the Ditch rotation of
the airplane a Coriolis force tern. ippeared on the left hand side of the
equation.

The addition of other degrees of freedom for motion of the rigid vehicle
and the effects of structural deflections and other pertine..t considerations
caused the continued build-up of the equations of motion and the concomitant
f b= ad geometric expressions. By this process, which might be called a
buildi g block procedure (that is, a procedure which is built up term for
term -s the necessity for each term is recognized), the procedure for d.. rm-
ining alighting gear loads was extended to a multiple degree of freedom anal-
ysis which included not only the six rigid body degrees of freedom, but also
contained degrees of freedom for a flexible airframe. The building block
approach has prolvided a procedure that is very adequate for the deteniin.9tion
of alighting gear loads for conventional airplanes.

Manuscript released by the author on 13 September 1962 for Piblication as an
ASD Techical Documentary Report.
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The advent of flight vehicles that cannot be classed as conventional
airplanes has, however, created new problems. It is no longer possible in
all cases to define for an unknown configuration the parameters important to
the proper solution. Consequently, at the beginning of this program, it was
decided that providing a rational method that would fulfill the stated re-
quirements would necessitate a departure from the building block appoach.
A development program was therefore established on the basis of a completely
general approach to the problem.

In an effort to provide a broad base of understanding of the program,
and oi' this report, the salient ideas and concepts involved in the program
and the general format of this report, are presented in the following para-
graphs. The ideas and concepts will be discussed with the intention of pro-
viding the reader with a word picture of the processes b.zing employed. To
provide a rational method for predicting alighting gear loads that would
attain the wide applicability desired has necessitated the utilization of
numerous mtheatical concepts and tools. As is frequently the case in math-
ematical developments, the derivation of a ve. gene.al result requires great-
er effort than the development of a specific result.

Since the problem being zclved is a complex problem in structural dynamics,
it is obvious that the development of the method will require employment of
the concepts and tools of dynamics. However, the method is presented in a
concise, easy to follow, didactic manner so that the average dynamics engineer
can readily apply this method to his specific problem. Coaisequently, the der-
ivation of the equations of motioz. are preseated under the assumption that the
careful reviewer of The mathematical development has a working knowledge of
the Legrangian equations of motion, vector calculus, matrices, and structural
analysis methods. The presentation of the procedures involved in the use of
the method will not, however, require detailed knowledge of these concepts,
and the aim of the presentation will be to facilitate use of the method by
the engineer. As a preview to tae technical presentation, the highlights of
the development of the method are presented here in the introduction.

Several iterations were necessary to the evaluation of the equations of
motion in their final form. After the first formulation of the general equa-
tions, it became cvident that a simplification of expression was necessary to
allow the equations to be prpsent3 in a more concise manner. The equations
were then rewritten in matrix form, which provided a means of collecting terms
in a manner that would allow the equations of motion to be viewed as a set of
equations rather than as individual equations. As work on the project pro-
gressed to the consideration of some of the detailed problems concerned with
repr.-z-.%tation of a complex structure consisting of several components, it
was found that the inertial characteristics could be handled more readily if
the characteristics of each component were expressed in its own coordinate
system. Consequently, the equations governing each component motion relative
to the vehicle were expressed explicitly, and the general equations of motion
were again rewritten. This form Iirovides generality and also is readily a-
daptable to numerical analysis.

To provide a mathematical model of the vehicle that is of sufCicien:.
generality, the position of every point in the vehicle is defined :n terms
of the position of a discrete set of points in the vehicle, called panel
points. Mass is considered to be distributed throughout the vehicle;
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distributed rass inertial characteristics are considered, but concentrated
mass points may later be used for a particular model. The panel points are
allowed only to translate with respect to each other along three mutually
perpendicular axes. The mathematical model consists of N components, such
as wing, tails, landing gears, which are elastic when the panel points on a
component are allowed relative motions, or which may be made rigid b; allow-
ing no relativ. motions. Rigid body displacement of a set of panel points
with respect to a component coordinate system is also allowed in order to
account for motions such as those of control surfaces and gear stroking.

With the basic mathematical model thus establisheu it is possible to
proceed with the establishment of a workable notation, to define the coord-
inate systems to be employed, and to establish the procedure required to
maintain knowledge of the position of the panel points. The right hand rule
is used in defining the coordinate systems. The gro u:d coordinate system is
considered to be an inertial frame of reference. The body coordinate system
is defined, as are the component coordinate systems, and the transformations
from one system to another are established; hence, the wing coordinates of a
point on the wing can be transformed to body coordinates or to the inertial
frame by these transformetions. Maintaining knowledge of the position of the
panel points is accomplished by defining position vectors such that the posi-
tion of every panel point relative to the inertial frame is known.

To provide the desired generality in the most direct manner, the Lagrang-
ian equations of motion are employed as the foundation of the development.
The use of the Lagrangian equations requiret. that the potential and kinetic
energy of the system be defined in terms of the ground system coordinates,
but in general this is at best a very difficult task. However, if use is
made of the body coordinate system, the kinetic and potential energy of the
system car be readily defined. It would be desirable, then, to express the
Lagrangian equations in terms of body coordinate system variables. This can
be done by writing a set of Lagringian equations to defire the translational
and rotational motion of the body coordinate system and another set to define
the location of all particles in the body with respect to the origin of the
body coordinates. The rotational position is dei'ined in terms of Eulerian
angles. These angles are then so chosen that r" transformation from body
coordinates to the inertial frame is always possible. It is therefore poss-
ible to transform the inertial velocities to body velocities.

Since the kinetic energy of the body is written in terms of the body
velocities, the elastic displacements of a discrete number of panel points
from their equilibrium position, and the velocities of these panel points in
their Pomponents, the requirement is to express the Lagrangian equations in
the terms used for the kinetic energy. The development of these equations
was performed for this program. The rcsiuJtl of transforming the lagrangian
equations are shown as "modified Lagrangian equations". The general cqu'ions
of motion are then derived by substituting the equations for the kinetic and
potential energy into the "modifi'd Lagrangian equations" and performing the
indicated operations. The resulting equations are long and contain numerous
terms that by inspection can be seen to be of no importance o the aljihtirg
loads problem. In the general presentation in Appendix C all term; are -',wn,
but for the purpose of this report, the unimportant terms have beer deleted
in Section 2, where the resulting equations of motion governing landing im-
pact are shown. Equations 2.8-3 and 2.8-4 are referred to as "rigid body"
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equatioz b since the principal te-rms are the inertial terms of the undeflected
vehicle; the remaining terms on the left hand side are inertial coupling terms
due to elastic deformations and component motions. The terms on the right
hand side of Equations 2.8-3 and 2.8-4 are the external forces and moments,
respectively, writter in the body coordinate system. Equation 2.8-5 without
the "rigid body" coupling ter'is are the ordinary panel point eguataons of i
restrained body, with the panel point forces and constraint forces appearing
on the right hand side of the equation. These three equations must be solved
simultaneously with any existing constraint equations in order to obtain a
solution.

it is intended that the formulation presented here be of sufficient gen-
erality to fulfill the requirements of any particular problem concerning
landing impact. It is also intended that the manner of presentation of tht
method be of such clarity to permit utilization of the method by the practic-
ing engineer.

The requirement for generality has caused some complexity in the formu-
lation, which has resulted in a considerable amount of discussion to explain
fully the myriad of detuils covered by the program. The intent of this lengthy

discussion is to allow the user of the method the freedom of choosing the
particular segraents applicable to his problem. By proper choice of terms
from the general expressions, consistent with any simplifying assumptions that
have been made, the equations of motion for a particular problem can be ob-
tained from this report. The utility of this procedure depends upon whether
or not significant time can Le saved in formulating the desired equations of
motion by using this report, as contrasted to the time required to formulate
the equations independently.

To assist in attaining the desired utility, it has been necessary to
temper somewhat the desire for generality of the final expressions describing
the mathematical model. Therefore, for the development in the main body of
the report certain assumptions have been made which elimirate some terms
whosv effect on alighting gear loads or vehicle motion is negligible for any
known or postulated vehicle configuration.

Section 2 of this report is devoted to the development of the equations
of motion. This section p.esents a somewhat detailed explanation of the
various mathematioal concepts employed in the development of the method. It
has not been possible due to space requirements to include in Section 2 all
the algebraic manipulations required in the development. As noted above,
certain simplifying assumptions made in Section 2 have resulted in the omission
of -tain terms in the final equations. For the benefit of these dynamicists
who are interested in the complete development of the equations, Appendices
A, B, and C are included. In these arpendices the entire development -.s pre-
sented without recourse to simplifica-.ion.

For those engineers not initerested in the development, the final
equations of motion, Equation 2.8-3, 2.8-4, and 2.8-5., from Section
2 may be used with the information of the subsequent zecticns to
obtain the desired problem formu.lhion.

Section 3 presents the definitions of and the formulae applicable to the

applied loadq: which are shown on the right hand side of the equations of
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motion (Equations 2.8-3, 2.8-4, and 2.8-5). The importance of this section
of the report lies in the procedures for the proper introduction of these
forces into the system of equations. The specific information on procedures
for calculating applied loads is based on the best currently available data.
These procedures, howcer, nay not always exactly fit the physical c-ndition
being simulated. It is necessary, then, that the user decide upon %he applic-
ability of the given expressions, and, if necessary, modify these expressions
or completely define new expressions applicable to the vehicle being inves-
tigated. In the latter case, the information of Section 3 becomes the guide
to be used in the formulation, and provides the necessary framework for prop-
er introduction of newly defined forces into the equations of motion.

The procedures whereby the results of Sections 2 and 3 may be manipul.Lted
for use in the landing analyses of vehicles of current r.terest are presented
in Section 4, Vol. II. It is expected that Section 4, Vol. II should be

sufficiently complete to make the report valuable even without a good under-
standing of the Lagrangian formulation of mecbanics. Section 4, Part II
explains the proper procedures for utilizing the method.

Vol. II is concludec %vith the presentation in Section 5 of several nu-
merical solutions of the example problems in Section 4. These problems are
intended to exemplify the salient features of the method. To provide ease of
understanding, an attempt has been made to present specific aspects of the
method in each example so that the user will not be coufrcmted with an ex-
cessive number of new concepts in a single Iroblem. After an investigation
of the information in the report, (Vol. I and II), the user should be able to
proceed to the solution of more detailed and extensive problems.

Providing a complete and rational method for predicting alighting gear
loads during landing impact has necessitated the presentation of many diverse
but related topics. Some of these are basic to the development; for example,
distributed mass and rotational inertias and distributed bending and torsional
stiffness of all parts of the vehicle, as represented by the various A and K
matrices in the equations, are inherent in the maihematical model used for
the development, and thereby vehicle flexibility is included. The exact con-

figuration, shape and dimensions of all basic components of the vehicle being
studied, as well as those olf the com..site vehicle, are required for the pur-
pose of defining the various forces. The mathematical model is sufficiently
general to allow use of one, two, three, four or more separate alighting gears
for vehicle support. The mathematical model also provides the freedom re-
quired for establishment of variations in coefficients of other parameters,
and of any desired combinations of inital conditions on displacements, rates,
or acceLerations; for example, rigid body pitch (attitude) and pitch rate may
be specified simply as initial conditions, rnd the desired initial value of
pitch acceleration may be obtained by the proper unbalance of moments in 6he
pitch degree of freedom equation of motion. (This same statnment is applicable
to vertical, longitudiiml and lateral t'anslations and to roll and yaw rota-
tions.)

To provide a handy reference for inital utilization of this report,
some of the additional topics, which are not gaenral throughout the report,
but which are worthy of special note, are presented in lable 1, page seven.
This table shows the page location for some of the~general topics as well
as for such speul-1 tcpics us friction forces and mc-chanical springs.
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While it is not feasible to cover in buch a table all details included in the
report, most major special topics are enumerated.



TABL 1

LOCATION OF TOPICAL DISCU~SSIONS

A. ChRACTERISTICS OF THE RIGID VEHICLE

1. Development of Equations of Motion ------------- 8

2. Mass and Rotational Inertias in the Rigid Body 24
Equations of Motion-------------------------------------

B CHARACTERISTICS OF FLEXlIBLE VEHICLE

1. Mathematical Model ----------------------------------------- 8

2. Equations of Motion ------------------------------------ 2

C. THE INTERMEDIATE STRUCTURE

1. General Equation of Motion Sh-,wing Distributed Mass
and Rotational Inertias, and Bending and Torsional
Stiffnesses----------------------------------------------- 23

2. Alighting Gear Restraints, Including Full Cantilever
with One and Two Restraints ------------------------------- 107

3. Angular Orientation of C2,= with Respect to Vehicle
and to Alighting Surface ------------------------ 11

4. Articulated Alighting Gear (Volum II) --------------------- 232

5. Semi-Articulated Alighting Gear (Volume II) ----------------- 241

6. Characteristics of Shock Absorbing Devices ---------------

a. Springs, Linear and Non-Linear-------------------------- 94
b. Energy Absorption Devices

(1) Hydraulic Dampers--------------------------------- 87
(2) Crushable or Yielding Materials ------------------- 105
(3) Release of Comprsse Fluids ---------------------- 106

c.Strut Priction ---------------------------------------- 101
d. Bottoming Forces -------------------------------------- 105
e. Extension Stroke Forces-------------------------------- 92

D. SURFACE CONTACTIG COI4P01EIS

1. Surface Pads -------------------------------------------
2. Tires, Including Ioad-Stroke Characteristics and

Equivalent Damping --------------------------------------- 61
3. Tire Friction Forces--------------------------------------- 64
4. Spike-Soil Forces ---------------------------------------- 7.0
5. Skid and Ski Forces

a. Hard Ground Forces ---------------------------- 75
b. Soft Ground Forces --------------- --------------------- 78

6. Gas Filled Bag Forces------------------------------------- 82
7. Equation for Bogie Motion-------------------------------- 30
e. Consideretioni of Off-Set or T-1-Line, Dual or Multiple

Contacting Elements---------- ------------------- --------- 57
7



SECTION 2

FORMULATION OF THE EQUATIONS OF MOTION

2.1 GENERAL

The formulation of the equations of motion given in this section, al-
though somewhat formidable algebraically, can be described in simple terms.
From the definition of inertial and body coordinate systems the kinetic and
potential energies for the mathematical model under consideration are written
in the body coordinate system. These energy expressions are then substituted
into a modified expression of Lagrange's equations, yielding the equations of
motion of the vehicle during landing impact. The desire for generality and
compactness in the final equations has dictated that the variables chosen to
define the vehicle motion be those expressed in the accelerating, or body,
reference system. This choice of variables requires that the operations
associated with the usual form of Lagrange's equations be transformed to
operations in the accelerating reference frame.

In order that coitinuity may be maintained, many of the detailed steps
of the derivation have been deferred to the appendices.

2.2 MATHEMATICAL MODEL OF THE VEHICLE

The vehicle under consideration is composed of N components, each of
which may be elastic. Each component is assigned a subscript t , so that

= 1, d, ---, N. The subscript which is unity refers to the main com-
ponent or fuselage. The remaining subscripts refer to wings, tails, gears,
etc. Each of these components has a defined volume, a mass density, and an
initial orientation in space.

The motion of the continuous distribution of mass requires an infinity of
variables to be exactly described. It is approximated by the motion of a dis-
crete number of points called pancl points. Mass and stiffness properties are
assigned to the panel points by some interpolation scheme such that the energies
of the continuous system and the panel point model are equivalent.

The motion of the pancl points will be defined relatire to the body axis,
which are not f.-xed in the inertial frame of reference. These motions must then
be described relative to the inertial frame in order to formulate the kinetic
energy of the system.

a.. NOTATION

The notation in this report is made consistent with that in the rield of
aerodynamics where possible. The size of the report indicates that duplication
of symbols may occur. Thc forms to be used will be consistent throughout the
report, and symbols used more than once are defined for each usage.

8



General notation as used in this report is as follows:

Vectors - Vectors are denoted by a double bar on the left edge of
the symbol; P, R, L.

Matrices - Matriceb aie denoted by a symbol enclosed by braces o:
brackets, the diutinction between types are listed:

- A rectangular matrix; the number of rows and columns depends
1 / on the particular matrix

[ i'- A rectangular matrix; the transpose of the matrix indicated
i by the brackets and enclosed symbol

S} - A column matrix; a single column of eleens as indicated
by an enclosed symbol

{ -I A row matrix; the transpose of the indicated column matrix

The identity matrix; a matrix with unity in the diagonal

positions axd zeroes off the diagonal

S] " A column matrix composed of the indicated column matrices

Time derivatives - A partial derivative of a variable with respect to
time is indicated by placing a dot above the variable, once for
each time it is differentiated;

Primes - When placed on a matrix, the matrix transpose is indicated.
When placed on a variable or subscript to a variable, the
quantity is consideree to be written in a component co-
ordinate system.

Particular cases of the matrix notation involve combinations of the above
nottion. These cases are consisten- in notation and generally will not be
explained in detail.

Symbols and notation of components of the vehicle are considered in the

definition of coordinate systems and vectors.

2.4 COORDINATE SYSTEMS

Three distinct coordinate systems, inertial, body and conponent, are iisud
to define the motion. Each of the coordinate systems is defined by a righr 1-nded
triad of mutually orthogonal unit vectors which spezify the directions of the
coordinate axes.

9
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TL: inertial frame or ground frame of reference is specified by the unit
vectors if , J , 0 . The unit vector JK is normal to the horizontal
ground plane and is positive downward. The unit vectors a , are in
the ground plane.

The principal or body coordinate system is specified by the unit vectors
d , K . The orientation of these vectors is specified initially by

the principal axes of inertia of the undeflected vehicle, and thereafter by the
equations of motion. The unit vector 1K is considered positive downward and
the unit vector h positive forward, where those directions have meaning.

Component coordinate systems are specified by the unit vectors A , t )

, , The subscript refers to the particular component. The origins of these
component coordinate systems are coincident with that of the principal or body
coordinate system nd are fixed relative to the principal or body coordinate
system. These coordinate systems are oriented in each component such that the
motion of that component is as s.imple to describe as possible. This concept
is discussed as various component problems arise.

Transformations between the coordinate systems are given by

1 ] Inertial to vehicle body

fIK I coordinate system

[ ].ii' Component to vehicle body

tKJ coordinate system

where the elements of the transformations are the direction cosines between the
coordinate axes, given by

- -
[1K, IK" IK ]

IT



Since this method is primarily concerned with the cantilevered type of landing
gears, it is assumed for the general formulation that the component transformation
matrices (t). are independent of time. This assumption will then allow simple
descriptions of component motions if the orientation of the components are fixed
relative to the body cc'xdinate system. This simplification keeps the size of
the formulation within reason while not compromising the accuracy fo the in-
tended application. In Section Four the logical extension of the equations of
motion to include articulated landing gears will be demonstrated by example.

The matrix [P] is the Eulerian transformation from the ground coordinate
system to the body coordinate system. It is given by Equation 2.7-3, and is
time dependent.

2.5 POSITION AND VELOCITY VECTORS

Any formulation of a dynamics problem requires that the position of all
masses be known relative to an inertial frame. With reference to Figure 1,
the following vectors must then be defined.

- The position vector of the origin of the principal or body
coordinate system:

1- The velocity of the origin of the body coordinate system:

[ I + T +rizjIa

S- The position vector from the origin of the body coordinate
system to the undeflected position of an elerental volume dV:

ir - The position vector of an elemental volume dV from the nrgin
of the ground or inertial reference system.

12



Jh - The angular velocity of the body expressed in the body

coordinate system

A = il Al.d + -ft t 1

- The total displacement of an elemental volume relative to

the body coordinate system, expressed in the component co-
ordinate system

Re A" 5 + R - 0' + P, K

In addition, there are several vectors which must be defined for use

later in the formulation.

/ The displacement of a volume element dV from its undeflected
position defining component rigid body displacement with
respect to the body axes, expressed in the component coordinate
system i: which the motion is most easily described, (referred
to as "delta' motion).

- The displacement of a volume element in the L -th component
due to displacement of the ' -th cumponert, fp . The letter

here simply reiers to the particular component to which the
-th component is attached.

Ip e"-The displacement vector of an elemental volume due to elastic
deformations of the j -th component only,

The total displacement of an elemental volume is then the sum of the latter
three vectors.

For the main component, or fuselage, there is no "delta" motion or motion caused

by other displacements, and

IP
The definition of the principal or body coordinate system requires that it

be initially the principal axic of inertia system, so that by defintion

f L(x,'(,- ) cv 0
where /O (x, 5, /) is the mass density of the vehicle arhd V is the total volume.
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2.6 KINE'IC AND POTENTIAL ENERGY OF THE SYSTEM

The kinetic and potential energy of the system can now be written.

The kinetic energy of any system may be defined by

T = (2.6-1)
V Cit

where the vector ir is the position vector of an elemental mass
relative to an inertial frame of reference. From Figure 1, the position
vector is seen to be

ir= JR + LL + 1FD (2.6-2)

In vector calculus, it is shown that the total time derivative of a
vector expressed in an accelerating coordinate system is found from the
operation

d = - + fLX (2.6-3)dt 2)t
This theorem tcgether with the definitions of the above vectors will be
used to find the velocity of the elemental mass relative to the inertial
frame. The vector IR is a vector in the inertial frame of reference, so
that

d R (2-6-4)

The vector IL is expressed in the body coordinate system, so that it is
dependent on body orientation, but it is not explicity dependent on time.
Then

.41L (2.6-5)

The total displacement vector of an elemental volume is dependent on time

and body orientation;

dlP = 2- f2 X P (2.6-6)

dt
The velocity of an ulemental volume with respect to the ground reference
system is then

dir = z + RxL + ,i t- Y. -7)
t



The square of this quantity is

ir. ir _-+ M,- .

dt dt

+a . L 0 -,-z ffL. fP,
•t+ Z MY, IL). -(A X IP) (-+

This form is substituted into the expression for kinetic energy given by
Equation 2.6-1. The volume integration of the above terms containing nanel
point displacements or velocities is broken into integrations over each
volume with the resulting suirtion indicated.

T = ± IRzodv +- Al , PL. 1 dv

i -A VP PdV V + oil P

V 
V

t-['( 11p V, §L - JLL (A Y" I J )/: to V) ( 2 . 6 - 9),

The term

IV

does not appear due to the definition of IL

The desired form for the kinetic energy is obtained by expanding the vector
quantities in Equation 2.6-9 into component form and performing the indicated
operations. The integrals are then evaluated to give the form of the kinetic

15



energy consistent with the mathematical model described in Section 2.2. The
detailed manipulations required to arrive at the desired final expression for
the kinetic energy, shown in Equation 2.6-11, are outlined in Appendix A.

/+r [fir,
tLU~oj, J -.'i J L Ii',S

( IT /Aj Y+ R r[A ,1 1

RL O.] ,
() [A, { }

S'ti ont [A' ie j nne[Axt pae)

(Summation continueci on next page)
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It should be noted that the subscript 1 does not appear on each term,
but rather on the entire bracket of terms to be summed. Thus all primed sub-
script terms should have the proper component subscript affixed, as should each
coordinate transformation [ii . The vehicle velocity components are written in
the body coordinate system and the terms involving columns of panel point dis-
placements, t PJ , and their time derivatives, are written in the various
component coordinate systems, as is evidenced by the primed subscripts. The
transformation of the component coordinate terms into the body coordinate
system is evident due to the presence of the coordinate transformation matrices.
The matrices LfI and t[A] are defined in Equations 2.7-11, 12.

The matrices [A] with various subscripts are cal]ed mass matrices. They
have different forms depending on the type of integral which is evaluated. Each
arises from some numerical scheme which relates the dis.rete form of the kine'-ic
energy to that of the continuous physical system, consibtent with the definit..on
of the mathematical model.

It is assumed that the potential energy in the vehicle arises only from
structural deformations in the linear range. This requires that elastic dis-
placements remain small; i.e., that the relative displacements of adjoining
panel points be small compared to the distance between them. The potential
energy may be expanded in a Taylor's series in panel point elastic displace-
ments. If it is expanded about a point of minimum potential (the equilibrium
position), and the potential at that point is arbitrarily set equal to zero,
the constant and linear teros in e.astic displacements will be zero. If all
terms higher than second order arc neglected, a quadratic form for the potential
energy results:

=A 1<1- /kvi [[K~ 1 6.-2

The [K) matrices indicated here are called stiffness matrices, and are derived
from the geometry and physical characteristics of the various components of the
systzT They embody not only the distributed stiffness of a given component, but
also the restraints due to supporting members between components. Their determina-
tion thus involves both a detailed structi al analysis and some sort of numerical
technique, 5c that the continuous structurc is properly represented. Th±s sub-
ject is too broad to be included in this report; the reader unfamiliar with this
aspect of the analysis may consult references 2, 5, 18 and 19.

The above forms for the kinetic and potential energy will be bubs .tuted
into Lagrange's equations, which are to be devloped next.
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2.7 IAGR!IGE'S EQUATIONS

A derivation of the basic form for Lagrange's equations may be found
in reference 1. A summary of the concepts involved in their derivation is
necessary in order to ,nderbtand the contents of this section.

Basic to the derivation is the requirement that the position and orienta-
tion of every particle be specified relative to a fixed frame of reference.
This is accomplished in terms of any set of variables; as these may be dis-
tances, velocities, angles, or perhaps less familiar quantities, they are
referred to as generalized coordinates. The appearance of Lagrange's equa-
tions varies among authors. A convenient form for use here is

-- : -- (2.7-1)

The quantity L is known _a the Lagrangian, the difference between the
kinetic and potential energy: L = T - U. Here the gi are the generalized
coordinates. The minimum number of coordinates which may be chosen is dic-
tated by the number of degrees of freedom allowed in the motion, and the
number of constraints imposed. The quantities Qi ?re the associated gen-
eralized forces; they may actually be forces, moments, etc. These gener-
alized forces are assumed know in terms of .he generalized coordinates.
The quantities R are a set of constraint relations among the general-
ized coordinates. If there are M - M, of these constraints, where 14, is
the number of generalized coordinates, then there are Ml degrees of freedom
for the system. The lagrangian undetermined multipliers, 67i , are the
proper functions to cause each term on the right hand side of the equations
to be a constraint force which is consistent with the constraint relation-
ships Fj . As there are M, generalized coordinates and [4 - M lagrange
multipliers, and only M Lagrange equations, it is necessary io solve the
set of M - M constraini relations simultaneously with Lagrange's equations.
These will be discussed later.

For the sake of algebraic si licity, the kinetic energy of the system
was written in terms of the body coordinate system variables. Since this
system moves with the body, it does not specify the position and spatial
orientation of every particle in the body, contrary to the assumptions from
which the above statement of Lagrange's equations was derived. It is then
nece.,ssry to modify either the expression for the kinetic energy so as to
be applicable to Lagrange's equations as expressed, or to modify Lagrange's
equations to utilize the kinetic energy in its present form.

An investigation of these alternatives has shown that much of the
cumbersome algebra can be avoided if Lagrange's equations are modified to
accept the kinetic energy in its present form.
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Before proceeding, the Eulerian transformation between the ground
coordinate system and the body coordinate system will be established. The

transformation was defined such that

Lrf}(272
The form for the individual elements in the transformation matrix will depend
on the definitions of the Euler angles to be used, that is, the sequence of
rotations which take the vehicle from the orientation of the ground reference
system to its instantaneous space orientation. The choiue of these rotations
is arbitrary. A convenient sequence of rotations for la.hding problema :'
defined as follows:

(1) Rotate the system through the anigle 'f about the Z axis in the right-
handed manner (X into Y) to produce the system (X1, Y1 , z).

(2) Rotate the system (X , Y , Z,) through the angle e about the Y1 axis
in the right-handed 1 manaer 1 (ZI into XI) to produce the system
(X2 ), Y, zP).

(3) Rotate the system (X,, Y , Z,) through the angle 0 about the X, axis
in the right-handed emai~er 2 (Y2 into Z2 ) to produce the system

(xaJ,).

The coordinate transformation is given then by

cos 0 cos cos 0 sI r - sING

-- "1 COSV SIN OSINO COS*COS O COSgSIN¢

IJ -sim*coS0 +51IN5sj.0SI.9

COS4"SIN COSO SIN *ISIN COS O C O;& COS2
L sN ,sm -os' C.s SI

The transformation of the body velocity as expressed in the grou=d reference
coordinate system to the expression in the body coordinate system is given by

1 [r']' L -2..4

The transformation from Eulerian angle time derivatives to angular
velocities about the body coordinate axes is given by
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where the transforiiation matrix is

Lio 40 Cos -9 CS (P 0 ;.-,
[ ] = 11 il

The particular property of this choice of Siulerian anjgle:, useful in
landing problems is the existence of the inverse of the rotrz.: [R] wne:'
all of tha Luler angles are zero. Conventional airpla:ne axes are thus
chosen to represent the body zoordinate system, and the vehicle orientation
is specified.

A set of generalizcd coordinate, suitable to co0;,pletely specify the
motion could be the 5uler angles, the components of the position vector to
the origin of the body coordinate sysLem, and the panel p)oint displacel.ents.
The Lagrangian then would bt given by

L= L((, ,o FS,V, -&, (P, fr P,,? Pj} f P D (,;..7-7 )
The statement of Lagrangc's equatiou. using t.:1- generalized coordinates
follows i iediately from the general foii of Euatio. 2.7-1. Thus

aL a L r O

4- a /

d 6 (L ) LL)r

•C
c) t lin r

d ) a 79 I

Nap LN +Z6'

_t I U

) dL I f6

~P~'J [3. 2) Q7~4-10)R' ) FIJ

,,h laet a+ ne e- tions ars %rit ten once for each component.



The kinetic energy could be transformed into an expression relating these
variables, and the indicated operations performed. The algebra involved in

obtaining the desired result, however, ray be lessened considerably by trans-
forming the operations in these equations to operations or, the variables in
which the kinetic energy is already expressed. The derivation of Lagrange's
equations in "modifieu form is shown in detail in Appendix B. In t-rms of
the matrices

-A1 0 ] (d7-L

/If Y, - -or 0

the modified statement of Lagrange's equations is shown to be

__l I2l
BT(eJ -c ) ,/(2-7-13)-

44 
N4-[j I 1=Q}1f

" L tt' =F:J

-taa

17P -7-5



2.8 THE EQUATIONS OF MOTION

The desired equations of motion may now be obtained by the substitution
of the forms for kinetic and potential energy into the set of Lagrange Equa-
tions 2.7-13, 14, 15. The operations indicated there are somewhat lengthy,
and are relegated to Appendix C.

The finl equations of motion are presented as three sets of equations,
each defining one of the vectors describing the motion. The components of
the linear velocity vector & are governed by Equation 2.8-3, and those of
the angular velocity A by Equation 2.8-4. The total displacement vector 1P
is governed by Equation 2.8-5. These equations describe the motion relative
to the body coordinate axes, which constitute an accelerating frame of reference.
The motion relative Lu the inertial or fixed frame o0 reference is obtained by
transformation of the body velocities; making use of Equations 2.7-4, 5. These
velocities are then integrated with respect to time, yielding the components
of the position vector (R which specifies the position of the origin of the
body coordinate system;

and the Eu)erian angles which specify the orientation of the body coordinate
system by Equation 2.7-2

Up to this point, the number of restrictive assumptions imposed on the
mathematical model have bezn small. The result is that a large number of terms
appear in the equations of motion in the appendix. In the interest of presenting
a relatively compact set of equations here, some of the tern are deletec from the
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Rigid Body Linear Equations

M -M [ft] + [ f Pr

Y[A -j y[A.,] t

'ieiid Body Angular Equalions

%XA)f t}[Axi(P I

+o -11 () tx=[ NW

1~J - Ol [A V], Pjl NIJ (.qh



Flexible Body (Panel Point) Equations

LA i + zf [0cj 0 1 -2j

+A +[0)) AA

+ l.Ay,, [A~,'1

+~f~) A~ (-Av -tfL erl) [AXZ -(nl, +fxft, [A~J ,kl

+i (All t'J Ai] (~~LP)Ly' '
L A ,) Dpl4 ,1 (A, +j.a,2A.,J -(L t [IA, i'Jj

[A Px IL Y+16i
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complete set of equations in Appendix C. The Equations 2.8-3, 5 are identical
with the expressions obtained in the appendix. The set of Equations 2.8-4
governing the body angular velocity are obtained from Equation C-lO by omitting
a number of terms. The omitted terms are of two types. It will be .recalled
that the body coordinate axes are initially the principal axes of inertia for the
undeflected body. If tiis remained true of the coordinate axes as the panel
points move relative to one another, the moments of inertia of the v-.!icle would
still change due to the variation in position of the various distributed masses.
These moments of inertia, which are dependent on the panel point motion, are de-
fined by the inertia matrix in Equation C-9, and the manner in which this matrix
enters the equation of motion is indicated in Equation C-10. It will be assumed
here that the terms involving panel point motions in the inertia matrix may be
neglected in comparison to the constant term. In addition, since the body co-
ordinate axes are not instantaneously the principal axes of inertia, the inertial
forces associated with the panel point motions will exert a net torque a bout -he
body coordinate axes. Of the seven types of terms which arise because of this
effect, only the first and third terms listed in Equation C-10 will be retained
here.

The deletion of the above terms is justified provided that the principal
axes of inertia do not differ appreciably from the body coordinate axes through-
out the analysis and that the moments of inertia remain nearly constant. For
landing analyses of conventional vehicles this assumption is always true. Con-
figurations which do not satisfy these assumptions will require the additional
terms to be retained.

To be complete, the systen of equations governing the vehicle motion must
include the equations of constraint. These equations are written in the form

[E-1 =fo} (2.8-6)

These constraint equations will arise if the set of panel point displacements
used to define the motion are not independent variables. If Lhis occurs, Equations
2.8-3,4,5 do not provide enough relations to solve the problem. The remaining
relations necessary are the set of constraint equations :hich state the dependence
among the variables. The various constraints that ariso in the class of problems
considered in this report are disc,,",sed in Sevtion 3.5.

Equations defining the rigid body motion of components with respect to the
body coordinate axes ( 2 - motion).

Although Equations 2.8-3,4,5,6 are a proper description of the motion, they
are noL in the most convenient form for general application. It w.L, be rezalled
that the total displacement IP of an incremental volume dv was composed of three
displacements:

P - The displactment of an elemental volume due to elastic deforma-tions of the i -th component only.

fp.. - The displacement of an elemental volume in the i -th comyonent
due to the displacement of the: j -th component, [P- ...ere the
subscript i refers to the component to which tae i -th com-
ponent is attached.
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- The disp]accmant of a volume element dV from its undeflected
position defining component rigid body displacement with res-
pect to the body coordinate axes expressed in the component
coordinate system.

The displacements 1pe and A define displacements for separate degrees of
freedom; they are indpendent variables. Thus, if the components of both of
these displacements along one f the coordinate axes are retained, there will
result more variables than equations. The resulting restriction is therefore
made that both of these contributions cannot occur for a given component in the
same direction. This will not constitute any real restriction on the use of the
equations for the description of landing impact, sincethe contribution to gear
loads from elasticity in the direction in which a component may move relative
to the vehicle as a rigid body is small.

The panel point coupling terms in the rigid body equations required con-
sideration of the total displacement P ; this requirement and that of com-
pactness dictated the choice of the total panel point displacements as the
generalized coordinates used to difine the motion. In a particular application,
however, the total displacement must be broken into its separate parts. This
paragraph will derive explicitly the equations governi.ng A -motion for two cases
generally required in landing impact analysis; motion along a line such as gear
stroking, and motion about a line such as rotation of a bogie about an axle or
wheel spinup. Other displacements are discussed in Section 2.9.

In general, the equations describing 6 -motion of a component may be
derived from the panel point equations 2.8-5 directly. They are obtained by
expanding the total displacement into its separate parts, and socting to zero
the elastic displacements of the component in the direction in which component
rigid body motion is to be allowed. All terms are retained, however, due to
elastic displacements in the remaining direction(s) and displacements due to
displacements in another component. For convenience, these inertial coupling
terms on the component rigid body motion will be included with the applied panel
point forces JQ until the algebraic manipulations are completed. Thus [3
will refer to both applied and coupled inertial forces.

Component rigid body motion along a line

The component coordinate system for the component which may move as a
rigid body along a line is defined such that one of the axes lies along the
line of motion. This will be designated as the J -axis. For that component
there can be no IP!,j according to the previously mentioned restriction.
Also, since motion along the 11 -axis of the member holding this component
does not cause motion of the component, then jP,]..is zero, where j refers

to th2 .'upporting member. Then

7(2.8-7)
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The ec.ponent is not allowed /L -motion along the other axes, hence

PA P. I ~'ij P. (2.8-8)

=P )i Pe1i+k~ (2.8-9)

Thus, the component may have elastic deflections along the other axes, and
may move in those directions due to motion of the supporting component. The
equation for the A -motion along a line is then derived from the portion
of the panel point equations governing motion along the -axis of the

-th component. Use of Equations 2.8-7, 8, 9 yields

[[A,1jhA 1 (2.8-10)

The 6 -motion of each panel point is the same for motion along a line, and
the column L.0,may be written in terms of any one of the (n) panel point
displacements; say the first, L

= ~ja h~(2.8-11)
This may be rewritten as a set of constraint reiations

JJ " = CO} (2.8-12)

The only contributions to constraints on A -motion along a line are then
those which make the component move as a rigid body, that is,

The constraint term may be calculated immediately;
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The eqution defining the motion may be summed by premultiplication by a row
matrix of ones, til'

L 1 1~i1Q (2.8-15)

The internal constraint forces thus have no net effect on the rigid body

motion of the whole component, as expected. Identifying the component mass as

Mj= I [j (2.8-16)

the mass moments relative to the origin of the body coordinate system are

=IJ (2.8-17)

Using Equation 2.8-5 and expanding the total dispi.cements in the desired
directions under considerationend setting to zero the elastic displacement
of the component in the direction in which --omponent rigid body motion is
allowed, the final equation governing -motion along a line is

+(- + P
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The right-hand side is the summation of all the external forces on the com-
ponent along the $y-axis. The pareameters X', -', -/ are the coordinates
of the component center of mass in its undeflected position. The left side
of the equation is the product of the component mass with its instantaneous
acceleration along the )' -axis relative to the fixed or ground frame of
reference. In most cases, when the component mass is small compared to the
total mass, only the first significant terms of the equation need be retained.
The remaining terms are small.

Component rigid body motion about a line

The motion of a component about a line as a rigid body is a bit more
difficult to forumlate than that along a line. For that reason, the details
of the formulation will be presented. This problem is an excellent examp,=,
for the interested reader, in the use of constraints.

The coordinate system for 4 -motion abcut a line will be defined so that
the I' -axis of the component system is parallel to the axis of rotation; the
motion is then in the x'-i' plane. This implies that [ a,-jIo]. A single row
of panel points is laid along a line in the component, one of which is pic-
tured in Figure 2. The angle )t measured in the right-handed sense from the
X' -axis defines the position of the line of panel points. The distances a-

long the line from the axis of rotation to each panel point are arranged as a
column matrix } . The convention will be used that the distance is
positive when measured along the end defining the angle )t , and negative if
along the other end.

axis out of the page

x' ) axes are trans-
lated from the body co-
ordinate system o.±6in
for clarity

Figure 2. Component Rigid Body Motion About a Line.
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From Figure 2, the gecmetric relations between the angle 7Z and
the panel point displacements are seen to be

S *y INNLo4 (2.8-29)

These are a set of equations relating a number of variables, but they are
not suitable as constraint equations. Constraint equations can only relate
variables already in use. However, the value of any two of the displacements,
say tw' and A may be used as

_=,,= ..o, (.t -cosf' (2.8-21)

Ay = , sN !(2 .8-22'

to write a set of constraints

-A 18(2.8-23)

An additional consbraint may be derived from the equations relating and
3 to the angle by eliminating that aigle;

IL. X - 2-Z = 0 (2.8-25)

A suitable set of constraints foi the motion are then

3/k Fn) (2.8-26#)
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- , /1 0 (2.8-28)

These constraints simply require that all of the 
panel points rotate to-

gether by an amount determined either by A. or . They may be sub-

stituted into the set of equations of motion

t

Z . (2.8-30)

The constraint terms are

_ + (2.8-31)

2(+.8-32)

32



Substitu;ioa of these terms and the constraint relations into the equations
of motion yields

++

L J (2.8-33)

±: }
+ .+ T

L , (2.8-34)

The Lagrange multipliers may be eliminated immediately. A linear combination
of these equations is found by premultiplying the first by Ij/ 1 I sinj
and the second by jJ,, cos so that

cos - tos, Z (2.8-36)
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If the forms defining A.,and Ayin terms of 71 are now substituted
into these two equations and they are summed, the last undetermined
multiplier is eliminated. The equation then is

i I 1'AxJ . ~(sl~~tCOS?4 'SN 71o t (+ VI4So OS O6'

= ~ i~x'~$IN~ ~ ~ LO~j(2.8-37)

This may be written in terms of the moment of inertia about the L !-axis

as

IA1 ~ Q x ~P ' j s I Nnf cosYv (2.8-381

Expanding the inertial terms is a rather long process; the result is

T 'p l et X COSth -All SINgnl e . 5I, + ,rare n s i s

This ple n I +il be ' COst ) +e aL i jY' In the cswhereaogie)

5c ! po s a n -al af i e t t e ( , a ' p I n .

40I
CO7 + OX +A j"r0 4

where Manis the component mass and C is the distance from the axle along
the line to the center of mass of the component. The inertial moments due to
displacement of the axle along the th -axis, P , are now easily seen.
This displacement will be set equal to piston A.~in the case where a bogie
tlemernt is pivoted on an axle affixed to the end of a gear piston. Moments due
to fore and aft and lateral deflections of the axle are neglected.

Particular applications of interest in this report are for bogie motion
and wheel spinup. For bogle motion, there are only three panel points at
whizh moment inducing forces are appl..ed; those at the front and rear wheel
axles, and one at the point at which the bogie rotational spring-dam,-r i
affixed. The distance from the bogie axle to front wheel axle is tvP .
to the rear wheel axle is Y0 (negative), and ...e bogie equation of motion is
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where N-({-)k )is the restraining moment of the rotational spring-damper of
the bogie element.

For a round disc-like object rotating through large angles about its
central axis, such as a tire and wheel rotating about an axle, the applied
forces do not act directly on the line of points which rotates with the
wheel. Therefore to define properly the panel poinL forces would require
additional complexity. It is noted, however, that the right hand side of
the equations must be the exteral moment whicA causes the wheel to rotate,
and it can be simply srated as such. The distance 1 is zero for a balanced
wheel, and the inertial terms in body angular motion are small compared to
wheel angular acceleration. Hence the equation for wheel angular motion is

A  t = EXTERNAL MOMENT = Nsu (2.8-41)

2.9 TRANSFORMATION TO MODAL COORDINATES

The formulation of the equations of motion as expressed in 2.8-3, 4, 5
was performed with panel point displacements ( P., ,P , as total dis-
placements relative to the undeflec' ed vehicle. This ias necezsary for
clarity and brevity if the formulation, and does not compromise the generality
of the equations. In principle, these equations may be solved to describe the
motion during landing of any vehicle. In actual practice, it is desirable to
keep the number of variables to a minimum while retaining as high a degree of
accurx% as possible. It is not generally desirable to simply redu e the num-
ber of panel points until the total number of variables is sufficiently small.
A more economic approach is foui~d in the transformation to modal coordira ' ..
The elastic motion of a body may be expressed quite accurately by retaining
only those modes whose corresponding frequencies are in the main portion of
the frequency spectrum of the forces on the body. Since forces in landing
problems are not usually composed of high frequencies, the first few modes
are sufficient. However, the mode shape of an entire vehicle is not a con-
cept too useful here, rather, the mode shapes of individual components are
considered. The reason for this is fairly simple. If Ihe airplane wing
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mass is small compared to the fuselage, the wing elasticity will not
contribute to landing loads and may be omitted. One the other hand,

the wing mass may be the greatest part, as in a flying delta, and fuse-
lage flexibility may be omitted. The particular problem at hand will

then dictate which of tne effects to include. With these ideas in mind,
it is obvious that the Equvtion 2.8-5 cannot be transformea into mod,-.
coordinatcs immediately, for the coordinates will depend upon the par-
ticular problem.

Mode shapes will be defined for the following set of constraints.

(1) Fuselage modes with constrained rigid body motion, A -motion,
and elastic motion of all but the fuselage.

(2) Wing modes with constrained rigid body motion, &L -motion, and
elastic motion of all but the wing, unless gears are on the wing.

(3) Modes of all minor e.empnts with all motion constained except
the elastic motion of that element, unless another element is
attached to that element and not the main body.

Consider the problem of fuselage modes. The displacement of all panel points
on the wings may be written directly in terms of displacements of the panel

points on the fuselage where the wings are attazhed. Normally,

P1 =I-]+ +

P},tJ L ijF 1 , , l. ,,,,(2.9-1)

Since wing elastic and delta motion are constrained, the constraint equa-
tions are

Fj - tl ~j Tw Fj)~I I P, (2.9-2)

P'4 F

for each wing. The fuselage panel point equation is

[A.. rK.,] 3 Pa
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und each qing panel point equation is

WF..

°

L~~~ lga, t; 3
W, ~l W(2 .9!)

W- W, WV,

Suppose that all other masses such as tails, control suxrfaces, etc. are
small. A set of constraints as in equation 2.9-a is Nritten for botn u;
the equations are identical if the wings are mirror images. The right-hand
side of 2.9-4 is

a Fi (2.9-5)

i LJFj I a 1 6t, W (2.9-6)

and the right-nand side of equation 2.9-3 is

If equations 2.9-5, 6, 7 are substituted into equations 2.9-3,4 and the
contraints are used to write wing panel point displacements in terms of
f'.>ge panel point displacements, the equations become
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[A 1

Rill~ FJ~ (2.9-8)

Premultiplication of equations 2.9-9, 10 by [TV]'and addition with Eue-

tion 2.9-8 eliminate the lagrange multipliers and yields
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(fP}

I F L Yl) F (2 9-l1)

Inclusion of the inertial effects of tail masses, etc. is now obvious.
Defining the total body mass matrix by

+ri [T j ['F
[A]=/ [ ,xJ; 3 1+2 .j , ]

+ ZLTrFI [A [TTJ + etc.
(A ;T1-,]T  (29-12)

where tails, etc. have been included, the panel point equations defining
fuselage modes are

I P11F,. L EIt3 JF .1,1 3),: F (2-,3

The transformation separating tima and space coordinates is

IP, t11 [ .t+
IP _F )
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The fuselage modes are considered to be normalized on the total mass matrix

[A] , so that

[i~t ~ t ~~S, ol
till F 11-k F (2.9-15)

and

[AA13i - At(2JliL. 9 - 6)

where

[0]F *)*O (2.9-17)

define the mode shapes and eigenvalues for the fuselage.

Wing modes are defined with everything constrained except elastic wing

motion. Equations 2.8-5 for tha wing become

le + E I J p el C

which is already in the form necessary to transform to modal coordinates.

All other elements are handled in this same manner, and need not be
written explicitly. The transformation to modal coordinates is then quite

simple; substitutions of the form in equations 2.9-14 arc made directly into

the panel point equations. It is the definition of mode 3hapes for the main
body which might cause some debate; the choice is arbitrary, but it is felt
that the above definition is the best approximation when only a few modes

are retained.

In the case of a gear attached to a wing, the wing modes are not de-
fined by 2.9-18. Panel point displacement of the gear is constrained to

motion due to wing motion, constraint6 are written defining this gep notion,

and a term such as LTW.o'[AG1[T.W] will be added to [AW in the final equa-
tion defining wing mode hapes.
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The transformation to modal coordinates for a problem such as flutter
analysis is very useful in that the modal coordinates are not coupled to-
gether in the final equat.ons, and the simultaneous equations are easily
solved on a digital computer. 'ere the probfm is not so simple, as the
rigid body motion will be coupled into each equation, and the modal co-
ordinates are .:oupled in each equation. This complexity is unavoidable.

The transformed set of equations are considered next. The total
number of modal coordinates which have been defined are not generally
used due to the resulting large number of variables involved. It is
desirable to truncate the square matrix [0] and delete the column
vector tjj to the desired number of variables for each component. Then
the transformation

=i L Ii] l (2-9-19)

is made, where LRJi is the matrix formed by deleting the higher mode shape
columns, and is not square. This reduction in number of variables may be
treated in one of two ways. The set of equations 2.9-19 may be considered
as constraint equations on the system. The right-hand side of the panel
point equations would then contain total panel point forces minus the panel
point forces which constrain the higher modes of deformaion. This approach
may be used if desired, and the associated lagrange multipliers may be elim-
inated rather easily. A somewhat simpler approach may be used. Direct sub-
stitution of equation 2.9-19 into the panel point equations results in ob-
taining more equations than unknowns, and the solutions are not unique.
However, a linear combination of these equations may be chosen which yields
the proper result. The shorthand notation which defines this operation is
the premultiplication of the set of equations by the transform of the deleted
modal matrix, [ ] . The right-hand side of the equations is recognized
as the contribution of the panel point forces to the modal coordinates re-
tained, which is exactly the result obtained by the first approach.

The expansion of the total panel point displacement for the J -th
component is

[Pi=[ijhP4 + i.peli + 1&i(2.9-20)

where it is assumed that the j -th component is attached to the vehicle
by means of attaching it to the -th component. As it is possible that the

r.th component is not the fuselage, but is attached to the funei,;ag, then

IT1A 1 f P Ali (2.9-21)
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An example is that of a gear on a wing, . corresponding to the gear and

to the wing. Using

Ipel. (2.9-22)

{Pejj - @ {ii (2.9-23)

expression 2.9-18 becomes

One rray well appreciate the complewity of writing the cuations of motion,

2.8-3, 4, 5, in this notation for a general body i.hose geometry is as yet

undefined. Hence the general set of equations using modal coordinates
will not be written; rather, the transformat-on will be performed for in-
dividual problems as necessary to reduce the number of degrees of freedom
to a level consistent with problem requirements.

2.10 POSITION AND VELOCITY OF A BODY POINT

If the time at which an applied force is imposed on the body is to be
accurately known, as well as its magnitude, which may depend on the body
kinematics, it is necessary that the position of the point to which it is
to be applied is also known. The purpose of this section is to derive that
position in terms of the variables defining the motion of the body. This
may be accomplished by the integraUon in time of the components of the
velocity of the point relative to the ground.

Let the point be labeled B. Its position in the undeflected body relative
to the origin of the body coordinate system is ILS , and its total dis-
placement relative to the body coordinate system is Pe . The velocity of
this point may be expressed by either of the forms

VB \48 S V J + 1K



It may also be written as

=B [ire +Q j T - u+PS + 4L Y.fps (2.10-2)dt

from equation 2.6-7. The components of the velocity of the point, expressed
in the body coordinate system, are then

dir (2.10-3)

) 1K dt

This form may bt, expanded into components, with the resulting expression

V:' (2.1I+

As the point B may be in a component other than the fuselage, the term, may
be written in the component coordinate system. Then

I P, (2.10-5)
V, I [ ] -[ ]f ,

The components of the velocity of the point In the groa,:d reerence system

are obtained by the transfoization of this expression,

The position of the point in the ground refe.ence system is Imediatelv
obtained as



XB t = X6 (o i f xdt
0

Y8 Wt y o ft
0

Z6e  yslto + f " Z a (2.10-7)

where X yCo),YS(0,R,(o)are the coordinates of the point at zero time,
the beginning of the problem. They may be found from

SVI0) X (6)x

Z (0) (0) (2.10-8)

where X (0),Y(o) : (o are the initial components of the position vector
to the body coordinate system origin, and the zero subscript on the Eulerian
transformation indicates the value of the Euler angles at zero time.
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SECTION 3

APPLIED FORCES

3.1 GENERAL

A solution of the equations of motion written in Section 2.8 may be
obtained when the applied forces have been defined. As the number of equa-
tions is the same as the number of variables needed to define the motion, the
forces must be completely specified. They may be stated as known constants,
as explicit functions of time, or as functional relations between the variables
defining the motion.

The total force applied to the vehicle is defined by the vector (Qx,Q1r,

Q ). This force is the summation of all the externally applied forces on
the vehicle, expressed in the body coordinate system. The contributions to
this force considered in Section 3.2 are

Gravitational Force - in
Thrust Force - QT
Parachute Force - Q P
Aerodynamic Force - A

Ground Force - r

The ground forces will be considered for a variety of contacting elements on
the vehicle. The contribution to body forces is developed for a single element
of each type, and the summation over the elements indicated. The total exter-
nal moment on the body is defined by the vector (Nx,N ,N ). The contribution
from each of the above forces is defined, and the total moment obtained by a
summation.

The definition of the vectors ({Q ( J,{Q ]. , ] ) is dependent both
on the mathematical model to be used, and to some extent the manner in which
the problem is to be attacked. The panel point forces in each set of panel
point equations must be arranged in the same order as are the panel point
displacements. They may include the distributed forces which are considered
to act on the whole vehicle, the intrAnal reactions which hold the vehicle
together, the damping forces which dissipate energy stored in elastic defor-
mations, and the stroking forces between components which move as rigid bodies
relative to one another. In Section 3.3, the forces on the component rigid
body motions are defined in terms of ground forces and stroking forces. In
Section 3.4, the forces on the panel points contributing to elastic defor-
mation. are considered, and the distinctions made as to which of these are
applied forces and which are included as constraints or are included in the
definition of the stiffness matrix. The discussion of constraints in Section

3.5 completes the definition of forces in the system of equations.

The contents of this section are intended to include the most common
forms of applied forces which will occur in landing impact problem,. V.):y of
them will hold only for a particular configuratic'n and are not mercat to U,
general definitions to be applied for any problem. The individual may replace
these forms with others more suited to a particular application. keeping in

45



mind that the forces must be completely specified either in terms of the

variables already defined or as explicit functions of time.

3.2 TOTAL VEHICLE APPLIED FORCES

In this section; the forces (Qx, QW,, ) which enter the rigid body
Equations 2.8-3 will be defined. The general form for the total bAy force
is

where Q is the total force, given by

Q= Qw+Q +QG +a +(a

for gravitational, thrust, ground, parachute, and aerodynamic forces,
respectively.

The contributions to (NxN.,Nk) entering the Equations 2.8-4 will be
calculated in each section; the forms vary considerably depending on the type
of force. The contributions from each section may then be summed to produce
the total moment.

3.2.1 Gravitational Force, Qw

The gravitational force acting on the vehicle is directed along the
positive Z axis; the magnitude is the product of the total vehicle mass
and the local acceleration due to gravity ( :

Q = w M ,k (3.2-1)

Lie components of the weight vector in the body coordinate -oystem are
given in terms of the Eulerian transformation as

Q . =Er 0 =M?,cosesl0 (5.2-2)
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Since tba origin of the body coordinate system will not be coincident
with the instantaneous position of the center of mass, a moment about the
body coordinate axes will result from the gravitational force. Let IPw be
the distance from the origin of the body coordinate system to the center of
mass of the total vehicle. The moment is then given by

r , rPW X *W Q- -Q
N Pw 0aw-1 p _ X j (3.2-3)

The vector w is determined in terms of the displacement from initial position
of all the vehicle relative to the body coordinate system;

/w // dv M (3.2-4)

The integral may be broken into integrals over each of the N components of
the vehicle;

i=n

j/1 PA V=> i/dv (3.2-5)

In terms of the matrix notation which arises from the panel point concept
and the interpolation procedures this fonn is rewritten. The corponents of
the vector lPW are then

P ' ] I [4 A(P ,  (3.2-6)

wherely]is the transformation between the body co . dinate system and the
j -th component coordinate system. The moment is then obtained by subti-
tilting Equation 3.2-6 into Equation 3.2-3.
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The moment calculated here is small compared to moments from the ground

forces and will normally be neglected in landing impact problems.

3.2.2 Thrust Force, QT

It is assumed ir the discussion which follows that the magnitude of the
thrust force is known explicitly as a function of time, or is a k,,,wn nnn-
stant, or that it is known as a function of the variables defining the vehicle
motion. The line of action of the thrust vector is defined by the positions
of two points on the line, labeled (a, b). The positions of these points are
defined by (L+IP )( and (IL+1P )6 as in Fig. 3- The thrust vector then is
collinear with the vector difference of these two quantities, IT'

LT= (L-+f), -(L.+IP)b (

which may be expanded to

LT = (XO - Xb )A +C bJ+ (7  ,- 2b) (3.2-8)

The direction cosines of the vector IT in the body coordinate system are then
variables, given by

X T I ( -Xb)+P~b
(1}'jT *I)+ PWI (32-9)

The components of the thrust in the body coordinate system are then

(( (32-10)
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Figur~e 3. Line of Action of the Thrust Vector



where O T is the thrust magnitude. If there are several independent thrust
sources, a sum of terms like this one will give the total force; if the thrust
magnitudes are the same,

;IT K

where K runs over the various thrust sources. The moment due to any one of
these is

N L( + P)( X O, • (3.2-12)

( ,,,) - 0 -(,a,+P,)1 Qxl

(ia+p;:,) (xa+Px.) 0

2.2.3 Parachute Force. Q P

Parachutes are used in conventional aircraf to shorten the ground run.
For vertical alightment vehicles, the parachute may be the primary lift device,
or it may only be used to ensure that vehicle orientation is essentially
vertical. The general expression f'r the parachute force is

2 - Ir.o5 I c 
._
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where the various parameters are

/0 atmospheric density
C 0S effective drag area of the parachute
z velocity of the parachute attachment point with respect to

the atmosrhere

In Section 2.10, the velocity of a point in the body is derived in detail. If
the components of the wind velocity expressed in the body coordinate system
are given as ( 4 w~4 ,4 w), then from Eq. 2.10-5, the velocity of theparachute attachment point relative to the atmosphere expressed in component
form in the body coordinate system is

/ - [hi I

44)l (3.2-14)

In terms of these relative velocity components and the general parachute force
expression, the parachute force is

where the positive sign of the radical is understood.

If the parachute is to open during the time period in which the landingis analyzed, the drag area C0 5 will be a function of time. Thus, if theparachute is initiated at time t i, and it takes t4 seconds to deploy c~i toseconds to open, the drag arca is
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0 t /I ti+t d
CD S- CDS() t+td ZtL ti+td+t o

1(C )S )i ti + td + t o  4 t (.-

where CD S (t) is the growth function of the drag area during the opening
period, and(CDS)b is its final value. For conventional parachutes, these

parameters may be found in reference 6.

The moment about the axes of the body coordinate system is written in

component form as

,Nx r} (I + P) , X Q, -N tL+TP)? X Q.

=1 0(PPF -(xp+Rp)- rQ (3.2-17)

L( ,+PIP) X P + P ) 0 jLOJ

3.2.4 Aerodynamic Force, kA

The aerodynami-, forces acting on the vehicle are those forces exerted by
the surrounding atmosphere resisting the motion of the vehicle . These forces
are defined here in terms of the notation used in describing conventional air-
craft. The contribution to these forces due to clc.stic motion of vehicle
components will be discussed in Section 3.4. The contribution involving rigid
body dynamics and control surface deflections will be considered here.

The general forns for the components of the forces and moments are

QX5

LQ A C~~~
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N = - S S 2fbCi'-, (3.2-19)

where the indicated parameters are defined by

= atmospheric density
S =wing area
a =mean aerodynamic chord

= wing span
-S" = velocity of the vehicle relative to tbe atmosphere

Cx non-dimensional aerodynamic
C =force coefficients referred
CI to the body axis

Ct) non-dimz-nsional aerodynamic
C 2moment coefficients referred
C:j to the body axis

Each of the aerodynamic coefficients is a function of the body orientation
and velocities, control surface deflections and velocities, and elastic body
motion. For the vehicle vithouT elastic motic ts,

C :C , ' ,Ir,,. /V, , X. (3.2-20)

where 4, the angle of attack, and/i, the sideslip angle, define the orien-
tation of the free stream velocityV- with respect to the body x-axis. The
control surface deflection, 8, and the corresponding velocity, S , are
considered here for an arbitrary control surface. The subscript j refers to
any of the above- mentioned coefficie'.rs.

In the theory of aerodynamics, it is usually adequate to assume that the
aerodynamic coefficients are linear in each of the variables. This is equiv-
alent to expanding the coefficient in a Taylor's series and omitting all
non-linear terms;

C C '. (o) + ) + . ........... (5.2-21)

The higher order terms are assumed negligible ir. the linear theory.
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For landing response problems, not all of the linear terms are
appreciable in a given coefficient. In the following list of coefficients,
only the most important terms have been retained.

f X C IS (3.2-22)

C SR (3.2-23)

I

CI = 1o + CS C )/ o (3.2-24)

I C Ii Ci1 C) / (3.-25

CA. t / ) SA(3.2-26)
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CIK (3.2-27)

0

The indicated variables are

S =pitch control surface deflection, such as elevator, ailevator
F = flap deflecton

S i ddr deflection

SA -roll control surface deflection, such s a-ileron or spoilcr

The values CxC, CPOPCAK 0 for zero deflections and the partial derivatives
evaluated at zero deflections are obtained from wind tunnel tests.

The above terms are obviously not all-inclusive, but should provide an
adequate definition for most landing problems. A complete treatment of
aerodynamic forces may be ffound in reference 7 • The control surface
deflections are assumed to be known as constants or explicit functions of time.

The only other matter to be covered in this Section is the calculation of
the angles of attack and sideslip. The velocity which enrers Equations 3.2-18,
19, which define the force and moment on the body, is the difference between
the body translational velocity and wind velocity, which yields

I-/ -' - '

= -(3.2-28)

The angle of attack, oC, is defined as the angle between the velocity vector
r- projected into the X- ?plane anr te x-axis. This require;

- TAN . /7/UW

Similarly the sideslip angle is
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_ TAN (3.2-30)
/ f/x - z X,

For conventional aircraft landings, the forward velocity,N-e, is much
larger than the drift or sinking speeds, and the following relations are
very nearly true.

= - (3.2-31)

< - I - Vi _ (3.2-32)
,Ar, - ,Y ,

V -(3.2-33)

3.2.5 Ground Forces. QG

In this Section, forces on the body due to interaction with the ground
will be developed. The section will be divided according tc the type of
contacting element under consider,,ivn. These elements will be of several
types: surface podq, tires, skis and skids, spikes, and gas-filled bags.

In some areas, the ground will be considered to be rigid. In these
cases, the contacting element is considered to develop a coefficient of
fri -cn with respect to the ground, which may be dependent on parameters
of the motion. In other areas, the ground is allowed flexibility, viscosity,
or compressibility to varying extents.

The ground coordinate system is used in describing most of these forces.
The components in the ground cooidinate system of the force exerted on the
body by the ground, called ground reactions, are (Dr,6G.Vr,)M, where the
subscript indicates a particular contacting element on the vehicAe. The
total force on the body due to the ground is tlh.ri
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The separate contributions to force on the body are

Q =lr S2
§Qr [I4 C4 (3.2-35)

Moments about the axes of the body coordinate system are found from the
general form

ING= (x.± ) (&, (3.2-36)

where (U..4+1?.) is the instantaneous lever arm of the forcepq.. This is
written in component form as

LNJG +P)Q 1 - +P)Q J .2-7)

where the forces and lever arcs for each contacting element are indicated in
component form.

The forces as written in the following pages will be written for a
single contacting element, with no subscript attached to identify the element.
It will then be understood that these forms must be written for each contact-
ing element when making use of the Equations 3 .2- 3 4, 37 for body forces and
moments.



3.2.5.1 Surface yads

A surface pad is a mass rigidly attached to the end of the gear piston.
It is not allowed a degree of freedom for motion, but simply moves with the
piston. It has sufficient contacting area so that its ground penetration is
small if the ground is considered to be soft.

The ground force will first be described for the case when the ground is
rigid. The surface pad will develop a coefficient of friction with respect to
the ground. The ground force will be developed entirely in terms of the body
motion. The force from the ground along the stroking axis is first developed.

The drag force on the pad is opposite to the direction of the horizontal
pad velocity, which requires

DG S =0 (3.2-38)

where the components of the pad velocity in the ground plane are (X,Yp ), the
force on the pad parallel to theX -axis is DG, and that along the y -axis is Sre
The magnitude of the drag force is the product of vertical force on the ground
with the coefficient of friction, yielding

D + C& v 2 (3.2-39)

These equations may be combined to yield

DG (3.2-40)

SG YV +
VG  t

whexe uhe forms in velocity components divided by their magnitudes resolve the
arbitrariness in sign in solving the quadratic Equation 3.2-39. The forces on
the ground are related to the forces on the pad by
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LVJ
which may be inverted to give

0 D c,QP 0 [OL~pr] s: (3.2-42)

The forceQirpis along the stroking axis of the gcar. After contact, there
is no motion of the piston relative to the ground along this axis. Then Q
is the negative of the piston stroking force, Q(p$, which is positive downward
along the stroking axis. Thz- stroking force is the sum of the internal gear
axial forces to be developed later. The Equations 3.2-40, 42 combine with the
above definition to relate the vertical force on the ground to the piston strok-
ing force:

VG= -32 43:

o [?][A (/ I)[i +(y* )ZjJ/

Combining Equations 3.2.-40, 43 yields the ground force for a single contacting
element,
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Q / I I + U / ) 2 (3.2-44)

a "2 rol
L)J 2Y2}

From thid expression and the Equations 3.2-34, 37 the body forces and moments
may readily be calculated.

This form for ground forces is quite complicated; it may, however, be
simplified for most applications. One of the examples in Section 4 will make
use of this form, and the si -olifications used there will perhaps enlighten
the reader.

If the ground is soft, the above statements will not be applicable. It
is suggested that the following forms for ground force be used. The vertical
ground force may be represented by a one-way spring, that is,

VG :J (3.2-45)

where the velocity of the surface pad normal to the ground is obtained from
Equation 2.10-6. The spring rate-A I must be obtained from experiment, as it
will depend on the geometry of the pad and characteristics of the ground.
The penetration depth d is obtained b- integration of Zp following touchdovn.

The ground forces in the ground plane may be represented by

D, = P(3.2-,,6)
0 d! O
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- Yz d d>O

SG 0d 0(3.2-47)
t0 d i-- 0

where the velocities are obtained from Equation 2.10-6 and the constant)2
must be determined from experiment. The experimental problems might be avoided
by use of some analytical formulas in terms of pad area and ground character-
istics; a form. of this sort may be useful in prediction of peak loads, but must
be used with caution in investigating stability.

3.2.5.2 Tires

Forces generated in the system dutc to interaction of a tire and the grouid
have never been very accurately described on a theoretical basis. Generally,
experimental data furnished by the manufacturer is more reliable than purely
theoretical data, and such should be used when available. These data may in-
clude vertical load-deflection characteristics, coefficient of sliding friction,
cornering coefficient, self-aligning torque coefficient, or other. The forms
presented here are in general taken from the available literature and are felt
to be consistent with the state of the art concerning tirc characteristics.

The vertical load-deflection characteriszics of a tire will be discussed

first. The forces in the ground plane will then be discussed for the periods
in time before and after wheel spinup.

The ground is assumed to be rigid throughout this development.

Vertical Ground Force, VG

The force on the body normal to the grouna plane is written here in
terms of physical parameters of the tire, and should be used only if data
from an experimental program are not available. The variation in ground force
with tire deflection has been writeau in many ways, each formula representing
an approximate fit to the observed data. Hadekel (Ref. 8 ) notes tha. the
most rational approach to vertical load-deflection characteristics produces the
form

VG(A(P +T+AEp2 0< < (.3.2-4i8)

where the tire contacting area, A , is given by
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A = 2. (5 -.03 ur) rD Z (3.2-49)

and the various other quantities are

--tire vertical deflection
Ar =tire width
P -undeflected tire pressure

= tire wall equivalent pressure
'=pressure rise on deflection

=tire outer diameter
Sb=tire deflection on initial bottoming

The change in pressure with deflection is found in the static case to be

A P =P (3.2-50)

where

2.7 (3.-51)

This approach yields results negligibly different from dynamic loads obtained
from drop tests for low deflections; the dynamic loads rise more rapidly for
large deflections. This may be corrected to some extent by using a polytropic
compression form such as an adiabatic compression would yield. The aLve forms
are inadequate for tire bottoming in any case. It is then necessary to replace
Equation 3.2-48 by the form

VG = VG -kb (3- Sb) (3.2-52)
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where V is the vertical ground force wht .the tire first b'ntcum and Ab
is the tre bottiaiag spring rate.

There are several points which should be considered here. Hysteresis
effects, which may be obseried in standing tires, are considered by Hadekel to
be negligible in dynamics problems with high spinup speeds; hence oquiva]Ent
damping in tires will not be considered. Tire latcral deflections produce
vertical deflections for constant vertical load, and so both should be specified
in order to find vertical load. The omission of this effect will not apprecia-
bly change the time history of the load, except that the time for tire bottom-
ing may be in slighb error.

It has been assumed here that the vertical tire deflection in the wheel,
plane and the "average" deflection observed in a tire with the wheel plane
slightly tilted from the vertical are identical. Thur., the load deflection
characteristics are assumed independent of wheel plane orientation for small
angles from the vertical.

The vertical deflection is found as follows. The distance to the axle
from the ground, which vi~l be negative according to the sign convention, is

Z A = (R +LA PA) 'V- (3.2-53)

where LAA are the undeflectsd position and the deflection of the axle. This
may be written in component form as

rX' + Pic oZA + +P -tAr (.-4

where Z is the position of the ori.ain of the body coordinate system, and the
subscript refers to the axle an( tiie coordinate system of the gear to ,hich it
belongs. The instantaneous angle which the axle makes with the ground, 00. A
defines the projection of the undeflected tire radius on the normal to the
ground, which yields the deflection as

'I 
-'e$ = Z++Px,

1+ P6
A
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For norsaal aircraft landings, the angleO(Ais small, so thatCOS-<Ais very
nearly unity. The error here is of the same order as that in using the deflec-
tion obtained in the formila presented by Hadekel.

For most aircraft landings, the Euler angles remain small, and the Eulerian
transformation may be lineari.zed. The resulting expression for tire deflection
is then

I
= Z + + T (3.2-56)

The vertical ground force as written here is valid both before and after wheel

spinup. The forces on the ground in the ground plane, however, are dependent
on whether or not the wheel is spun up. In these areas, the load-deflection
characteristics lateral and tangential to the tire will not be used in the sense
of Equation 3.2-48. Pre-spinup forces are derived from the sliding coefficient
of friction, the vertical force, and the geometry. Post-spinup force along the
wheel plane is considered negligible, and that normal to the wheel plane is found
from the cornering characteristics of the tire.

Ground Forces in the Grot.nd Plane, Dr,. SO

Forces from the ground along the X -axis and Y-axis, Drand SG, are
usually defined in two separate regions: pre-spinup and post-spinup. In the
region of transition between the two, a form may be picked which is intuitive-
ly satisfying in order to obtain continuous forcing functions. A search of the
literature shows that no analytical procedures derivable from physical laws
are in existence for this region, and no experimental data is of sufficient
accuracy to define any variation with tire parameters.

It is also convenient to present in this section the mo cnt ;bout the
axle during spinup.

Pre-Spinup Torces in the Ground Plane

The forms derived here are based on the assumption that the force from
the ground, in the ground plane, is in the opposite direction of the axle
velc.!ty vector parallel to the ground, VA, given by

The magnitude of the force is assumed to be the product of vertical f-rCe with
the sliding coefficient of friction between the tire and the ground. The
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components of the force, as pictured in Fig. 4, are then

DG- ' t 4 t (3.2-58)

SG= S VG t < tt (3.2-59)

where tt is the spinup time. The compcnent, of the axle velocity may be fouand
from Equation 2.10-6. For conventional aircraft landings, the forward velocity
is larger than any other, and the approximationIVAI= );AI is valid. Other-
wise, the root-sum-square representing the velocity magnitude must be used.

Some discussion of the variation of the sliding coefficient of friction
, th velocity, pressure, and temperature is worthwhile here. Iample (Ref. 9)

presents experimental data for pressure, load, and temperature variations of
the static coefficient of friction for tire materials. Velocity variations
are presented by Luthman (Ref.1O) and Gough (Prf. 11), et al. The data by
Hample show that the static coefficient decreases sharply from room temper-
ature to 3000 F, then gradually to 5000 F, and again sharply to the melting
point. Material was taken from a B-29 nose wheel tire. He also notes that
the static coefficient decreases with increasing normal pressure, the decrease
becoming sharper with increasing temperature. This variation is substantiated
by Luthman, although his main interest is the variation with velocity. This
is characterized by a general decrease as velocity increases, but with oscilla-
tions superimposed. Luthman states that this phenomenon has been noted prev-
iously, but that no explanation has been found. Gough, et al., present similar
although less extensive data points; the oscillations seem less dominant, and
they present a smooth curve througb "he data points.

These statemeilts describe the variations in the coefficient of friction
in a general manner. Theoretical work on the subject is generally avoided due
to the many coupled variables involved. Since the relative velocity of the tire
footprint and the ground varies from air speed to zero during spinup, it is ad-
visabl: o include the variation of the coefficient with velocity. A linear
term in contact pressure may also be included. Denoting the relative veloctty
by/M and the contact pressure by RCT , the variation may be approximated by
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.as /rR. -PCT)=b(0 A.kPC)( + C - WR (3.2-60)

where B is the value for low pressure and high velocity, C is the ratL of
values at high to low velocities, anda.I must be determined from experiment.
Contact pressure as a function of vertical deflection is derived from Equation
3.2-48, the ratio of vertical load to footprint area. To the extent to which
the variation in coefficient of friction with velocity is known, the relative
velocity may be approximated by

1,,. = 1V.X! - r iz (5.2.-ca-..

It will be noted later that these forms may be too complicated for
ordinary use, but simplified forms can be used.

The above equations -,re all valid for t(tt, where t t , the spinup
time, is found from solution of the equations of motion. If desired, spinup
time may be approximated with use of a formula by Flugge (Ref. 12):

rt =si A W: (3.2-62)

where I is the wheel moment of inertia,A is the gear forward spring rate, and
F is the vertical load time derivative (assumed constant).

It is useful to insert at this point the forces along and no-mal to the
line of intersection of the wheel plane and the ground plane, although they are
not used in determining body forces.

The force along the line is the force used in defining the spinup moment,
and is designatedWsu. The force at right angles is the side fnrce, designated
WS . These are forces on the tire, given by

WU = 's VG Cos t <t t  (3.2-63)

WS = , &s VG SIN t ' t(.t-64)
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where the arigle ' , shown in Fig. 4, is given by

- -,.Y9 + 5 IN~ (v )( -65)

The angle is that through which the axle is rotated about the gear center-
line due to torsional elasticity, and * is defined in the Eulerian transfor-
mation. The spinup moment is given by

Note that for conventional airplane landings,Y «X , hence

Post-Spinup Forces in the Ground Plane

The force from the ground in the ground plane following spinup is usually
considered to be normal to the line of intersection of ground plane and wheel
plane. This assumes rolling friction is negligible and wheel braking is not
present. The side force for conventional aircraft landings is

Ws  =-K A t>tt (3.2-68)

where K is the tire cornering coefficient and A is the slip angle, defined in
Equations 3.2-65, 67. If the slip angle and vertical force are small, this
form is valid with the cornering coefficient constant. For high vertical loads,
a method (Ref. 13) has been devised to yield a cornering coefficient deperdent
on L-*c vertical deflection,

K GGS ~+G6 (3.2-69)
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whert

(3.2-70)

The remaining various parametei-s are

= tire section radius
P = inflation pressure
d = bead seat radius

= tire undeflected radius
G =? -d

= tire vertical deflection

This approach is valid for high vertical loads prior to tire bottoming, but will
still be restricted to small slip angles. As the slip angle increases, the side
load reaches a maximum, then decreases co the value which would occur if the tire
were skidding laterally. Hadekel presents some data on this effect; no theoret-
ical forms for high slip angles have been developed.

Forces along the ground coordinate axes for the case where ?(( lare then
given by

S r WS t > tt (3.2-72)

Ref. 12 also gives the tire self-aligning torque M arising from slip
angle A as

M = M A (3.2-73)

in the range A < SO, where

,. 12 ii ( 1.57 G -Z)(uy .iG)P (3.2-74)
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3.2.5.3 Spike-Soi! forces

Penetration on impact is a problem not easily handled, and is not discussed
in the literature which is readily available. However, an approximate form may
be developed which is useful for impact on sand or bard soils.

Penetration forces may be broken into two groups: compression forces and
friction forces. Compression forces are described as follows.

The bulk modulus of a medium is defined as the change in pressure per unit
volume on compression of the medium:

B= V V (.-75)

This definition is valid only for static pressures and confined volumes. Ref.
14 notes that dynamic values of the bulk modulus of sandy soils are 200 to
300 percent of the static value. The static form will be used to formulate
the compression forces on impacting; the volume, volume change, and pressure
change will be considered time dependent, and the value of the dynamic bulk
modulus will be used for calculations.

Consider a body with velocity/" and cross-sectional area A normal to the
velocity vector. As this area moves through the medium an amount ds, a com-
pression wave travels outward radially from the area. The volume encompassed
by the wave is

(3.2-76)

where S is the distance from the area to the wave front. The pressure change
due to expansion of the wave front an amount d is

dP = F(-*-) a = Fa ~r~ -F (3.2-77)

so that
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This form is independent of the radius of the compression wave. The radius may
then be considered small, and the force F as that force on the soil produced
by the motion of the area A . The change in voline of the soil is relate& to
the cross-sectional area A by the penetration dS which occurs in the time for
the pressure changed P to occur:

dV = -AdS (3.2-79)

The change in pressure wave radius my be written

d$= Vdtt V ds
d~= dt /Vid (3.2-80)

where V is the velocity of the compression wave in the medium, since S may
be considered implicitly dependent on time. The bulk modulus is then

2 FV
A(3.2-81)

where the force F is now that on the area A , and not on the soil, since a minus
sign has been added. The force opposing the velocity/Ir is then

This form will be used to c:Lculate forces and moments ou a spik!. In the
derivation the assumption has been made that 5 and " are independent of pene-
tration depth, and that no local compacting will occur. The omission of these
factors will not affect the portion of a landing during which peak loads occur.
However, the stability of a body landing on a single spike is determined from re-
straining moments on the spike alone, and this area will not be described too
accurately.

Spike forces will be calculated for a single spike, symmetrically located
in a symmetrical body, from the form in Equation 3.2-82. For the spike problem
to be formulated, the body I-axis will remain in a plane normal to the ground,
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and the body may rotate about the -f -axis only. There will then be two com-
ponents of force on the body and one component of moment. The extension from
this problem to one in which a vehicle is supported by several spikes will not
be explicitly performed iere. The spike will be considered rigid in this
derivation. Consideration of spike flex lity will require more rigorous
definition of the ground forces.

The geometry for the problem is depicted in Fig. 5. The spike forces and
moments will be calculated directly in the body coordinate system, as they are
dependent only on relative velocities.

The component of force along the spike axis, or body 1-axis, is immediately
written as

Q) A( ())a(v +y (3.2-83)

where A. is the stroking veluIty of the piston relative to the body, andA(d)
is the cross-sectional area of the spike normal to the axis, as a function of
penetration depth d . The leading edge of the spike will be pointed; hence

rld TAN 2  //2)d Ao-0  T/,,

J-WO CO0T/24/2

for a conical point, where Ao is tne itaximum cross-sectional area, is the

apex angle, and the penetration depth i, given by

t

d(t) ( +r + j)dt (3.2-85)
0

Time is considered to start on impact.

Neglecting the sharpened point, the cross-sectional area normal to the
body X -axis isdA=Ddo, where D is the spike diameter anddro is an incre-
mental distance measured along the spike, ;o being measured from the tip. The
lateral force on thLs area is
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dQ,2 V~)-~ D 1 r 7 )j (3.2-86)

The lateral velocity V.(;)is giveu by

4r ()=v +Gr( j + + 70 (3.2-87)

and the total lateral force on the body is

B d

The distance 3. is from the origin of the body coordinate system, or center of
mass of the undeflected body, to the center of mass of the piston.

The moment about the body -axis due to dQxr is

dN" =( +,.+A- 0 )dQ 6  (3.2-89)

which integrates to

2IE 8~ (3.2-90)

The moment about the piston center of mass is

BD d 3Q pF 8Cm- -
IP4 U /I X 8

3.2.5.4 Skis and skids

The elements referred to as skis or skids will not be distinguished here,
as they have essentially the same properties. Either will be a device -Z some
length attached to the lower end of a gear, orionted such that the rearwa...- end
contacts the ground first. The element will genera3ly be allowed to rotate
relative to the gear, and will have some sort of rotational spring damper to
control this mcMo+n.

in the case of rigid ground, the &round forces will be derived from
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elimination of a degree of freedom for motion of the contacting element, as in
the case of the surface pads on a rigid ground. If the ground is not rigid,
ground forces may be developed using the ground penetration development ex-
pressed in Paragraph 3.2.5.3.

Skis and Skids, Rigid Ground

If the ground is to be considered rigid, the ground forces cannot be
derived from properties of the ground, and must be determined from the motion
of the contacting element, as was done in Section 3.2.5.1 for surface pads on
a rigid ground.

The rotational motion of the element about the axle as a rigid body is
governed by Equation 2.8-36. However, if the moment of inertia of the eleigert
about the axle is sufficiently small, the inertial te:.ms may all be ignored,
and the restraining moment about the axle may be set equal to the moment about
the axle from the ground forces. The degree of freedom of the rotation is then
eliminated as a variable in order to yield the ground force. If the resvraining
moment is only for the purpose of oppcsing rebound and not to absorb lanling
impact, the forces involved before the clement flattens on the ground are
actually small at any rate. The element must, of course, be considered rigid
in this case.

The geometry is depicted in Fig. 6. The forceWmis the component of the
total ground force acting to rotate the element about its cxle. This component
is not generally in a plane normal to the ground plane, as the figure might
indicate. It is first necessary to develop thr form for this component. The
axle is assumed to be parallel to the body d,-axis initially. The element may
rotate about the gear center line, or the i-axis, through an angle/$ ,

(assumed small) due to torsional elasticity. Its angle relative to the x -axis
of the gear coordinate system is A , consistent with the definition used in
forming Eq. 2.8-39 governing component rigid body motion about a line. The
coordinate system in which, instantaneously, the *' -axis lies parallel to the
element and the r /'-axis lies parallel to the axle, is derived by the product
of transformations due to the rotations/ , ? from the gear coordinate system;

Co -4'
cos 0 'I? o~ :3.2-92)

SIN"71O 0 cos)Y 0 0 K'
The unit vectors in the gear coordinate system may be written in terms of those
in the ground coordinate system by

r I

he components of the ground force in the contacting element coordirate system
are then related to those in the ground ccordinatE system by
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The componentWD-ies along the element, the others at right angles to the
element. The componentWL may be used to find thn applied moment for the
torsional motion in the gear. Only the componentWN contributes to the element
rotation about the axle. It is assumed that the moment due to this forcelWN,
ic balanced by the restraining moment N (M, ;

1% w N(&t,4)=O (3.2-95)

It is assumed that the drag force on the trailing end is opposing the horizontal
velocity of the end, and that its magnitude is the product of the vertical ground
reaction with the coefficient of friction between the element and the ground.
The derivation producing Eq. 3.2-44 is used here, with the pad velocity components
replaced by the components of velocity of the element trailing edge, so that

The Eqs. 3.2-9f, 96 may be combined to yield WN in terms of VG

WN =VG (3.2-97)

where

L i

DG&/ e1 2 I-Y

This result may be substituted into Eq. 3.2-95 and the vertical ground reaction
found in terms of the restraining moment. Use of Eq( 3.2-96 then yields the
remaining m u components of the ground reaction. Thus, for ZA(0,

77



N ,iV ([eI1 (*.2-99)

roC I II+e2

SIN t [/j~~

This result is quite similar to that obtained in the paragraph on surface pads
for the case of rigid ground. The form is valid only until Zhe element flattens
out on the ground. Thereafter, the forces are derived exactly in the manner of
the section on surface pads, except that the coefficient of friction will generally
be different., and the components of the pad horizontal velocity become those of
the element axle velocity. The axle height ZA may be obtained by integrating the
axle velocity normal to the ground, given by Eq. 2.10-6. The ground forces on
the body, expressed in the body coordinate system, are then given by Eq. 3.2-35.

The element must be considered rigid in the previous derivation. If
flexibility is to be included in the same direction as the compont±LL ri gid body
motion about a line, the problem may be approached in the same manner as that
in Paragraph 4.2.5.2,which discusses articulated gears. The ground force is then
defined in the following paragraphs.

Skis and Skids, Soft Grund

Prior to the time when the element flattens onto the ground, th, ground
forces may be derived from the general form for groiund penetration forces
expressed by Eq. 3.2-82, which is written in differential form as

dF = ( y- V ) IrdA (3.2-l00)

where the velocity4r is that relative to the ground and normal to the differential
area dA. The geometry is depicted in Fig. 7.
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The parametert is measured along the element from the trailing end; its value
at the surface of the ground is D . This "planing" length is related to the
penetration depth, d , the axle height, and the distance from the axle to the
trailing end by

D=(d2zAJ 2 (3.2-104)

The element is assumed to have a "planing" width ox, , whioh is independent of
I and a constant lateral width ar .* The forces normal to these areas are

those in the contacting element coordinate system, defined in the paragraph on
rigid ground. The differential force normal to an element of r.rea C.,C4 is
then

),d - ( g (a, C (3.2-102)

and that normal to an area £rA.cTdib

d WLn (6r. c1-03)
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The diffez.ential of friction force due to these forces is parallel to the element;

'Wo ="q 0o vvP: + dw(3.2-l04)

These three terms define the force on an elemental lengthc!,j. The velocities
at that point are

I, ( )='LA +/ COS4 (A - ) (3.2-106)

The transformation from the gear coordinate system to that of the contacting
element, expressed by Eq. 3.2-92, yields the components of axle velocity/rA.
4 rt.A. The axle velocity in the ground coordinmte system is derived from Eq.
2.10-6, and may be transformed to the gear coordinate system. The desired axle
velocities are given by

SIN IV ( r ,f f fx+ Pic/
.V A SIN ;, + [] J4 (3.2-107)

:<I+ P{ < + +oip ,
4rLA LO J)t (3.2-106)

in terms of the panel point displacement and velocity of che axle tkO-x;;se& in
the gear coordinate system. These velocities -_'e not dependent or. the pz--.meter

hence the forces are
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( ) r +(3.2-109)

wD= ,(WN-i-WL) (3.2-111)

in terms of the planing leagth D . From Eq. 3.2-101, the planing length is
determined by the penetration depth. This may be obtained by integration of the
velocity of the trailing end of the element normal to the ground. The addition
of the velocity of the trailing end relative to the axle to the form in Eq. 2.
10-6 yields the desired quantity. Thus,

t

+ dt (3.2-112)

where

0 PCOS -

J L t' J Cj

Finally, the ground force expressed in the body ncordinate system is
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oQ. '..cosh 1 ,N&
IJ 50 CSN WL ~ (3. 2 -!

These forms are valid only until the element becomes horizontal, or parallel
to the ground. It has been assumed that the element rotates about an axle, th .

rotation being described by the angle Z . If this angle is allowed to vary,
the forms above for ground forces will generally be valid until the axle height
becomes zero. It is suggested that when this occurs, the forces may then be
obtained by a form which assumes that the axle vertic.al velocity is z"ero. This
is the form used in deriving the forces on a surface pad in the case of a rigid
ground, which should hold in the case of a ski or skid of large surface area.

If the element is actually rigidly affixed to the gear, or the rotational
spring-damper is sufficiently strong, the element will not become parallel to
the ground and the above forms will remain valid.

3.2.5.5 Gas-Filled bags

Although this formulation of the landing impact problem does not describe
gas-filledbag inertial properties, the bag &nd vehicle mass may be combined as
a single rigid body to describe the inertia. At present, the only analytical
work of any rigorous type has been restricteP to vertical alightment. Ref. 15
is an example of this type of effort. In the notation of this report, the
equation for vertical motion used there is

M ' Q, (3.2-115)

The external forces considered in the reference are gravitational, atmospherical
drag, and ground force from the gas-filled bag. The latter is given by

QjG =-A(P-Po) (3.2-116)

where is the bag total pressure and P. is the atmospheric pressure. The
pressure variation in the bag is assumed adiabatic, for the case of no :a.
bleeding, so that

P = P, k' ) (3.8-117)
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Then for a cylindrical, non-bulging bag, the volume is related linearly to the

body deflection after touchdown;

where h is the undeflected cylinder height and J is the deflection of the bag,
obtained by integration ofl, from touchdown time.

Additional complications in the form used for the pressure in the bag ill?
result if the bag shape varies or if a gas orifice is u.xd. Likewise, the
contacting area may be a variable. These points are discussed in the reference.
It is pointed out that for stability requirements, a multiple bag system is usually
helpful.

Generally, then, it is necessary to define the variation in the bag shape,
contact area, and bag pressure in terms of the geometry of the bag, the bag
deflection, and some polytropic compression form. The simplest approach is to
assume that the bag shape remains constant. The contact area is then defined by
the geometry and the bag vertical deflection. If the bag shape varies with pres-
sure, the elastic properties of the bag mut be included.

If the gas bleeding orifice is controlled sch that the bag pressure remains
constant, then the form for the vertical force is fairly simple. If the rate of
bleeding does not produce this result, then the pressure variation must be
described in some manner in terms of the bag deflection and deflection rate. The
gas flow characteristics necessary to define the pressure variations will not be
written here.

Suppose a set of independently operating bags are located on a plane surface
on the vehicle. For small angles from the vertical. the restraining force from
each bag may be considered to be nearly parallel to the body / -axis; each is
given by

VG =-A(P-Po) (3.2-119)

after toucndown, and is zero beforehand. The vertical height of the bags defines
the touchdown times, as in the section on surface pods. The drag force on o".ch
bag is assumed to have components given by
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SG =WVG 1 (3.2-121)

vhereX is Uhe coefficient of friction between the bag and the ground. Body
forces are then given by Equation 3.2-34 and body moments by Equation 3.2-37.
The instantaneous positions of the contacting points should be interpreted as
the positions of the center points of the bag ends. The deflection Py
of each bag would be the stroking deflection, and the lateral deflections P ,

Pt may be derived from the drag forces and bag lateral spring rates. These
spring rates will probably be dependent on vertical deflection. The vertical
deflection of each bag will be found by integrating the velocity normal to

ground of the center point of the bag attachment area. The above statements
are sufficient to work a stability problem for landing on a set of gas-filled
bags, provided that the variation with all parameters of the bag area and
pressure in Equation 3.2-116 arc defined.

3.3 APPLIED FORCES ON c,)MPONEIT RIGID BODY MOTION

3.3.1 General

The purpose of this section is to define the applied forces which enter
Equations 2.8-18, 4o for component rigid body motion for the particular cases
or gear piston stroking and bogie rotational motion. The forces are of two
types, ground forces and stroking forces.

For gear stroking, the total force along the piston axis is given by

S =Q2 , +QJ's (3.3-1)

where 'G is the component of the ground force along the stroking axis, and
Qj's is the total stroking force.

For bogic ro ation, the total moment is due to the ground forces and the
rotational damper forces. The ground forces are derived later. The damper
moment may be expressed by

N = N(&,i1) '7.3-2)

where & is the bogie rotational angle., The relation between this angle and
its time derivative to the actual damping mechanism is c,,nsidered britfly here.
If the damping mechanism is a stroking element affixed to the bogie elemont and
the gear piston, the exact relation will be nri-linear . The gear c)ordinate axes
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have been translated

DAMPER

to the bogie axle for convenience. The bogie is originally at an angle #4 from the
X -axis, defining the position of zero stroke for the rotational spring damper.

If the bogie rotates only through a small angle, the restraining moment is re-
lated to the spring damper force FSD by

N -;Is,/a FsN~Js,,,q SD

The force may be derived from the paragraphs or springs and damping mechanisms by
replacing the element stroke by

for small rotations. Hence

For large rotations, these expressions must be replaced by forms nonlinear in the
angle ;

3.3.2 Ground Forces

The Equation 3.2-35 defines the force on the body due to interaction with
the ground of a single contactLng element. This force may be transformed into
the gear coordinate system to yield the components needed for gear stroking and
bogie rotation. The force on a single contacting element is vritteh LU vshe body
coordinate system as
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j =, Er (3-3-3)

This is written in the gear coordinate system as

If there are several contacting elements on a single gear, this form is sunned
over those elements;

S CV (3.3-5)

This form yields the ground forces in the gear coordinate system. The forces
, are used in the calculation of bogie moments, and the force

Q" is use tlodefine the ground force for piston stroking.

3.3.3 Stroking Forces

The purpose ,)f this paragraph is to define the stroking force Q*. This
force is the summation of all the forces on the piston, along the stroking axis,
except for ground forces. It is important to realize that the formulation is
sufficiently general that the effects of any !mown type of energy-absorbing
mec-..sm my be included simply by defining the stroking rorce iroperly.

The remainder of Section 3.3 will be devoted To the stroking forcps.
Obviously, not all the various types of shock-absorbing devices can be considered.
Those to be included are as follows. Paragraph 3.3.3.1 covers hydraulic forces.
Variations vith oil compressibility, metering pins, and relief valves are included.
In Paragraph 3.3.3.2, springs of the mechanical, pneumatic, and liquid types are
considered. Paragraph 3.3.2.3 discusses bearing friction forces for a particular
configuration. The piston bottoming or restrailing forces are defined in :aragraph
3.3.3.4. Crushable materials are discussed in Paragraph 3.3.3.5, ,nd gas expulsion
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devices in Paragraph 3.3.3.6 complete the types of stroking forces to be develop-
e& in the report.

In order to write the relations defining these forces in co--pact form, the
displacement of the pistou relative to the cylinder will be used. This dis-
placement, referred to as stroke aad given the symbol .4 , is meacured from
the fully extended position and is positive as the piston enters the cylinder.
The equation governing the piston motion is written in terms of the piston
displacement relative to the body coordinate system, , f, which is positive
along the' -axis of the gear coordinate system. Let the point at which the
cylinder is affixed to the vehicle be labeled B , and its total displacement
78, . These three variables are then related by

A= - + PIK' =-A ; -P 1 (3.3-6)

This result indicates that stroking may occur due to elastic deformations in the
vehicle. This result must be used in all the forcing functions in this section,
if the vehicle is considered to be flexible. The stroking velocity may be obtained
by taking the time derivative of Equation 3.3-6.

3.3.3.1 Hydraulic force, FH

When the piston shown in the figure is displaced
with a velocity L , a pressure field is created in
the lower chamber which resists this motion. In a
rigorous definition of this pressure field, where

ORIFICE- AIR consideration is given to viscosity and compressibility
of the fluid and the unsteady aspects of the flow,
one is faced with a formidable and in most cases

OIL unsolvable formulation. Satisfactory definitions
of loads in the piston have been achieved, however,
by semi-empirical meanu where the form for the
pressure in the piston is defined by Bernoulli's
principle for an ideal fluid. Neglecting the
static be;A!, the velocity of the jet stream at
a point outside the orifice at which the stream-
lines are parallel is given by:

.2 +2P 2PQ
P- /. /4H (3.3-8) *

where

,a: stroking velocity of the piston
= pressure upstream of the orifice where the streamlines are paral'el.

A,= pressure in the airchamber

4,o,-density of the fluid

*•Eqations on this aSc misnurfiered.
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In actual practice the velocity 4y- is never attained due to the dissipation of
energy in overcoming the resistance to flow. The ratio of the actual velocity
to the velocity given by the Bernoulli's relation is defined by the coefficient
of velocity, CvS Equatig the rate at w'hich the volUme of fluid is displaced
by the piston to the rate at which it is discharged through the orifice,

Awi = Aj Cv/r (3.3-9)

where A, is the hydraulic area of the piston, and Aj Is the area of the Jet
stream at a point where the streamlines are parallel. The ratio of A to the
orifice area Amis given by the coefficient of contraction, Cc. For lust
hydraulic dampers, 4 is small compared to 11 , and combining EvS. 3-3-7,
8 yields

A . . 2(CcCv) 2 AN

A142  P i 2 ((I r C (3.3-10)

The hydraulic force FK is then given by:

3- 2

2 (CD AN) 2  
(3.3-11)

where the orifice coefficient C D is the proa:ct of Cc and Cv

The value of the coefficient CD is dependent upon the size of the orifice,
the shape and finish of the orifice face, the kinematic viscosity of the fluid,
the velocity, and the motion in the fluid approaching the orifice which causes a
dependence on the length of the oil 2olumn remaining in the strut. The relation-
ship between size, velocity and kinematic viscosity can be expressed as Reynold's
number. Thus, the ralue of she orifice coefficient for a given orifice can then
be said to be dependent upon Reynold's number and piston stroke.

The results of an experimental study of orifice coeffinients in a small
oleo-piLeumatic strut with a constant orifice are contained in Ref. 16. This test
investigated the effect on orifice coefficient of variation* of Reynold's number
in the range from 9,500 to 66,500. The results of the test were summr by
an empirical relation between orifice coefficient, stroke and stroke velocity.
The variation between the minimum and maximum values of the coefficient for the
tests ranged from 0.86 to 0.93. The final conclusion from the experiment was that
an average value of orifice coefficient could be used as a constant to ,.i ermine
strut loads.
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Effect of Oil Compressibility

When the contact velocity of the strut is high (generally above 15 feet per
second),the compressibility of the hydraulic oil and in certain cases the volumet-

ric expansion of Lhe strut will have an effect on theI 'ca ti.e history.
The following treatment of this effect has improved substantially the correlation
between analysis and drop test r sults at Chance Vought.

The change in pressure d P in the fluid due to comnpressing the volume by
an amount dV is given by

dP V

where K would be an equivalent bulk modulu , expressing both the compressibility
of the fluid and the elasticity of the strut. Since the volume change ic small
compared to the total volume, the differentials can be replaced by finite
differences

AP = K (3.3-13)V

The term AV is the difference between the volume swept by the hyjdraulic area

and the volume expelled through the orifice:

dA )= AH2- -CD AN /Z (3.3-14)

dt

For a constant AH,

tAV~HX- -oCDAN/Z- dtAV = A H -4 O D N/Y i .3-15)

The volume V is the volume of the oil chamber at any time, hence

V= VO-A N (3.3-16)

whereVo is the volume of the oil chamber when ,Ia strut is fully eftended.
Thus, AI becomes
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-t

-- At4& J C" AN rt~.-7AP KVC - AH, (3.3-17)

The term AE represents the total change in pressure from time t 0 to time
"t," so that

AP P-PAo (3.3-18)

where P is the pressure in the oil chamber andPAo is the initial air pressure.
The pressure Ap is due to hydraulic pressure P, and air pressure 1A5;

A P = PH +P.-AO(3.3-19)

thus the expression for Ti becomes

PH= K A.A, -ji CD AN 'dt -

VaK- l - -A HPA A °  (3.3-20)

The velocity/ r is defined as the Bernoullian velocity,

12r ;a (3.3-21)

The hydraulic force Fm is given by

FH = AH Fm (3.3-22)

Orifice and Relief Valve Combination

The relief valve operates on the principle that when the hydraulic pressure
reaches a predetermined value, a valve cracks, introducing additional rtfice
area. Theoretically, this method of controlling the load in the sLrut Js superior
to the metering pin approach since it function: from load level rether than stroke,
There are, however, sufficient design, qualificatiun and manufacturing difficulzie=
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to detract from its theoretical superiority.

Writing a general expression for a hydraulic strut employing a relief
valve is difficult since designs vary widely. The following is offered as an
eyx=-lc to illustrate the concept. The geometry is depicted in Fig. 8.

The piston of area A# strokes with a velocity 4 , metering fluid
through an orifice with area A 4 . When the pressure ' acting on the area A,
overcomes the downward force FP.O on the valve due to the spring, the valve
moves upward, uncovering an area A3 (zp). The pressure acting on the relief valve
before cracking is The force required for cracking is therefore P A;.

PA

A 3

-A2- Jt

A4

P+ PA

AH

Figure 8. Hydraulic Damper with Relief Valve.

The force acting on the valve Cue to the spring is given by

FR =Fo +KRk (3.3-23)

where Kp.is the spring rate of the relief valve spring.

If the compressibility of the fluid and the mass of the relief val:ve can
be neglected,
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P / = P HAI < FRo (3.3-2)
PH2C, 2 A4 2 ''

PH= 11tA P A >/F;%
2 C ,[ A . (x,)] 2H (3.3-25)

A (XR) LIMIT VALUE A.5

where

X P A(3.3-26)

The hydraulic force FH is then

FH =AH PH (3.3-27)

Oil compressibility effects can be included in the same manner as discussed

previously.

Extension Stroke

In general the damping characteristics of a self-positioning strut made up
of a spring and hydraulic damper 1. series will be different during the extension
stroke than during compression. The extension characteristics are governed by
two requirements: oil must be returned to lower chamber fairly rapidly for
another energy absorption cycle; and adequate damping must be provided to reduce
bottoming loads at the zero stroke position during rapid extension.

The energy available for the extension stroke is that stored in the gear
spring which may be pneumatic, liquid or mechanical.

The form for the hydraulic force is the same as for the compression stroke
except the constants are different

Ai AN 3FH= -ZCD A' (;.3-28)
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where the parameters are

Am = hydraulic area associated with the extension stroke
(CoAN) 5 = effective orifice area associated with the extension stroke

The relations for the hydraulic force previously derived are sunmarized
below. The relation defining the stroke, . , from Eq. 3.3-6 shoug be kept in
mind.

Incompressible oil, metering pin

2/CAN3" 2  > 0
3 2

F.= (CDAt4)2- (3:3-29)

H A AH5-d < 0 (3.3-30)z(CD AN)5 2
Incompressible oil, relief valve

F.= '..-o A"H3,i 2 .-1. I> 0

z(oCD A4) P14 Ai >/FRO (3.3-31)

51 /0H AH -,& - 0 (3.3-32)C Co '[A4 + A.(x 2 PH AI, >FRO

X R Pm A2- Fo-
K p

FH=- -vt A15 3,i2 0 (.3-33)z(C. AN) 2
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Compressible oil, metering pin

Fm = TH AH

PH = 0 %- Am ,- .P + 0 (3.3-35)

_, .3. 2
=/Am s 4 0FH=2(C,,At) z Z < 0 (33-36)

The parameter AN is in each case the metering function, which may be a function
of stroke, and may be of a form for the return stroke different from that of the
compression stroke.

3.3.3.2 Spring forces

A spriz.g is by definition An elastic body or device that returns to its
original shape after being distorted. A spring when distorted will generate
a restoring force that is functionally related to the displacement of the spring
along a specified axis. If energy is dissipated during the distortion-recovery
cycle the functional relationship between restoring force and deflection will
be double valued, as shown below, where the shaded portion represents the energy
dissipated:

LOAD
Fr,

DEFLECTION

The general expression for a spring exhibiting the above load-deflection
charpctarlu~lc is given by

Since the spring itself has inertia, the loa4-deflection characteristics
are dependent somewhat on the rate of loading of the spring. These effects,
in general, will be small for the anticipated applications of this report and
have not been corsidered.
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Three ',jpes of springs are considered in the succeeding paragraphs:

mechanical, pneuatic, and liquid.

Mechanical Sprinps

Mechanical springs occur in almost endless variet-y, from sinple helical
springs, which possess linear loa6-deflection characteristics, to the acre
complicated Belleville and ring springs which exhibit non-linear characteristics
and significant energy dissipation. Mechanical springs lend themselves to
fairly accurate analytical description since they will be deformed, in general,
only in the elastic region of the material. Detailed formulas of spring load-
deflection characteristics, however, will not be derived in this report since
these relations are well documented in design manuals, texts and manufacturers'
literature.

For the purposes of this report it will be assumed That the force-deflect" ii
characteristics for a mechanical spring can be expressed as:

(3.3-38)

For springs in which hysteresis is negligible/, 1 -/.a.1nd the cycle is defined
by a single function.

Assuming the functional relation for F5 is know n,A. must still be ex-
pressed in terms of the variables of the analysis, as in Eq. 3.3-6.

Pneumatic Spring

A pneumatic spring is one that depends upon the compressibility of a gas
to generate a restoring force. The law governing the compressibility of a gas
in a closed container is given by

RA V = PA CONSTANT (3.3-39)

L -AA---
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where

Po -initial pressure in cylinder
Vo - initial volume
PA -pressure -%t stroke "A'
V -volume at stroke "A= V&- AA.,
t ~exponent that -indicates the exact polytropic nature of te compression
AA -pneumatic area

Substituting the relation for V into the above equation the expression for PA
becomes

PA V0n

and the force FA acting downward on the piston is

FA r-AA (PA - Pa ) (3.3-41)

The atmospheric pressurer may us-ualiy be neglected in coparison with the
cylinder pressure.

The value of the exponent rl to be used depends on how much heat is
transferred to and from the gas. If the compression or expansion takes place
rapidly, such that little heat is transferred from and to the gas, the process
can be assumed adiabatic and n, becomes the ratio of the specific heat of the
gas at constant pressure to the specific heat at constant volume. For dry air

= 1.406. If the compression or expansion process is such that the temper-
ature of the gas is unchanged (isothermal),fj= 1. in the general, polytropic
case, U must be determined from an analysis of the thermodynamic process.

When the pneumatic spring discussed above is part of an oleo-pneumatic
strut, the thermodynmic process is further complicated by the cooling action and
vaporization of the oil spray. The net effect of this spray is to cause the
thermodynamic process to approach isothermal. Experiments to evaluate the
exponent fl for an oleo-pneumatic strut, reported in Ref. 17, indicate an average
value of f=1.06 would adequately represent the compression process for the impacts
investigated. For most practical analyses it is sufficiently accurate to choose

= 1, for which case

F = AoVo -2Vo -A,0  (3.3-42)

AA
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Here again the variable "." must be written in terms of the variable of the

analysis, as given by Eq. 3.3-6.

Liquid Spring

In recent years a number of aircraft landing gears have br-en d.signed
solely on hydxRulic principles, where the function of the pneumaiic spring is
replaced by compressing the hydraulic fluid. Usually some mechanical advantage
is involved between wheel stroke and shock absorber stroke sLce the liquid
spring-shock absorber is inherently a short stroke device. Two spring and
damper concepts were examined. Although these differ materially from a design
and utility standpoint, they both submit to the same analytical treatment.

A simple geometry for a liquid spring is picuured below. Initially, the
volume V 1o to the left of the piston and the volume VZo to the right of the
piston are filled with a compressible fluid to some initial pressure. (The
mechanical stops are not pictured.)

P1KV [ /LP2,V2. /7 /
IK"

-- ' -ORIFICE

The force on the piston is made up of the hydraulic force resulting from
the difference in hydraulic pressure and area on either side of the orifice, the
frictional force resulting from the normal pressure of the seals, and a force
a p which represents any other forces external to the liquid spring system.
The piston force Fp is therefore:

Fp =- +F. + Q A

Fw = P Ap -P (Ap -Al)
= Ap(P - P)AR P

where Ap is the area of the piston and AR is the area of the rod.

The frictional force F will generally be a significant contribution to
the net force in the piston gue to the severe sealing requirements.

The analytical expressions for the normal forccs on the pistcn due to the
sealing pressure will be functions of the particular design. In general they
can be expressed as:
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FMNU j ( P, 'Pa)
F,,, (P, P,.)

The frictional force on the piston is then:

FP =(-41 FMU +AL. FNVL)

FOR./I#U FNu +,ALFNL < QA + FH

and

FF =-(O.A Fu)
Fo A Fu t+4 . FI >Q A+F (3.3-44)

where,/4u and /L are the friction coefficients of the upper and lower seal
respectively.

The bulk moduli of oils used in liquid springs in general vary linearly
with pressure throughout the range of interest. Thus, in the two legions,

8 =a+JR =V AP,
I, d V 1  (3.3-45)

4 - J -( -46)

A for the moment that the contribution to the change in total volume from
the cylinder and seal elasticity can be reglected. The instantaneous vnl-.,mes
of oil on either side of the piston are dependent on both Ctroke and The amount
of fluid which has been metered through the orifice. These will be given by
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V- toVM (3.3-47)

v - +(AFAR)h -VM (3.3-48)

and their differentials by

dV = - Ap cis + dVM (3.3-9)

dV = (A; -AR)d .- dVM (3.3-50)

The volume of oil metered through the orifice is related to the orifice
coefficient CO , the orifice area A. , and the velocity of the oil in
the orifice IV' , by

(Vt = Co AN Ir dt (3.3-51)

where the Bernoullian velocity,

2(FPI- P2)

4"8 /o (3.3-52)

is used. With these expressions, Eq. 3.3-35 becomes

______(VCo-ADA d CodP

- Ap d. + CO AN4rdt (3.3-53)

which .:ny be written as

(a+-PX-Ap. +CoAm4r) (33-54)

V- A , +1 r t  AN$r-dt
0

A similar form may be developed from Eq. 3.3-46. The resulting expressions
which define the force acting on the piston rod are recapitulated blow.
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Liquid Spring, Rigid Cylinder and Seals

V: -A (D-0 I&.A D~ 4. C: n' ,-%" P Z' 'R I P Z * F I " % -V P

v +4~-AP -CDA4rl

P2 ( +.k Pz)[(Ap -Aj)Z--CAm /V-1 (33-55)

Vzo A - ) ":_f t C7) AN /Z'dt0

V20 ±(Aj,-Ap~- t A 4d

The inclusion of the volumx'tric expansion of each region due to cylinder ex-
pansion and seal compression is quite complicated. The change in volume from
each of these effects must be written in terms of the pressure and the piston
stroke. in terms of the geometrical volume change dVic due to cylinder ex-
pansion in region one and 8V1$ due to compression of any seal in region one,
and si;ilar terms in region two, the above relations may be restated as follows.

Liquid Spring, Elastic Cylinder and Seals

F= Ap(P , -P)+ApPz,+F, +Qp

(a+Jr, )[-Ap Z +CDA,t + -- -. 5 A- + P, J
Vo-Ap 4& +Jf tCiDAt ,.dt

ri VC + YVI' +_ _V5253.3-56)

Z ~ V20 +(A;.-AR)-& YO C DAN 4rdt

/ (P -Pz)/

Thus, if the cylinder is consideret! inelastic, the corresponding partial deriv-
atives may be see equal to zero. Generally, each of the partial derivatives
will be a function of pressure, stroke, or both. The terms in seal cOcpi. !sloi
are constant if the seals are compressed in the X?.near range; otherwine they
will vary with pressure.
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The geometry of a particular liquid spring may be somewhat different from
that presented here, but the approach will remain the same. The metering
function ANis retained underneath the integral signs in the previous forms, as
it may vary with stroke and hence implicitly with time. Relief valves for rapid
return strokes have not been included here. They may be incorporated by simply
stating that the pressires in the two regions are identical.

3.3.3.3 Bearing friction force,FF

When the piston strokes within the cylinder an amount of kinetic energy
will be dissipated by friction at the bearing surfaces between the piston and
the cylinder. The frictional force, opposing the motion of the piston, is ex-
pressed as

1 F Lr'L&_AI' I U~ FOJ (3.3-57)

where

E FB,:bearng forces at the upper and lower bearings respectively requiredSU to balance the lateral loading on the piston.

Ag WAS coefficients of slidin6 friction at the upper und lower bearings
respectively.

FFo .' frictional force at zero lateral loading. This force is assumed to
be known.

The bearing forces F. and F are the reactions that put the piston in
equilibrium with the external and Vnertial forces in the piston.

Consider first the case when the in er'Uu forces in the piston can be
neglected when determining bearing forces.

4a K t  .4 IK'

Faux' F.L 1

dG
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From the equilibrium conditions on the piston;

FLx+ (3.3-58)

FBL' f"/ (3.3-59)

where j is the bearing separation at zero stroke.

The resultant bearing forces are therefore,

FBL F jB (3. 3-6o)

FB F 4- Bu
Box'
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The dimension JG is the length of the piston, ID , plus th: tire radius, r,

minus the tire eflection along the IK axis, 86M9, or

where and OO-A are defined by Equation 3.2-55.

In the general case when the inertial loads are to be considered, the panel
point loads on the piston are defined from the equation of motion of the piston

'Fp,:,'= [K ' x Pz , (3.3-63)e

)FP,, ] K I P I / ' ) (3.3-64)

where [ 1 ' E, [ JK " ] are the stiffness matrices of the piston and (r
(p. e are imh eiastic displacements of the piston.

0dp

I 3 5 7p ?~~~ IK'

2 4 ro A 8 n-2 11

FBux, FBLV

Given the loads at tiie above-indicated panel points the bearing forces are
determined f=rom the equations of statics as before:

'BL , +Fau x , B .W1CFX, (3.3-65)

F8L ' (18+-4.>CP}(Fpx 7>

where ) is the distance of each panel point toF along K
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Thus

Ie

Fa (d P } [ K _ 'r' ]( P e
L- (3.3-67)

and

F / (I5(4~)-(P))K~] (Pr'~

F~ =s+ x 3.-0
In -che s=-- manner,

FBj (dp 5 [ ]( (33-69)

,aq ~-' +,4 (A3-0

The resultant bearing forces are again given by

F S FLx, + FaLY, (3.3-71)

FSo =F + FBUX,
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3.3.3.4 Brttoming force, F.
The piston of the hydraulic strut will be required to stay within certain

values of stroke, consistent with the construction of the strut. For strokes
less tnan zero the piston will contat the lower bearing. For strokes greater
than-4 MAX the piston -.1ll contact some mechanical stop at the upper end of the
cylinder. To ensure that the piston stays within the required vange of ot:okes
the following functions are introduced.

FB  = -BL / (3.3-73)

FB = & J' > -4 MAX (3.5-74)

where KBU ,\ are the spring rates of the upper and lower ends of the
cylinder. BL

The values of the spring rates are quite high, and may arbitrarily be assigned
such that the displacement past the mechanical stop is extremely small. Generally,
damping terms are included so that the piston will cease to oscillate from the
bottv,.iug and t-kilng pri.ng forces. This is a mathematical artifice, and the
damper rates are arbitrary.

3.3-3.5 Crushable materials

The use of crushable materials in shock-miigating devices is fairly
recent. There is, however, a wide range of types of these devices. The design
of such a device will depend greatly on the vehicle mass and the limits to be
placed on its deceleration rate.

Almost all of the shock-absorbing mechrunsms using crushable materials are

designed so that the force on the main component never exceeds a certain value
but remains very near that value throughout the gear stroke. This is possible
since the primary characteristic of most crushable materials is that of a constant
load-stroke curve. This generally holds until the volume of the material is
reduced to one-fifth of its initial \alu',, at which time the crushing character-
istics become nonlinear.

Some shock-absorbing devices must have the characteristic that the rate of
loading does not exceed a certain value, rather than the load itself. This is
accomnp tshed by shaping the leading end of the device which penetrates the
material. Most of the crushablQ materials will exhibit a high onset force, which
quickly reduces to the constant force for which it is designed. This is the
reason for the shaping of the initially crushed surface or the device vh .,: does
the crushing.

It has been assumed h-re that the crushable material is interior to a
stroking device. If it is a shaped piece of material simply af'ixcd to the
underside of a vehicle, the force should be considered as an exterior app31od
force on the body rather than an interior force applied to an unspr mg mass.
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If the material is interior, the contribution would be positive;

FC>40

and if it is exterior, the force is a ground force applied to the vehicle at
touchdown time t. , and is negative,

0 t <to
v~- ( Ot > o(3.3-76)

If it is exterior, the contribution to V from ground flexibility is usually
negligible. The drag force would depend on the vertical load and a coefficient
of friction dependent on the surface area of the material on the ground.

3.3.3.6 Gas compression and relief valves

This paragraph is concerned with the energy absorption device which makes
use of gas compression and release through an orifice.

A device of this type iz usually designed with a pressure-sensitive bleeding
mechanism. The orifice area opened by this in l.rument is designed such that the
interior pressure is maintained as constant as possible. Consider the figure
below.

RELIEF 7 7 2 /J
VALVE i GAS PISTON

I .A,

The spring holding the relief valve is preloaded so that a critical pressure
P is required to open the valve. Prior to the opening of the valve, the

pressure inside the cylinder is found from the usual polytrcpic form in terms
of the initial pressure and volume;

PV n =  P0 Vo (3.3-77)

The volume of the gas during this interval is Linearly related to 'the stroke,so
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that

P=P -'(1 )- (3.3-78)

In terms of the area A v of the valve prior to opening and the spring preloading
force P , the critical pressure at which the valve will open is

P = Av f (3.3-79)

The corresponding critical stroke is

Pr_ (3.3-80)

After the relief valve is opened, it is assumed that the area of the opening may
vary sufficiently rapidly that the cylinder pressure remains at the critical value.
The force on the piston is then

PO 0- , (-.,/ ) - n  - <".
F APC >  (3.3-81)

in terms of the area A of the piston.

The assumption has been made that the piston stroking velocity is suffi-
ciently low that the pressure is uniform throughout the cylinder.

3.4 ELASTIC BODY FORCES

3.4.1 General

The forces and internal reactions giving rise to elastic deformations in the
vehicle are discussed in this paragraph. Perhaps the most difficult point to
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understand in the formulation of the equations of motion for an elastic body is
in this area. Several different concepts may be used in the interpretation of
the panel point equations. These concepts vary according to the manner in whih
the internal reactions in the vehicle are entered into 'Le equations govcrning
component elastic motljns. The reactions may be entered entirely as constraints
on The elastic motions, or they may be entered partially as aprlied loads. The
former of these methods is perhaps the most straightforward. It does not, how-
ever, lend itself readily to approximate solutions, as the transformation to
modal coordinates is not easily accomplished with that method. The latter will
then be used. The method will be elaborated here, with several examples which
exhibit the concepts.

Consider a wing attached in a cantilevered manner to a fuselage; that is,
it does not rotate relative to the fuselage. The reaczions at the wing root
which hold the wing to the luselage are not considered to be applied forces or
constraints on the wing. Their effect is entered into the stiffness matrix for
the wing, so that the stiffness matrix is that of a cantilevered wing. Thus, the
equations defining the wing modal coordinates in the paragraph on modal trans-
formations will then produce cantilevered mode shapes for the wing. Consider
the symbolic form xor the uing panel point equations;

[Aw]('o ) + [KWI(Pw 4 w  (3.4-1)

where the stiffness matrix is that of a cantilevered wing, and the right-hand
side includes both the applied forces and terms coupling rigid body motion and
elastic motion. There are no constraints on the wing. If the fuselage elastic
displacements are set equal to zero, the wing total displacement becomes the
wing elastic displacement, and the left-hand side of the equation becomes the
form which defines the wing modal coordinates. The equation defining the wing
panel point total displacements is

PW }~P'4 +-Dy. 1(C F) (3.4-2)

The matrix(TF ] relates the displacements of the wing panel points - with
the wing considered as a rigid body - due to displacements of the fuselage
panel points. This matrix then picks out only the fuselage panel points located
at the wing root, and geometrically defines the wing displacements due to
fuselage displacements. The displacements of a rigid body are completely
definea by the displacements of any three points in the body, so that three
panel points at the wing root are sufficient for the general case.

This geometric relationship has a useful property. Suppose Eq. 3.4-2 is
substituted into EqL 3.4-1, and the latter is p-emultiplied by the transform
of the matrix [ ,_J. Rearrangement produces

E;"F]LKW](PW9)=1rwFj W J(PW T A F X'-' (3.4-
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The latter term on the right-]and side is just the inertial load on the fuselage
panel points at the wing root due to their acceleration of the "rigid" wing. The
other terms on the right-hand side are loads on those panel points due to wing
elastic accelerations and wing externally applied forces. Consider the symbolic
form for the fuselage elastic motion;

where again the right-hand side includes applied forces and forces due to coup-
ling of the rigid body. and fuselage elastic motions. One of the applied forces
on the fuselage elastic motion is at the wing root. ThIs force is represented
in the column matrix form by either side of Eq. 3.4-3. Then Eq. 3.4-4 may be
written

- [TF][ATW]F] ( ) (3 .4iA

where the starred (*) quantity does net include the wing root applied forces,
and the right-hand side of Eq. 3.4-3 has been used. The reason that the left
side was not used is now obvious, for transposition of the last term on the right
to the left-hand side introduces the inertial effects of the "rigid" wing into
the total mass matrix needed in the definition of the fuselage modes from
Eq. 2.9-12;

[A]= [AF]+ 2 ETW EAW]ETWF ]+ (3.4-6)

In a like manner, the applied forces on the fuselage panel points from the
vFa;ious appended components may be evaluated. Thus, it is seen in this example
that the wing root forces are ai.lied forces on the fuselage elastic motion, but
their effect on the wing elastic .iotion is included in the definition of the
wing stiffness matrix.

This approaca will normally be used throughout the analysis; the reaction
forces are applied forces on the more central component and are included in the
stiffness matrix for the more remote component. Thus, for a gear affixed to a
wing, the trunnion loads are applied forces on the wing elastic motion, but
their t:ffect on the gear is included in the gear stiffness matrix. It is
apparent that if a chain of components afixed to one another are all elastic,
this may become a lengthy process.

In Section 4 it is pointed out that, for practical applications, some of
the components would be considered to be rigid. Suppose that for a particular
application, the fuselage may be considered to be rigid. There would -ha be
no fuselage panel point displacements. Consider %in element which is pin-- pported
to the fuselage, and has a pin-supported strut connected to the fu,;elage. This
configuration is pictured below.
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\PINNED n ELEMENT

FUSELAGE /JOINTS STU/STR:,UT

Assume that the strut is rigid, and that the fuselage 1b rigid. The elastic
motion of the element is defined by its distributed stiffness properties anw,
the two restraints. For this geometry, the elastic deflection of the element
must be zero at the two support points. This effect will be included in the
stiffness matrix of the element; the stiffness matrix is that of an element
simply supported at two points. In this case there are no applied loads on
fuselage elastic motion.

Let the fuselage now be elastic, so that the support points may move.
The strut is still assumed to be rigid. The motion of the panel points on
the fuselage where the element is supported obviously determines the displace-
ment of the element as a rigid body. Thus, the problem becomes exactly the same
in concept aa thc first case of a fuselage with canti.levered wing. The stiff-
ness matrices of this element and of the wing differ due to the change in support
methods, and the geometric relations involved 'n the matrix [TWF] are different
from those in this case. The applied forces on the fuselage panel points are
found in the identical manner.

These examples show the manner in which the internal reactions will be
handled. Cases have been discussed in which both components are elastic, and
in which one component is rigid. If both components are assumed to be rigid,
but are attached to a third elastic component, the same methods apply in
obtaining applied forces on the elastic component. The panel point elastic
displacements of the components assumed to be rigid are simply set equal to
zero. The proper geometric properlies are then used to enter the applied forces
on the elastic component due to tne inertia of, and applied Zorces on, the
rigid components.

An example of the general method is shown for the simplified geometry
below. The horizontal beam is simply supported at two points, and the vertical
beamiu .;. cantilcvered to the horizontal beam. Motion is considerc-d only in the
plane of the page, and each beam is assumed to be incomprezsible.
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The horizontal (H) beam may have elastic displacements parallel to the Y axis.
The vertical (V) beam may have elastic displacements parallel to the X axis
and motion as a rigid body parallel to both axes due to elastic displacemcnLs
of the horizontal beam. The total displacements on the vertical beam are

( .P0 HI P ) (3.4~-7)

Assume that the interpolation scheme used to calculate the mass matrices is the
trapezoidal scheme; i.e., the displacement betveen panel points is a straight
line ending at the panel point displacements. The panel points labeledA,k+
on the horizontal beam then determine entirely the motion of the vertical beam
as a rigid body. The displacements of the panel points on the vertical beam
are then geometrically related to those of the panel points 4 ,&+ I by the
matrix CTVf1, which yields Eq. 3.4-8. It is assumed that these two points are
spaced a distanced/Z to either side of the connection point. The distances
Z , ".. 1 are measured from the connection point down to each
panel p~int on the vierticalbeam.
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& P"
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-1 0 OS0)..0 Y/2 , Y2 --,

The stiffness matrix for the horizontal beam is that of a beam simply
supported at two points. The stiffness matrix for the vertical beam is that
of a beam cantilevered at one end. The motion of the entire system as a rigid
body does not occur due to the fixed simple su;plorts on the horizontal beam.
The corresponding rigid body coupling terms from the panel point Eqs. 2.8-5 may
then be omitted. No constraints are formally entered into the motion, so that
the resulting panel point equations may be written as

EA I( 1 +H fH(P )H H (3.4H

'Me quantity (R) is discussed in a moment. For simplicity, assume that the
only external applied forces on the system occur at the bottom panel point on
the varrical beam. Let this force have the components Fm , FY The applied
force on the vertical beam is then

• • Q V • ( 3 .4 -1 :
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The kpplied force on the horizontal beam is due only to the vertical beam
connection. This is given by

,)r ,v~ r"IVJ, Q A ]

The quantity (R is seen to be the difference in the applied force and inertial
reaction of the vertical beam along its axis. This quantity cannot be determined
from stiffness properties, as it was assumed that the beam is rigid along the
axis. The stiffness in that direction is then infinite, but the elastic
deformation is zero, and the product is indeterminant. Thus, (R) is found
in terms of the applied forces and inertial reactions.

The first term on the right-h-an- d side of Eq. 3.4-12 is easily evaluated;

0
( /d) F~ + Y1 F.

[TV~y d)F X -Y ?F (3.4-13)

0
0

0

This form enters the effect of the a ilLed forces on the vertical beam into the
horizontal beam panel points A , .#+ I in the proper manner. The other term on
the right-hand side of Eq. 3.4-12 essentially subtracts the inertial effects of
the vertical beam from the effects of the applied forces on the vertical beam.
In that term, the Eq. 3.4-7 will be substituted. The two resulting terms are

[TVHJEXXAIV{1 (0 +H (.,.41ti

The latter will be tranaposed to the left-hand side of Eq. 3...9 and iacluA.P!
with the first term there. This term enters the inertial effects of the verti-al
beam as a rigid body into the proper place in the mciss matrix of the hrizontal
beava The remaining term enters the inertial effects of the lateral elastic
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motion of 'h(. vertical beam as applied forces on the panel points . ,
The equations of motion are then

([iA ] +TV [T HI[A [ + [K I ](p,0

0

- (~d) F + 2 E

0.

The equation governing motion of the vertical beam parallel to the 7-axis could
be included, but no additional information is obtained. This motion is d fined
entirely by the matrix [Tv.J and the displacements of the panel points _2 I

.4 + I . If this is kept in mind, the equation may be omitted. The form of
Eq. 3.4-15 is now proper for the I transformation to modal coordinates, as the
mass matrix includes the rigid body inertia of the vertical beam. The Eq. 3.4-16
is in the proper form when the total displacement is expanded according to
Eq. 3.4-7.

This completes the discussion of the applied forces on comp,.nent motions.
The forces on the whole vehicle, which were discussed in Paragraph 3.2, must be
distributed to the various panel points. This process will not be disc .,:ed
here, as iL depends only on the particular configuration. Several examples in
the next section exhibit this process.

Two types of applied forces on panel point elastic motion are explicitly
written next. One is the aerodynamic force on a wing due to changes in the
local surface angle of attack caused by wing elastic deformations. The (.her
is the structural damping force, which is physically not an external force, but
is considered to be as a ccnvenience.
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3.4.2 Panel Point Aerodynamic Forces

The contribution to individual panel point loads here will be considered
only on airplane wIngs, and only that contribution due to elastic motions. The
body and wing I axes will be assumed coincident. The pressure distribution due
to elastic deformatios is

P . t)= CL t=} ) + -L L, (x }t) ..
P~x~',) Rxt)h l x4t (3.4-17)

where

LR(=-Itjt) .J*4 , ~p x ' P '"4,) (.-3
L R 3"'- (3.4-!S)

L, (x',t) l/ ,r 2 aCp(;) P ' (3 ) (3.4-19)

and

/V = atmospheric density

lf = velocity of the vehicle relative to the atmosphere

c = airplane angle of attack
Cp = local pressure coefficient

The virtual work entailed in a change of dispacement $, is

SW Pex, ,) 3 Tx~d (3.4-20)
w, +WZ

where the integration Is over both wings.

This may be written in terms of an interpolation scheme as

=~ ~ W" (L]( - 13.4-21)

Wi1 W,, 3: i )W2
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Panel point loads for either iiing are then

= (3.4-22)

It has been assumed tbrt (Q )and(QA) are unchanged from their rigid values.

The contributions to body forces and moments from these panel point forces are

e
QOe (I (Q + (A )W } 2 (5.4-23)

XA WI ") w"Ae~ (3.4-24)

N , = (3.4-25)

These may be of significant value for large wings with considerable bending.

The inclusion of contributions from tails or oLher surfaces may be per-
formed in a similar manner but will not have any first-order effect on landing
loads.

3.4.3 Structural Damping

Damping in a built-up structure is not a problem to be approached analytically.
The results of damping are easily incorporated for systems of defined normal
modes, however.

In the test laboratory, the definition of a =ode of vibration includes the
requirement that the shape of the deformation remain constant as the amplitude
decreases to zero. This may be used to define a damping parameter in the modal
equations. Consider the equation

[A1( ) +[V-N]Cpi =(O) (3.4-26)

where[,,] is the stiffness matrix whicn defincs the normel modes of vibration.
The transformation to normalized modal coordinates yields

[.(w) 1-= ~ ~(3.4-27)

a separated set of equations. The frequency of the undamped motion ceflne. by
each equation isw==-; the equation governing that coordinate is
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+ =0(3.4-28)

Suppose that amping were included in some manner such that

[A *)+ [D] { P) +[KN] (P) -=(0)34-9
If transformation to the (normalized) normal modes is made, the equation becomes

The requirement that the shape of the deformation remain unchanged as the motion
dies out requires that the equations for the modal coordinates be uncoupled even
with damping, which means that

[ ] "D][)] = [d1j (3.4-31)

where the elements are the modal damping coeff.h:ients. These elements may
be assigned values in terms of critical damping, but are not derivable from basic
properties of the structure in most cases. Consider the equation

+(3.4-32)

where&J is the frequency of vibration of the mode corresponding to r for the
undamped structure. If the substitution

t- 4(t)-33)

is made, the equation for f(t) is

f + (w2 4 )f = 0 (3..-4)

The solution is harmonic, of frequency

6-0 .(.4-35)
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Critical damping is defined as that value for which WA= 0 , that is,

If the fraction of critic al da mping for the mode is SW , or

d = de (3.4-37)

and if" '( I, the frequency of the damped motion is very nearly that of the
undamped motion. Thus the damping term may be writteni

t (3.4-38)
For many applications, the fraction of critical damping of the basic or

fundamental mode of vibration may be taken as ten percent.

3.5 CONSTRAINTS

The reader who has progressed through the contents of the report to this
point is well aware of the important part the concept of constraints may have
in the formulation of a complex problem. The purpose here is to discuss the
general concept of a constraint and to present some examples which may aid the
reader.

In the formulation of a complex problem, it is often quite difficult to
retain compactness and at the same time choose a set of indepernaent variables
which completely define the motion. It is more often convenient to choose a
set of variables which least complicate the entire problem and use the method
of constraints to eliminate the dependencies which have been included. There
are also, in some cases, problems in which the applied forces corresponding to
the independcnt variables cannot b, defined, but may be found as constraint
forces using a set Of dependent variables. These concepts are discussed in
Ref. 1. In that reference, it is shown that 'the constraints must be of
a particular form in order that they may be handled by the methods presented
here.

On the right-hand side of Eq. 2.8-5 is a set of terms
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The functions Fj are the constraint relations; they are algebraic relations
between some of the panel point displacements. These algebraic relations must
be of a particular form. They must relate only the variables already def'in: %
in the set of equations of motion; they canno introduce new variables. They
must be written as

where A , 1, .... , .i indicate the particular panel point displacements th~at are

not independent. Nlote that this form does not include inequalities.

The elements - in Eq. 3.5-1 are called Lagrange's undetermined multipliers.
They are the factors which convert each partial derivative into a constraint
force consistent with the constraint relations. These elements are determined
only by solution of the equations of motion, and they are generally complicated
functions of the panel point motion throughout the system. They may, however,
be eliminated before solving the equations for many cases of interest in this
report.

A simple problem to illustrate the cons braint concept is pictured in
Fig. 9.

I 2 3 4 I 2 3 4

5 0 7 8. - 7

Fi. 9. A Constraint. Example

In the left part, two bcams are simply supported at two points. Each bea is
assiomed four panel points, and each beamn is then allowed four degleei of tree-
doin for elastic notion. he equations of motic n Are
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where

Pz (P , P.

P4a LPJ
There are eight degrees of freedom altogether. Suppose now a rigid, weightlessbar is connected between the beams at panel points three and seven. These twopanel points are now constrained to move together or have the same displacements.This constraint relation is written as

F, =P -P7  =0 (3.5-6)

which is of the general form of Eq. 3.5-2. The partial derivatives of this
constraint relation with respect to the panel point displacements are

a aF, 0

0F, 0 _F, 0a. = a (P.(-q
_F aF, /

3 7j _0 3 ,0
U 8



The Eqs. 3.5-3, 4 are then no longer valid; the constraint term must be added.
The equations of motion which must be solved simultaneously for the coupled
elastic motion are then

A [R Pz 0 + -- (3.5-8)

aF P3  aj

P 4  0

P Jc 01 .

P-p6=0 (3.5-1)
3f 7

P3 - P7= 0 (--0

There are now the eight panel point displacements and one Lagrangian undetermined
multiplier or nine unknown variables and nine equations of motion. On the right-
hand side are the eight panel point applied forces and the constraint forces at

panel points three and seven which cause those panel points to move together.

The reader whose experience with these concepts is limited should now

examine in detail the Sections 2.8, 9 in order to obtain some working knowledge
on the subject. The section or. comgunent rigid body motion alorg a line follows

directly from the sim)le example, except that the number of constraints involved
is large. Fortunately, in that and the following cases of use of the constraint

methods, the undetermined multipliers may be eliminated. The constraint forces
for each case are simply the forces necessary to hold the component together to
move a: ;- rigid body under the applied and inertial forces.
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APPENDIX A

DERIVATION OF M FMIETIC EERGY

The details of the derivation of the kinetic energy as presented in

Section 2 are written here. Several vector and natrix identities utre established
for later use.

A vector in three-space may be written in matrix form as

A scalar product is then written as

/A-113 =  A i • ) B>

A I  1 (A-2)

AX  1 0 01
A 0 12
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In the same mrnner, the vector product is written as

/A~ Af%~) {~ ~ (A-3)

-A I~B~

and the triple scalar product as

/A.IB Y.D A P -1K 0 D I

TAxd' 1 xI 5349 6I 0~ IK -31
A Bx J -Bjj1 BIJ I-IK 0£

A coordinate transformation may be wrizzen in This jiumur;

{ }= {Jj}



Than

V i : J- ' J- I (A-5)vl . K tlW IK. I !K-IKJ

The elements of the latter matrix may be recognized as the direction cosincs of
the unit vectors of one coordinate system in the other system. One may then write

W { Cl 4Y (A-6)

With these identities, the kinetic energy from Eq. 2.6-9 nay be put in matrix form.
Bcgining with

P~ §r {Ar}(A-7)

and noting that fPdv= M, the total mass, tht first term becomes

t fdVP -M {a}{A} (A-8)

In the second term, the identity

may be written us*ng Eqs. A-2,4 as
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The coordinate system of the body is defined as the principal axis of inertia
system, so that the off-diagonal elements integrate to zero, and the second term
becomes

{f& x L)'PdVm{{ ; X %=]tai (A-li)
3. Ii

In the remaining terms of the kinetic energy, the displacement vector of the
elemental volume occurs. If these terms 9re to be evaluated, some scheme must
be devised by which the continuous displacements may be represented by the
displacements of the discrete set of panel points. This is accomplished by a
numerical procedure known as an interpolation scheme. Interpolation schemes re-
late the displacements in the regions between the panel points to the panel point
displacements. Consider the next term in the kinetic energy. It may be written
as

1 X 5



since

rP rPX rfpY

and

!(A)

In terms of some interpolation scheme, each component of the continuous dis-
placement (or velocity) is related to the values at the panel points. Thus,

The resulting form is simply a quadratic expansion in the panel point velocities.
The values of the elements in the mass matrix[,Ax!)ej will depend on the inter-
polation scheme used, which in turn dictates the accuracy of the representation
of the continuous system. The third term in the expansion of the kinetic energy
is then

>L t >

In the remaining terms, the subscr lpt £ is omitted until the final form for the
kinetic energy is vritten, it being understood that all elements must be written
in the proper coordinate system.

In the fouxth term,

n-P P -P 0

From the properties of a similarity transformation (see Ref. 1), this may be
written
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.L- P - + PJ P,

This may be verified by direct expansion. Finally,

, f=.l' (P ({ [A"'](P< P 'Y (A "]P>, ,. J _ ,

%J -(P' [A=}I <P(,
S, - P [A XI P'

=Y

({P,}'A ,,'(P. eY (A lar ( P , ) '
+ ,P A,,

(A-19)

({PY }(A 7J (Pe) +P >[Ai P,  lZ

Thus, since the quadratic form expressed in Eq. A-18 has coupling terms between
the components of the displacement, the form in Eq. A-19 will have mass matrices
with the subscripts indicating the coupling. These mass matrices will differ from
those on the main ciagonal in general, due to the variation in mass dcnsity, panel
point spacings, and possible variations in the interpolation schemes used in the
various directions in the component coordinate system.

The fifth term may be written in either of two forms:

( .R p = --A - l A IP (A-2o)



Defining

a -. L (A-21)

then

. l -ax PX(A-2)

and IR-f lPPdv =

V a = Ar' L (A-24)

[ { (A f(Pol

{}a f[ 1

I L I )] , (]
The new type of mass matrix introducea here arises from forms of the type

JviPX! ?d V = .{IYX[AJ ~(Pe) (A-25)

The same interpolation scheme as in Eq. A-15 would be used to obtain *.,v result,
but the elements of the -ingle subscript type o2 mass matrix will in gelie.al be
different from those of the double subscript typo. The following shorthand
notation has been adapted:
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The sizes of the indicated column vectors are dictated by the number of panel
points whose displacements are indicated in the adjacent matrices.

The sixth term is

UF [A,
In the seventh term,

JIx 0 34 .;

A*fl } 0 X (A-28)

and

A l L-<Ih ,. X,[ A. Po)Jd,:

The mass matrices containing components of the position vector IL insi,. ale
matrix brackets to the left of the mass matrix symbol arise from integrations
of the form

19(A-v')



In the limit as the number of panel points becomes large, and the interpolation
scheme becomes increasingly accurate,

V L10 X'J kvx,/ -- " .Yj LAX'J )O)(A-31)

where the column matrix indicates the positions of the panel points in the
component coordinate system, along the -' -axis. Although the original forms
will be retained in defining the kinetic energy, the equations of motion will be
derived using the approximation that Eq. A-31 is true without reservations.

Likewise the eighth term is

. f. fi p , P1dv =
(A(A-5)

F )IA (0 Y (P [Apj (A

In the ninth term,

-a ~ ~ I~ 0 X/0 P%

so that
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A -( A'A -] {P P }

-f Y (P ' '
-(I ( c'Ax ,]J (,, (A-54)

.A P.A ) }+ (i y) ](.i'.A ] 4) l J

Each of these terms is written for t -th component and the sum of these is the
kinetic energy. These terms are collected nexA. The summation on i goes from
i = 1 to i = N. Instead of distributing subscripts throughout, the entire set
of terms to be summed over is indexed. The index will fall on all elements except
the rigid body velocities.
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The desired form for the kinetic energy is written in Eq. A-35. It will
be substituted into the modified set of Lagrange's equations, which are derived
in Appendix B.

T4 M{~Ar.£~ ~{j Ix 7
[AL ,j e,()I 1

± ~}I~ [( ,[A ,] (o -(sj 1~%] ,o'"| ,}J

[ (o} -Q, (yzA -(,}' [,'A...J It( Q
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APPENDIX B

TRANSFORMIATION TO THE MODIFIED FORM OF IAGRANGE'S EQUATIONS

The details of the derivation of the modified form of Lagrange's equations
as presented in Section 2 are written here.

Lagrange's equations are first written as

aax 5ja3r"DL '
d 3L K_ +. DB--)

dA V' ay Ya
aL aL NI

dL L N +

Tt ,e- J a e a'J ( B-2)

L i- ..

where (X, Y, Z), (ie,* ), ({Pz'),{P.)(P(f)) and their time derivatives com-
pletely specify the position and velou iy of every particle in the system relative

134



to the inertial frame of reference. The Lagrangian, L = T - U, is expressed in
terms of the bcdy linear and angular vccciti cs, (s ', 4 r,) and 4, ),
and the panel point displacements and velocities. These are not a sultable et
of variables for use in the ordinary form of Lagrange's equations, as they do not
specify the motion relative to .in inertial frame of reference. The '.qs. P-l,
2,3 are valid, however, and may be transformed so t at all operations in the
equations act on the variables used to define the Lagrangian.

The transformation matrices [r] and [r) and the matrices [Q] and Rr-"
may be recalled from Eqs. 2.7-4, 5, 11, 12. Their use as a brief notation is
valuable here.

The first operation indicated in Eq. B-1 may be transformed by uso ot tV e
chain rule for differentiation in calculus and the definition of the matrix [ ]j

a X, Y a X a X lr

az 7± az a5 biJ

so that

aT [ri (B-5)
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Since th,. kinetic energy is independent of the inertial displacements (X, Y, Z), .then

0
3T T (B-6)

If no kinematic constraints are imposed on the "rigid-body" motion of the vehicle,
then (X, Y, Z) are independent coordinates, andII

aF !
ax

= 0 (B-7)

The time derivative of Eq. B-5 is

"aT ra aT
3

d a r] -0T 3~T
at tdtz, (B-8)

aT H aT
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Since the potential energy is not dependent on the body coordinates, then Eq.
B-1 is written using Eqs. B-6, 7, 8 as

aT aT

The generalized forces are transformed by

=[r3 ] Y (B-10)

into the body coordinate system. Premultiplication by Ir] of Eq. B-9 together
with the identity [r] Er']' EI and

0 O j (B-li)
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yields one of the desired transformed equations

a T

The transformation of Eq. B-2 is a bit more tedious. Uning the chain ralv o
differentiation and the definition of [R)

c),fx , ,) q O TI TN;-aT ~ O.~.~ >1(B-13)

__ __ a o- 3a a , T I aT

also, the chain rule yields

T alz , a T 30 afl aT
a-fr 5~1~ Pr I D# DY'

D 'a 0 ae 0 1r 3 e e } (BP

aT alm alm l T a a 3 a a
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which may be shown to produce

a)T r ido.o
aT o +C05 9S -'osINosIN( I c a--'

using the definition of /M]. (B-i5)

Differentiation of Eq. B-13 with respect to time yields

__'I =T -+T ;OSCOSE-g,,0-S. 0 0---' -16
r a axs

[cl J - +T COSOCOSE)-651NOSINO -;5114h 03T (-6
_ T r( T .S'N 0 -a l6,

a D -#5IN~cose-6cosfsiNG 4= 0

If no kinematic constraints are imposed on the "rigid-body" motion of the vehicle,

then (V-,E,9 ) are independent coordinates and

$ 0

0 (B-17)
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Substitution of Eqs. B-15, 16, 17 into Eq. B-2 yields

{J T [R [] (B-18)

t/

3T 6T N .

since the terms explicitly written in Eq. B-15 and Eq. B-16, when subtracted,
yield- [ ] I [,1]

The components (NIW9,N95 ) of Eq. B-18 are the generalized forces associated
with the coordinates (t, 9, G). They are, physically, moments about the line
of nodes, and are not mutually orthogonal components of a vector. They trans-
form into the body coordinate system by

! [] N e (B-19)

N NJ
Premultiplication of Eq. B-18 by [RJ then yields the modified form

Ox mX
DT OT"N

a D Li 3ari

l)LNJ



The desiied transformations are thius obtained. lagrange's equations in
modified form are

/ I L

itfd } (B-2)

(aT aT

[dLc (B[-22)K[

LLi

i =  5, 2, ... ,

"4.T



APPENDIX C

DERIVATION OF TME EQUATIONS OF MOTION

Some of the details in the derivation of the equations of motion will be

presented here.

The forms for the kinetic and potential energy of the system will be sub-
stituted into the modified set of Lagrange's equations. A number of useful
identities will first be established in order that the operations indicated in
the modified equations may be performed in matrix form rather than individually.

If an arbitrary function, G, , has the form

f K ' fL , 
( -1

K( K-

where the indicated vpr .cbles are also arbitrary, then it is easily shown that

5a = L (C-2)aK, II

and

KXaG, K 
(V-3)
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also, in Lhe same sense, if

Kx1  C1  C;a C3 is f Kx
, 2- c_, C _Z C 3 j3 Kj (c-4)

LC31 C3 . C33 K

then

aG7
(CC] [C]) K-(C-5)

With the use of these identities and the alternrte form of Eq. A-24, the follow-
ing operation on the kinetic energy is obvious:

r_aT
)AT: I f  { ',  ](J ! )

a(c-6)

[AIj
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The equations of motion governing the body linear velocities follow immediately
from Eq. B-21, and are

frx

(A)

(AjQr.ik, I-,-7
(1 lA<e j !

%L,



The derivation of the equations governing the angular velocities of the body
are more ien3thy due to the number of terms in the kinetic energy involving
the angular velocities. Using the previous identities, the remaining operation
in Eq. B-22 is written in Eq. C-8.

TaT  (iiijii
):- (i} 11AX

.[ A ;I( e., At 4Px.~ ~ ~~~ -T',;l?-.'..</-(PiY +,,,<t yl(j

+mll~~p.,,'~ [AA, ij, J2' -I.,YAi

irjY( ,i.-,YC Ad " ,I OY (C-8) ,.

'RI Y 4A ' 1§.>)+ W,' (%'A A P.,)

-z[ '] < }' (:A,]/,

-<,}'[.;Iwl

-, } ['45 &I



This form cogether with that in Eq. C-6 is substituted into the second of the
modified equations. A time-dependent moment of inertia is defined by collect-
ing together all the resulting terms which multiply the angular accelerations.
The moment of inertia maLrix is given by Eq. C-9. In terms of this matrix, the
equations governing the angular velocities of the body are given 'y Eq. C-10.

TILXX 1

- , TA .) I { P, -

-'X ] . I P -

-IiEA'1tI '

- II l ,. ,]|,

(u --x~~1P,' 4.1 I



47.4

- - -. - - - c 

"a #7 1- - . )t4. Soc

- -S

'-S3 -

- N 0% t~

.4 -_ -5-A-

-4 - -47



The panel point equations are more easily derived if use is made of the
identities

1=[rli nclj)

The rigid body velocities are then written in each component coordinate system.
It will be understood that primes on their subscripts mon that they must be
written in the i-th system. This avoids considerable complication in the
equations, for many of the terms cannot be broken down into simple product form.

The same identities for column operatorE may be used to advantage where
panel point displacements appear in ordered column form. Where they appear in
complicated matrix form, the matrix may be expanded and the operations performed
separately. Noting That

[~~X IL tp] o I~1 jn~(-2

- i, [AjX'1 [o0] -slAA I j 1Pl'Ij

(note also the prines on the J1. sl.t.bseripts), the panel point equations may be
written in the form of Eq. C.-13.
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E[A4. V + Zf01Aj [A t

+ - 4 slj- [A +~ A ~n[A IT (-L, -Qtqf) [A 1,1

J-4 +"1I~~~-a +A~ [-Id&' -.P-x'f1 -I &'y
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APPENDIX D

INTERPOLATION SCHE4ES

The method of analysis ir this report requires that the elast'c diplace-
ments of a continuous system be approximated by displacements at a finite number
of discrete points. This numerical approach is general in that it may be applied
to bodies of any shape. In order that the forme remain simple, the illustration
here will be confined to one-dimensional motion of a thin beam. The purpose
of the scheme is to make use of an interpolation formula to relate the continuous
displacement at all points to the discrete displacement at neighboring points.

P '

The region bet-ccn panel points and 4-1 is referred to as the -th bay.
Local bay coordinates are defined by

= 2~ Xp (D-1)

Henc .. varies between zero and one.

Various inLrpolation schemes are as follows.

Lumped Mass

This method is not properly an interpolation scheme but is includied since
it is the most easily used method. A row of panel points is laid alon6 the center-
line of the beam. In the region between each paur of panel points, the mass and
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center of mass are calculated. This mass is then beamed out to the pair of panel
points. When this process is completed, the mass of the beam is represented by
a series of lumped masses at the panel points. For this case, the mass matrix
is diagonal; the elements along the diagonal are the lumped masses.

Trapezoidal Rule

This rule is called a two-point rule because the dispacements in a bay are
defined in terms of the displacements at the two neighboring panel points:

P ('C) P- +'- ?-! P;" Po(D-2)

In terms of local bay coordinates, this may be written

P M 0 P' P(D-3)

This rule is usefulin calculating mass matrices which do not have to be highly
accurate but are wished to be more representative of the system than would be
a lumped mass approximation. This rule is also somewhat limited; it cannot be
used to calculate the beam curvatu'e as there is no second derivative of P

The kinetic energy of a beam may be written

T= P (X) k~: d D-4)
0

where /ui(5)is the mass per unit length along the beam. This man be written in the
form

T=- jeNf , P(E)/')c; (D-5)

whera is the length of the 4 -th bay between panel points , + The
displacement may be written in the form

~®={'}' { }(D-6)



which yields

The kinetic energy in the *-th bay is then

~T Ii, }LzaA{? (D-8)

where

The displacements P4 ,Pjl may be picked out of all the displacements by an
operation of the form

it =[j p (D-10)

where the matrix is composed of zeroes except for uity in two elements. The
kinetic energy is then

T -."5" [3j EJ[,][Bil] (D-11)

or

T= I {1YEA]fPJ (D-12)

The mass matrix obtaied by this process will have non-zero ! ements on the diagonal
and in the first positions off the diagonal.
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Many interpolation schemes have been devised which make use of an increased

number of neighboring panel point displacements. Cubic rules make use of three

of these, and four-point rules use two on each side of the local bay. Of te

four-point rules in existence, one will be chosen for description. This is referred

to as the diparabolic formula. It is felt to be superior to the cther- since

continuity of slope is preserved between bays.

Diparabolic Scheme

If (g) is the parabola drawn through the set of points at %-4 , ,
and andx+ ) is the parabola drawn through the set of points at )

, and q , then

P()= 0-'4) f.( + --F+I (F) o - I (D-13)

is the formula for interpolation in the 4 -th bay. Thus the formula is a weighted

average of the two parabolas.

H :O

This may be described in terms of the displacements at the panel points. The

parabolas

(D.14)

(D-:15)

are defined by

j (D-!6)

p4 9+ ~ ~ ~ ~ p j i''1 +2 (D-l1',
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The constants, aj , may be evaluated in terms of the panel point deflections by
combDining the above forms. They may be written

JI+ 4 a (-8

and

(D-19)

The solution of these equations is written in terms of the inverse matrices

2-

~2 ] (D-21)

j+I

so that

[0a.1 ( I(P,+

i() =[A4+ R+1
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Formulas for the parabolas are then

a r

+ a.

The diparabolic formula is then

P (Dg26

which is of the form

Xi*j+ x xt Ij (D-27)

where
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N~ercall., for equal intrvals,

-

1A 0 0 E 0 02
[A0 o = 3ez2- (D-30)

,V o] Fo oo oooo
!/? o oJ k/0- 1 V 0,

+0

0 0 001

Yz:Va3/2~ 12 gJ

The kinetic energy of a beam is written

f (D-32)

where p(x) is the mass per unit length.
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In the -. h bay, . -

Pp1 .

4r Pp1

( 
p. 2-3

3 Z4,

Pi ~ +z' Z %-4

The kintic ene~v of te -th b yste



If the displacements in the -th bay are picked from all the displacements
by an operation of the formP.)-1

P-

-here [ iis a matrix whose elements are one or zero, then one may write

T -L{#

or

T J - A(D-39)
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