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FOREVORD

The research work in this report was performed by Chance Vought
Corporation, Dallas, Texas, for the Vehicle Dynarics Division, af Flight
Dynamics Laooratory, Wright-Patterson iir Force Base, Chio, under Con:ract
AF33(616)~7é24. This research is part of a conbtinuing effort to provide
a riore rational and reliable theoretical rmevhod for establishing design
criteria in the specific area of shock and impact for flight vehricier ord
is part of the Research and Technology Division, air Force Systens Cormandis
exploratory developrment prograns The Departrent of Defense Program Zlenent
nwwer s 6.24405.33.4, Miircraft Flisht Dynanics®s This work was pertor::ed
under Project io. 1367, WStructural Design Criteria™ and Task lio. 130706,
WPrediction and lieasurenent of Structural Dynamic Loads Including Fatigue
Aspechksts  Mr, W Fo Dunn of the AF Flight Dynamics Lavoratory was the
Project Engineer. The reseurch was conducted from 2 February 1961 to
30 June 1962 oy the Structures Section of the Aero Division of Chance
Vought Corporation.

The report is Volume I of « two volume report which presents the
forrmlation of the equations of motion and defines in detail many apriied
forces of present and future vehicles necessary for solution of the equa-
tions of motion formulation, Volume II - Examples, presents illustrative
examples with accompanying numerical solutions so that the procedure for
manipulating the equations of notion fornulated in Volume I can ve used
as a guide when the method is utiligzed.

Volure I contains Sections 1 thrcugh 3, Appendixes A through D, and
the Bibliography. Volume II ccntains Sections 4 and 5.
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ABSTRACT

A rational method for predicting alighting gear loads during landing
impact is discussed. The equations describing the motions of a vehicle dur-
ing lending impact are develcped for an arbitrary vehicle configuration.

The method is of sufficient generality and accuracy to allow the formulation
of alighting gear dynemics problems in flight vehicles including V/STOL air-
craft, high gross weight logistic vehicles, recoverable booster vehicles,
advanced tactical and defense vehiclec operating out of remote areas. and
lunar vehicles. It allows for the effects of varying coefficients of friction
and damping, combinations of initial conditions of pitch, roll, yaw angles
and rates, vertical, longitudinal and lcteral motion, slippage of the gear
relative to the alighting surface, flexible alighting gear and vehicle struc-
ture, simidtaneously applied triaxial ground loads, and various types and
number of alighting elerents. The formulation is intended for the cantilev-
ered type of gear, although the articulated iype may be handled through scme
extensions of the formulation. A survey of the various types of forces which
occur during landing impact is made, and the mamner in which these forces en-
ter the equations of motion is described.

The general equations may be reduced for e particular problem by imposing
the vehicle configuration and any simplifying essumptions directly on the
equations. Several illustrative examples with accompanying numerical solu-
tions are provided in Volume II, "Examples”.

The report may be used as a guide in the formulation of a landing impact
problem.

PUBLICATION REVIEW

This report has been reviewed and is approved.

FOR IHE DIRECTOR

wéé,wa a %,;z@

HOWARD A. MAG]
Chief, Vehicle Dvaamics Division
AF Flight Dynamics Labcratory
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LIST OF SYMBOLS

The mass matrix for the main component of the vehicle,
in which irertial effects of the appended components are
included.

The cross-sectional area normal to the direction of mo-
tion of a body impacting in soil-

The tire contacting or footprint aves.

Paragraph 3.2.2 - A point on the thrust line; one choice
is the point oI intersection of the engine centerline
with the rear engins bulkhead plare.

Paragraph 3.3+3.2 -~ The value of the hydrauiic oil bulk
modulus at zero pressure.,

Paragraph 3.5 - One of a pair of simple beans.

Paragraph L4.2.1 - One of a pair of contacting elements.
The pneumatic area in a pneumatic spring.

The shear stiffness in a beam,

The hydraiuiic area in a hydraulic damper.

The hydraulic area during the return stroke.

The orifice area.

The piston erca.

The rod cross-sectional area in a liquid spring.

The mass matrices describing the inertial properties of
a8 vehicle component which arise from terms in the kinetic
energy involving products of the panel point velocities
or displacements. The suhscripts refer to the directions
of the corresponding velocities or displacements.

The mace matrices describing the inertial properties of
a vehicle coumponent which arise from terms in the kinetic
energy involving the product of & variable governing the

vehicle motion with panel point displacements or vel.oc-
ities parallel tc the x 5 and 4/ axes respectively.
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The mass matrices describing the inertiel properties of
a vehicie component which arise from terms in the kinetic
energy involving the product of the components of the
position vector IL with the panel poiat velocities or
displacements. The symbol to the left refers to the
component of L, and the subscraipt to the right refers

to the comporent of panel point velocity or displacement.
Modal macses for the first iwo wing modes.

Modal mass moments for the firct tvo wing modes.
Paragraph 3.2.2 - A point on the thrust line; one choice
is the point of intersecticn of the engine centerline
with the forward engine bulkhead plane.

Paragraph 3.3.3.2 - The derivative of the hydraulic oil
valk modulus with respect to pressure.

Paragraph 3.5 - One of & pair of sample beams.
Paragraph 4.2.1 - One of a nair of contacting elements.
The bulk nodulus of soil.

The bulk modulus of 0il in the sections of a liquid
spring.

The damping rates of the simple spring-dampers supporting
the coriacting elements a

3

The coefficient of contraction.

The orifice coefficient; the product of Cc with Cv

One of the ~erodynamic coefficients.

Non-dimensional serodynamic moment coefficients.

The local pressure coefficient.

The coefficient of velocity; the ratio of the actual
hydreulic oil vel-~city to that given by Bernoulli's
relation.

Non-dimensional aerodynamic coefficients.

Paregraph 3.2 - The ground penetration dapth of a con-
tacting element.

Paragraph 3.4.3 - The aumping of 8 modal co.rdinae.

The modal damping matrix.
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The panel point damping matrix.
Paragrapl 3.2.5.3 - The spike diameter.
Paragraph 3,2.5.k - The ski or skié planing length.

The piston bottoming force damping rates for the nose
and main gears.

The critical demping of & modal coordinate.

The force on & coniecting element from the ground, par-
ellel to the X axis,

The piston length plus the tire radius,

The ground forces parallel to the X axis acting on the
nose and main gear tires.

The damping rates for nose and malin gear elastic motions
with a single degree of freedou.

The distances <srom the upper piston bearing to the pis-
ton panel points.

The matrix of influence coefficients; the inverse of the
stiffness matrix.

The bending ctiffness.
The pneumetic force.

The piston bottoming force which retains the piston in
the cylinder.

The lower and usper bearing forces.
Components of the lower bearing force.
Components of the upper bearing force.

Contribution to the stroking force from a cruslteble ma-
terial.

The damping forces in the support members for contacting
elementz a,

The bearing friction force.

The hydraulic forece.

A contraint relationship.

Thz Tever and upper seal normal Yorces in a liquid spring

system.
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The constent force characterizing the crushable material
shock absorbing mechanisnm.

The piston panel point loads, including applied forces
and inertial reactions.

The spring force.

The spring forces in the suppert members for contacting
elements a, .t

The functionel form of the force-deflection character-
istics of a nmechanical spring.

The damping forces on the nmain and nose gear fore and
aft elastic moticns.

The metering function which multivlies the square of the
stroking velocity to yield the hydraulic force.

The acceleration due to gravity.
The maximwm vilue ¢.! stroke.,

The unit vector along the X axis of the ground coordinate
systen.

The unit vector along the x axis of the body coordinate
system.

The unit vector along the x/ axis of a compouent coordi-
nate system.

The unit vector in the articulated gear coordinste systen,
paraliel to the body x exis.

The moment of inertia of a component about the line a-
round which it rotates as a rigid body.

The moment of inervia of the piston, wheel, tire,and
brakes about the gear centerline.

The moments of inertia about the body axes of the vehicle
in its undeflected position.

The unit vector along the Y #xis of the ground coordinate
system.

The unit vector zlong the 5 axis of the body coordinete
systen.

The unit vector elong the %'axis of a coumponent coord-
inate system.
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the unit vector along the Y'axis of the articulated
gear c. ..uinete system, pointing outboard along the
tension strut centerline.

The unit vector along the Z axis of the ground coordinaste
systen.

The unit vector along the47 axis of the body coordinate
system.

The unit vector along the lf axis of a component coord-
inate system.

The unit vector along the gf axis of the articuleted
gear coordinate system.

Paragraph 3.2.5.2 ~ The tire cornering coefficient.

The spring rates in the support members of contacting
elements a,.d.

The piston bottoming spring rate.

The torsional spring rate of the cantilevered gear
about the gear centerline.

The lower and upper piston bottoming spring rates.

The loweir piston bottoming spring rates of the main and
nose gears.

The stiffaess watrix defining the normal modes of vibra-
tion.

The spring «ate of the relief valve spring.
Metering function for the return stroke.
The tire spring rates of the main and nose gear tires.

The main and nose gear fore and aft spring rates at the
axles,

The main gear fore and aft axle spring rate polynomial
coefficients,

The cantilevered gear fore and aft axle spring rat~
polynomial coefficients.

The cantilevered gear lateral axle spring rate poly-
nomial coefficients.

The cantilevercd gesr sxle spring rater  .oh are con-
sidered as functions of stroke.

xiii
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the stiffness matrices defining the potential energy due
to elasti. deformations of a component along the =, :3"
and '5' axes respectively.

The stiffness matrices arising in the type of structure
in which an applied force in one direction causes a de-
flection at right angles to that direction. These ma-
trices are not retained in the equations of motion
except in the appendix, &s they do nct occur for normal
structures.

The position vector from the origin of the body coordinate
system to the undeflected position of an =lemental mass.

The lagrangian; kinetic energy minus potential energy.

The seperation of the spike point from the spike center
of mass,

The distances to a set of panel points from the y/
sbout which a component may rotate ac 2 rigid body.

axis

The position vector of the axle in the undeflected vehicle.
The distance to the center of -mass of a component which
may rotate as a rigid body about & line, measured from

the line.

The axle oi'fset length.

The bearing seperation at zero stroke.

The distance from the cantilevered gear centerline to
the support strut connection point.

The length of the j-th bay in a simple beam.

The separations of the upper bearing and the axle of the
main and nose gears.

The separation of the upper bearing and the axfe of the
cantilevered gear.

A vector collineer with the thrust vector.
Initial bearing scparation in the main and nose gears.

The distance from the upper bearing to the conlact i,

The distance from the lowexr bearing to the contact pid
before stroking occurs.

The transformation from panel point loads and reaction
forces to panel peint shears and moments,

xiv
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Matrices formed by partitioning [L.]

The transforasation from panel poirt loads to suppe:t
reactions.

The transformation from panel point loads to panel poiunt
shears and moments.

The vehicle mess.

The mass of a component of the vehicle: which muay move as
a rigid body relative t¢ the body aves (A - motion).

The mess of thei~-th component.
The bending moment in the j-th bay.
The maszes of the wain and nose gears.

The mass of the wheel, tire, brakes, and piston in the
cantilevered gear.

The mass of the wheel, tire, and brakes in the canti-
levered gear.

The unsprung mass.
The masses supported by weightless flexible beams.

The exponent which indicates the exact polytropic nature
of the pneumatic compression.

Spinup moments on the main and nose gear tires.

The sum of the applied moments and restraining (scissors)
spring mement on the torsional motion of the cantilevered
gear unsprung mass.

The spinup moment.

The moment on the cantilevered geer axle due to the force
Q%’a: vhich acts normal to the wheel plane.

The components of the total applied moment on the vehi-le.

The compunents of the applied moment on the vehicle due
to the ground force on a contacting element.

The moment on the spike about its center of mases duc io
ground forces.

Components of the total applied moment on the vehicle.

These are non-orthogonal components, as they act about
the 2 axis, the lin¢ of modes, aad the x axis respectively.

XV
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The bogle, ski, or skid restraining moments.

The total displacement of an elementsal mass in the
vehicle.

The symbolic form for the panel point displacements.

The axle total displacement.

Pressure in the airchamber of the pneumatic spring.

The undeflected vire pressure.

The critical pressure in & gas chamber with relief valve.
The tire wall eguivalent pressure.

The average tire contacting pressure.

Tire pressure rise on deflection.

The total displaceuent of an elementel mass in the 1-th
ccmponer.t ¢f the vehicle.

The displacement due to elasticity of an elemental mass
in the y~th component of the vehicle.

The displacement of an elemental mass in the L-th com-
ponent due to displacement of the j-th component, to
which tue t-th cowponent is affixed.

The displacement of the lower bearing in the cantilevered
gear, at right angles to the gear centerline.

The components of P

The Cisplacement of the upper bearing in the cantilevered
gear, at right angles to the gear centerline.

The components of P,.

The vector displacement of the instantaneons center of
mass of the vehicle from the origzin of the bcdy coordinate
systeni.

The components of ﬁ% .

The panel point displacements parsllel to the component
coordinate axes.,

The panel point displaccments dvue to elasti:zity.
The panel point displacements in the 1-th component due
to displacement of the j-th component, to which the i-th

component 15 affixed.

xvi
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Components of the displacement of panel point 4 on the
piston due to displacement of the cylinder.

The axle fore and aft displacements of the main and nose
gearse.

Prassures in the two regions of a liquid spring.
The total applied force on the vehicle.
A column vector of modal cocrdinates.,

A column vector of modal coordinates with the higher
modes deleted.

The aerodynamic force on the vehicle.

The generalized force assoclated with the generalized
coordinate ¢;

A generalized coordinste.

The paracihute force on the vehicle,
The thrust vector and its megnitude.
The gravitaticnal force on the vehicle.

The components of the total vehicle force along the axes
of the ground coordinate system.

The components of the total vehicle force along the axes
of the body coordinate system.

The panel t.int applied force components.

The panel point load components; the difference between
the applied forces and the inertial reactions.

The components of the ground force on the vehicle.

Two component
elements 4,4,

of the ground force ca the contacting

Two components of the ground force on the main and nose
gear tirese.

Components of the total applied force on thLe piston,
The ground force ecting alorng the piston ?’ ~axis.

The aerodynamic 1lift.
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The total stroking force; the sum of the hydraulic,
pneumstic, bearing friction, and bottoming forces.

The totel stroking forces ir the main and nose gears.
The components of the gravitational force.

The position vector of the origin of the body coordinate
system.

The position vector of an elemenisl wuass in the vehicle
relative to the ground coordinate system.

The transformation from the Eulerian angle time deriv-
atives to the cowpcnents of the angular velocity expresced
in the body coordinate system.

Tne tire undeflected radius.

On the cylinder; components of the support reaction azlong
and at right angles to the gear centerline. On the piston,
the bearing forces.

The effective drag area of the parachute. The symbols
may be separately defined as the drag coefficient and
areu, but no standerd definition holdc (See Ref. 5j.
The effective area is generally measured for each pvara-
chute.

The strok: of the piston; the displacement of the piston
relative to the cylinder, positive as the piston enters
the cylinder.

The component of the ground force on a contacting element
parallel to the ground Y axis.

The kinetic erergy of the vehicle.
Time

The matrix relating the displacements at the bearing
points to the displacements of the panel poin's on the
cylinder. The elements of this matrix are determined by
the stioke, the position of the panel and the intery ..
lation scheme used to relate the cylinder elastic dis-
placement to the panel point displacements.

'7:'he matrix yielding the panel point displaccmenic of the
1~th component as a rigid body due to displacement of the
J-th component, to which *he i-th component is affixec.

The matrix yielding the panzl point displacements of the
J-th component as a rigid body due to displacement of the
fus2lage, to which the j~-th component is affixed.
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The genersl gecmetricel transformation tetween shears
ané moments, and the panel point applisd forces und re-
actions.

The matrix yielding the peanel point é
pisten as a rigid body dve to displac
der (or the bearing points).

éisplacements of the
ements of the cylin-
T spinup time.

Tne metrix yieldang the panel peint disgiacemen

P

-
tail as a rigid body due to fuaelage ranel point dis-
Dlace.uenuqn

tlzcements of the ..or:.zon..al .,ea:n.
The matrix ylelding the panel roint disgplac
wing a5 a rigid tody cdue to parel doint dis la2azan
the fuselage.

Tae potential ezmergy 4 e to elastic deforma<icns.

Yolurme.

The velocity of prozagatisn

The valociry of the vehicie relative to the etmoczhere,

Tee valocity of +the meterad aydrerlic ¢il fttained Srenm
Bernoulli's relation.

Defired by 33. 2.7-12.

Ta2 veleelt, of & point B in the vanicie, relative uc
wle grawd.

Tre compouent of the grouni force
zent terallel o the 2 axis.

s A - . Y a
o6 & contaldting els-

The ground force VG on the main and noss gear wires.
T2 canel point shear load at the J-th Ra2y,

Tre comzonents of the ski or siif awle wvelsoity &t rizns

angies to the elesent.
Tre volume of oil zetered toreugn wng srilfics.

The Iniiiel value of the vilums

-l e
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Tha speed of the tire footprint relative to the ground.

The components in the body coordinate system of the
vehiclzs velocity.

The components of the velocity of & point B on the body
relative to the ground.

The components in the body coordinate system of the
wird velocity.

The initial volumes of the two regions of the liquid
spring.

The rates at which the volume V, of the liquid spring
cyiinder changes with pressure and strokxe due to cylin-
der expansion and seal compression.

The tire width.

The cowmpononts of the ground force ¢n a ski or skid in
the coordinate systea. of the element.

The component of the ground force on a tire, in the
ground plane and normel to the line of intersection of
the wheel plane and the ground plare.

The spinup force; the comporent of the ground force on
a tire, in the ground plane and parallel to the line of
intersection of the wheel plane and ground rlane.

A coumponent of the position vector [R in the grouad
ccordinate system.

A coupouent of the position vector Il in the body coord-
inate systenm.

A component of the position vector L in a compouent co-
ordirate system.

A component of the position vector L to the center of
mass of a vehicle ccmponent, expressed in the component
coordinate system.

The venel point nositions along the x'-axis,

The coumponent of the vehicle veloeity along the ) -axis.

The component of the jocition vector to the contesi.ng
elerent ‘@' along the x-axis.

Toe coupencats of the position vector | to the nose ard
muin gear axiec alung the x-axis.
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Toluze 1

Tra zompenent of “hr relecity of a point 3 in the wehicle.
:

relasive o tha ground and z2long the X-axis.

The wompenent 38 the velocity of the treiling end o2 2
3kl or sxzid, rmelative to the ground aund along the X -axis.

Lt

Toe ini<izl v2lue of the cemponent of R elong ihe X-axis.

The ccaopenens ¢f the pad velociiy relative fo the ground
along the X-axis.

The zanal zeint ccordinates of the wing canel points.

The coordinate of +he wing root.

A 2omzczeans of she zosition vectour R in the ground co-
sriinate sysven.

sosition vector I in the cody coord-

position vector | in 2 ccopenant ¢o-

& 2czzonsns of the position vector I <o *he center of
ma33 I 2 vehicle comporent, expressad in trhe cocmponent

ssexdinate systen.
Tma zan2l oint positions aleng the 7'—axis.
ire couzonant of the vehicle veloeivy along the Y-zxis.

&

< of the velocity of a point B in the vellcle,
rexzsive o the ground and aloxg the Y-exis.

Tha 2impement o the velocity of the troiling end of a
szl Lr 3kié, relative to the ground and along the Y-axis.

. welue of the compounent of R aleng the Y-axis.

sonant ol the pad velocity relative ta the ground
The ilssence frem the ground to the orlgin of the tody
& cazcnant ol the position vector I in the tedy ccord-

e positicn vector (L in & compunent co-

A 2¢eponent of the position vector Il to the center of
zazs of a vehicle component, expressed in the component

b=
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The panel point positions along the /7-2' i3

Tae coxponent of the vehicle velocity aormel o <ihe
grouzd plazne.

The axle heignt ateve Lhe ground.

Tne zain and nose geers axke coordinates aling :he/}-uis.
Tae height of soint 3 aove ag ground.
The veloeity of tz2 tralling 2ad of z ski or sxid, rel-
ative to the ground and along the 2-8%is.
The pad velocity relstive w0 tne ground along tas g-auis.
The Iniviel value of the zcompernans £ R e ?

The distance along the spixe zeesured frox the uciznt.

¥
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T332 .24 - The veilele angla of aszaci.

Mreszraza <.3.5.1 - The angia at walca she zentilavered
gear shodk strut Is canved Jordard from the g-anis.

‘. -~ = - -t - -y m yaem
daragTerl «.2.5.2 - The angle 5T rotasion 3 ke artie-
a - -] ~-
wssed gear.
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o2 = The s2glz -u.;~ which the wheel
2 1zeriine dus to tor-
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ACLT L2 gzar o2
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Tme 22312 Tatw2en the support surut ané the 22 TEr-

wxii




ASD-1TR-62-555

Volume 1
"zr, ¥ T)v')‘l’ The ccsines of the angles between the thrust vector and
9 the axes of the body cocrdinnte system.
S Paragrapl: 3.2.4 - A control surface deflection.
S The tire deflection.
by A roll control surface deflection, such as aileron or
A spoiler.
é{, The tire deflection at bottoming.
‘;E A pitch control surface deflection.
3 . A flap deflection.
A The displacement of an elemental mass from its undeflected
7' position defining component rigid body displacement with
respcet to the body axes, expressed in the component co-
ordinate system in which the motion is most easily de-
scribed.
3 R A ruduer deflection.
S ‘§T N The main znd nose gear tire deflections.

§A.4 3 A,’,} ’iA,b,} Tlfle ﬁanel pointtdisplacement components due to A-motion
of the component.

A The rigid vody displscement along the stroking axis
? (& -motion along a line).

A . A‘ﬁ ‘ The displacements &long the stroking axes of the con-
3 tacting elements a, V.

A A The displacements along the stroking axes of the main
M) N and nose gear pistons.
‘S The fraction of critical damping of the mode of fre-
w quency .
n The angle defining component rigid body mution about a
line.
7'1 The angular velocity of a component rotating as a rigu
body about a line.
72 ASU Wheel spinup angular velocity.
');Mu y 7'1,‘3“ The main and nose gear wheel angular velocities st spir-
up.
(3] One of the Euler angles defined in Paragraph 2.7.
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The initisl value of 8.

The angle between the componeat of axle velocity parallel
to the ground and the line of intersection of ti.e whcel
plane and the ground plane.

An eigenvalue of the fuselage homogeneous panel point
equations.

An eigenvalue corresponding to the i-th mode of elastic
vibration.

The coefficient of friction between a contacting element
and the ground.

A bearing coefficient of friction.
T lover and upper bearing coefficients of friction.

The lower and upper liquid spring seal coefficients of
friction.

A dimensionless local bay coordinate used to non-Qimen-
sionalize come forms {a the inteipolation schemes.

The vehicle mass density; or, the atmospheric density.
The hydrawdic fluid density.
A column ratrix of undetermined multipliers.

The undeternmined multiplier associated with the constraint
relation F_}.

One of the Buler angles cefined in Paragraph 2.7,

A column watrix defining a mode shape; the elements are
proportional 1o the actual panel point displacements in
the mode.

A square matrix of modal columns {¢}

A rectangular matrix of modal columns in which the higher
modes are deleted,

The initial value of {.

One of the Euler angles defined in Paragraph 2.7.
The initial value of V.

The frequency of vibration of a mode.

The vehicle angular velocity.
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(nl Defined by Eq. 2.7-11.
x ’_’\\. ﬂ, jhe components of fl in the body coordinaiz sysicm.

Ny ,SL,‘ ).O..n" The components of fl in a component coordinate system.

Subscripts

A Axie; axis

a A point in the vehicle; s contacting element
B A point in the vehicle

b A contacting elcrent

¢ Cylinder

e Ski or ski trailing end

F Fuselage

£ Final value

G Ground

H Horizontal beam

i One of ‘he vehicle components, panel points, modal coordinates, etc.
This subscript must be determined in context.

j One of the vehicle couponents, panel points, local bays, etc. This sub-
seript must be determined in context.

L Lower beari.g or seal
M Main gear

M Mose gear

m A4 contacting element
o The initial value

p Pad, or piston

S Retura strok

T Tire

U Upper bearing or seul
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Yolume 1

Vv Vertical beam

W Gravitat.onal, wind, wing

%)%

Il)‘a’)'é'

Components along the x, y, and 4 axes; or, in a matrix,
referring to the component of displacement in the corres-
ponding kinetic energy term.

Components along the :c’, la', and q’ axes; or, in & matrix
veferring to the component of dishiacesent in the corres-
ponding kinetic energy term.
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SECZION 1

INTRODUCTION

The procedures accepted by the aircraft industry for determining the
design loads for alighting gear were until recent years based on the assump-
tion that an adequate design could be obtained from consideration of a few
discrete conditions. These conditions anl the procedures for determining
the associated loads were established in the specifications. The great in-
creases in airplane performance subszquent to World Wer II, however, caused
the reinvestigation of many well established criteria. The introduction of
high speed computing equipment about this same time made possible the solu-
tion of problems that previously were too long and complicated to permit
economical solution on a large scale.

The aircraft alighting gear was recognized as one design area thut could
benefit from the performuice of more detailed analyses and the rationalization
of procedures for determining design loads. The first efforts in this direc-
tion led to the consideration of mathematical models which had one or two
degrees of rigid body freedom. These efforts eventually led to a multiple
degree of freedom eralysis basad on a rigid airplane free to translate hori-
zontally and vertically end to ritch. Tie motion of the airplane was defined
in the ground reference system. The equations of motion were simple, although
non-linear, eguations.

Comparison of the numerical data obtained from soiving these equations
with the data obtained from airplane flight and drop test programs indicated
that the equatiors could be mede to yield more accurate answers provided
edditional physical mechanical d=tails were considered in the analytic form-
wlation. It eventually became apparent that considerable simplicity could
be gained by using the body axis system as the primery coordinate system in
lieu of the ground reference system. Subsequently, the equations of motion
were written in the body reference system and due to the pi%ch rotation of
the airplane a Coriolis force tern. appeared on the left hand side of the
eguation.

The addition of other degrees of freedom for motion of the rigid vehicle
and the efrects of structurel deflections and other pertire.:t considerations
caused the continued build-up of the equations of motion ani the concomitant
fosue aud geometric expressions. By this process, which might be called a
building block procedure (that is, a procedure which is built up term for
term as the necessity for each term is recognized), the procedure for 4. ih:m-
ining 2lighting gear loads was extended to a multiple cdegree of freedom anal-
ysis which included not only the six rigid body degrees of freedom, but also
contained degrees of freedom for a flexible airframe. The building block
approach has zrovided a procedure that is very adejuate for the deterwinstion
of alighting gear loaas for conventional airplanes.

Manuscript released by the author on 13 September 1962 for Publication as an
ASD Technical Documentary Report.




The acvert of flight vehicles that cannot be classed as conventional
airplanes has, however, created new problems. It is no longer possible in
all cases to define for an unknown configuration the parameters important to
the proper solution. Consequently, at the beginning of this program, it was
decideé that providing a rational method that would fulfill the stated re-
quirements would necessitate a departure from the building blocx appxdach.

A development vrogram was therefore established on the basis of a completely
general approach tc the problem.

In an effort to provide a broad base of understanding of the program,
and or this report, the salient ideas and concepts involved in the program
and the general format of this report, are presented in the following para-
grophs. The ideas and concepts will be discussed with the intention of pro-
viding the reader with a word picture ¢f the processes heing employed. To
nrovide a rational method for predicting alighting gear 1o0ads that would
attain the wide applicaviiity desired has necessitated the utilization of
numerous mathematical concepts and tools. As is frequently the case in math-
ematical developments, the derivaiion of a very general resuwit requires great-
er effort than the development of a specific result.

Since the problem being sclved is a complex problem in structural dynamics,
it is obvious that the cevelopment of the method will require employment of
the concepts and tools of dynamics. However, the methcd is presented in a
concise, easy to follow, didectic mamner sc that the average dynamics engineer
can readily apply this methcd to his gpecific problem. Cousequently, the der-
ivation of the equations of motion are prese.ted under the assumption that the
careful reviewer of the mathematical development has a working knowledge of
the lagrangian equations of motion, vector caleulus, matrices, and structural
analysis methods. The presentation of the procedures involved in the use of
the method will not, however, require detailed knowledge of these concepts,
and the‘aim of the presentation will be to facilitate use of the method by
the engineer. As a preview to tae technical presentation, the highlights of
the development of the method are presented nere in the introduction.

Several iterations were necessary to the evaluation of the equations of
motion in their final form. After the first formulation of the general equa-
tions, it became cvident thatl a simplification of expression was necessary to
allow the equations to be present2d in a more concise manner. The equations
were then rewritten in matrix form, which provided a means of collecting terms
in a manner that would allov the equations of motion to be viewed as a set of
equations rather ithen as individual equations. As work on the project pro-
gressed to the consideration of some of the detailed problems concerned with
reprec.-tation of 8 complex structure consisting of several components, it
wvas found that the inertial charactsristics could be handled more readily if
the characteristics of each component were expressed in its own coordinate
system. Consequently, the equations governing each component motion relative
to the vehicle were expressed explicitly, and the general equations of motion
vere agein rewvritten. This form provides generality and also is readily a-
daptable to numerical analysis.

To provide a mathematical model of the vekicle that is of sufdicient.
generality, the position of every point in the vehicle is defined :n terms
of the position of a discrete sot of points in the vehicle, called panel
points. Mass is considered to be distributed throughout the vehicle;
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distribute? wass inertial characteristics are considered, but concentrated
mass points may later be used for a particular model. The panel points are
allowed only to translate with respect to each other along three mutually
perpendicular axes. The matnematical model consists of N components, such
as wing, tails, landing gears, which are elastic when the panel points on a
component are allowed relative motions, or which may be made rigid b allow-
ing no relativ: motions. Rigid body displacement of a set of panel points
with respect to a component coordinate system is also allowed in order to
account for motions such as those of control surfaces and gear stroking.

With the basic mathematical model thus establisheu it is possible to
proceed with the establishment of a workable notation, to define the coord-
inate systems to be employed, and to establish the procedure required to
maintain knowledge of the position of the panel points. The right hand rule
is used in defining the coordinate systems. The ground coordinate system is
considered to be an inertial frame of reference. The body coordinate system
is defined, as are the component coordinate systems, and the *ransformations
from one system to another are established; hence, the wing coordinates of &
point on the wing can be transformed to body coordinates or to the inertial
frame by these transformetions. Maintaining knowledge of the position of the
panel points is accomplished by defining position vectors such that the posi-
tion of every panel point relative to the inertial frame is known.

To provide the desired generality in the most direct manner, the Lagrang-
ian equetions of motion are empleoyed as the foundation of the development.
The use of the Lagrangian equations require: that the potential and kinetic
energy of the system be defined in terms of the ground system coordinates,
but in general this is at best a very difficult task. However, if use is
made of the body coordinate system, the kinetic and potential energy of the
system can be readily defined. It would be desirable, then, to express the
Iagrangian equations in terms of body coordinate system variables. This can
be done by writing & set of Iagrangian equations to defire the translational
and rotational motion of the body coordinate system and euother set to define
the location of all particles in the body with respect tc the origin of the
body coordinates. The rotetional position is derined in terms of Eulerian
angles. These angles are then so chosen that &' transformation from body
coordinates to the inertial frame is always possible. It is therefore poss-
ible to transform the inertiel velccities to body velocities.

Since the kinetic energy of the body is written an terms of the body
velocities, the elastic displacements of a discrete number of panel points
from their equilibrium vosition, and the velocities of these panel points in
their ~omponents, the requirement is to express the Lagrangion equations in
the terms used for the kinetic energy. The developument of these equations
was performed for this program. The reswdts of transforming the Lagrangien
equations are shown as "modified Lagrangian equations". The general eguations
of motion are then derived by substituting the equations for the kinetic and
potential energy into the "modified Lagrangian equations" and performing the
indicated operations. The resulting equations are long and contain numerous
terms that by inspection cen be seen to be of no importance wo the alighting
loads problem. In the general presentation ia %ppendix C all terms are -l~wn,
but for the purpose of this report, the unimportant terms have beer deleted
in Section 2, where the resulting equations of motion governing landing im-
pact are shown. Equations 2.8-3 and 2.8-k are referred to as "rigid body"
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equations since the principal texrms are the inertial terms of the undeflected
vehicle; the remaining terms on the left hand side are inertial coupling terms
due to elastic deformations and component motions. The terms on the right
hand side of Equations 2.8-3 and 2.8-b are the external forces and moments,
respectively, writter in the body coordinate system. Eguation 2.8-5 without
the "rigid body" coupling terus are the ordinary panel point cgua+ions of &
restrained body, with the panel point forces and constraint forces appearing
on the right hand side of the equation. These three 2quations must be solved
simultaneously with any existing constraint equations in order to obtain a
sclution.

it is intended that the formulation presented here be of sufficient gen-
erality to fulfill the requirements of any particular problem concerning
Janding impact. It is also intended thut the manner of presentation of the
method be of such clarity to permit utilization of the wethod by the practic-
ing engineer.

The requirement for generality has caused some complexity in the formu-
lation, which has resulted in a considerable amouni of discussion to explain
fully the myriad of deiwuils covered by the program. The intent of this lengthy

discussion is to allow the user of the method the freedom of choosing the
particular seguents applicable to his problem. By proper choice of terms
from the general expressions, consistent with any simplifying assumptions that
have been made, the equations of motion for a particular problem can be ob-
tained from this report. The utility of this procedure depends upon whether
or rot significant time can le saved in formulating the desired equations of
motion by using this report, as contrasted to the time required to formulate
the equations independently.

To assist in attaining the desired utility, it has been necessary to
temper somevhat the desire for generality of the final expressions describing
the mathematical model. Therefore, for the development in the main body of
the report certain assumptions have been made which eliminate some terms
whose effect on alighting gear loads or vehicle motion is negligible for any
known or postulated vehicle configuration.

Section 2 of this report is devoted to the developmeni of the equations
of motion. This section prescnts a somewhat deteiled explaunation of the
various mathematical concepts employed in the development of the method. It
has not been possible due to space requirements to include in Section 2 all
the algebraic manipulations required in the development. As noted above,
certain simplifying assumptions made in Section 2 have resulted in the omission
of «.rtain terms in the final equations. For the benefit of thcse dynamicists
who are interested in the complete development of the equations, Appendices
A, B, and C are included. In these aypendices the entire development °s pre-
sented without recourse to siwplificevion.

For those engineers not interested in the development, the final
equations of motion, Equetion 2.8-3, 2.8-k, and 2.8-5, from Section
2 may be used with the information of the subsequent ceciicns to
obtain the desired problem formulxilon.

Section 3 presents the definitions of and the formulee applicable to the
applied loads, which are shown on the right hand side of the equations of
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motion (Equations 2.8-3, 2.8-%, and 2.8-5). The importance of this section
of the report lies in the procedures for the proper introduction of these
forces into the system of ecuations. The specific information on procedures
for calculating applied loads is based on the best currently available data.
These procedures, howecser, muy not always exactly fit the physical condition
being simulated. It is necessary, then, that the user decide upon he applic-
ability of the given expressions, and, if necessary, modify these expressions
or completely define new expressions applicable to the vehicle being inves-
tigated. In the latter case, the information of Section 3 becomes the guide
to be used in the formulation, and provides the necessary framework for prop-
er introduction of newly defined forces into the eguations of motion.

The procedures whereby the results of Sections 2 and 3 may be manipulated
for use in the landing analyses of vehicles of current interest are presented
in Section 4, Vol. II. It is expected that Section &, Vol. II should bve
sufficiently complete to make the repurt valuable even without a good under-
standing of the Lagrangian formulstion of mechenics. Section 4, Part II
explains the proper procedures for utilizing the method.

Vol. II is concluded with the presentation in Section $ of several nu-
merical solutions of the example problems in Section li. These problems are
intended to exemplify the salient features of the method. To provide ease of
understanding, an attempt has been made to present specific aspects of the
method in each example so that the user will nct be confrcrnted with an ex-
cessive number of new concepts in a single yroblem. After an investigation
of the information in the report, (Vol. I and II), the user should be sble to
proceed to the solution of more detailed and extensive problems.

Providing a complete and rational method for predicting alighting gear
loads during landing impact has necessitated the presentation of many diverse
but related topics. Some of these are basic to the development; for example,
distributed mass and rotational inerties and 3distributed bhending and torsional
stiffness of all parts of the vehicle, as represented by the various A and K
matrices in the equations, are inherent in the muvhematical model used for
the development, and thereby vehicle flexibility is included. The exact con-
figuration, shape and dimensions of all basic components of the vehicle being
studied, as well as those ol the compnsite vehicle, are required for the pur-
pose of defining the various forces. The mathematical model is sufficiently
general to allow use of one, two, three, four or more separate alighting gears
for vehicle support. The mathematical model also provides the freedom re-
quired for establishment of variations in coefficients of other parameters,
and of any desired combinations of inital conditions on displacements, rates,
or acceserations; for example, rigid body pitch (attitude) and pitch rate may
be specified simply as initial conditions, nnd the desired initial value of
pitch acceleration may be obtained by the proper unbalance of moments in cthe
pitch degree of freedom cquation of motion. (This same statoment is applicable
to veri;ir:&l, longitudinal and lateral trvanslations and to roll and yaw rota-
tions.

To provide a handy reference for inital utilivation of this report,
sone of the additional topics, which are not gancral throughout the report,
but which are worthy of special note, are presented in Table 1, page seven.
This table shows the page location for some of the:genersl topics as well
as for such speci.l tcpics us friction forces and mcchanical springs.
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While it is not feasible to cover in such a table all details included in the
report, most major special topics are enumerated.




TABLE 1
LOCATION OF TOPICAL DISCUSSIONS

A. CUOARACTERISTICS OF THE RIGID VEHICLE

1. Development of Equations of Motioneee—emeecomccmaccummacan 8
2. Mass and Rotational Inertias in the Rigid Body ak
Equations of Motionee=eeemcmcmm e cccccccccnccceenc e

B CHARACTERISTICS OF FLEXIBLE VLHICLE

1. Mathematical Model-~c-c-cemmmmar e e 8
2. Equations of Motion~eee- cmemocmcccmm oo 25
C. THE INTERMEDIATE STRUCTURE
1. General Ejuation of Motion Showing Distributed Mass
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SECTION 2

FORMUIATION OF THE EQUATIONS OF MOTION

2.1 GENERAL

The formulation of the equations of motion given in this section, al-
though somewhat formidable algebraically, cen be described in simple terms
From the definition of inertial and body coordinate systems the kinetic and
potential energies for the mathematical model under consideration are written
in the body coordinate system. These energy expressions are then substituted
into a modified expression of Lagrange's equations, yielding the equations of
motion of the vehicle during landing impact. The desire for generality and
compactness in the final equations has dictated that the variables chosen *o
define the vehicle motion be those expressed in the accelerating, or body,
reference system. This choice of variables requires that the operations
associated with the usual form of Lagrange's equations be transformed to
operations in the accelerating reference frame.

In order that couniinuity may be maintained, many of the detailed steps
of the derivation have been deferred to the appendices.

2.2 MATHEMATICAL MODEL OF THE VEHICLE

The venicle under consideration is composed of N components, each of
which may be elastic. Each cosmponent is assigned a subscript i , so that
i =1, 2, ---, N. The subscript which is unity refers to the main com-
ponent or fuselage. The remaining subscripts refer to wings, tails, gears,
ete. Fach of these components has a defined volume, a mass density, and an
ipitiel orientation in space.

The motion of the continuous distribution of mass requires an infinity of
variables to be exactly described. It is approximated by the motion of a dis-
cerete number of points called pancl points. Mess and stiffness properties are
assigned to the panel points by some interpolation scheme such that the energies
of the continuous system and the panel point model are equivalent.

The motion of the psacl points will be defined relatire to the body axis,
which are not fixed in the inertial frame of reference. These motions must then
be described relative vo the inertial frame in order to formulate the kinetic
energy of the systen,

2. NOTATION

The notation in this report is made consistent with that in the field of
aerodynamics where possible. The size of the report indicates that duplication
of symbols may occur, The forms to be used will be consistent throughout the
report, and symbols used more than once are defined for each usage.




General notation as used in this veport is as follows:

Vectors - Vectors are denoted by a double bar on the left edge of
the symbol; P, R, L.

Matrices - Matrices are denoted by a symbol enclosed by breces o
brackets, the distinction between types are listed:

[ ] - A rectangular matrix; the number of rows and columns depends
on the particuler matrix

[ ]h A rectangulsr matrix; the transpose of the matrix indicated
by the brackets and enclosed symbol

{ } - A column matrix; a single column of elemenss as indicated
by an enclosed symbol

{- y- A row matrix; the transpose of the indicated column matrix

E\LJ - The identity matrix; a matrix with unity in the diagonal
positions and zeroes off the diagonal

{ ) { i ~ A column matrix composed of the indicated column matrices

f

(0

Time derivatives - A partial derivative of a variable with respect to
time is indicated by plecing a dot above the variable, once for
each time it is differentiated;

3L - f *L .
-4 . B f

Primes - When placed on a matrix, the matrix trenspose is indicated.
When placed on a variable or subscript to a variable, the
quantity is cconsidered to be written in a component co-
ordinate system.

Particular cases of the matrix notation involve combirmations of the above
novation. These cases are consister* in notation and generally will noi be
explained in detail.

Symbols and notation of components of the vehicle are considered in the
definition of coordinete systems and vectors.

2.4 COORDINATE SYSTEMS

Three distinct coovdinate systems, inertial, body, and coaponent, are nsed
to define the motion. Each of the coordinate systems is defined Ty a right hrended
triad of mutually orthogonal unit vectors which specify the directions of the
coordinate axes.




Z

Fimre ). Fosition Vectors
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TLe inertial frame or ground frame of reference is specified by the unit
veetors | , J , [ . The unit vector [K 18 normel to the horizontal
ground plane and is pogitive downward. The unit vectors 1 , J arein
the ground plane.

. The principal or body ccordinate system is specified by the unit vectors

b, J , W . The orientation of these vectors is specified initially by
the principal axes of inertia of the undeflected vehicle, and thereafter by the
equations of motion. The unit vector IK 1is considered positive downward and
the unit vector § positive forward, where those directions have meaning.

Component, coordinate systems are specified by the unit vectors A'%‘ s d’; N
IK’i s> The subscript refers to the particular component. The origins of *these
component coordinate systems are coincident with thei of the principal or tody
coordinate system ond are fixed relative to the principal or body coordinate
system. These coordinate systems are oriented in each component such that the
motion of that component is as simple to describe as possible. This concept
is discussed as various component problems arise,

Transformations betvireen the coordinate systems are given by

4

Jt = [p] J Inertisl 4c vehicle body
lK [K coordinate system

B ¥

Jr = [ ¥ ] J Component to vehicle body
K A lK/ coordinate system

where the elements of the transformations are the direction cosines tretween the
coordinate axes, given by

% SEN T S B &

P] = e 00 ueK
K- Ked KK

ST VR DY Y

[x\],z RS VRN T O
oLkl KK K
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Since this method is primarily concerned with the cantilevered type of landing
gears, it is assumed for the generel formulation that the component transformation
matrices [x]i are independent of time. This assumption will then allow simple
descriptions of cowponent motions if the orientation of the components are fixed
relative to the body cc-rdinate system. This simplification keeps the size of

the formulation within reason whkile not compromising the accuracy for the in-
tended application. 1In Section Four the logical extension of the equations of
motion to include articulated landing gears will be demonstrated by example.

The matrix [M] is the Eulerian transformation from the ground coordinate
system to the body coordinate system. It is given by Equation 2.7-3, and is
time dependent.

2.5 POSITION AND VELOCITY VECTORS

Any formulation of & dynamics problem requires that the position of all
masses be known relative to an inertial frame. With reference to Figure 1,
the following vectors must then be defined.

fR - The posiuvion vector of the origin of the principal or body
coordinate system:

R=XL +YJ+ ZK

ﬁ? - The velocity of the origin of the body coordinate system:

R = J+ 1K

RS
9 K

i.
]

s
+

n_- The position vector from the origin of the body coordinate
system to the undeflected position of an eleresntal volume 4V:

L=xb+%d}+/gyu<

" - The position vector of an ¢lemental volume dV from the ovigin
of the ground or inertial reference system.




]L - The angular velocity of the body expressed in the body
coordinate system

Moo= Qb+ N o+ Nk

ﬂ) - The total displacement of an elemental volume relative to
the body coordinate system, expressed in the component co-
ordinate system

P = Pt +Pp o v BN

In addition, there are several vectors which must be defined for use
later in the formulation.

)N The displacement of a volume element AV from its undeflected

11 position defining compecnent rigid body displacement with
respect to the body axes, expressed in the component coordinate
system in which the motion is most easily described, (referred
to as "delta" wotion).

“1’ - The displacement of a volume element in the | -th component
ly  due to displacement of the § -th componert, ﬁg . The letter
here simply refers to the particular component to which the
b -th componert 1s attached.

- The displacement vector of an elemental volume due to elastic
T deformations of the 7 -th component only,

e _ e 9 o< I . e /
PP = Pi i + P9 RN

The total displacement of an elemental volume is then the sum of the latter
three vectors.

Po= RY « IRy + 4

For the main component, or fuselage, there is no "delta" motion or motion caused
by other displacements, and

P = R°

The definition of the principal or body coordinate system requires that it
be initially the principal axic of inertia system, so that by defintion

fv L (%3 Alx,4,3) dV = O

where O (X, y, 4) is the mass density of the vehicle and V is the total volume.
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2.6 KINETIC AND POTENTIAL ENERGY OF THE SYSTEM

The kinetic and potential energy of the system can now be written.

The: kinetic energy of any system may be defined by

_ 4 dr <
T = 2 [ (5 oxgpfod (2:6-1)

vhere the vector jr 1is the position vector of an elemental mass
relative to an inertial frame of reference. From Figure 1, the position
vector is seen to be

r=IR + I + P (2.6-2)

In vector calculus, it is shown that the total time derivative of a
vector expressed in an accelerating coordinate system is found from the
operation

d _ 2.6-

= = = 4+ ﬂ X ( 3)
dt ot

This theorem tcgether with the definitions of the above vectors will be

used to find the velocity of the elcmental mass relative to the inertial

frame. The vector [R is a vector in the inertial frame of reference, so
that

. -6-4
i}B = IR (2 )
dt

The vector [[_ is expressed in the body coordinate system, so that it i
dependent on body orientation, but it is not{ explicity dependent on time
Then

dl
:JT =7 X I (2.6-5)

The total displacement vector of an elemental volume is dependent on time
and boly orientation;

dP . p 3+ @ xP (2.6-6)
it

The velocity of an clemental volume with respect to the ground reference
system is then .

dir
dt

R +0xlL + 1P +0xP @50

H™
e




The square of this quantity is

dir,dr - R* (O + P* + (LxPY
dt’ gt

F2R AP +2R-P +2 R-@xiL)
FOQeLxP +2 M- Pxpp
+2(0xl) - (nxP) (2-5-8)

This form is substituted into the expression for kinetic energy given by
Equation 2.6-1. The volume integration of the above terms containing vanel
point displacements or velocitiss is broxen into integrations: over each
volume with the resulting suwmmation indicated.

T-= -'i/ﬂ?",Odv + -i—/(m LY pdv
¥

1N
+Z -é/ﬁ’:’,odv +—'2/(_(l).lei\’”/oJ\/
1=l Vi v

* n‘e-m/npi PV + r'R/n'wdv + (LY A pdv
Vi Vi Vi

+g)_ﬁ”3x|}'>{)p(;v +ﬁ9LxLL,-)'(9mP,-)/°Jv (2.6-9)
v v

The term

'ﬁ [@-" u_\ Pdy (2.6-10)
J

does not eppear due to the definition of WL
The desired form for the kinetic energy is obtained by expanding the vector

quantities in Equation 2.6-9 into component form and performing the indiceted
operations. The integrals are then evaluated vo give the form of the kinetic
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energy consistent with the mathematical model described in Section 2.2. The
detailed manipulations required to arrive at the desired final expression for
the kinetic energy, shown in Equation 2. 6-11, are outlined in Appendix A.

Y (e NV [T2x n,
e 1i 1
3 Q Iggd Ly

in | O?"l}/ o) . J(fs ,
+ %_' {Pu&’} LAQ?,] J {Px,}¥
[yl

wi | (B {Ps} )
m [A,,] S{P}
ar% 1 (A 14{3,1
(1} [A,,]] ({P Y,
—Q.:c {\} [A] 1 Par 5
+ ﬂ% [V [¥] {l} [Ad {{P }J
r"‘wjl hy
{0} (P}ng ] {l 43 [y Al((63
I ) ] Ol - T ] {Py}
{P%}[A.,x] {px’}[A:c't&] {0}’ (Pﬂ
{o} Vel Y [agd ] ((PA)
lﬂ% [v] ] O - [ Ay {P‘g}§
a,) Y [yAs] YA N {o} JUPY sy

(Summation continuea on next page)
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It should be noted that the subscript 4 does not appear on each term,
but rather on the entire bracket of terms to be summed. Thus all primed sub-
script terms should have the proper component subscript affixed, as should each
coordinate transformation [F] . The vehicle velocity components are written in
the body coordinate system and the terms involving columns of panel point dis-
placements, {P} , and their time derivatives, are writter in the various
component coorlinate systems, as is evidenced by the primed subscripts. ‘The
transformation of the component coordinate terms into the body coordinate
system is evident due to the presence of the coordinate transformation matrices.
The matrices LN] and {w] are defined in Equations 2.7-11, 12.

The matrices [A] with various subscripts are called mass matrices. They
have different forms depending on the type of integral which is evaluated. Each
arises from some numerical scheme which relates the disirete form of the kinetic
energy to that of the continuous physical system, congistent with the definit.on
of the mathematical model.

It is assumed that the potential energy in the vehicle arises oniy from
structural deformations in the linear range. This requires that elestic dis-
placements remein small; i.e., that the relative displacements of adjoining
panel points be small comparcd to the distance between them. The potential
energy may be expanded in a Taylor's series in panel point elastic displace-
ments. If it is expanded about a point of minimum potentisl (the equilibrium
position), and the potential at that point is arbitrarily set equal to zero,
the constant and linear terms in elastic displacements will be zero. If all
terms higher than second order arc neglected, & quadratic form for the potential
energy results:

N (Kewd] K] Ky T] (25
U ='?": / {P‘;} [K}'x'] [K%‘Lf] E(-a"-;»’] {8;‘:}

UMK Kyd KggdllB e

e
"

The [K] matrices indicated here are called stiffness matrices, and are derived
from the geometry and physical characteristics of the various components of the
syster  They embedy not only the distributed stiffness of a given component, tut
also the restraints due to supporting members between components. Their determina-
ion thus involves both a detailed structwzal analysis and some sort of rumerical
technique, sc that the continucus structure is properly represented. This sub-
Ject is too broad to be inclnded in this report; the reader unfamiliar with this
aspect of the analysis may comsul: references 2, 5, 18 and 19.

The above forms for the kinetic and potential energy will be substituted
into lagrange's equations, which are to oe develnped next.
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2.7 IAGRALIGE'S EQUATIONS

A derivation of the basic form for Lagrange's equations may be found
in reference 1. A summary of the concepts involved in their derivation is
necessary in order to understand the contents of this section.

Basic to the derivation is the requirement that the position and orienta-
tion of every particle be specified relative to a fixed frame of reference.
This is accomplished in terms of any set of variables; as these may be dis-
tances, velocities, angles, or perhaps less familiar quantities, they are
referred to as generalized coordinates. The appearance of Lagrange's equa-
tions varies among authors. A convenient form for use here is

d [>L _ . :
T (a—") - 2L = G?: + Z 03 é_’? (2.7-1)
%i agl ; a?l i=1h2"Mp

The quantity L is known &5 the Lagrangian, the difference between the
kinetic and potential energy: L =T - U. Here the g; are the generalized
coordinutes. The minimum number of coordinates which may be chosen is dic-
tated by the number of degrees of freedom allowed in the motion, and the
number of constraints imposed. The quantities CQi 2re the associated gen-
eralized forces; they may actuelly be forces, moments, etc. These gener-
alized forces are assumed knowr in terms of che generalized coordinates.
The quantities F? are & set of constraint relations among the general-
ized coordinates.® If there are M, - Ml of these constraints, where M2 is
the number of generalized coordinﬁtes, then there are Ml degrees of freedom
for the system. The Lagrangian undetermined multipliers, 64 »are the
proper functions to cause each term on the right hand side of the equations
to be a constraint force which is consistent with the constraint relation-
ships F} . As there are M2 generalized ccordinates and M, - M, Lagrange
multipliers, and only M, Lagrange cquations, it is necessary To soive the
set of M,- Ml constrain% relations simultaneously with Lagrange's equations.
These wiil b€ discussed later.

For the sake of algebrajc <imylicity, the kinetic energy of the system
was written in terms of the body coordinate system variables. Since this
system moves with the body, it does not specify the position and spatial
orientation of every particle in the body, contrary to the assumptions from
which the ahove statement of Lagrange's equations was derived. It is then
necessery to modify either the expression for the kiuetic energy so as to
be appliceble to Lagrange's equations as expressed, or to modify Lagrange's
equations to utilize the kinetic energy in its present form.

An investigation of these alternatives has shown that much of the
cumbersome algebra can be aveided if Lagrange's equations are modified to
accept the kinetic energy in its vresent form.
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Before proceeding, the Eulerian transformation between the ground
coordinate system and the vody coordinate system will be established. The
transformetion was defined such that

.

b i
Jr=[r]40
K K (2.7-2)

The form for the individual elements in the transformation matrix will depend
on the definitions of the Euler angles to be used, that is, the sequence of
rotations vwhich take the vehicle from the orientation of the ground reference
system to its instantaneous space orientation., The choice of these rotations
is arbitrary. A convenient sequence of rotations for lznding problems .2
defined as follows:

(1) Rotate the system through the engle ‘k about the Z axis in the right-
handed manner (X into Y) to produce the system (Xl, Yl, Zl)'
(2) Rotate the system {¥_, Y., 2. ) through the angle © about the Y, axis
in the right-handed Tnanfer % CZL into X;) to produce the systei
(Xa} YZ’ 2'2)'

(3) Rotate the system (XZ, X, Za) through the angle @ about the X, axis
in the right-handed “merfier (Ya into Za) to produce the system

(x,9,9)-
The coordinate transformation is given then by
[Cos 6 cosr cos O sINY -sne |
|:|__‘:’ _ [cos¥singsing cosvcasd cos@sing
T -sinVeose FSINVSINGSING
cos¥sINBcosg  SINVSINGCosH 036 cosP (2.7-3)
[ +snvsing -cos¥ sing =

The sransformetion of the body velocity as expressed in the ground reference
coordinate system to the expression in the body coordinate system is given by

, !’7'("'
Wyr = [P] y
v Lz (2.7-%)

The transformation from Eulerian angle time derivatives to asgular
velocities about the body coordinate axes is given by
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X fzj/
Q = [R :
4 [ © (£-7-5)
o
2 o
where the transformaetion wmatrix is
-Sih & o) !
[R] = sinPCos & cos @ (o)
(2. 7=
Cos P Cos© -sm o} AL

The varticular property oif this choice of pulerien angles useful in
landing problems is the 2:xistence of the inverse of the patrix [i?] vhep
all of the Buler engles zre zero. Couventional airplaue axes sre thuc
chosen to represent the body coordinate system, and the vehicle orientation
is specified.,

A set of generslized coordinater suitvable to completely specify the
notion could be the huler angles, the components of the position vector to
the origin of the body coordinate system, and the pauel point displacewments.
The Lagraengian then would be given by

L =L(X>Y)z', y’;e)(p){ Px;},{ P,’}){P,;}) (.'.’-7"7)
The statement of Lagrange's cquatious vsing iiwoe generalized coordirates
follows iumediately from Lthe genecel form of B.uaticn 2.7-1. Thus

oL oL r 1]
% 3% Qyx o’
dlattay = da, v ) 5
dt F;. é’z 0 ; 853 | (ct-8)
5’2 Oz z
o)
oL oL [ dF;
] oy faw) IN‘-P at‘;}
d Jar b o Lobg - Z 4 3F
i | 1097 Ner +) G4 9
oL oOF. ~
% .71’] Ne¢ ? _567, (. 7-7)
, N\ =~ ~
) ] e _ [
OBy 3B, ) ra*r;f\
d)fe —J{Q,L}z.-_J{@,p+ 5 20
dt AEJ' afg ‘3.1 ¢ ()Pg: / ',
aLH oL fo.4 , {a_r,} | orr0)
5P, , 3 ) i (2.7-10
o f’%}, (1% LS,
where the laci cet of equations ar: uritien once for each component.
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The kinetic energy could be transformed into an expression relating these
variables, and the indicated operations performed. The algebra involved in
obiaining the desired result, however, may be lessened considerably by trans-
forming the operations in these equations to operaticnc on the verishles in
which the kinetic energy is already expressed. The derivation of Lagrange's
equations in "modifieu form is shown in detail in Appendix B. In t2rms of
the matrices

0 [\ -N,)]
- ' y
[.ﬂ'.l = -'n"} 0 -n-x
L0y, -l 0] (2.7-11)
0 Ny, -nf;
[w]=|-mp 0w
_/Lrg, (= O _] {2.7-12)

the modified statement of Iagrange's equations is shown to be

. Qy
(EIJ %E.._[ILD 2%%f§ = 4 Qy
O% (2.7-13)

¢
3, &) N, (2.7-28)
Gal] (B [ld] )
aiba - Bk = {ladt ) gi{2E)
4t g
_{%%1}. b L.{%'P:%'},L ;_{ O'}’L 3 \_{g——P?l}u 1 (3-7-15)

el




2.8 THE EQUATIONS OF MOTION

The desired equations of motion may now be obtained by the substitution
of the forms for kinetic and poteantial energy into the set of Lagrange Equa-
tions 2.7-13, 14, 15. The operations indicated there are somewhat lengthy,
and are relegated to Appendix C.

The final equations of motion are presented as three sets of equations,
each defining one of the vectors describing the motion. The components of
the linear velocity vector R are governed by Equation 2.8-3, and those of
the angular velocity L by Equation 2.8-%., The total displacement vector [P
is governed by Equation 2.8-5. These equations describe the motion relative
to the body coordinate axes, which constitute an accelerating frame of reference.
The motion relalive Lu the inertial or fixed frame of reference is obtained by
transformation of the body velocities; making use of Fquations 2.7-4%, 5. These
velocities are then integrated with respect to time, yielding the components
of the position vector [R which specifies the position of the origin of the
body coordinate system;

X Xo) . Wy
[p]' Wy dt

Y = Yo = /0
f Z, A (2.8-1)

and the Eulerian angles which specify the orientation of the body coordinate
system by Equation 2.7-2

v) (% n

X
t =l
91=960 = [ [R]{0,)dt -
[+
SLi-2
¢ ¢ Qg (2.8-2)
Up to this point, the number of restrictive assumptions imposed on the

mathematical model have beun small, The result is that a large number of terms

appear in the equations of motion in the appendix. In the interest of presenting
a relatively compact set of equations here, some of the terms are deleted from the
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Rigid Body Linear Equaticns
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Flexible Body (Panel Point) Equations
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complete set of equations in Appendix C. The Equations 2.8-3, 5 are identical
with the expressions obtained in the appendix. The set of Equations 2.8-l
governing the body angular velocity are obtained from Equation C-10 by omitting
a number of terms. The omitted terms are of two types. It will be.recalled
that the body coordinate axes are initially the principal exes of inertia for the
undeflected body. If *liis remained true of the coordinate axes as the panel
voints move relative to one anoiher, the moments of inertia of the wvaanicle would
still change due to the variation in position of the various distributed masses.
These moments of inertia, which are dependent on the panel point motion, are de-
fined by the inertia matrix in Equation C-9, and the manner in which this matrix
enters the equation of motion is indicated in Equation C-10. It will be assumed
here that the terms involving panel point motions in the inertia matrix may be
neglected in comparison to the constant term. In addition, since the body co-
ordinate axes are not instantaneously the principal axes ¢f inertia, the inertial
forces associated with the panel point motions will exerit a net torque chout “he
body coordinate axes. Of the seven types of terms which arise because of this
effect, only the first and third terms listed in Equation C-10 will be retained
heye.

The deletion of the above terms is justified provided that the principal
axes of inertia do nct differ appreciably from the body coordinate axes through-
out the analysis and that the moments of inertia remein nearly constant. For
landing analyses of conventionel vehicles this assumption is always true. Con-
figurations which do not satisty these assumptions will require the additionsal
terms to be retained.

To be complete, the systen ot equations governing the vehicle motion must
include the equations of constraint. These equations are written in the form

{F;} ={o} (2.8-6)

These constraint equations will arise if the set of panel point displacements

used to define the motion are not independent variables. If ihis occurs, Equations
2,8-3,4,5 do not provide enough relations to solve the problem. The remaining
relations necessary are the set of constraint equations which state the dependence
among the variables. The various constraints that arisc in the class of problems
considered in this report are discweged in Section 3,5,

Equations defining the rigid body motion of components with respect to the
body coordinate axes ( A - motion).

Although Equations 2.8-3,4,5,6 are a proper description of the motion, they
are nov in the most convenient form for general application. It vilse be rezalled
that the totel displacement [P of an incremental velume. gV was composed of three
displacenments:

5%3 - The displucement of an elemental volume due to elastic deforma-
tions of the 13 -th component only.

[P.. - The displacement of an elemental volume in the { -%tu component
¥ aue to the displacement of th: f -th component, P , ..ere the
subscript ¢ refers to the component to which tae { -th com-
ponent is attached.




ﬂf.- The displaccment of a volume element AV from its undeflected
1 position defining component rigid body displacement with res-
pect to the body coordinate axes expressed in the component
coordinate system.

The displacements lPie and A{ define displacements for separate degrees of
freedom; they are ind.pendent variables. Thus, if the components ol both of
these displacements along one of the coordinate axes are retained, there will
result more variables than equations. The resulting restriction is therefore
made that both of these contributions cannot occur for a given component in the
same direction. This will not constitute any rcal restriction on the use of the
equations for the description of landing impact, sincethe contribution to gear
loads from elasticity in the direction in which a component may move relative

to the vehicle as a rigid body is small.

The panel point coupling terms in the rigid boly ejuations required con-
sideration of the totali displacement [P ; this requirement and that of com-
pactness dictated the choice of the total panel point displacements as the
generalized coordinates used to define the moticn. In a particwlar application,
however, the total displacement must be broken into its separate parts. This
peragraph will derive explicitly the equations governing A -motion for two cases
generally required in landing impact analysis; motion along a line such as gear
stroking, and motion about a line such as rotation of a bogie about an axle or
wheel spinup. Other displacements are discussed in Section 2.9.

In general, the equations describing A -wotion of a component may be
derived from the panel point equations 2.8-5 directly. They are obtained by
expanding the total displecement into its separate parts, and sceting to zero
the elastic displacements of the component in the direction in which component
rigid body motion is to be allowed. All terms are retained, however, due to
elastic displacements in the remaining direction(s) and dicplacements dwe to
displacements in another component. For convenience, these inertial coupling
terms on the component rigid body motion will be included with the applied panel
point forces {@} until the algebraic manipulations are completed. Thus {a}
will refer to both applied and coupled inertial forces.

Component rigid body motion along a line

The component coordinate system for the component which may move as a
rigid body along a line is defined such that one of the axus lies along the
line of motion. This will be designated as the 4/ -axis. For that component
there can be no {PS}; according to the previously mentioned restriction.
Alsvu, since motion ézong the f}’-axls of the member holding this component
does not cause motion of the component, then {P ] is zero, where 7 refers
to tho upporting member. Then

(Rl =185, (2.8-7)




The cc~ponent is not allowed A\ -motion along the other axes, hence
(P}, = {—P"?}i M {Px'}i—j (2.8-8)
{Pel; = (R, + {P'f'}i»} (2.8-9)

Thus, the component may have elastic deflections along the other axes, and
mey move in those directions due to mction of the supporting component. The
equation for the A -motion along a line is then derived from the portion

of the panel point equations governing motion along the /5’ -axis of the
1 -th compecnent. Use of Equations 2.8-7, 8, 9 yields

|18} = (0 + 05 (25}, (o3

\

10)
The & -motion of zach panel pomt is the same for motion along a line, and
the colum {A ,} may be written in terms of any one of the (n) panel point
displacements; say the first, A’ﬁ

{Ag'} = Og L (2.8-11)

This may be rewritten as a set of constrain® reiations

{aqy) - Ag’.{@ = {o} (2.8-12)

The only contributions to constraints on A -motion along a line are then
those which make the comporent move as a rigid body, that is,

{F?k = {Aa'% - A’b'li'} = {0} (2.8-13)

The constraint term may be calculated immediately;

_(0'; +0§ .’_...1-0:])

IR
% O_n (2.8-1k)
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The equaiicn def:m:.rlxg the motion may be sumpsed by premultiplication by a row
matrix of ones, {1}

/ e»
Adi} 4, = ('8} (2.8-15)

The internal constraint forces thus have no net effect cn the rigid body
motion of the whole component, as expected. Identifying the component mass as

I

DIY[ARI 01T (2.8-26)

the mass moments reletive to the origin of the body cocrdinate system are
-t ¢ e,
— ¢ !
-— I - -
Mﬁ;’ = {’}[A,y_' S.’}’If (2.8-17)

Using Equation 2.8-5 and expanding the total displacements in the desired
directions under consideration,snd setting to zero the elastic displacement

of the component in the dlrec"‘mn in which component rigid body motion is
allowed, the final equation governing (A -motion along a line is

M. [A +ﬂ)‘+_ﬂx:/[}3-n -(0s5 4 (Lﬂ 3"+ A 3
Ay 00+ £ OVBAERA o)
+( x 1 (gl )(‘3 + -—il}[A,,](iP'l *5%’&{;)) (2.8-18)

‘ : ! 3 .1 lr
— %‘%'?I;.IE@')'Z:J{P::’}H + ;_P%?I {l} [A}'#;]l P?%"\f;l = iR JLQ;I}
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The right-hand side is the summation of all the external forces on the com-
ponent along the 4/ -axis. The parameters %', '1%" , =' are the coordinates
of the component center of mass in its undeflected position. The left side
of the equation is the product of the component mass with its instantaneous
acceleration along the g’ -axis relative to the fixed or ground frame of
reference. In most cases, when the compcnent mass is small compared to the
total mass, only the first significant terms of the equation need be retained.
The remaining terms are small.

Component rigid body motion about a line

The motion of a component sbout a line as a rigid body is a bit more
difficult to forumlate than that along a line. For that resson, the details
of the formulation will be presented. This probiem is an excellent examp.s,
for the interested reader, in the use of constraints.

The coordinate system for A -motion abcut a line will be defined so that
the 7’ -axis of the component system is parallel to the axis of rotaticn; the
motion is then in the x'-4/ plane. This implies that {A,}:10}. A single row
of panel points is laid along a line in the component, one of which is pic-
tured in Figure 2. The angle ¥ wmeasured in the right-handed sense from the

x/ -axis defines the position of the line of panel points. The distances a-
long the line from the axis of rotation to each panel point are arranged &s a
column matrix Lz} . The convention will be used that the distance is
positive when measured along the end defining the angle N , and negative if
along the other end.

%# axis out of the page

x',y’,a axes are trans-
lated from the bedy co-
ordinate system origin
for clarity

Figure 2. Component Rigid Body Motion About a Line.
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From Figure 2, the gecmetric relations between the angle 7 and
the panel point displacements are seen to be

{Az'}
{AW}

$LY (1 = cosnt)
‘(1} SIN7

12.8-19)

[

(2.8-20)
These are a set of equations relating a number of variables, but they are

not suitable as constraint equations., Constraint equations can only relate

variables already in use. However, the value of any twe of the displacements,
say A, and A,; wmay be used as

Ny = L, (1 - cosm)
A

(2.8-21)

5 = £, siny (2.8-22)
to write a set of consiraints

{81 = {%‘} D (2.8-23)
(8,4 = ij‘ﬂ AVY (2.8-24)

An additional conscraint may be derived from the equations relating Az" and
A3'| to the angle by eliminating that angle;

Ax/'l =24 Dy + A,élll = O

(2.8-25)
A suitable set of constraints foi the motion are then
F. y
' = A X Gl {—— A <! = 0
! { x} ft} Bl 1 g (2.8-26)
\ F n)
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e - {Fay e

(2.8-27)
Fan

an'f', = Ax" leﬂx" + A’b" =0 (2.8-28)

mhese constraints simply require that ell of the panel voints rotate to-
gether by an amount determined either by Ax‘ or A 4 They may be sub-
stituted into the set of equations of motion

bl =484+ [ (5

(2.8-29)
’e ) - A= BF'
[As) i“:“zx EQJ} + ) 0 {5‘&3,} (2.8-30)
[}
The constraint terms are
r_(% G2 -omt %0_"\ +°§n,,(m,:-zz,‘f
JF. 6,
Tl § =
L% gan'} = 6 ‘
% .' 6
! 5, J (2.8-31)
r-—[j,_ +.+j F)‘I‘T (ZA —
AR 1-? 2n)TVany '3.’)
ek } O !
1‘, ¢ 3&3' o:;;fs
: (2.8-32)
L 0-?:n J
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Substitucion of these terms and the constraint relations into the equations
of motion yields

i 18 = (84

—‘% 07 +--0 + ‘%—'I’G;) 1‘6_;m+! (ZA::{ 'Zil‘

L o J (2.8-33)

I-.A';'}'] {%l .Aa,: = %&9'78

th
{220 4 eo4 4 0_\+G‘ ,
(% - Van) tiany Qzﬂg,)
Ont2
0 nes
: 2.8-34
L o5, (2.8-34)
The lagrange multipliers mey be eliminated immediately. A linear combination

of these equations is found by premultiplying the first by {,(7/1.}/ sinky
and the second by {ﬂ/j&’ cosy  so that

($)0.0(F) B = = (Y @ =

+ T2nu (?-Ax’. *'217.) sINT (2.8-35)

400 B85 wr - i anoo

+ 0:n+| (2 A'g(\) cosn

(WY}
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If the forms defining Ax:l and A ‘ in terms of 7] are now substituted
into these two equations and they are summed, the last undetermined
multiplier is eliminated. ‘The equation then is

(ALY - s cosn 2 - sint 7{)
+ iﬁ}’[A,-q,J i,u (SIN'ﬂ cos? 7% - cos* 7'()
= UV§ 8 st +IRYS &%l oS (2.8-37)

This may be written in terms of the moment of inertia about the La,l -axis
as

I, A = '513’(}_6:’1 sinn =4 \i'lstafﬁfﬁ cos (2.8-38)
Expanding the inertial terms is a rather long process; the result is
I, "+ IA[(_Q,,I cos -.(L,:sm‘rz)(ﬂ,' SINH + Dy' cos7) —S.L,':I
+MCI[(A}>¢' SINT +/"f',’ cosn} +.Q%I(AL3' sINY - cos 7()
fAT%'(.Q,g cosH -'ﬂ’bls'Nn> + [_(L,, +S1,¢'Sl,,')-%,asm71
+ P,yA cosn + (A +_ﬂ-;"3 R cosﬂ]

= - u:‘;i@x% sINY  — ili‘iQf; cos (2.8-39)

where M, is the component mass and I is the distance from the axle along
the line to the center of mass of the component. The inertial moments due to
displacement of the axle along the af -axis, P /» » are now easily seen.
This displacement will be set equal to piston A,}, in the cose where a bogie
ciement is pivoted on an axle affixed to the end®f a gear piston. Moments due
to fore and aft and lateral deflections of the axle are neglected.

Particular applications of interest in this report are for bogie motion
and wheel spinup. For bogie motion, there are only three panel points at
whizh moment inducing forces are applied; those at the front end rear wheel
axles, and one at *the point at which the bogie rotational spring-damper is
affixed. The distance from the bogie axle to front wheel axle is .0, , trat
to the rear wheel axle is ,02 (negative), and ..e bogie equation of motion is

3%




IA t IA[( 5 03 -ﬂ,"sm‘n)(.()_x‘ sINY +S\.»)' Cos ) —5.17']
'1CI[( ! SINT -HU;: cos?() +ﬂ'& (/U:,]: SINT = Wt cos"Z)
+:U’%l (Nt cosm - 'swﬂ) +(ﬂ‘?, Nl [%/ SIN7]

+ ,.?5,'4 oS + (ﬂ.:f +ﬂs;«» %«A COS7I] = N(’}z”}%)

= [ B +40g)simy +{010 + 40,1 )cos]

(2.8-4C)

where PQP% 7%)15 the restraining moment of the rotatipnal spring-damper of
the bogie element.

For a round disc-like object rotating through large angles about its
central axis, such as a tire and wheel rotating about an axle, the applied
forces do not act directly on the line of points which rotates with the
vwheel. Therefore to define properly the panel poini forces would require
additional complexity. It is noted, however, that the right hand side of
the equations must te the external moment whicn causes the wheel to rotate,
and it can be simply stated as such. The distance I is zero for a balanced
wheel, and the irertial terms in body angular motion are small compared to
wheel angular acceleration. Hence the equation for wheel angular motion is

IA N = EXTERNAL MOMENT = Ny (2.8-41)

2.9 TRANSFORMATION TO MODAL COORDINATES

The formulation of the equations of motion as expressed in 2.8-3, 4, 5
was performed with panel point displacements (S‘P,,:} $P 1.4 P}) as total dis-
placements relative to the undeflecied vehicle. This mas neceusary for
clarity and brevity »f the formulation, and does not compromise the generality
of the equations. In principle, these equations may be solved to describe the
motion during landing of any vehicle. In actual practice, it is desirable to
keep the number of variables to a minimum while retaining 2s high a degree of
accur>z, 25 possible. It is not generally desirable to simply redu:e the num-
ber of panel points until the total number of variables is sufficiently small.
A more economic approach is fouiid in the transformation to modal coordins* :e..
The elastic motion of a body may be expressed quite accurately by relaining
only those modes whose corresponding frequencies are in the main portion of
the frequency spectrum of the forces on the body. Since forces in landing
problems are not usually compnosed of high frequencies, the first few modas
are sufficient. However, the mode shape of an entire vehicle is nov a cca-
cept too useful here, rather, the mode shapes of individual components are
considered. The reason for this is fairly simple. I the airplane sing
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pass LS 3mall compared to the fuselage, the wing elasticity will not
contribute to landing loads and may be omitted. One the other hand,

the wing mass may be the greatest part, as in a flying delta, and fuse-
Jage flexibility may be omitted. The particular problem at hand will
then dictate which of tne effects to include. With these ideas in mind,
it is obvious that the Equrtion 2.8-5 cannot ke transformed iniv model
coordinates immediately, for the coordinates will depend upon the par-
ticular problem.

Mode shapes will be defined for the following set of constraints.

(1) Fuselage modes with constrained rigid body motion, ,\ -motion,
and elastic motion of all but the fuselage.

(2) Wing modes with constrained rigid body motion, A -motion, and
elastic motion of all but the wing, unless gears are on the wing.

(3) Modes of all minor elements with all motion constained except

the elastic motion of that element, unless another element is
attached to that element and not the main body.

Concider the problem of fuselage modes. The displacement of all panel points

on the wings may be written directly in terms of displacements of the panel
points on the fuselage where the wings are attached. Normally;

(Rt {ed) (P {823
{pdr = [neyirdr + (1R + qi0y)
y 6. LR, (as, (2:9-2)

Since wing elastic and delta motion are constrained, the constraint equa-
tions are

ﬁf’x'l J'ip}
o+ g
|

(2.9-2)

for cach wing. The fuselage panel point equation is

md YY) Med 7)o

{2}
e A B PR =) siisH
iRl Kl8), 7 (25) e

1
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und each wing panel point equation is

(= 1 (183 (25
o B
EQ“" ifiyi = 2::0“7 i

oF;
3

o 1Ay
[A,bll W iP’b-ISW ?

‘f

°F; .
{'yp%,z W (2.9-4)
W= W, Wa

Suppose that 21l other masses such as tails, contrcl surfaces, etc. are
small. A set of constraints as in equation 2.9-2 it vritten for botn wing.;

the equations are identical if the wings are mirror images. The right-hand
side of 2.9-4 is

J'iafrl/apz’i

03 ;_3?;/3!7%;} = Sﬁ'gw'

T LeRh) ., (2.9-5)
iaFa‘/an'ﬂ

PRI N S

(] Li?)F-i la P,‘% Wy (2.9-6)

and the right-nand side of equation 2.9-3 is

Siaﬁf/af’:i

) G lwrnry < -[ndfel, +5a,)
|50 AALN (2.9-7)

If equations 2.9-5, 6, 7 are substituted into equations 2.9-3,4 and the

contraints are used to write wing panel point displacemenis in terms of
fueciage panel point displacements, the equations becone

(¥
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% (iP z}
B+l Dol {4100 = -[Tlie 63,

)
TRIARLYS [k, LY, (2.9-8)

”z) (2.9-9)

[yl JLAS ) (2.9-10)

Premultiplication of equations 2.9-9, 10 by E‘-V,F]'and addition with Eque-
wion 2.9-8 eliminate ¢he Lagrange multipliers and yields
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(frz\.‘; [Bd (A}
d [A;.g] ‘\ -+ Zﬁwé { qu';;l ] ErwJ §{P,}§
7

E“nJ’F L Ba' {ﬁ')} F (2 9-12)
bd ] (18
Ky o] J {ph =10}

Incluiion of the inertial effects cf tail masses, etc. is now obvious.
Defining the total body mass matrix by

Bax) , [Ad] ]
[A] = [ Bl ] ' [TWJ[ bid |
[y, 11 L [A,:,]J
(4.d
+ Z[TTF‘[ [A”] ] [TTF + ete.

Bygdly (e:9-12)

vhere tails, etc. have been included, the panel point equations defining

fuselage modes are
(B} {EKUJ {Pe}
+ 1 Ty,] } %SP,}% = {0}
F I» [K'ﬂ] F F

[AJ§iP)

{Py) {r,} (2.9-13)
The transformation separating timez and space coordinates is
{R} {4.
{P?} = '|:¢]F {%«,! (2.5-2%)
{Pry} F {%1} F M
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The fuselage modes are considered to be normalized on the total mass matrix
[A] » so that

{154 (14}
D5y + [Rliigh = Lo}
12,}); g3l (2.9-15)

and

[Al{ed, - BK]ipL =0} (2.9-16)

where

[¢]F = [WF},,WJ&Z )"',<1¢F}n] (2.9-27)

define the mode shapes and eigenvalues for the fuselage.

Wing modes are defined with everything constrained except elastic wing
motion. Equations 2.8-5 for thz wing become

qu'x] i {fs;'e} ﬂ(xﬂ . {Px’t} ]
R O W
which is already in the form necessary to transform ©O modal coordinates.

All other elements are handled in this came manner, and need not be
written explicitly. The transformation to modal coordinates is then quite
simple; substitutions of the form in equations 2.9-1% arc made directly into
the panel point equations. It is the definition of mode shapes for the wain
body which might cause some debate; the choice is arbitrary, but it is felt
that the above definition is the best approximation when only a few modes
are retained,

In the case of a gear attached to a wing, the wing modes are not de-
fined by 2.9-18. Panel point displacement of the gear is constrained to
motion due to wing motion, constraints are written defining this gee» motion,
end a term such as [T,,cJ[Ag][Twe] Will be added to [Aw] in the final equa-
tion defining wing mode chapes.
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The tyansformation t0 modal coordinates for a problem such as flutter
analysis is very useful in thet the modal coordinstes are not coupled to-
gether in the final equations, and the simultaneous equations are easily
solved on 2 digital computer. Were the problan is not so simple, as the
rigid body motion will be coupled into each equation, and the modai co-
ordinates are ~oupled in each equation. This complexity is unavoidable.

The transformed set of equations are considered next. The total
number of modal coordinates which have been defined are not generally
used due to the resulting largzs number of variables involved. It is
desirable to truncate the square matrix [¢] and delete the column
vector {4} to the desired number of variables for each component. Then
the transformation

(P}, = 181,131,

{2.9-19)

is made, where [aji is the matrix formed by deleting the higher mode shape
columns, and is not squar2. This reduction in number of variables may be
treated in one of two ways. The set of equations 2.9-19 may be considered
as constraint equations on the system. The right-hand side of the panel
point equations would then contain total panel point forces minus the panel
point forces which constrain the higher modes of deformaiion. This approach
may be used if desired, and the associated Tagrange multipliers may be elim-
inated rather easily. A scmewhat simpler approach may be used. Direct sub-
stitution of equation 2.9-19 into the panel point equations results in ob-
taining more equations than unknowns, and the solutions are not unique.
However, a linear combination of these equations may be chosen which yields
the proper result. The shorthand notation which defines this operation is
the premultiplication of the set of equations by the transform of the deleted
modal matrix, [&]i . The right-hand side of the equations is recognized
as the contribution of the panel point forces to the modal coordinates re-
tained, which is exactly the result obtained by the first approach.

The expansion of the total panel point displacement for the { -th
component is

{P}i = [ﬂ;]{P}, + (P +ial; (2.9-20)

where it is assumed that the 1 -th component is attached to the vehicle
by means of attaching it to the 5,-th component. As it is possible that the
% ~th component is not the fuselage, but is attached to the fuzelage, then

{P}" = [T1 JiP}F t iP'Z}. t SAh (2.9-21)




An exsmple is that of a gear on a wing, 1 corresponding to the gear and j
to the wing. Using

ipeY; = [31; 14k (2.522)
{p,; = (ol {g}; (2.9-23)

expression 2.9-18 becomes
{PY, = [ 1 L&) (43,
¥ i;][‘ﬁ]ﬂ'ﬁ; * {"#']SLAZ
+[&>]1‘1¢}}t +§A}i (2.9-24)

One may well appreciate the complexity of writing the cguations of motionm,
2.8-3, 4, 5, in this notation for a general body wicse geometry is as yet
undefined. Hence the general set of equations using modal coordinates
will not be written; rather, the transformat.on will be performed for in-
dividuel problems as necessary to reduce the number of degrees of freedom
to a level consistent with problem requirements.

s~

2.20 POSITION AND VELOCITY OF A RODY POINT

If the time at which an applied force is imposed on the body is to be
accurately known, as well as its magnitude, which may depend on the body
kinematics, it is necessary that the position of the point to which it is
to be applied is also known. The purpose of this section is to derive that
position in terms of the variables defining the motion of the body. This
may be accomplished by the integration in time of the components of the
velocity of the point relative to the ground.

Let the point be labeled B. Its position in the undeflected body relative
to the origin of the body coordinate system is U_B , and its total dis-

placement relative to the body coordinate system is E% . The velocity of
this point may be expressed by either of the forms

= %, 0 + Y, 0 + %5 K (2.20-1 )




It may also be written as

Vg = %ﬁ = R +{xl g +5}.73 + QL2 (F, (2.10-2)

from equation 2.6-7. The components of the velocity of the point, expressed
in the body coordinate system, are then

Vy i

B \
vy o= e dirg (2.120-3}
! w) ¢t
vl 1K
This form may be expanded into components, with the resulting expressicn

| Vy 3/1& [ £ P+

= » _ ») /
Y’ ‘/V, i ,?7. [O]42, + # (2.10-4)
Yls gl 1B, Pa t%le

As the point B may be in a component other than the fuselage, the term, may
be written in the component coordinate system. Then

Vy Wi (| Py Pur ¥

Ve = 3% (8 1) Py LI ] Py vy o
! .10~

Vs lg Vy Fils [Py + 3l (2:30

The components of the velocity of the point in the grou:d reference system
are obtained by the transfoxmation of this expression,

B e e
\.( =[] W, *HJB '.D‘é' - [ﬂ][ﬂs Fp vy (2.20-6)
{7. 8 Ny Py lg CARa

The position of the point in the grouné refe.ence system is immediately
obtained as




Xy (8) = Xgto) + [ kg dt
t .
Ye(t) = Yglo) + [ gt

t .
Zo) = Zglo) +fo £y dt (2.20-7)

where XB(_O\)YB(O\,ZB(O) are the coordinates of the point at zero time,
the beginning of the problem. They may be found from

X (o) (X0 | /)
Yio) = ?W’ + 01 Tx], %‘k
Z (o) B Z (0) 4’ N (2.10-8)

where X(O),Y(o\ % (o) are the initial components of the position vector
to the body coordinate system origin, and the zero subscript on the Eulerian
transformation indicates the value of the Euler angles at zero time.
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SECTION 3

APPLIED FORCES

3.1 GENERAL

A solution of the equations of motion written in Section 2.8 may be
obtained when the applied forces have been defined. As the number of equa-
tions is the same as the number of variables needed to define the motion, the
forces must be completely specified. They may be stated as known constants,

as explicit functions of time, or as functional rzlations between the varisbles
defining the motion.

The total force applied to the vehicle 3s defined by the vector (Qx,Qy,
Qy ). This force is the summation of all the externally applied forces on
the vehicle, expressed in the body coordinate systeu. The contributions to
this force considered in Section 3.2 are

Gravitational Force - Quw
Thrust Force - T
Parachute Force - Qp
Aerodynemic Force - Q,
Ground Force - Q¢

The ground forces will be considered for & variety of contacting elements on
the vehicle. The contribution to body forces is developed for a single element
of each type, and the summation over the elements indicated. The total exter-
nal moment on the body is defined by the vector (Nx,Ny,N»), The contribution
from each of the above forces is defined, and the total moment obtained by a
summation.

The definition of the vectors ({Qx'},{ng} {Q 7’] ) is dependent both
on the mathematical model to be used, and to some extent the manner in which
the problem is to be attacked. The panel point forces in each set of panel
point equations must be arranged in the same order as are the panel point
displacements. They may include the distributed forces which ere congidered
to act on the whole vehicle, the internal reactions which hold the vehicle
together, the damping forces which dissipate energy stored in elastic defor-
mations, and the stroking forces between components which move as rigid bodies
relative to one another. In Section 3.3, the forces on the component rigid
body motions are defined in texrms of ground forces and stroking forces. In
Section 3.%, the forces on the panel points contributing to elastic defor-
mation, are considered, and the distinctions made as to which of these are
applied forces and which are included es covstraints or are included in the
definition of the stiffness matrix. The discussion of constraints in Section
3.5 completes the definition of forces in the system of equstions.

The contenss of this section are intended to include the most common
forms of applied forres which will occur in landing impact problems, Miay of
them will hold only for a particular configuration and are not megat to b
general definitions to be applied for any problem. The individual nay replace
these forms with others more suited to a particular application. keeping in
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mind that the forces must be completely specified either in terms of the
varisbles aiready defined or as explicit functions of time.

3.2 TOTAL VEHICLE APPLIED FORCES

In this section. the rorces (Qx,Q » Qy ) which enter the rigid body
Equations 2.8-3 will be defined. The general form for the total bdy force

is
N
[Qx i
@tg = JJ . Q
where @) is the totel force, given by
= + +
Q=Q, +Q,+Q, +Q, +Q,
for gravitational, thrust, ground, parachute, and zerodynamic forces,
respectively.
The contributions to (Nx,Ny,Ns) entering the Equations 2.8-k will be
calculated in each section; the forms vary considerably depending on the type

of force. The contributions from each section may then be summed to produce
the total moment.

3.2.1 Gravitational Force, @W

The gravitational force acting on the vehicie is directed along the
positive Z axis; the magnitude is the product of the totel vehicle mass
and the local acceleration due to gravity ( gr

Q. =Mg K (3.2-1)

fne components of the weight vector in the body coordinate uystem are
given in terms of the Eulerian transformation as

Q : 0 -sIN ©
Q, =[r]< 0 =Mg(cos 6 =i ¢ (5.2-2)
Quw Mg cos © cos 7)
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Since th2 origin of the body coordinate system will not be coincident
with the instantaneous position of the center of mass, s moment sbout the
body coordinate axes will result from the gravitational force. let |P,, be
the distance from the origin of the body coordinate system to the center of
mass of the total vehicle. The moment is then given by

N"' = [Pw X Qw Jd= _Q,’w O wa P‘* (3.2-3)
Ny | Pux@y K | Qp-Qu 0 P
Y w

The vector Pw is determined in terms of the displacement from initial position
of all the vehicle relative to the body coordinate system;

/TP/"dv ) .
P, = ~//”//o w M ~,<:ﬂﬂa,ﬂ7<1v

The integral may be broken into integrels over each of the N components of
the vehicle;

(5.2-4)

[Wﬂdv= ‘/‘.TP /odv (3.2-5)

In terms of the matrix notation which arises from the panel point concept
and the interpolation procedure; thisz form is rewritten. The corponents of
the vector IPw are then

°) | i R'}'mxgguf
P.) =— [¥] 145 (A (3.2-6)
Pijw e By )y ) i

where[Y]is the transformation between the body coovdinate system and the
{ -th component coordinate eystem. The moment is then cttained by substi-
t\xting Bauation 3.2-6 into Eguation 3.2-3.
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The moment calculated here is small compared tomoments from the ground .
forces and will normally be neglected in landing impact problems.

3.2.2 Thrust Force @T

It is assumed ir the discussion which follows that the megnitude of the
thrust force is known explici“ly as = function of time, or is a krown cone
stant, or thst it is known as a function of the varisbles defining the vehicle
motion. The line of action of the thrust vector is defined by the positions
of two points on the line, labeled (a,b). The positiocns of these points are
defined by (L+IP )g and (L+TP )y as in Fig. 3. The thrust vector then is
collineax with the vector difference of these two quantities, ILT,

u‘T = (u‘+rP)a, ~(“~+TP)5 (5‘2.:>
vwhich may be expanded to

“_T=(xa. "xb)A. +(3’a—?b)\u+(7a— 7b)lK
+(Pyy =Py Y+ (Pya Py ) I (PP, ) K

(3.2-8)

The direction cosines of the vector Ly in the body coordinate system are then
variables, given by

Y'u | (xo.‘xb)“‘(an— xb ) .
Yo -’-m (Yo 4u)+ (Pya~Pys) (5:2:9)
] TG el

The components of the thrust in the body coordinate system are then

ar b= andve (2
a, ) T
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where QT is the thrust magnitude. If there are several independent thrust
sources, a sum of terms 1ike this one will give the total force; if the thrust
megnitucdes are the same,

r

Qz LSUR J’Y\xr

Q% =QT2__ Y.*T (3.2-11)
Q%T =1 LY%T )

where K runs over the various thrust sources. The moment due to any one of
these is

(N.)  [(+m. x@, - i)
N, » =X(L+P), x @, ‘I”J (3.2-12)
]

N: N (L+TP), X Q-

= <7G+Pu) 0 - Ia+an.) Q
"("a*’P:,,) (xa*‘Pxo.) O.*

2,2,3 Parachute Force @P

Parachutes are used in conventional aireraf: to shorten the ground run.
For vertical alightment vehicles, the parachute may be the primary lift device,
or it may only bve used to ensure that vehicle orientation is essentially
vertical. The general expression £av the parachute force is

2

Qp=-57° 5% GpETz/SCH I e
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where the various parameters are

2 atmospheric density

CoS effective drag area of the parachute

/8 velocity of the parachute attachment point with respect to
the atmosrhere

In Section 2,10, the velocity of & point in the body is derived in detail. If
the components of the wind velocity expressed in the body coordinate system
are given 8s (Wxy,Mgw,Myw), then from Eq. 2,10-5, the velocity cf the
parachute attachment point relative to the atmosphere expressed in component
form in the body coordinate system is

Vx ’Vzw /’Vx F.) '1

Ty ="'V5w + {7 +[Y]P P:.

4
”3 e U & P'b’
P:c' +x (3.2-14)
~[0, 4Py + ¥
PZI "'7 o

In terms of these relative velocity components and the general parachute force
expression, the parachute force is

X\ __ sC /z/- 20 z.;.y- Z- ij
Q% =- ’i'/o oy “xp up AP ¢ (3.2-15)
Q. V.

*p T/p

where the positive sign of the radical is understood.

If the parachute is to opea during the time reriod in which the landing
is analyzed, the crag area CpS will de a function of time. Thus, if the
parachute is initiated at time t i » and it takes {4 seconds to deploy and te
seconds to open, the drag area is
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0 b Lt +ty
CpS ={ CoSt) tivty L L ti+tg+t, ‘
(C05)5 t'(+ td"'to 4t (3.2-16)

where CDS (t) is the growth function of the drag erea dwring the opening
period, and (:Dﬁizg is its final value. For conventional parachutes, these
parameters may be found in reference 6.

The moment about the axes of the body coordinate system is written in
component form as

Ne| [(L+P).x @, - &
N, ={(L+P) x @, - J
N, WP x @, - K

P

=| (% +0P’5r) (7P+Pw) wplrp%?) (5.2-17)
= P
"(‘h +Pyp) \"P*Pxp) O iQ,} .

3.2.% Aerodynamic Force,QQA

The aerodynami: fcrces acting on the vehicle are those forces exerted by
the surrounding atmosphere resisting the motion of the vehicle . These forces
are defined here in terms of the notation used in describing conventional air-
craft. The contribution to these forces due to clestic motion of vehicle
components will be discussed in Section 3.%. The contribution involving rigid
body dynamics and control surface deflections will be considered here.

The general forms for the components of the forces and moments are

(3.2-18)
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N, - _21£C,
Ny =5/°2°% «(c o (3.2-19)
(N 4C... |

A

vwhere the indicated parameters are defined by

/9 = atmospheric density

S = wing area

¢ =mean aerodynamic chord

& =wing span

@/ = velocity of the vehicle relative tc the atmosphere

C, | non-dimensional serodynamic
C,, p=force coefficients referred
C!i to the body axis

non-dir~rnsional aerodynamic
C . » =moment coefficients referred
C to the bedy axis

Each of the eerodynamic coefficients is a function of the body orientation
and velocities, control surface deflections and velocities, and elastic body
motion. For the vehicle without elastic motic s,

Ci:Ci(o(Iﬂ‘/”;'/Vé'/yf) % 03 8.8> (3.2-20)

where o<, the angle of attack, andﬂ » the sideslipangle, define the orien-
tation of the free stream velocitylW/ with respect tc the body x-axis. The
control surface deflection, & , and the corresponding velocity, é‘ y are
considered here for an arbitrary control surface. The subscript { refers to
any of the above~mentioned coefficients.

In the theory of aerodynamics, it is usually adequate to assume that the
aerodynamic coefficients are linear in each of the variasbles. This is equiv-
alent to expanding the coefficient in a Taylor's series and omitting alli
non-linear terms;

C;=Cs(0)+ (0)a<+ac‘(0)ﬂ+ ........... (3.2-21)

The higher order terms are assumed negligible ir the linear theory.
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For landingz response problems, not all of the linear terms are
spprecigble in a given coefficient. In the following list of coefficients,
only the most important terms have been retained.

aC, fo= " (e
szcxo + acx/aé‘g Se (3.2-22)
aCx/‘gng 5 JF
/
C L 19Cy/8r a
¢ 10C, /24 Sr (3.2-23)
$/99=) | =]
3C, /8] =
C,} =C3° + QC /33 OE (3.2-24)
acya; .
XA
C, = ac"/aj* (3.2-25)
SCL/A 22,.
Cm= Comg +{9Cm /3¢ (3.2-26)
aCM/az




OCn/3/ | | A
3Cm/3 8} | 4 ]

0

(3.2-27)

The indicated varisbles are

$e =piteh control surface deflection, such as elevator, ailevator
5,, —flap deflecton

=rudder deflection
Sa =roll control surface deflection, such as aileron or spoiicr

The values Cxc,C;o,Cmo for zero deflections and the partial derivatives
evaluated at zero deflections are obtained from wind tunnel tests.

The above terms are obviocusly not all-inclusive, but should provide an
adequate definition for most landing problems. A ccmplete trestment of
aerodynamic forces may be found in reference 7 . The control surface
deflections are assumed to be known as ccnstants or explicit functions of time.

The only other matter to be covered in this Section is the caleulation of
the angles of attack and sideslin. The velocity which enters Equations 3.2-18,
19, which define the force and mement on the body, is the difference between
the body translationel velocity and wind velocity, which yields

/
2 /fo -mxw ”x -”xw
z = /V-l' "”/_U*N /”.UA -/Iru.w (3.2-28)

The angle of attack,ol, is defined as the angle between the velocity vector
L/~ projected into the x- ?plane and tne x-axis. This requirec

Y RALTY
s~ (3.2-29)

oC = TAN

Similarly the sideslip angle is

55




_ o) My~ gw
= yaN| L4 7R .
4 A ~ Clrw (5.2-30)

For conventional sircraft landings, the forward velocity, /%, is much
larger than the drift or sinking speeds, and the following relations are
very nearly true.

v = (v - /Vw)2 (5.2-31)

Al —
oAl = _Zﬁy_v_ (3.2_52)

W= Wrew

_
y ~Myw

s~ (3.2-53)
/Ua.c"‘//-xw

/9=

3.2.5 Ground Forces, QG

In this Section, forces on the body due to interaction with the ground
will be developed. The section will be dlvided according tc the type of
contacting element under coonsidersiacn. These elements will be of several
types: surface pods, tires, skis and skids, spikes, and gas-filled bags.

In some areas, the ground will be considered to be rigid. In these
cases, the contacting element is considered to develop a coefficient of
fris+*on with respect to the ground, which may be dependenv on parameters
of the motion. In other areas, the ground is allowed flexibility, visecosity,
or compressibility to varying extents.

The ground coordinate system is used in describing most of these forces.
The components in the ground coordinate system of the force exerted on the
body by the ground, called ground reactions, are (Dg,956.VG )y, , where the
subscript indicates a particular contacting element on the vehicle. I'he
total force on the body due to the ground is then




D.
=[r] Z Se (3.2-3%)
4 VG

The separate contributions to force on the body are

Q,
Q,, =(r]
Q

s VG (3.2-33)
G

N

Moments about the axes of the body coordinate system are found from the
general form

=; L+, )

where (U.“HP,.‘) is the instanteneous lever arm of the force Qq. This is
written in component form as

(3.2-36)

Nz (7+P )Q G (7"P )Q
Ny 0 =) {(z+PyQL, -(x+P)Q
N4 . (’C"D)Cx (7+P)Q ” \3.2-57)

where the forces and lever arms for each contacting element are indicated in
component form.

The forces as written in the following pages will be written for &
single contacting element, with no subscript attached to identify the element.
It will then be understood that these forms must be written for each contact-

ing element when making use of the Equations 3.2-3%, 37 for body forces and
monments .
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3.2.5.1 Surfuce pads

A surface pad is a mass rigidly attached to the end of the gear piston.
It is not 2llowed g degree of freedom for motion, but simply moves with the
piston. It has sufficient contacting srea so that its ground penetration is
small if the ground is consider~d to be soft.

The ground force will first be described for the case when the ground is
rigid. The surface pad will develop a coefficient of friction with respect to
the ground. The ground force will be developed entirely in terms of the body
motion. The force from the ground along the stroking axis is first developed.

The drag force on the pad is opposite to the direction of the horizontal
pad velocity, which requires

D, YP - S, XP =0 (3.2-38)

where the components of <ie pad velocity in the ground plane are (XP Y ), the
force on the pad parallel to theX -axis isDg, and that along the Y -axis is Se
The magnitude of the drag force is the prcduct of vertical force on the ground
with the coefficient of friction, yielding

2 2 2 2
D, + S =4V, (3.2-39)

These equations may be combined to yield

-/2
(.DC: /{’—X-PET[ (Y /X ) -] ) (3.2-40)

15 (Ve m ﬂ+(xp/yp) ]

=~

where Jie forms in velocity components divided by their magnitudes resolve the
arbitrariness in sign in solving the quadratic Equation 3.2-39. The forces on
the ground are related to the forces on the pad by




D / Q.
SGG =[] [YJP Q. (3.2-41)
kv G Q,?’ o

which may be inverted to give
/ -
0 / D,
=¢0 (¥ [rl¢s,
P l P

G

Q 4G (3.2-h2)

The forceQ,’cpis along the strokirg axis of the gear. After contact, there

is no motion of the piston relative to the ground along this axis. Then Q P
is the negative of the piston stroking force, Q"s , which is positive downward
along the stroking axis. The stroking force is the sum of the internal gear
axial forces to be developed later. The Equations 3.2-40, 42 combine with the
abova definition to relate the vertical force on the ground to the piston strok-

-Q'is
0, [«Ck /1% DT+(%e/ %)
0 By, /1Y D0+ (X, /Y,)
[ |

VG =

(3.2-43,

)
2%"/1

Combining Equations 3.2-40, 43 yields the ground force for a single contacting
element,
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4
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D
S, /=
Ve

From thic expression and the Equations 3.2-34%, 37 the body forces and moments
may readily be calculated.

This form for ground forces is quite complicated; it may, however, be
simplified for most applications. One of the examples in Section 4 will make
use of this form, and the sixvplifications used there will perhaps enlighten
the reader.

If the ground is soft, the above statements will not be applicable. It
is suggested that the following forms for ground force be used. The vertical
ground torce may be represented by u one.way spring, that is,

-4 d Z,

. (3.2-15)
0 ZP,Z p

0
Vs
0

NV

where the velocity of the surface pad normal to the ground is obtained from
Equstion 2.10-6. The spring rate y must be obtained from experiment, as it
will depend on the geometry of the pad and characteristics of the ground.
The penetration depth d is obtained by integration of Zp following touchdown.

The ground forces in the ground plane may be represented by

“345‘1 )( P d d>0
C d<0

( 3 .2—’06.,‘

De
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(-4, Y, 4 d>0
Se = (3.2-47)
0 d£ 0

where the velocities are obtained from Equation 2.10-6 and the constant.AéZ
must be determined from experiment. The experimental problems might be avoided
by use of some analytical formulas in terms of pad area and ground character-
istics; a form of this sort may be useful in prediction of peak loads, but must
be used with caution in investigating stability.

3.2.5.2 Tires

Forces generated in the sysiem duc to interzction of s tire and the ground
have never been very accurately described on a theoretical basis. Generally,
experimental data furnished by the manufacturer is more reliable than purely
theoretical data, and such should be used when available., These data may in-
clude vertical load-deflection characteristics, coefficient of sliding friction,
cornering coefficient, self-aligning torque coefficient, or other. The forms
presented here are in general taken from the available literature and are felt
to be consistent with the state of the art concerning tirs: characteristics.

The vertical load-deflection characteriscics of a tire will be discussed
first. The forces in the ground plane will then be discussed for the periods
in time before and after wheel spinup.

The ground is assumed to be rigid throughout this development.

Vertical Ground Force, Vg

The force on the body normal to the grouna plane is written here in
terms of physical parameters of the tire, and should be used only if data
from an experimental program are not aveilable. The variation in ground force
with tire deflection has been writt2s in many ways, each formvla reprecenting
an approximate fit to the observed data. Hadekel (Ref. 8 ) notes tha. the
most rational epproach to vertical load-deflection characteristics produces the
form

0 5 <0
VG = —'-A- (ﬁ +—§C +EF3) O < 5 <Jb (5’2‘!‘8)

where the tire contacting ares, A , is given by
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A = 2.25(§ - .03 w) \/'[3 wr (3.2-49)

and the various other quantities are

& = tire vertical deflection

ar = tire width

P = undeflected tire pressure

¢ = tire wall equivalent pressure
AP =pressure rise on deflection
B =tire outer diameter

4, =tire deflection on initial bottoming

The change in pressure with deflection is found in the static case to be

———

AP =P u/%)z (3.2-50)

where

—~—
—

N

™

N
~ol&

- ar ) (3.2-51)
D

This approach yields results negligibly different from dynamic loads obhtained
from drop tests for low deflections; the dynamic loads rise more rapidly for
large deflections. This may be ccrrected to some extent by vsing a polytropic
compression form such as an adiabatic compression would yield. The atove forms

are inadequate for tire botitoming in any case. It is then necessary to replace
Equation 3.2-48 by the form

Ve =Vey "”éb (5~ 3) (3.2-52)
=(Vo, +4,3,) -4, 0 5> &y




where V% is the vertical ground force wh: . the tire first toctoms and Ab
is the 'ire bottoming spring rate.

There are several points which should be considered here. Hysteresis
effects, which may be observed in standing tires, are considered by Hadekel to
be negligible in dynamics problems with high spinup speeds; hence squivalent
damping in tires will not be considered. Tire laterzl deflections produce
vertical deflections for constant vertical load, and sc both should be specified
in order to find verticel load. The omission of this effect will not apprecia-
bly change the time history of the load, except that the time for tire bottom-
ing may be in siightc error.

It has been assumed here that the vertical tire deflection in the wheel
plane and the "average" deflection observed in a tire with the wheel plaone
slightly tilted from the vertical are identical. Thus, the load deflection
characteristics are assumed independent cf wheel plane orientation for small
angles from the vertical.

The vertical deflection is found as follows. The distance to the axle
from the ground, which will be negative according to the sign convention, is

Zy = (R+ LA *]PA)‘ i (5.2-53)

where I-A,WA are the undeflected position and the deflection cf the axle. This
may be written in component form as

x'+ P,g
7 Py

/ / O
l Ry AU’] 0 (3.2-54)
J |

A

where Z is the position of the origin of the body coordinate system, and the
subscript refers to the exle end tue coordinate system of the gear to thich it
belongs. The instentaneous angle which the axle makes with the ground, o< A
defines the projection of the undeflected tire radius on the normal to the
ground, which yields the deflection as

x'+le / ; 0 _
$=Z + .7:+ Py o0 (r] (I) + r cosa, (5255

+ P,’, A
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For norzal aircraft landings, the angleolp is small, so thatCOSe{pis very
nearly unity. The error here is of the same order as that in using the deflec-
tion obtained in the formmla presented by Hadekel.

For most aircraft landings, the Euler angles remain small, and the Eulerian
transformation may be linearized. The resulting expression for tire deflection
is then

II“'P{ ’ -6
S=Z+ Y +P, )[¥]{ & )+ T (3.2-56)

7’ + P,;l |

A

The vertical ground force as written here is valid both tefore and after wheel
spinup. The forces on the ground in the ground plane, however, are dependent

on whether or not the wheel js spun up. 1In these areas, the load-deflection
characteristics lateral and tangential to the tire will not be used in the sense
of Equation 3.2-48. Pre-spinup forces are derived from the sliding coefficient
of friction, the vertical force, and the geometry. Post-spinup force along the
wheel plane is considered negligible, and that normal to the wheel plane is found
from the cornering characteristics of the tire.

Ground Forces in the Ground Plane, Dg .56

Forces from the ground along the X -axis and Y -axis, Dgand SG, are
usuzlly defined in two separate regions: pre-spinup and post-spinup. In the
region of transition between the itwo, a form may be picked which is intuitive-
ly satisfying in order to obtain continuous forcing functions. A search of the
literature shows that no analytical procedures derivable from physical laws
are in existence for this region, and no experimental data is of sufficient
accuracy to define any variation with tire parameters.

It is also convenient to present in this section the moment chout the
axle during spinup.

Pre-Spinup Torces in the Ground Plane

The forms derived here are based on the assumption that the force from
the ground, in the ground plane, is in the opposite direction of the axle
velce.ity vector parallel to the ground, VA , glven by

V, = ).(A I+ ?A J (3.2-57)

The magnitude of the force is assumed to be the product of vertical force with
the sliding coefficient of friction between the tire and the ground. ‘'the




components of the force, as pictured in Fig. 4, are then

De =45 Vg Val i <t (3.2-58)

Se=4sV, WVal t <ty (5.2-59)

wherett is the spinup time. The compcnents of the axle velocity may be found
from ZEquation 2.10-6. For conventional aircraft landings, the forward velocity
is larger than any other, and the approximation|Wal=|X ] 1is valid. Other-
wise, the root-sum-square representing the velocity magnitude must be used.

Some discussion of the variation of the sliding coefficient of friction
v th velocity, pressure, and temperature is worthwhile here. Hample (Ref. 9)
presents experimental data for pressure, load, and temperature variations of
the static coefficient of friction for tire materials. Velccity variations
are presented by Luthman (Ref.i0) and Gough (P2f. 11), et al. The data by
Hample show that the static coefficient decreases sharply from room temper-
ature to 300° F, then gradually to 500° F, and again sharply to the melting
point. Material was taken from a B-29 nose wheel tire., He also notes that
the static coefficient decreases with increasing normal pressure, the decrease
becoming sharper with increasing temperature. This variation is substantiated
by Luthman, although his main interest is the variation with velocity. This
is characterized by a general decrease as velocity increases, but with oscilla-
tions superimposed. Luthman states that this phenomenon has been noted prev-
iously, but that no explanation has been found. Gough, et al., present similar
although less extensive data points; the oscillations seem iess dominant, and
they present a smooth curve through ihe data points.

These statements describe the variations in the coefficient of friction
in a general manner. Theoretical work on the subject is generally avoided due
to the meny coupled variables involved. Since the relative velocity of the tire
footprint and the ground varies from air speed to zero during spinup, it is ad-
visatic O include the variation of the coefficient with velocity. A linear
term in contact pressure may also be included. Denoting the relative velncity
byytﬁiand the contact pressure by FET , the variation may be approximaied by
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Figure 4, Tire Forces in the Ground Plane
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As(r - Py) =B(1-4 PCT)(I = ) (3.2-60)

] 4‘0/%@1

vhere B is the value for low pressure and high velocity, C is the ratis of
values at high to low velocities, anda,b must be determined from experiment.
Contact pressure as a function of vertical deflection is derived from Equation
3.2-48, the ratio of vertical load to footprint area. To the extent to which
the variation in coefficient of friction with velocity is known, the relative
velocity may be approximated by

e =|Val- F x (3.2-62)

It will be noted later that these forms may be too complicated for
ordinary use, but simplified forms can be used.

The above equations =re all valid fort(tg » where t; s ‘the spinup

time, is found from solution of ‘he equations of motion. If desired, spinup
time may ve approximated with use of a formula by Flugge (Ref, 12 ):

(3.2-62)

where I is the wheel moment of 1nertia,£ is the gear forward spring rate, and
F is the vertical load time derivative (assumed constant).

It is useful to insert at this point the forces along and normal to the
line of intersection of the wheel plane and the ground plane, although they are
not used in determining body forces.

The force along the line is the force used in defining the spinup moment,

and is designatedWsy. The force at right angles is the side force, designated
Wg . These are forzes on the tire, given by

W, =A4sV, cosa t <ty (3.2-63)

Ws =4s V¢ sin A t <ty (5.2-54)
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where tne angle N\ , shown in Fig. 4, is given by

A=~V — 4 + v’ .\%I/.A.) (3.2-65)

A

The angle /2 is ‘that through which the axle is rotated about the gear center-
line due to torsional elasticity, and 1& is defined in the Eulerian transfor-
mation. The spinup moment is given by

- = - (zn 7
Ng =(F 5)V\/su 132 50)
Note thet for conventional airpliare landings,\( <« )( , hence

-l \? o~ Ya
Vil % N

SiN

Post-Spinup Forces in the Ground Plane

The force from the ground in the ground plane following spinup is usually
considered to be normal to the line of intersection of ground plane and wheel
plane. This assumes rolling friction is negligible and wheel braking is not
vresent. The side force for conventional aircraft landings is

W, =-K2a t>ty (3.2-68)

where K is the tire cornering ceoefficient and ;\ is the slip angle, defined in
Bquations 3.2-65, 67. If the slip angle and vertical force are small, this
form is valid with the cornering coefficient constant. For high vertical loads,
a method (Ref. 13) has been devised to yield a cornering coefficient deperdent
cn Lise vertical deflection,

(3.2-69)

(=1 Péw"ﬁl (l.ll-- i‘—%’f—)“*d
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w=/[tF 3~} (5.2-70)

The remaining varicus paramete:s are

tire section radius
inflation pressure

ad seat radius

re undeflected radius
~d

r

e vertical deflection

T wwuut

be
ti
F

ti

STl ileWy y1a]]

This approach is valid for high vertical loads prior to tire bottoming, but will

still be restricted to small slip angles. As the slip angle increases, the side

load reaches a maximum, then decreases to the value which would occur if the tire
were skidding laterally. Hadekel presents some data on this effect; no theoret-

ical forms for high slip angles have been developed.

Forces along the ground coordinate axes for the case where A4&lare then
given by

De =W, (A'Ya //XA) b7ty (3.2-71)

S, = Ws t >t (5.2-72)

Ref. 12 also gives the tire self-aligning torque M arising from slip
angle A as

M=sm 2 (3.2-73)

Q
in the range A< 5, where

m =123 (1.57 G -8 ) (w +G)P 5.0078)
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342.5.3 Spike-Soil forces

Penetration on impact is a problem not easily handled, and is not discussed
in the literature which is readily available. However, an approximate form may
be developed which is useful for impact on sand or hard soils.

Penetration forces may be broken into two groups: compression forces and
friction forces. Compression rorces are described as follows.

The bulk modulus of a medium is defined as the change in pressure per unit
volume on compression of the medium:

d
B=V —C‘ (3.2-75)

This definition is valid only for static pressures and confined volumes. Ref.
1 notes that dynamic values of the bulk modulus of sandy soils are 200 to
300 percent of the static value. The static form will be used to formulate
the compression forces on impacting; the volume, volume change, and pressure
change will be considered time dependent, and the value of the dynamic bulk
modulus will be used for calculations.

Consider a body with velocity /2 and cross-sectional area A normal to the
velocity vector. As this area moves through the medium an amount ds s & com-
pression wave travels outward radially from the area. The volume encompassed
by the wave is

2 3
V=31) (3.2-76)

where Z is the distance from the area to the wave front. The pressure change
due to expansion of the wave front an amount d ) is

dP-‘-Fd('A—):Fa(ﬁfz):‘Fﬁd%z (3.2-77)

so that

VdP=-%Fdj (5.2-78)
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This form is independent of the radjus of the compression wave. The radius may
then be considered small, and the force F as that force on the soil produced
by the motion of the area A . The change in volume of the soil is related to
the cross-sectional area A by the penetration dS which occurs in the time for
the pressure changedP to occur:

dV=-AdS (3.2-79)

The change in pressure wave radius may be written

df=Vdt =-.\—ﬂ£-ds (3.2-80)

where V' is the velccity of the compression wave in the medium, since S may
be considered implicitly dependent on time. The buik modulus is then

— —

B=--Z FV
3 AN (3.2-81)

where the force F is now that on the area A , and not on the soil, since a minus
sign has been added. The force opposing the velocity & is then

F=- (% -,%.—)A,y- (3.2-8)

This form will be used to czloulate forces and moments ca a spike. In the
derivation the assurption has been made that B> and 'V are independent of pene-
tration depth, and that no local compacting will occur. The omission of these
factors will not affect the portion of a landing during which peak loads occur.
However, the stability of a body landing on a single spike is determined from re-
straining moments on the spike alone, and this area will not be described too
accurately.

Spike forces will be calculated for a single spike, symmetrically located

in a symmetrical body, from the form in Equation 3.2-82. For the spike problem
to be formulated, the body ’-axis will remain in a plane normal to the ground,
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and the body may rotate aboul the 4/1 -axis only. There will then be two com-
renents of force or the bedy and one component of moment. The extension from
this problem to one in which a vehicle is supported by several spikes will not
be explicitly performed uere. The spike will be considered rigid in this
derivation. Consideration of spike flexibility will require more rigorous
definition of the ground forces.

The georeiry for the problem is depicted in Fig. 5. The spike forces and
mompents will be calculated directly in the body coordinate system, as they are
dependent only on relative velocities.

‘The component of force along the spike axis, or body 7—axis , is immediately
written as

Q, =- .:%_f\bf /_\:(d)(,,,} +b,) (3.2-83)

¥

'~

where A, 1is the stroking velocity of the piston relative to the body, andA(d)
is the cross-sectional area of the spike normal to the axis, as a function of
penetration depth d . The le_ading edge of the spike will be pointed; hence

md? ran2{ 4/2) d < /-%l cot/9/2
A(d) = A g A (3.2-84)
0 . Cod> / — cor A2

for a conical point, where Ao is the meximum cross-sectional area, / is the
apex angle, and the penetration deptn is given by .

t
d(t) i‘/(/l/” + A?) dt ' (3.2-85)
(4]

Time is considered to stert on impact.

Neglecting the sharpened point, the cross-sectional area normal to the
body X -axis isdA=Dd;°, where D is the spike diameter anddso is au incre-
mentsl distunce measured along the spike, ;, being measured from toe tip. The
lateral force on this area is
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3 B
dQ . (70) =TTV D », (70) dse (3.2-86)
The lateral velocityd&_(")is given by

TG 10, (GG L) ey

and the total lateral force on the body is

The distance % is from the origin of the body coordinate system, or center of
mass of the undeflected body, to the center of mass of the piston.

The moment about the body ,/ -axis due to deG is
dNy, =(F+8, +L-2.)dQ (3.2-69)

which integrates to

_ BD O4d°
= 4+ - -
Ny =(3+4, +4-/2)Qx v 8 (3.2-90)
The moment about the piston center of mass is
. _ BD QO4d3
Ny = (£~ &2)Qxq - vV 8 (3.2-51)

3.2.5.4 Skis and skids

The elements referred to as skis or skids will not be distinguished here,
as they have essentially the same properties. Either will be a device of some
length attached to the lower end of a gear, oricated such that the rearwa.? end
contacts the ground first. TLe element will generally be allowed tw rotate
relative to the gear, and will have some sort of rotational spring damper to
control this metion.

In the case of rigid ground, the ground forces will be derived from
T4




elimination of a degree of freedom for motion of the contacting element, as in
the case of the surface psds on a rigid ground. If the ground is not rigid,
ground forces may be developed using the ground penetration development ex-
pressed in Paragraph 3.2.5.3.

Skis and Skids, Rizid Ground

If the ground is to be considered rigid, the ground forces cannot be
derived from properties of the ground, and must be determined@ from the motion
of the contacting elerment, as was done in Section 3.2.5.1 for surface pads on
a rigid ground.

The rotational motion of the element about the axle as a rigid body is
governed by Equation 2.8-36. However, if the moment of ineriia of the elemert
about the axle is sufficiently small, the inertial tel'ms may all be ignored,
and the restraining moment about the axle may be set equal to the moment about
the axle from the ground forces. The degree of freedom of the rotation is then
eliminated as a variable in order to yicld the ground force. If the resvraining
moment is only for the purpose of oppcsing rebocund and not to absorb laniing
impact, the forces involved tefore the ciement flattens on the ground are
actually small at any rate. The element must, of course, be considered rigid
in this case.

The geometry is depicted in Fig. 6. The force Wyis the component of the
total ground force acting to rotate the element about its axle. This component
is not generally in a plane normal to the ground plane, as the figure might
indicate. It is first necessary to develop the form for this corponent. The
axle is assumed to be parallel to the bodylf-a.xis initially. The element may
rotate about the gear center line, or the 4y -axis, through an angle
(assumed small) due to torsional elasticity. Its angle relative to the x/ -axis
of the gear coordinate system is 7 . consistent with the definition used in
forming Eq. 2.8-39 governing component rigid body motion about a line. The
coordinate system :;'n which, instantaneously, ine x” -axis liec parallel to the
element and the Ay -axis lies parallel to the axle, is derived by the product
of transformations due to the rotations /3 s % from the gear coordinate system;

A cosz O -sinz||]! A4 O i"\
) o=l 0 I G (|4 | 0[qd, ‘3.2-02)
U( sz 0 cosz|] 0 0 1K

The unit vectors in the gear coordinate system may be written in terms of those
in the ground coordinate system by

H P
K| ¢

”
~

\ (5.2-93)
LS

The components of the ground force in the contacting element ccordirate cystem
are then related to those in the ground ccordinate system hy
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w cos7 /’cosrz —sm;y [
W: ~/8 ! ¥ (rj S (,2-9%)

W) [smn7z Asinn cosn

The component Wo iies along the element, the others ai right angles to the

element. The componentW{ may be used to f£ind the applied moment for the

torsional motion in the gear. Only the componentWy contributes to the element

rotation about the axle. It is assumed that, the moment due to this force, N>
¢ balanced by the restraining moment N(%,72);

Iw, +N(%,%)=0 (5.2-95)

It is assumed that the drag force on the trailing end is opposing the horizontal
velocity of the end, and that its magnitude is the product of the vertical ground
reaction with the coefficient of friction between the element and the ground.

The derivation producing Eq. 3.2-44 is used here, with the pad velocity components
replaced by the components of velocity of the element trailing edge, so that

. . . . -
D) 4 Xe /txexgwm/x, 2)
S, =V, A Yo/ IYe] |+(XC/Y32)-V2 (3.2-96)

W,=V, ¢ (3.2-97)

where

an) ke AR/ % )]
§=4, {psmn AT 4. /1Yo |)ﬁ+(x SV e

cosZ ‘\.

This result may be substituted into Eq. 3.2-95 and the vertical ground reaction
found in terms of the restraining moment. Use of Eq. 3.2-95 then yields the
remaining components of the ground reaction. Thus, for Z A(
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N(#,7) j((v //IY 3%«*0( erng f Ga
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J ] /fs.m &) /((Y /lY\)D+<x /37"

cos7

This result is quite similar to thet obtained in the paragraph on surface pads

for the case of rigid grcound. The form is valid only until the element flattens
out on the ground. Thereafter, the forces are derived exactly in the mamner cf

the scetion on surface pads, except that the coefficient of friction will generally
be different:, and the compcnents of the ped horizontal velocity become those of

the element axle velocity. The axle height Z, may be obtained by integrating the
axle velocity normal to the ground, given by Eq. 2.10-6. The ground forces on

the body, expressed in the body coordinste system, are then given by Eq. 3.2-35.

The element must be considered rigid in the previous derivation. If
flexibility is to be included ia the same direction as the componeut rigid body
motion about a line, the problem may be approached in the same manner as that
in Paragraph 11».2.5.2, which discusses articulated gears. The ground force is then
defined in the following paragraphs.

Skis and Skids, Soft Ground

Prior to the time when the element flattens onto the ground, th. ground
forces may be derived from the general form for ground penetration forces
expressed by Eq. 3.2-82, which is written in differential form as

dF = "(2 3—)/1/‘d A (3.2-100)

vhere the velocityr is that relative to the ground and normal to the differential
area dA. The geometry is depicted in Fig. 7.
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Figure 7. Ski or Skid Ground Ponctretion,

The parameter ;f is measured along the element from the trailing end; its value
at the surface of the ground is D . This "planing" length is related to the
penetration depth, d s the axle helght, and the distance firom the axle to the
trailing end by

D =<’d—LzA') Qu (3.2-10})

The element is assumed to have a "planing" width ¢¥y , which is independent of
, and a constant lateral width w,. The forces normal to these areas are
those in the contacting element coordinate system, defined in the paragraph on

rigid ground. The differentisl force normal to an element of rrea w“.dz is
then

ny =—(2 B
AW, -"(7 ’-,}‘)A’fn(x)w: d¥ (3.2-102)

and that normal to an area wzd.f iy

dW_ =—(%%—‘)m(x)wzdx

{5.2-103)




The diffe.ential of friction force due to these forces is parallel to the elemént;
dW, = (SWy+ dW) (3.2-104)

These three terms define the force on an elemental lengthd ! « The velocities
at that point are

vy, (;{)--4/'“,,‘4-1}([.-}‘)

—
!
.
o
4
o
.
AN
R

v (L)=wia "'/‘."COS 72(&“;) (5.2-106)

The transformation from the gear coordinate system to that of the contacting
element, expressed by Eq. 3.2-92, yields the components of axle velocityﬂ/’NA,
/ia. The axle velocity in the ground coordinute syster is derived from Eg.

2.10-6, and may be transformed %o the gear coordinate system., The desired axle
velocities are given by

/ N A
smﬂ) ™ P X+ P
Wna =\Asin 77> (¢392 p+{ 2y +[9) y+Py (3.2-107)
Cos % @ p’}'.JA #+Py A
, .
Y NV P::’ ; X,"‘P;c’
win =0 L\ BJwry 0+ Ry 0+ [0] ¢y +Py (5.2-108)
) Pyl TPy,

in terms of the panel point displacement and velocity of che axle axpransed in
the gear ccordinate system. These velocities <ve not dependent or the pu-.meter
‘f ; hence the forces are




W, = ”(‘%,’75-’)“"' [’VNA + 7 (l" ng')_-]D (3.2-109)

W = -—-— w’z[ + B cos 7([; %)]D (3.2-110)

WD = / (WN +WL)

(3.2-111)

in terms of the planing lezgth D . From Eq. 3.2-101, the planing length is
determined by the penetration depth. This may be obtained by integration of the
velocity of the trailing end of the element normal to the ground. The addition
of the velocity of the trailing end relative to the axle to the form in Eq. 2.
10-6 yields the desired quantity. Thus,

t
3= | Z, dt
'/t: ¢ (3.2-112)
where
/
0 ) |7 cos® -4 smy .0
=0 (") 7y 3+ (¥] +\Beos# | ABsiny ‘j,ﬂcosfz
] Y, ~siN# O cosw j,f[
+P. ) [1-cosy e
ey Pq +f{~Bcosy
7 Pa SIN¥

Finally, the ground force expressed in the body «cordinate system is
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Qqe P =¥ Bcosn 1 Aemz (W, ? G
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These forms are valid only until the element becomes horizontal, or parallel
to the ground. It has been assumed that the element rotates about an axle, th:
rotation being described by the angle # . If this angle is allowed to vary,
the forms above for ground forces will generally be valid until the axle height
becomes zero. It is suggested that when this occurs, the forces may then be
obtained by a form which assumes that the axle vertical velocity ic mero. This
is the form used in deriving the forces on s surface pad in the case of a rigid
ground, which should hold in the case of a ski or skid of large surface area.

If the element is actuaily cigidly aifixed to the gear, or the rotational
spring-damper is sufficiently strong, the element will not become parallel to
the ground and the above forms will remain valid.

3.2.5.5 Ges-Filled bags

Although this formulation of the landing impact problem does not describe
gas-filledbag inertial properties, the bag sud vehicle mass may be combined as
a single rigid body to describe the inertia. At present, the only analytical
work of any rigorous type has been restricte” to vertical alightment. Ref. 15
is an example of this type of effort. In the notation of this report, the
equation for vertical motion used there is

M 4/:’ = th (3.2-115)

The external forces considered in the reference are gravitational, atmospherical
drag, and ground force from the gas-filled bag. The latter ic given by

Q,e = -A(P-P,) (3.2-116)

wnere ° 1s the bag total pressure and Po is the atmospheric pressure. The
pressure variation in the bag is assumed adiabatic, for the case of no ~a:
bleeding, so that

_p ()"
P=P, \—V—l)

{3.2-117)
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Then for a cylindrical, non-bulging bag, the vclume is related linearly to the
body deflection after touchdown;

V=Y, ( "'""/ (3.7-118)

vhere h is the undeflected cylinder height and d is the deflection of the bag,
cbtained by integration Ofdﬁ from touchdown time.

Additional camplications in the form used for the pressure in the bag will
result if the bag shape varies or if a gas orifice is used. Likewise, the
contacting area may be a variable. These points are discussed in the reference.

It is pointed out that for stability requirements, a multiple bag system is usually
helpful.

Generally, then, it is necessary to define the variation in the bag shape,
contact area, and bag pressuwe in terms of the geometry of the bag, the bag
deflection, and some polytropic compression form. The simplest approach is to
assume that the bag shape remains constant. The contact area is then defined by
the geometry and the bag vertical deflection. If the bag shape varies with pres-
sure, the elastic properties of the bag muct be included.

If the gas bleeding orifice is controlled srch that the bag pressure remains
constant, then the form for the vertical force is fairly simple. If the rate of
bleeding does not produce this result, then the pressure variation must be
described in some manner in terms of the bag deflecticn and deflection rate. The
gas flow characteristics necessary to define the pressure variations will not be
written here.

Suppose a set of independently operating bags are located on a plane surface
on the vehicle. For small angles from the vertical, the restraining force from
each bag may be considered to be nearly parallel to the body 4 -axis; each is
given by

=-A ( p- po) (3.2-119)

after toucndown, and is zero beforehand. The vertical height of the vags defines
the touchdown times, as in the section on surfzce pods. The drag force on ench
bag is assumed to have components given by

D = A4 VG |?V<:l {3.2-220)
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Se=A Vg I_‘zl;l (3.2-121)

where /4 is thke coefficient of friction between the bag and the ground. Body
forces are then given by Equation 3.2-3% and body moments by Equation 3.2-37.
The instantaneous positions of the contacting points should be interpreted as
the positions of the center points of the bag ends. The deflection

of each bag would be the stroking deflection, and the lateral deflections Pax ,
P.*, may be derived from the drag forces and bag lateral spring rates. These
spring rates will probably be dependent on vertical detlection. The vertical
deflection of each bag will be found by integrating the velocity normal s wot
ground of the center point of the bag attachment area. The above statements
are sufficient to work a stability problem for landing on a set of gas-filled
bags, provided that the variation with 211 pavameters of the bag area and
pressure in Equation 3.2-116 arc defined.

3.3 APPLIED FORCES ON UOMPONENT RIGID BODY MOTION

3.3.1 General

The purpose of this section is to defire the upplied forces which enter
Equations 2.8-18, L0 for component rigid body motion for the particular cases
o1 gear piston stroking and bogie rotational motion. The forces are of two
types, ground forces and stroking forces.

For gear stroking, the total force along the piston axis is given by

Qg = Qg +Qygs (3.3-1)

w'nere& 'G is the component of the ground force along the stroking axis, and
3'5 is"the total stroking force.

For bogic rotaticn, the total moment is due to the ground forces and the
rotational damper forces. The ground forces are derived later. The damper
moment may be expressed by

N=N(z,7) /3.3-2)

where 7{ is the bogie rotational angle. The relation between this angle and

its time derivative to the actual damping mechanism is cconsidered briefly here.
If the damping mechanism is a stroking element affixed to the bogie elemont and
the gear piston, the exact relation will bte ron-linear . The gear coordinate axes

&




have beean translated

SPRING y
DAM nsn_\f/

to the bogie axle for convenience, The bogie is originally at an angle f[o from the
X -axis, defining the position of zere strcke for the rotational spring demper.
If the bogie rotates only through a small angle, the restraining moment is re-
lated to the spring damper force Fgp by

N‘—"’}‘SINﬁ FSD

The force may be derived from the paragraphs or springs and damping mechanisms by
replacing the element stroke by

L 7 (,Al" siN B X#- %)

for small. rotations. Hence
2 =4 SiN 3 ) f[

For larzge rotations, these expressions must be replaced by forms nonlinear in the
angle .

3.3.2 Ground Forces

The Equation 3.2-35 defines the force on the body due to interaction with
the ground of a single contacting element. This force may be transfarmed into
the gear coordinate system to yield the components needed for gesr stroking and
bogie rotation. The force on a single contacting element is written iu sie body
coordinate system as
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Q, D¢
8‘# = [PJ {SG (3.3-3)
¥ g \V

G,’z G',ﬂ

This is written in the gear coordinate system as

Q- ’ D
Qy =0 rKs;
Q. A
¢ “op ”

(3.3-k)

If there are several ccniacting elements on a single gear, this form is summed
over those elements;

Q , Dy
Qy =04 [r]§ S, 555
Q A

) 4

This form yields the ground forces in the gear coordinate system., The forces
Xem, G BTe used in the calculation of bogie moments, and the force
Q 3&. is usec? %o define the ground force for piston stroking.

3.3.3 Stroking Forces

The purpose ~f this peragraph is to define the stroking force Q 's This
force is the summation of «ll the forces on the piston, along the siroking axis,
except for ground forces. It is important to realize that the formulation is
sufficiently general that the effects of any !mown type of energy-absorbing
meckz:.ism may be included simply by defining the stroking rorce nroperly.

The remainder of Section 3.3 will be devoted vo the stroking forces.
Obviously, not all the various types of shock-absorbing devices can be consldered.
Those to be included are as follows. Paragraph 3.3.3.1 covers hydrauwlic forces.
Variations with oil compressibility, metering pins, and relief valves are included.
In Paragraph 3.3.3.2, springs of the mechanical, pneumatic, and liquid types are
considered. Paragraph 3.3.2.3 discusses bearing friction forces for u pacticular
configuration. The piston bottoming or restisiuing forces are defined in “aragraph
3.3.3.%. Crushable materials are discussed in Parsgiavh 3.3.3.5, and gas expulsion
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devices in Paragraph 3.3.3.6 complzte the types of stroking forces to be develop-
e in the report.

In order to write the reletionc Gefining these forses in compact form, the
displacement of the pistoi reiative to the cylinder will be used. This dis-
placement, referred to as stroke &ad given the symbol .& , is meacured from
the fully extended position and ig positive as the piston enters the cylinder.
The equation governing the piston motion is written in terms of the piston
displacement relative to the body coordinate system, A,’ , which is positive
along they’ -axis of the gear coordinate system. ILet tile point at which the
cylinder is affixed to the vehicie be labeled B , and its total displacement

Py . These three variables are then related by

4= "‘A,{ +]PB ¢ 'KI = -Az’ +P}'B (3.3-6)

This result indicates that stroking may occur due to elastic deformations in the
vehicle. This result must be used in all the forcing functions in this section,

if the vehicle is considered Lo be flexible. The stroking velocity may be obtained
by taking the time derivative of Equation 3.3-6.

3.3.3.1 Bydraulic force, F H

When the piston shown in the figure is displaced

with a velocity A , a pressure field is created in

the lower chamber wh.ch resists this motion. In a

rigorous definition of this pressure field, where

OR‘HCE——\NR consideration is given to viscosity and compressibility
L — of the fluid and the unsteady aspects of the flow,

one is faced with a formidable and in most cases

oI unsolvable formulation. Satisfactory definitions

of loads in the piston have been achieved, however,

l by semi-empirical meanc where the form for the

l pressure in the piston is defined by Bernoulli's
nrinciple for an ideal fluid. Neglecting the
static benl, the velocity of the Jet stream at
] & point outside the orifice at which the stream-
4 lines are parallel is given by:

~/02+2 _ZPQ.
V=2 T Pn T o (3.3-8) *

where

-4 = stroking velocity of the piston

P = pressure upstream of the orifice where the streamiines are parallel.
P, = pressure in the airchamber

,onz density of the fluid

»Equations on this goze misnunbered.
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In actual practice the velocity »/~ is never attained due to the dissipation of
energy in overcaming the resistance to flow. The ratio of the actual velocity

to the velocity given by the Bernouili's relation is defined by the coefficient
of velocity, Cy . Equating the rate at which the volume of fluld is displaced

by the piston to the rate at which it is discharged through the orifice,

Apt=A; Cyvr (3.3-9)

where Au is the hydraulic area of the piston, and A} is the area of the jet

stream at a point where the streamlines are parallel. Tue ratio of Aj. to the

orifice area Auis given by the coefficient of contraction, Cc. For twst

]éydraulic dampers, .4 is small compared to »¥° , and combining Egs. 3.3-7,
yields

2, 2 _ _
Auziz=z(C°C:) Ax_ (P-Pq) (5.5-10)

/A

The hydraulic force F“ is then given by:

=(P-P = ZLHH
Fu =(P a)AH 2( o Ax (3.3-11)

where the orifice coefficient Cp is the prodnet cof Cc, and C,v .

The value of the coefficient Cpis dependernt upon the size of the orifice,
the shape and finish of the orifice face, the kinematic viscosity of the fluid,
the velocity, and the motion in the fluid approaching the orifice which causes a
dependence on the length of the oil ~olum remaining in the strut. The relation-
ship between size, velocity and kinematic viscosity can be expressed as Reynold's
number. Thus, the value of tvhe orifice coefficient for a given orifice can then
be said to be dependent upon Reynold's number and piston stroke.

The results of an experimental study of orifice coefricients in a small
oleu~-preumatic strut with a constant orifice are contained in Ref. 15. This test
investigated the effect on orifice coefficient of variations of Reynold's number
in the range from 9,500 to 66,500, The results of the test were summeri.od by
an empirical relation between orifice coefficient, stroke and stroke velocity.
The variation between the minimum and maximum values of the coefficienl for the
tests ranged from 0.86 %o 0.93. The final conclusion from the experiment was that
an average value of nrifice coefficient could be used as a ccnstant %o Jotermine
strut loads.




Effect of 0il Compressibility

When the contact velocity of the strut is high (generally above 15 feet per
second), the compressibility cf the hydraulic oil and in certain cases ihe volumet-

217 Lo T mon Avane

ric expansion of bthe strut will have an effect on the load tTime history.
The following treatment of this effect has improved substantially the correlation
between analysis end drop test rasuits at Chance Vougnt.

The change in pressure dP in the fluid due to compressing the volume by
an amount v 1is given by

dP=Kgt (3.5-12)

where | would be an equivalent bulk modulus expressing both the compressibiliily
of the fluid and the elasticity of the strut. Since the vclume change ic small
compared o the total volume, the differentials can be replaced by finite
differences

AP = K-%\—/ (3.3-13)

The term Av is the difference between the volume swept by the hydraulic ares
and the volume expelled through the orifice:

d—\dz%\o-=AH,&—CD An v (3.3-14)
For a constant AH,

t
AV '—"-AHA’/CDAN/V-dt 13.3-15)
o

The volume V is the volume of the oil chamber at any time, hence

V=Vo - Ay 4 {7.3-16)

whereVo is the volume of the oil chamber when the strut is fully e:iended.
Thus, AP becoues
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~b
- - Aud _"/ CDAN wdt .
AP=K V°c “ Ao (3.3-17)

The term A [° represents the total change in precsure from timet=0 to time
1, 1"
t," so that

A-P- = ﬁ—‘ﬁ/’\o (5.3_18)

vhere P is the pressure in the c¢il chamber a.ng_.p;o is the initial air pressure.
The pressure AP is due to hydraulic pressure P“ and air pressure P, ;

AP =B, +P,-Py, (3.3-19)
thus the expression for ﬁn becomes

/c
oy Aulb A4 CoAn v dt = o
Py =K =* V, - Ay b = Pa+Pa, (3.5-20)

The velocity/Z/ is defined as the Bernoullisn velocity,

= 35: (3.3-21)

The hydraulic force Fu is given by

Fu=An Pn

Orifice and Relief Valve Combination

(3.3-22)

The relief valve operates on the principle that when the hydraulic pressure
reaches a predetermined value, a valve cracks, introducirg additicnal orifice
area. Theoretically, this method of controlling the load in the sirut is superior
to the metering pin approach since it funections from load level rether than stroke.
There are, however, sufficient design, qualificatiun and manufacturing difficulrie:




to detract from its theoretical superiority.

Writing a general expression for a hydraulic strut employing a relief
valve is difficult since designs vary widely. The following is offered as an
example to illustrate the concept. The gecmetry is depicted in Fig. 8.

The piston of area A“ strokes with a velocity _4 , metering fluid
through an orifice with area A, . When the pressure 'P, acting on the area A,
overcomes the downward force Fn.o on the valve due to the spring, the valve
moves upward, uncovering an area As(z,) . The pressure acting on the relief valve
before cracking is P" . The force required for cracking is therefore P“ A, .

Pa
~\
Az
o XAZI TXR
I
—"“A‘L— A4
;"-F-P-A
» A r@

Figure 8. Hydraulic Damper with Relief Valve.

The force acting on the valve Jue to the spring is given by

FrR =Fro +KrXn (3.3-23)
where Kp. is the spring rate of the relief valve spring.

If the compressibility of the fluid and the mass of the relief valve can
be neglected,
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2 —
5, =LaBAw 52 PuAr < Fr,

H=92C,2A,2 (3.3-24)
D, = /H Auz»a'z 7 i
& 2C92[A4+A5(xa)] 7 P Fro (3.3-25)

Ag () LT vatue =&,

where

=§H AZ_FR-:-

R Kn (3.5-26)

The hydraulic force FH is then

Fu = Au Py (3.3-27)

0il compressibility effects can be included in the same manner as discussed
previously.

Extension Stroke

In general the damping characteristics of a self-positioning strut made up
of a spring and hydraulic damper 1ii. series will be different during the extension
stroke than during compression. The extension characteristics are governed by
two reguirements: oil must be returned to lower chamber fairly rapidly for
another energy absorption cycle; and adequate damping must be provided to reduce
bottoming loads at the zero stroke position during rapid extension,

The energy available for the extension stroke is that storud in the gear
spring which may be pneumatic, liquid or mechanical.

The form for the hydraulic force is the same as for the compression stroke
except the -constants are different

_ /P Aus P
2(CoAn)?

Fu= {>.3-28)




where the parameters are

Apg = hydraulic area associated with the extension stroke
Cohp), = effective orifice area associated with the extension stroke

The relations £5r the hydraulic force previously derived are surmarized
below. The relation defining the stroke, .4, , from Eq. 3.3-6 shovid be kept in
mind.

Incompressible oil, metering pin

s 2
_/oﬂ AH?’A A’/ O
FH 2<CDAN)2 } (3.,-29)
3 o2
Fu=-— L P 2 A < () (3.3-30)

2(Co ANSSZ
Incompressible oil, relief valve
L ACAE 4 >0

) Z(C'D As) z Pu A > Frg (3.3-31)

Fu

uAa” 420

= . — (3.3-32)
2C02[A4+A3(x4)]2 Pu A2 Fr,

Fu

X = T A’z; Fao (3.3-33)

32
FH____/OH AHS A A‘} < O

Z(Co AN)sz

(3.3-34)




Compressible oil, metering pin 7

Fu= Px An

5 _, AwafC S5 |
Py = | —2 Vo__/"l;u"z:‘”dt—PnP” A >0 .33

~

= 2Py
: p
32
N Y. .
A Ral 4 <0 (3.3-36)

Z(CD A N) 52_

The parameter Ay is in each case the metering function, which may be a function
of stroke, and may be of a form for the return stroke different from that of the
compression stroke.

3.3.3.2 Spring forces

A spring is by definition an elastic body or device that returnc tc its
original shape after being distcrted. A spring when distorted will generate
a restoring force that is functionally related@ to the displacement of the spring
along a specified axis. If energy is dissipated during the distortion-recovery
cycle the functional relationship between restoring force and deflection will

be double valued, as shown below, where the shaded portion represents the energy
dissipated:

LOAD
Fg

DEFLECTION .4

The general expression for a spring exhibiting the above load-deflection
charecterisiic is given by

Fs =/s, (-2) 420
FS"fsz('d‘) & <0

Since the spring itself has inertia, the load-deflection chnracteristics
are dependent somewhat on the rate of loading of the spring. These effects,
in general, will be small for the anticipated applications of this report and

have net been corsidered,

(3.3-37)
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Three “.gypes of springs are considered in the succeeding paragraphs:
wmechanical, pneumetic, and liquid.

Mechanical Springs

Machanical springs occwr in almost endless variety, from simple helical
springs, which pussess linear loaa-deflection characteristics, to the acre
complicated Belleville and ring springs which exhibit non-linear characteristics
and significant energy dissipation. Mechanical springs lend themselves to
fairly accurate analytical description since they will be deformed, in general,
only in the elastic region of the material. Detailed formulas of spring load-
defiection characteristics, however, will not be derived in this report since
these relations are well documented in design manuals, texts and manufacturers'
literature.

For the purposes of this report it will be assumed vhat the force-deflect:ua
characteristics for a mechanical spring can be expressed as:

Fs = /s; (4) < 20
(3.3-38)

F 5 =fsz, (A'.) 4<0
For springs in which hysteresis is negligible /:,,-/.ze.nd the cycle is defined

by a single function.

Assuming the functional relation for Fs is known, 4 must still be ex~
pressed in terms of the variables of the analysic, as in Eg. 3.3-6.

Pneumatic Spring

A pneumatic spring is one that depends upon the compressibility of a gas
to generate a restoring force. The law governing the compressibility of a gas
in a closed container is given by

— h 5 /N
Paio Vo =P V = concrant (3.3-39)

Pao Pa
A

L] _

bt T et




where

Pao ~initial pressure in cylinder

Yo ~initial volume

Pa ~pressure 2t stroke "4

V ~volume &t stroke "A'": y - A,4

N ~exponent that indicetes the exact polytropic nature of the compression

AA ~pneumatic area

Substituting the relation for \/ 3nto the above equation the expression for P;
hecomes

— n
P = __"'—ITPAO Yo (3.3-40
A (VO‘AA"'>
and the force FA acting downward on the piston is
Fy = A (B -P

The atmospheric pressurePa 1way usually be neglected in couparison with the
cylinder pressure.

The value of the exponent rL to be used depends on how much heat is
transferred to and from the gas. If the compression or expansion takes place
rapidly, such that little heat is transferred from and to the gas, the process
can be assumed adiabatic and n, becomes the ratio of the specific heat of the
gas at constant pressure to the specific heat at constant volume. For dry air
n, = 1.406. If the compression or expansion process is such that the temper-
ature of the gas is unchanged (isothermal),fo=zl. In the general, polytropic
case, NU must be determined from an analysis of the thermodynemic process.

When the pneumatic spring discussed above is part of an oleo-pneumatic
strut, the thermodynamic process is further complicated by the cooling action and
vaporization of the oil spray. The net effect of this spray is to cause the
thermodynamic process to approach isothermal., Experiments to evaluate the
exponent v for an oleo-pneumatic strut, reported in Ref. 17, indicate an average
value of U=1,06 would adequately represent the compression process for the impacts
investigated. For most practical analyses it is sufficiently accurate to choose
o =1, for which case

ZIR (3.3-42)

O
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Here again the variable "4." must be written in terms of the variable of the
analysis, as given by Eq. 3.3-6.

Liquid Spring

In recent years a number of aircraft landing gears have been Gasigned
solely on hydraulic principles, where the function of the pneumatic spring is
replaced by compressing the hydraulic fluid. Usually some mechanical advantage
is involved between wheel stroke and shock absorber stroke since the liguid
spring-shock absorber is inherently a short stroke device. Two spring and
damper concepts were examined. Although these differ materially from a design
ond utility stendpoint, they both submit to the same analytical treatment.

A simple geometry for a liquid spring is picwured below. Initially, the
volume Vg to the left of the piston and the volume V7o to the right of the
piston are filled with a compressible £luid to some initial pressure. (The
mechanical stops are not pictured.)

; - —
wllm
|~A—‘ N ORIFICE

The force on the piston is made up of the hydraulic force resulting from
the difference in hydraulic pressure and area on either side of the orifice, the
frictional force resviting from the normal pressure of the seals, and a force

p which represents any other forces external to the liquid spring system.
The piston force Fp is therefore:

’ P,V

Fo=Fy +F, +Q,

Fu=FAp "Fé_ (AP"AR)
=AP(PI—P2_>+ARP?.

where Ap is the area of the piston and AR is the area of the rod.

The frictional force Fr will generally be a significaut contribution to
the net force in the piston due to the severe sealing requirements.

The analytical expressions for the normal forccs on the pistcn due to the

sealing pressure will be functions of the particular design. In general they
can be expressed as:
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FNU =fU(P1 JPZ.)
Fae =/L(P, ,P;:_>

The frictional force on the piston is then:

Fe =<"{u Fa +A40 Fm.) ﬁ

(3.3-55)
ror M Fy, A, B <Qau +Fy

and
Fi = -(QA + FH)
For 4y Ry * 4 Ry, >QA +Fy (3.5-44)

vhere 4y and /I are the iriction coefficients of the upper and lower seal
respectively.

The bulk moduli of oils used in liquid springs in general vary linearly
with pressure throughout the range of interest. Thus, in the two regions,

B =a+lP =V o

aVi
(3.3-b5)
v dP2
5= “*ﬂ":a =V, dV, (3.3-46)

Asuue. for the moment that the contribution to the change in total volume from
the cylinder and seal elasticity can be neglected. The instantaneous v~limes

of oil on either side of the piston are dependent on both stroke and the amount
of fluid which has been metered through the orifice. These will be given by
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Vi=Vio ~Ap 2 +Vy
\, =V *(Ap-Ag )2 =Vy
and their differentials by

dV‘ = —AP d5+dVM
de = (Ap 'AR)dA“dVM

(3.3-47)

(3.3-48)

(3.3-49)

(3.3-50)

The volume of 0il metered through the orifice is related to the orifice
coefficient Cp , the orifice area Au , and the velocity of the oil in

the orifice ./~ , by
dVy =Cp A, 7 dit

where the Bernoullian velocity,

is used. With these expressions, Eq. 3.3-35 beccmes

/wf'.
(Vg-Asa+ [ CoAywrdt)dP,

bp=
S A 4t Co Ayt

whick ..y be written as

- (G +‘2'PIX-AP'5'+CDAN”)
Vi =Ap 2+ /% Co Ayart
(]

(3.3-51)

(3.3-52)

(3.3-53)

(3.3-54)

A similar form may be developed from Eq. 3.3-46. The resulting expressions
which define the force acting on the piston rod are recapitulated bzalow.
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Liquid Spring, Rigid Cylinder and Seals

FP=AP(' 12)-r-\RP2_+FF*Q

b = (a+ﬁw,/\"Ap»0' CDA~4/'>
A Ap,a% CpA 7t

S = @+& Pz)[(Ap 'AR)A-CDAN /V‘] > (3.3-55)
2 Voo HAp-Ag)2 = *Cohn vdt

R}

J

The inclusion of the volumctric expansion of each region due to cylinder ex-
pansion and seal compression is quite complicated. The change in volume from
each of ‘these effects must be written in terms of the pressure and the piston
stroke. 1In terms of the geometrical volume change dV|c due to cylinder ex-
pansion in region one and dV,s due to compression of ary seal in region one,
and similar terms in region two, the atove relations may be restated as follows.

Liquid Spring, Elastic Cylinder and Seals

Fo =Ap(R-R)+AP +F +Qp

NVic ¢ P +aV|cA+BV1 SR]

b - @+ P J-Apd +CoAver + 3P JP,
! Vio=Ap 2 +/* CoAn v dlt
> (3.3-56)
oVacp | AV dVzs ¢
b (a+ﬂ2)1_(l-\p A)a-C A+ bp;z% b§A+b& P?-]
2

Voo+ (An-Ap) 2 / YC A 7dt

Thus, if the cylinder is considereu inelastic, the corresponding partial deriv-
atives may be se¢ equal to zero. Generally, each of the partial derivatives
will be a function of pressure, stroke, or both. The terms in ceal cowpraasion
are constant if the seals are compressed in the “incar range; otherwine they
will vary with pressure.
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The geometry of a particular liquid spring may be somewhat different from
that presentcd here, but the approach will remain the same. The metering
function AN is retained underneath the integral signs in the previous forms, as
it may very with stroke and hence implicitly with time. Relief valves for rapid
return strokes have not been included here. They may be incorporated by simply
stating that the pressures in the itwo regions are identical.

3.3.3.3 Bearing friction force, [,

When the piston strokes within the cylinder an amount of kinetic energy
will be dissipated by friction at the bearing surfaces between the piston and
the cylinder. The frictional force, opposing the motion of the piston, is ex-
pressed as

r =|:/{BL|F5L |+ 4y | Fau i+Fro]-,-f§:|- (3.3-57)

vhere

%u,FBL"'bearing forces at the upper and lower bearings respectively required
10 balance the lateral loading on the piston.
"'&l //u~coefficients of sliding friction at the upper und lower bearings
’ respectively.

Fgo ~r frictional force at zero lateral loading. This force is assumed to
be known.,

The bearing forces Féu and F,, are the reactions that put the piston in
equilibrium with the exiernal and Inertial forces in the piston.

Consider first the case wnen ine ineriia forces in the piston can be
neglected when aetermining bearing forces.

/ /
< lx’ <> lu(’
Faux' Fauy
1 4
Faux! _!iA Fouy B bt
de I”
Qi B
¥ Qye < A
Q?’G Q)IG
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From the equilibrium conditions on the pistos;
F’ Qx’q 'QP

BLX Iyt (3.3-58)

4,
= Yo, -
Faux Wxa (|7 g+
Q. L, + Ougd
s TG0 4 yG G
BLY lg + 4 (3.3-59)

dg )
Fouy = Qs (1-z+a) *+ @b
where 'ZE is the bearing separeticn at zero stroke.

The resultant bearing forces are therefere,

- 2 2

For = / Fae + oy (3. 3-60)
y .

FBu B v Esux’ + ' Buy {3.3-%2)
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The dimension dg is the length of the piston, lp » plus the tire radius, Id »
minus the tire deflection along the WK axis, Scoy&, or

d, =1p +TF ~ §cos X, (3.3-62)

where J and o< 5 are defined by Egquation 3.2-55.

In the general case when the inertial loads are to be considered, the panel
point loads on the piston are defined from the equation of motion of the piston

{Foxr 3= [Kyee J{Py )

(5.3-63)

{Foy 3= Dy 3P Y

(3.3-64)

where [K x_] E( Jare the stiffness matrices of the piston and {P

P# are the exastic displacements of the piston.
I-————-> dp
) —————o— ,
i/ l i 3 5 7 ) n-3 1Y K
] = —
2 4 ©c 4 8 n-2 n
A
g+
Faux’ Fau*/

Given the loads at tue above-indicated panel points the bearing forces are
determined from the equations of statics as before:

Faue *+ Fage = 0 Yo
FBLX' (KB +,4,) = {dP}I{FPX}

(3.3-65)

(3.3-66)

’

where{dp} is the distance of each panel point teo Fbux along K
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Thus

/ 7~ (A
o~ = {dp} [erx; ]ipxl }
o jB +4 (3.3-67)

and

/ / -
N (OVAYYLCI)ILRNICAD,
- fy 2 {%.%-58)

In vhe sawz manner,

_ {aeY Ky IB,°Y

FBL? . /ZB +4 (3.3-69)

13U v ) ) ko IR,

FBU?' B ja + (3.3-70)

The resultant bearing forces are again given by

i 2 >
FBL = J FBLX' + Fa:.g' (3.3-71)

~ 2 2
—3 + :
- ﬁBU;ﬂ' FBU:C (3.5-72)
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3.3.3.4 Brttoming force, FB

The piston of the hydraulic strut will be required to stay within certain
values of stroke, consistent with the construction of the strut. For strokes
less than zero the piston will conlact the lower bearing. TFor sirokes geeater
than 4 may the piston will contact some mechanical stop at the upper end of the
cylinder. To ensure that the piston stays within the required iange of stcokes

the following functions are introduced.

Fg =g & 4<0 (5.3-73)

Fg = Ky & & 2 & (3.5-T4)

where K » X are the spring rates of the upper and lower ends of the
cylinder. BL

The values of the spring rates are quite high, and may arbitrarily be assigned
such that the displacement past the mechanical stop is extremely small. Generally,
damping terms are included so that the piston will cease to oscillate from the
voliuwiug aad otroking spring forces. This is a mathematical artifice, and the
damper rates are arbitrary.

3.3.3.5 Crushable materials

The use of crushable materials in shock-micigating devices is fairly
recent. There 1is, however, a wide range of types of these devices. The design
of such a device will depend greatly on the vehicle mass and the limits to be
placed on its deceleration rate.

Almost all of the shock-absorbing mechanisms using crushable materials are
designed so that the force on the main component never exceeds a certain value
but remains very near that value throughout the gear stroke. This is possible
since the primary characteristic of most crushable materials is that of a constant
load-stroke curve. This generally holds until the volume of the material is
reduced to one-fifth of its initial velw., at which time the crushing character-
istics become nonlinear.

Some shock-absorbing devices must have the characteristic that the rate of
loading does not exceed a certain value, rather than the load itself. This is
accormplished by shaping the leading end of the device which renetrates the
materisl. Most of the crushable materials will exhibit a high onset force, which
quickly reduces to the constant force for which it is designed. This is the
reason for the shaping of the initially crushed surface or the device wh..i. does
the crushing.

It has beer assumed here that the crushable material is interior to a
stroking device. If it is a shaped piece of material simply afflixcd to +the
underside of a vehicle, the force should ve considered as an exterior applied
force on the body rather than an interior force upplied to an unspr.ing mass.




If the material is interior, the contribution would be positive;

. (fo A, 2 <0
- U’fo A/,Z >0 {(3.3-75)

and if it is exterior, the force is a ground force applied to the vehicle at
touchdown time ¢, , and is negative,

V = 0 t < tO
Qe -fo t >t° (5-3"76)

If it is exterior, the contribution to V., from ground flexibility is usually
negligible, The drag force would depend on the vertical load and a coefficient
of friction dependent on the surface area of the material on the ground.

3.3.3.6 Gas compression and relief valves

This paragraph is concerned with the energy absorption device which makes
use of gas compression and release through an orifice.

A device of this type is usually designed with a pressure-sensitive bleeding
mechanism. The orifice area opened by this inc'rument is designed such that the
interior pressure is maintained as constant as pussible. Consider the figure
below.

U
Tl L GAS PISTON
i

oy

The spring nolding the relief velve is preloaded so that a critical pressure

is required to open the valve. Prior to the opening of the valve, the
pressure inside the cylinder is found from the usual polytrcpic form in terms
of the initial pressure and volume;

v o n
PV =RV, (3.3-77)

The volume of the gas during this interval is linearly related to the stroke,so
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that

- 2\ "
P=F, U"]‘) (3.3-18)

In terms of the area Av of the valve prior to opening and the spring preloading
force § , the critical pressure at which the valve will open is

P =A,f

(3.3-79)
The corresponding critical stroke is
1
P o
e = ,Z I- (’ﬁg') n .
c/ | (3.3-80)

After the relief valve is opened, it is assumed that the area of the opening may
vary sufficiently rapidly that the cylinder pressure remains at the critical value.
The force on the piston is then

_[Ar (- @ &
F=4aA P. <4 > 2, (3.3-81)

in terms of the area A of the piston.

The assumption has been made that the piston stroking velocity is suffi-
ciently low that the pressure is uniform throughout the cylinder.

3.4 EIASTIC BODY FORCES

3.4.1 General

The forces and internal reactions giving rise to elastic deformations in the
vehicle are discussed in this paragraph. Perhaps the most difficult point to
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understand in the formulation of the equations of motion for an elastic body is
in this area. Several different concepts may be used in the interpretation of
the panel point equations. These concepts vary according to the mamner in which
the internal reactions in tke vehicie are entered into the eguations governing
component elastic motiuns. The reactions may be entered entirely as constraints
on the elastic motions, or they may be entered partially as aprlied loeds. The
former of these methods is perhaps the most straightforward. It does not, how-
ever, lend itself readily to approximate solutions, as the transformation to
modal coordinates is not easily accomplished with that method. The latter will
then be used. The method will be elaborated here, with several examples which

exhibit the concepts.

Consider a wing attached in a cantilevered manner to a fuselage; that is,
it does not rotate relative to the fuselage. The reactions at the wing rost
which hold the wing to the 1uselage are not considered to be applied forces or
constraints on the wing. Their effect is entered into the stiffness matrix for
the wing, so that the stiffness matrix is that of a cantilevered wing. Thus, the
equations defining the wing modal coordinates in the paragraph on modal trans-
formations will then produce cantilevered mode shapes for the wing. Consider
the symbolic form tor the wing panel point equations;

(A JCE D + [k, IR, 3=€8, 2 (5.3

where the stiffness matrix is that of a cantilevered wing, and the right-hand
side includes both the applied forces and terms coupling rigid body motion and
elastic motion. There are no constraints on the wing. If the fuselage elastic
displecements arc set equal to zero, the wing total displacement becomes the
wing elastic displacement, and the left-hand side of the equation becomes the
form which defines the wing modal coordinates. The equation defining the wing
panel point total displacements is

{F;v ) ={sz }*'ETM- ]{PF ); (3.4-2)

The matrix[ThF] relaces the displacements of the wing panel points - with

the wing considered as a rigid body - due to displacements of the fuselage

panel points. This matrix then picks out only the fuselage panel points located
at the wing root, and geometrically defines the wing displacements due to
fuselarge displacements. The displacements of a rigid body are completely
defined by the displacements of any three points in the body, so ithat three
panel points at the wing root are sufficiept for the general case.

This geometric relationship has a useful property. Suppose Eq. 3.h4-2 is

substituted into Eqe 5.4-1, and the latter is premultiplied by the traansform
of the matrix rTWF . Rearrangement produces

ETWF]tKwJ{Pwe}=|3’w3/@w}*@d(5f R 9 R
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The latier term on the right-hard side is just the inertial load on the fuselage
panel. points at the wing root due to their acceleration of the "rigid" wing. The
other terms on the right-kand side arc loads on those panel points due to wing
elastic accelerations and wing externally applied forces. Consider the symbolic
form for the fuselage elasiic motion;

(AJEY IR Y=, (5.4-4)

where again the right-hand side includes applied forces and forces due to coup-
ling of the rigid body. and fuselage elastic motions. One of the applied forces
on the fuselage elastic motion is at the wing root. This force is represented
in the colum matrix form by either side cf Eq. 3.%~3. fThen Eq. 3.4l may be
written

B IR =(Q G, T, -, X e})(
3.4-5)
T 10, 10, 3B

where the starred (¥*) guantity does nct include the wing root applied forces,
and the right-hand side of Eq. 3.4-3 has been used. The reason that the left
side was not used is now obvious, for transposition of +the last term on the right
to the left-hand side introduces the inertial effects of the "rigid" wing into
the total mass matrix needed in the definition of the fuselage modes from

Eq. 2.9-12;

(A)=[Ad+2 [T F][A ][ B L REREE (3.4-6)

In a like marner, the applied forces on the fuselage panel points from the
ve.~ious appended components may be evaluated. Thus, it is seen in this example
that the wing root forces are ap~lied forces on the fuselage elastic motion, but
their effect on the wing elastic _iotion is included in the definition of the
wing stiffness matrix.

This approacn will normally be used throughout the analysis; the reaction
forces are applied forces on the more central component and are included in the
stiffness matrix for the more remote component. Thus, for a gear affixed to a
wing, the trunnion loads are applied forces on the wing elactic motion, but
their wffect on the gear is included in the gear stiffness matrix. It is
apparent that if a chain of components affixed to one another are all elastic,
this may become a lengthy process.

In Section % it is pointed out that, for practical applications, some of
the components would be considered to te rigid. Suppose that for a particular
application, the furelage may be considered to be rigid. There wouid -hea be
no fuselage pancl point displacements. Consider an element which is pin-~:pported
to the fuselage, and has a pin-supported strut connected to the fuselage. This
configuration is pictured below.
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ELEMENT

N\PINNED _—"

FUSELAGE JOINTS

STRUT

Assume that the strut is rigid, and that the fuselage 1s rigid. The elastic
motion of the element is defined by its distributed stiffness properties an.
the two restraints. ¥For this geometry, the elastic deflection of the element
must be zero at the two support points. This effect will be included in the
stiffness matrix of the element; the stiffness matrix is that of an element
simply supported at two points. In this case there are no applied loads on
fuselage elastic motion.

Let the fuselage now be elastic, so that the support points may move.
The strut is still assumed to be rigid. The motion of the panel points on
the fuselage where the element is supported obviously determines the displace-
ment of the element as a rigid body. Thus, the problem becomes exactly the same
in concept as the first case of a Yuselage with cantllevered wing. The stiff-
ness matrices of this element and of the wing differ due to the change in support
methods, and the geometric relations involved 'n the matrix [TWF] are different
from those in this case. The applied forces on the fuselage panel points are
found in the identical manner.

These examples show the manner in which the internal reactions will be
handled. Cases have been discussed in which both components are elastic, and
in vhich one component is rigid. If both components are assumed to be rigid,
but are attached to a third elastic component, the same methods apply in
obtaining applied forces on the elastic component. The panel point elastic
displacements of the components assumed to be rigid are simply set equal to
zero. The proper geometric properties are then used to enter the applied forces
on the elastic component due vo the inertia of, and applied rforces on, the
rigid components.,

An example of the general method is shown for the simplified geometry
below. The horizontal beam is simply supported at two points, and the vertical
beaw .o cantilecvered to the horizontal beam. Motion is considercd only in the
plane of the page, and each beam is assumed to be incomprecsidble.
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The horizontal (H) beam msy have elastic displacements parallel to the %y axis.
The vertical (V) beam may have elastic displacements persllel to the 3¢ axis,
and motion as a rigid body parallel to both axes due tn» elastic displacemenis

of the horizontal beam. The total displacements on the vertical beam are

e\)
CR TR

Iy

Assume that the interpolation scheme used to calculate the mass matrices is the
trapezoidal scheme; i.e., the displacement betwveen punel points is a straight
line ending at the panel point dispiacements. The panel points labeled , R+
on the horizontal beam then determine entirely the motion of the vertical beam
as a rigid body. The displacements of the panel points on the vertical beam
are then geometrically related to those of the panel points ,'é ; £+ | by the
matrix [Tvu]: wbich yields Eq. 3.4-8. It is assumed that these two points are
spaced a distanced/z to either side of the connection point. The distances

% 2; yrcce % are measured from the connection point down to each
panel p ﬂt on the vertical ‘beam,
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The stiffness matrix for the horizontal veam is that of a beam simply
supported at two points. The stiffness matrix for the verticel beem is that
of a beam cantilevered at one end. The motion of the entire system as a rigid
body dces not occur due to the fixed simple suports on the horizontal beam.
The corresponding rigid body coupling terms from the panel point Egs. 2.8-5 may
then be omitted. No constiraints are formally entered into the motion, so that
the resulting panel point equations may be written as

(A 30, (650,000, (5.4
(Ax] {P’C} [ @xxJ{sz}} = Q. GRS
[A33] v {P%}}+ L Ry v {Q}} v

The quantity {R} is discussed in a moment. For simplicity, assume that the
only external applied forces on the system occur at the bottom panel point on
the vertvical beam. Iet this force have the components Fx , F}, . The applied
force on the vertical beam is then

N

o

0
Q30 Q3,0 G
Fx U:i J
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The spplied force on the horizontal beam is due only to the vertical beam

connection. This is given by
Y — ’/ {Q }\| [A \
Q= Tvu = Tv,, - 5.4-12
RSN GRIN el By if 1 (51022

The quantity {R}is seen to be the difference in the applied force and mertial
reaction of the vertical beam along its axis. This quantity cannot be determined
from stiffness properties, as it was assumed that the beam is rigid along the
axis. The stiffness in that direction is then infinite, but the elastic
deformation is zero, and the product is indeterminant. Thus, {R} is found

in terms of the applied forces and inertial reactions.

The first term on the right-hand side of Eq. 3.4~12 is easily evaluated;

i 3

N\ _ | 2./ d)
Ml )™ s

> (3.%-13)

O"'OR-W K‘T’ Seee O
+
<
Ny

This form enters the effect of the appriied forces on the vertical beam into the
horizontal beam panel points s A+1 in the proper manner. The other term on
the right-hand side of Eq. 3.4-12 essentially subtracts the inertial effects of
the vertical beam from the effects of the applied forces on the vertical beam.
In that term, the Eq. 3.L4-7 will be substituted. The two resulting terms are

(el G e B .
ETVHJ [A”,] {0} [Tv*il [A”] [TVH] {P } £5.-1k)

The latter will be transposed to the left-band side of Eq. 3+%-G and incluied
with the first term there. This term enters the inertial effects of the vertirgl
beanm as a rigid body into the proper place in the muss matrix of the hirizontal
beam. The remaining term enters the inertial effecis of the lateral el.astic




motion of &the vertical beam as applied forces on the panel pointsj » ,[+l .
The equations of motion are then

(CU | [ T 0 KR R
( )

Oeee O

(o) A, + F,
—(701/ d)Fx + yz%

T

]
.

i / [_Axx:l, 1 /'{ f‘sxz}
" Ayl L

\'

Creeo o D

(0

. ¢ .
[Axx]v{Px }V + [Kxx]v {Px. }V = 6 (3.4-16)
F‘X

‘The equation governing motion of the vertical beam parallel to the 7-axis could
be included, but no additional information is ohtained. This motion is defined
entirely by the matrix [Tv“] and the displacements of the panel points _42 ’
A+ . If this is kept in mind, the equation may be omitted. The form of

Eq. 3.4-15 is now proper for the transformation to modal coordinates, as the
mass matrix includ2s the rigid body inertia of the vertical beam. The Eq. 3.h4-16
is in the proper form when the total displacement is expanded according to

eq 3.”‘"7-

This completes the discussion of the applied forces on compinent motions.
The forces on the whole vehicle, which were discussed in Peragraph 3.2, must be
distributed to the various panel points. This process will not be disc zved
here, as it depends only on the particular configuration. Several examples in
the next section exhibit this process.

Two types of applied forres on panel point elastic motion are explicitly
written next. One is the aerodynamic force on & wing due to changes +in the
local surface angle of attack caused by wing clastic deformations. The ¢ ther
is the structural damping force, which is physiczlly not an external force, but
is considered to be as a ccnvenience,
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2.4.2 Parel Point Aerodynamic Forces

The contrivution to individual panel point loads here will be considered
only on airplane wings, and only that contribution due to elastic motions. The
body and wing % 8xes will be assumed coincident, ‘fhe pressure distribution due
to elastic deformations is

er , ., _ ;1 | ’ e

P (x,?,,t) = LR(x,%,t)'*'Z; L, (x,%,t) (3.4-17)

vhere
dCp(xly) Py {xg\t
Lﬂ(x',tj,',t)z-li//lfz az((x #) %i/% ) (3.4-18)
.2 3Cp(xTy) -

L, &y, t) =5 o _c)pa%t Py (x:/'j’,t) (3.5-19)

and

/P = atmospheric density

/2 = veloeity of the vehicle relative to the atmosphere
o< = airplane angle of attack

Cp = local pressure coefficient

The virtual work entailed in a change of dispiacement SP'}' is

Cr st 4,7
W Z;iz(x,},t) 5P3' d"d'j' (3.4-20)

where the integration is over both wings.

This may be written in terms of an interpolation scheme as

w={3 P;'}w,"f/' v [Lal{P;}v*lﬁf‘Eﬂew{'é;'}w> oo
’ )

+{X Pj}wz 5/ Z(E_R]WEP};}Q % E'c: {D;} j
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Panel point loads for either wing are then

{Q; et el # LS (3.4-22

It has been assumed thrt{cx-‘}and{Q,jA are unchanged from their rigid values.

The contributions to body forces and moments from these panel point forces are

Q3A€ ={'}/{03':}w, +{| }/ {Q3: }wz (5.4-23)
¢ ={"}/ M{Q 'Ae}w * {LD, Wz@}"f }wz (5424
¢ ={x},w.i9m St &3, { (5.4-25)

These may be of significant value for large wings with considerable bending.

The inclusion of contributions from tails or uiher surfaces may be per-
formed in a similar manner but wilil not have any first-order effect on landing
loads.

3.4.3 Structural Damping

Damping in a built-up structure is not a problem to be approached analytically.
The results of damping are easily incorporated for systems of defined normal
modes, however,

In the test laboratory, the definition of a mnde of vibration includes the
requirement that the shape of the deformation remain constant as the amplitude

decreases to zero. This may be used to define a damping parameter in the modal
equations. Consider the equation

[A] {P.} +[:K~:|{P} ={O} (3.14-26)

whers »-.,,] is the stiffness matrix which defincs the normsl modes of vibration.
The transformation to normalized modal coordinates yields

[ 'J{%’} +E‘;T;l{%’} ={0> (3.4-27)

a scparated set of equations. The frequercy of the undamped motion defined by
each equation iswr-{-'_; ; the equation governing tha®t coordinate is
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ZB., + w 2(b/ =0 (3.4-28)

Suppose that (amping were included in some manner such that

[AJCPY + [D]{PY +[K J{PY ={0} (5.5-29

If transformation to the (normalized) normal modes is made, the equation becomes

G y+[0I0I0IG > +C I =(0) (5.4.30

The requirement that the shape of the deformation remain unchanged as the motion
dies out requires that thic equations for the modal coordinates be uncouplied even
with damping, which means that

(o) [o]0e] =[] (5050

vwhere the elements are the modal damping coeff::ients. These elements may
be assigned values in terms of critical damping, but are not derivable from basic
properties of the structure in most cases. Consider the equation

. . 2
%, + d%,-l-w %,7-0 (3.4-32)

where @) is the frequency of vibration of the mode corresponding to %/ for the
undamped structure. If the substitution

—%t
§=e f(8) (3.4-33)

is made, the equation for f(t) is

f+ (w?- dz/4))° =0 (3.m54)

The solution is harmonic, of frequency

/ )
w'=/w? - d/4 (3.4-35)
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Critical damping is defined as that velue for which W= 0 , that is,
d,= 2w (3.4-36)
If the fraction of critical damping for the mode is I w » Or

d=Ju d, (3.4-37)

and ifxw <], the frequency of the damped motion is very nearly that of the
undamped motion. Thus the damping term may be written

d=2w Xy (5.4-38)

For many applicaticns, tie fraction of critical damping of the basic or
fundarental mode of vibration may be taken as ten percent.

3.5 CONSTRAINTS

The reader whe has progressed through the contents of the report to this
point is well aware of the important part the concept of constraints may have
in the formulation of a complex problem., The purpose here is to discuss the
general concept of a constraint and to present some examples which may aid the
reader.

In the formulation of a complex problem, it is often quite difficult to
retain compactness and at the same time chccse a set of independent variables
which completely define the motion. It is more often convenient to choose a
set of variables which least complicate the enitire problem and use the method
of constraints to eliminate the dependencies which have been included. There
are also, in some cases, problems in which the applied forces corresponding to
the independent veriables cannot ue defined, but may be found as constraint
forces using a set of dependent variables. These concepts are discussed in
Ref. 1. In that reference, it is shown that ‘the constraints must be of
a particular form in order that they may be handled by the methods presented
here.

On the right-hand side of Eq. 2.8-5 is a set of terms
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The functionsFj are the constraint relations; they are algebraic relations
between some of the panel point displacements. These algebraic relations must
be of g particular form. They must relate only the veriables aiready 3defin: 3
in the set of equations of motion; they cannot introduce new variables. They
must be written as

B

Fo (P Pt P t) =0 (3.5-2)

where ‘é ,] 5 **** 4 indicate the particular panel point displacements that are
not independent. Note that this form does not include inequalities.

The elements 07 in Eq. 3.5-1 are called Lagrange's undetermined multipliers.
They are the factors®which convert each partial derivative into a constraint
force consistent with the constraint relations. These elements are determined
only by solution of the equations of motion, and they are generally complicated
functions of the panel point motion throughout the system. They may, however,
be eliminated before solving the equations for many cases of interest in this
report.

A simple problem to illustrate the consiraint concept is pictured in
Fig. 9. .

e 7 8 5 5 7 =)
| o o o o 3 .ﬂ' [ o ¢ 0 o ]

Fig. 9. AConstraint Example
In the left part, two beams are simply supported at two points. Each beanm is

assigned four panel points, and each beam is then allowed four degree: ¢f iree-
dom for elastic motion. The equations or moticz &re
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(41, (P, + K £PY, =4Q), (359

(A3, Py (K (PY, = Q) (2 54

vwhere
i R
- P = p‘ Iz c_o
Pt 0 PY={R 35
%) 7,

There are eight degrces of freedom altogether. Suppose now s rigid, weightless
bar is connected between the Leams at panel points three and seven.

These two
panel points are now constrained to move together or have the same displacements.
This constraint relation is written as

= - = (3.5-6)
F, P, =P, =0

which is of the general form of Eq. 3.5-2. The partial derivatives of this
constraint relation with respect to the panel point displacements are

r N ) (e Y ()

oF, 0 oF,: 0

aa b%

oF 0 oF, 0

agg 4 43Q>_<

= = (3.5-7)
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The Eqs. 3.5-3, 4 are then no longer valid; the constraint term must be added.
The equations of motion which must be solved simultaneously for the coupled
elastic motion are then

(oo ) S ) )

P,

P, 0 Q
24 P 0 Q
2\ a[k] {2 y=( e (3.5-8)
BRI AR
LB'JQ L.P4J LOJ @4.)
(e ) e r Y
5 Ps 01 ng
P ci{, )Q (3.5-9)
Al . )4 e h= e
B i 0 <y 174, ,JuQ?
Fa Fe) L0 Q)
K -P =0 (3.5-10)

There are now the eight panel point displacements and one Lagrangian undetermined
mltiplier or nine unkrown variables and nine equations of motion. On the right-
hand side are the eight panel point applied forces and the constraint forces at
panel points three and seven which cause those panel points to move together.

The reader whose experience with these concepts is limited should now
examine in detail the Sections 2.8, 9 in order to obtain some working knowledge
on the subject. The section or. comgunent rigild body motion alorg a line follows
directly from the sim)le example, except that the number of constraints involved
is large. Fortunately, in that and the following cases of use of the constraint
methods, the undetermined multipiiers may be eliminated. The constraint forces
for each case are simply the forces necessary to hold the component together to
move &5 i. rigid body under the applied and inertial forces.
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APPENDIX A

DERIVATION OF TE KINETIC ENERGY

The details of the derivation of the kinetic energy as presented in
Section 2 are written here. Several vector and ratrix identities wre establisied
for later use.

A vector in three-space may be written in matrix form as

a.) (i a\' A,
A= Ag- J )= J A% {2-1)
Ag) LK IKJ A,
A scalar product is then written as /
/
A (i a Ix\
AB={A,) {J ) J
4
Al ¥ } IK [BJ
AY (88 89 B-K] (B,
=AY | 99 UK { By
A IKE K- K-K| |8,
3 177 n2)
FoN 1 ( i
Axl | 0 0 B.,
= A%[ 0 b0 | By
LAW"LO 0 1 J B
(A (e,
127}125
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In the same manner, the vector product is written as

{ A } ( 3) {B
AxB = B (A-3)
JAFIRFIAR
{Ax}’ { IK ‘
= A?
A -8 0J

i

and the triple scalar product as

ALY (3Y (B0 K-I)(D
/A-\B*lD-'-{A?}{J}'{Bg “k 0 B0y
A? K B,), -3 0J\D

0 K

?
B
B
B

A "[Bxk - Byl + B K-J37 (0,
: <A, BxJ - Byd - Byd-|[-K 0 ¢ Dy
A,) UBxK + BylK « ByK-JLI-F 0JRD, ) (a-t)

Ax tf 0 - B? B‘t ] er
- { L}} B’j 0 - Bx } D,7
A. B B )

7 q *

A coordinate transformation may de wrivten in this munnes:
3 5
- []
Jr={r] ¢
!
K K
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Then

SR} (B R i 1K)

ri=(J -(J'r J-i" JJ IK (a-5)
K-8 K-J' K-KK.

The elements of the latter matrix may be recognized as the direction cosines of
the unit vectors of one coordinate system in the other system. One may then write

A A A
= [r] {A ? 6
Az “p-

With these identities, the kinetic energy from Eq. 2.6-9 may be put in matrix form.
Bezinning with

1
; m Y (wr, -
= A-T
Ve 0\
[/'3 N,

¥ L

and noting that fdev= M , the total mass, the first term becomes

| a2 _ | J 1
7{& J-vf’dv '?'_' /lf ? (A-8)

3 7

In the =econd term, the identity
[
(2.x L) =(Lxa)-(Lxa) (4-9)

may be written using Eqs. A-2,4 as




2 () [0 -% 4 I|-0 Y Y| (Gx)
(axi) = Q017 0-X 7 o- n?>
.(‘13) 'y x OJtby x 0J Q?)
.. / r(q.""'g") Xy xay | (Q (2-10)
= .Q.? -xg (x*+3) -43 .0.3
.0.3 [ -xy  -y3 (xtryt)] .(1;

The coordinate system of the body is defined as the principal axis of inertia
system, so that the off-diagonal elements integrate to zero, and the second term
becomes

Q) [Tyx 0,
‘Q't I77 n% (a-11)

fg Iy 4\

In the remaining terms of the kinetic energy, the displacement vector of the
elemental volume occurs. If these terms sve to be evaluated, some scheme must
be devised by which the continuous displacements may be represented by the
displacements of the discrete set of panel points. This is accomplished by a
numerical procedure known as an interpolation scheme. Interpolation schemes re-
late the displacements in the regions between the panel points to the panel point
displacements, Consider the next term in the kinelic energy. It may be written
as

i e 2 | ﬁitl I ﬁjd
—Z.-J [Pv. rdV = zj Py f.,' 74V (2-22)
V( VI ? , ® ,
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since

P :

Pﬁ,}. r] [¥]. ip j (A-13)

[ (), = 04 (A-14)

In terms of some interpolation scheme, each component of the continuous dis-
placement (or velocity) is related to the values at the panel points. Thus,

Jv Pav=E.Y Do &) (A-15)

1

—
WO KO
JO Q‘U
,..‘:-'V"""J

~{°

and

The resulting form is simply a quadratic expansion in the panel point velocities.
The values of the elements in the mess matrix [,’t,x' x‘] will depend on the inter-
polation scheme used, which in turs dictates the accuracy of the representation
of the continuous system. The third term in the expansion of the kinetic energy

. &) b &)
.;._.LL[Pi Pav =3 (&) fAﬁ] & o
{p } ;3]% <P}

In the remaining terms, the subscript i is omitted until the final form for the
kinetic energy is tvritten, it being wunderstood that all elements must be written
in the proper coordinate system.

In the fourth term,

nx'[(P;»fP;) “B P BB ()

1

(*P) = .f).er -B, P% (P:+P;) -P P; ﬂ%} (A-17)
?

- - 1. n
Q, L PP Py B (PR ) L0

4

From the properties of a similarity transformation {see Ref. 1), this may be
written




QY [ReP) -R.Ry -P.P g
{on r‘\\"= fnxl {u]{ _#n P? (lega') _.x 7 Y * -
WA P YL?I i) "R Ty P Pg;f'} \ J[d"] 'Q‘j( (4-18)
0. L-B.B, -B.p, (P +P)) Lol
3 b ¢ '3 t F

This may be verified by direct expansion. Finally,
i L

-1 x V4 =

Z vi (.W. [P) dv
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- A ](P %
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{7y >[A,3 1(?,}
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o
Thus, since the gquadratic form expressed in Eq. A-18 has coupling terms between
the components of the displacement, the form in Eq. A-19 will have mass matrices
with the subscripts indicating the coupling. These mass matrices will differ from
those on the main aiagonal in general, due to the variation in mess density, panel
point spacings, and possible variations in the interpolation schemes used in the
various directions in the component coordinate system.

2

(A-19)

The fifth term may be written in either of two forms:

R-xP = -0 -RxP (A-20)
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Defining

[0 N, -0, )
_ 7 ¥
()= ".(7.3 0 N (A-21)
L..ﬂ.,j_ 1, 0
[0 N, ]
[’V] = 'N}, 0 V. {4-22)
MT# N, 0 3
then
Ny ! px ,'Qx I Px
s AR A L S
N} Py 7 2 -23

wa R-f. 0 xPPay =

 (my {{o\ \ )
—{Ar,}[n][x] 0 las], (g 7} (aat)
/U'3 l_ {l} i {Af] {P7' >‘

iUy

2y ' "{‘}\, [A :c']\ {Px’ } \
{nz,}wnr], 03 ng | {0

o, L L ‘[A,f] (P )]

The new type of mass matrix introduced here arises from forus of the type

- }
~
r—\'
>
X,
Seuend

e
e~

"

Joi P PV = 1Y [ (R =

The same interpolation scheme as in Eq. A-15 would be used to obtain “his result,
but the elements of the ~ingle subscript type o2 mass matrix will in geunecal be
different from those of the double subscript typc. The following chorthand
notation has been adapted:
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0 @ o o
{o) {1} {o}J‘ l

¢ > (a-26)
|40y <o} (1)

i

The sizes of the indicated column vectors are dictated by the number of panel
points whose displacements are indicated in the adjacent matrices.

The sixth term is

O Ky Tl (el
}m

N
R- PPdv=(n, {} [A ] {P)
jw {/U; l \{‘} [A ] T '{} (a-27)

in the seventh term,

axY fo -¢ y (P,
Nl xP=Cy )2 ]l3 0 -x P«{ (a-28)
Ly "y X 0 f’7:

and

.m.-] Lxibrdy =
vt

ny [ OF -0 @l
{ }[X‘] (l} [}A ] {0} "{l) ["- A,’ {p'a } (A-29)
SOV A YA o) R

The mass matrices containing components of the position vector U. insid. che
matrix brackets <to the left of the mass matrix symbol arise from integrations
of the form

[vi. 2! i?’xff’dv = {'}l [?A-x'] {f’x’}

ﬂ g
4

(A“)n\




In the limit as the number of panel points becomes large, and the interpolation
scheme becomes increasingly accurate,

Y Al —= o ({80 (831

where the column matrix (@' indicates the positions of the panel points in the
component coordinate system, along the 3' -axis. Although the original forms
will be retsined in defining the kinetic energy, the equations of motion will be
derived using the approximation that Eq. A-31 is #rue without reservations.

Likewise the eighth term is

_q;_-[virPdov =

(a-32)

) [0 i) 0 ) 5
LIRS of (e I ] 7y
ﬂ7 {P>[A,,g] (Slhe) {0} {P )

(@ xL) - (@ xP)=(LxP)- (Pxa)

0, [0 -3 &[0 -B P o,
B2 0 -x||py 0 P, [¥)' a,

o) Ly x oJlbr peoo a, (#-33)

so that
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flsi)-(aP)rav =

0y [10¥ A4 - (Y andee )
{n }[r] -{l) [u J{#, )
3 {'} [I‘A ]{ }

-(t}[qAxJ {P, } (a-3)
[0F (ead{p 40X oA, Iy )
=17 [wAy ) {7y )

"{‘} A Ped 1 'I xg
= Ay 1y ) F<a.,
({13 fen A Lo +fn>m4]{ r)]  lag)

fQ

o

Each of these terms is written for t -th component and the sum of these is the

kinetic energy.
i =1ltot=0N.

These terms are collected nexit. The swmation on t goes from

Instead of distributing subscripts throughout, the entire set
of terms to be summed over is indexed. The index will fall on all elements except

the rigid body velocities.
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The desired form for the kinetic energy is written in Eq. A-35. It will
be substituted into the modified set of Lagrange's equations, which are derived
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7 ¥
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APPENDIX B

TRANSFORMATION TO THE MODIFIED FORM OF LAGRANGE'S EQUATICNS

The details of “he derivation of the modified form of Lagrange's equations

as presented in Section 2 are written here.

Lagrange's equations are first written as

%) (%] [ox b
5{‘%’"<3‘9>=<®Y>+Z%<§§i> (2-2)
j‘%%%%%ﬁmm;%gg% .

oL | oL | iy 2F;

¢ ¢) U) 2% )

o) (&) ) (e
4 (G ) Lo D)
\5) &) &) © 63

.
-
l—.l”‘,on

(B-3)

where (X, Y, 2), (¥7,6,4 ), ({Pf},{P }KP?’}) and their time derivatives com-
pletely specify the position and velovity of' zvery particle in the system relative
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to the inertial frame of reference. The Lagrangian, L =T - U, is expressed in
terms of the bcdy linear and angular velccitics, {45, ,/44 ,/”;) and (Q.x,o e ),
and the panel point displacements and velocities. These’aré not a suitable ?et
of variables for use in the ordinary form of Lagrange's equations, as they do not
specify the motion relative to an inertial frame of reference. The tas. R-1,

2,3 are valid, however, and may be transformed so that all operations in the
equations act on the variables used to define the Lagrangian.

The transformation matrices [I7] and [R] and the matrices [{}] and [&7]
may be recalled from Egs. 2.7-%, 5, 11, 12. Their use as a brief notation is
valuable here,

The first operation indicated in Eq. B-1 may be transformed by uso ot i'ie
chain rule for differentiation in calculus and the definition of the matrix {_:"] ;

rj._\ a/&:. 3_4/’} am'_“r‘-a\ ’a ~
3| o ax’ o EY 247,
D\ (o aw, 2w.l|) 3 \_r~1)_2 :
390715 3¢ 37 <a/z@ HPMaﬂfg ) &Y
9| |24 2y 34512 2
QZ) [0Z oz 37 o1 | \a/z/é
so that
”ﬂ\ faT N
X o,
AT \_ o lar_
<a\'( g— l_rl:] <aﬁg g (B-5)

‘L
N
L\
W
=

\3/1/3' J
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Since th. kinetic energy is independent of the inertial displacements (X, Y, Z), .then

(B-6)

Qs
_.{
et
[}
o

oz) .

If no kinematic constraints are imposed on the "rigid-body" motion of the vehicle,
then (X, Y, Z) are independent coordinstes, end

- Y

0

N
<)

oX 0

=10 -
OF &

57) )

The time derivative of Eq. B-5 is

(9T 37 ) (2T 1
oX , | 9% oy
d JaT \_|dr| JaT "4 /)97
dtﬁa\?& [dt] ﬁa@ >+[”]f{’1aﬂ@ ‘ (5-8)
aT oT _ ot
07 J 92 j e ]
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Since the potential energy is not dependent on the body coordinates, then Eq.
B-1 is written using Fgs. B-6, 7, 8 as

(37 ) T Y Q)
oy , | 0 X
/ ol dary )at
r] & o “‘[af] o = {Q, ) (5-9)
ar” | g
\_3/11'3 J \3/1/3. J %
The generalized forces are transformed by
Q Q,
Q: =LrJQy (B-10)
Q Q,

3

into the body coordinate system. Premultiplication by [r'] of Eq. B~9 together
with the identity [r] [p]’ =[] and

’ o O, -0
[P] [STF] = —[O,] w— -8'3 _83 %i (B-11)
y x

-
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yields one of the Gesired transformed equations

The transformation of Eq. B-2 is a bit more tedious.

(N

r ~ CN
S| |
-377,; = (Q &
oT

k5/73_-/ \Qﬁz

(e-

12)

Using the chain rale o

differentiation and the definition of [R] ,

RTY [20x 29, 205 |[27.) (9T )

oY oy 2v ¥ |loq, o0,

AT \_120x 30, 20, [)oT \_ro9"/oT

ﬂaés 56 387 350 |V, & [Rjﬁan,gw‘”’

QT—.- ____an Q_,Q@f 303 oT ﬂ_._

9? ) |2¢ 9% O¢ Iy 204
also, the chain rule yields
o1 o, ) far} DO 30, 204 |21 )
Y| Py v oy |l | oY oy dv (|90,
T \ e ou;, 2w \ )T 00x 28O, 3%, |)oT
B0 (e 96° 36 (Vug (oo o6l 267 [puy( &
T | oan o, 2w | oT 00x (% 20 [(2T
o¢) @ 2¢ 3¢ On, ) 34 380 34 20, )
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which may be shown to produce

(2T [37 YT i FT_\
1% oo | | 0 0 20,
a1\ (12 L o P Al L
ﬁ 50 [_h:][_l +|-¥rcos® ~YrsiNOsiNg ¥ 5INOcos ¢ S O%
o1 ~ b =3 Scossl 2T
| 0 - Ycospcos8-0sing -FrsiNdcosO+OC0sP| =
09 2 i i 30},
using the definition of [/, (3-25)
Differentiation of Eq. B-l3_with respect to time yields _
~8cos6 0 0 Cajj
0.,
$os$cos0-0sINdsNG  ~PsNg () <3—T—B (B-16)
%
:;ﬁsuwcose-écos#sme ~#eosd O_j ;aa_TQ_z-,

If no kinematic constrainis are imposed on the "rigid-body" motion of the vehicle,
then (¥,0,¢ ) are independent coordinates and

REY ()
5;{,1 0
.3}"- -
ﬂg‘g ) ﬁ 0 g (B-17)
of;
@gz LOJ
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Substitution of Egs. B-15, 16, 17 into Eq. B-2 yields

f'a—T—\ ('a-r'\ - N

o0, / .0 Ny
(RIg-R]o) SL K] ST S R

o1 2T

@Tl; @'73) \N¢J

since the terms explicitly written in Eq. B~15 and Eg. B-16, when subtracted,
view - R} (]

The components (Ny,No.N¢ } of Eq. B-18 are the generalized forces associated
with the coordinates (¥ O,% ). They are, physically, moments about the line
of nodes, and are not mutually orthogonal components of & vector. They trans-
form into the body coordinate system by

N [N
N, =[RJ(Ne (8-19)
N? J Ng

Premultiplication of Eq. B-18 by [R] then yields the modified form

L L) ()]
( an, o, x
—d- - ‘al— - 2—T‘ [ ] = B.20)
_\EIJ 3 [O>< 0, > <?M§}”J ={Ny t (5-20)
oaT | |2L N
\ZQSJ \a/f . 3J
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The Cesired transformations are thus obtained. ILagrange's equations in
modified form are

r?)%; ( Qx\
(Js-loiaz + =1 ay) -

2L q
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APPENDIY. C

DERIVATION OF THE EQUATIONS OF MOTION

Some of the de*qils in the derivation of the equations of motion will be
presented here.

The forms for the kinetic and potential energy of the system will be sub-
stituted into the modified set of Lagrange's equations. A number of useful
identities will first be established in order that the operations indicated in
the modified equations may be performed in matrix form rather than individually.

If an arbitrary function, G, , has the form

(Ry ) (Lx
(7[ = 1}(% L.? (C-l)

K? .K3

where the indicated varizchles are also arbitrary, then it is easily shown that

6,) (]
3K, x

—aikzﬁL k (c-2)

et

aK?

20,
K, e

and

(36) [, )
oL,

26, | _
EI;.L{KN (w3

a6,

———

LaLSJ nK;

_— N
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also, in the same sense, if

Kx ’ Cu C:z C’:s Kz
G, =4Ky 0 1Ca Cpp Cyg K., (c-4)
K C?l C’3Z, C33 K

& ¥
= .
(S (= () kg ) -
L%?E; %,

With the use of these identities and the alternrte form of Eq. A-24, the follow-
ing operation on the kinetic energy is obvious:

f-a_‘r—l

. e 10
h el e/ (X {0 2

{2 i, LZ wl O || Bd KEo
SCH TN Y AN B ) | 162,
aT \
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(c-6)

{l}‘ ]l [[Ax'] <px'}\
SSICRECR Y {@,}}
L ) l ) i

£A-3';J {P’a"}
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The equations of motion governing the body linear velocities follow immediately
from Eq. B-21, and are

1w, W,
M {n‘r? }— M [n]{nr? }
4‘% ",

s

i=N { ' 'P[Ax’} “ J{Pz }\!
e | @}}
= ol w6

(c-7)

~2(0] [XJ[ o), Bd 1S G)
{‘}L [A;] 0’3)

CE(® ) [
H-R)E) O || By (e )=do,
[Aj}j {PQ' J : Q?

{l} ] ‘ —[Ax'] . ‘({p 'x'}}

0




The derivation of the equations governing the angular velocities of the body
are more iengthy due to the number of terms in the kinetic energy involving
the angular velocities. Using the previous identities, the remaining operation

in Eq. B-22 is written in Eq. C-8.
{[A,A 1

B a0
AR A

e e Lo }(AI_?K/’ )
bl - hal) el

{P)[Ax;]{ﬂ {7 Iy ](f’)
{6 he ](p) ] [
-46,Y (A ]«P) m{n,}
(e ]{&)*« & gy 4, N 2

{oy -{P YA ) ey (A
,m( ey (A,,Q] F oyt {??[Ax{]
\{?}' [A 146 Tagd oy (c-8)
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-q}[,A 14p R _Q_x“
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This form cogether with that in Eq. C-6 is substituted into the second of the
modified equations. A time-dependent moment of inertia is defined by collect-
ing together all the resulting terms which multiply the angular accelerations.
The moment of inertia mabrix is giver by Eq. €-9. In terms of this matrix, the
equations governing the angular velocities of the body are given “y Eq. C-10.
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The panel point equations are more easily derived if use is made of the
identities

Q 17. k /Vx' Mx
{“] _ Wy =[¢] n, (c-12)

g % “3J U2 A

The rigid body velocities are then written in each component coordinate system.
It will be understocd that primes on their subscripts mean that they must Se
written in the i-th system. This avoids considerabie complication in the
equations, for many of the terms cannot be broken down into simple product form.

Y,

QS:

The same identities for coiumn operatorg may be used to advantage where
panel point displacements appear in ordered column form. Where they appear in
complicated matrix form, the matrix may be expanded and the operaticns performed
separately. Noting that

[ fof iYL RATALT) (0

phlhgel ol -vm\ 1 144, (c-12)
AT M) 1BATAL) oy Q
[ 1) -RglALY AglAL) ] (1A

Qg Ayy] (0 -axlAyld | (1A

Fay ] Ayl (0] e}

K

(note also the primes on the 1. sibscripts), the panel point equations may be
written in the form of Bq. C-13.
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_APPENDIX D
INTERPOLATION SCHEMES

The method of analysis ir this report requires that the 2lastsc difnlace-
ments of a ccntinuous system be approximated by displacements at a finite number
of discrete points. This numerical gpproach is general in that it may be applied
to bodies of any shape. In order that the forme remain simple, the illustration
here will be confined to cne-dimensional motion of a thin beam. The purpose
of the scheme is to make use of an interpolation formula to relate the continuous
displacement at all points to the discrete displacement at neighboring points.

Xy
X4

: J v
Py ~Pt  |Pii

A,

oy

K

The region betwcen panel points} andﬂ,i-!-l is referred to as the 4 -th bay.
Local bey coordinates are defined by

X =
E=i——t— X € XE K (0-1)
xju —Xj : (af

Hence & varles between zero and one.
Various inlerpolation schemes are as rollows.
Lumped Mass
This method is not properly an interpolation scheme but ls ineciuded since

it is the most easily used method. A row of pane) points is laid alonyg the center-
line of the beam. In the region between each puir of panel points, the mass and




center of mass arecalculated. This mass is then besmed out to the pair of panel
points. When this process is completed, the mass of the beam is represented bty
a series of lumped masses at the panel points. For this case, the mass matrix
is diagonal; the elements along the diagonal are the lumped masses.

TPrapezoidal Rule

This rule is called a two-point rule because the displacements in g bay are
defined in terms of the displacements at the two neighboring punel points:

P(x) = Pj+ 3%'_““1— (Pj+-Fj) (D-2)

In terms of local bay coordinates, this may be written

P(E)=(l— 5) +EP 4_“ (p-3)

This rule is usefulin calculating mass matrices which do not have to be highly
accurate but are wished to be more representaiive of the system than would be
a lumped mass approximation. This rule is also somewhat limited; it cannot be
used to calculate the beam curvature as there is no second derivative of P .

The kinetic energy of a beam may be written

I rbtoe .
==/ _Pe P (0-4)

where /o(x) is the mass per unit length along the beam. This mey be written in the
form

%Z*} [, B r@ dx (0-5)
4

wnern,p is the length of the 4 ~th bay between panel points 4 5 4;4-/ « The
disple.uement may be written in the form

P(E)={l} St } (0-6)
gl ) Pj“




which yields

o (i 1l e 4L TR

The kinetic energy in the 4 ~-th bay is then

% {#, } o] { ,+.} >

vhere

[(—ij]:[:) ::] (I}I;E :Ei/’(&)dg) ll; ?J (D-9)

The displacemenis F?; F5+1 may be picked out of all the displacements by an
operation of the form

{’3+n} [B; 17} 010)

where the matrix is composed of zeroes except for uaity in two elements. The
kinetic energy is then

T= 7Y (S BIRIB)e) -1
= 3 Y[ (o2

The mass matrix ob%ained by this process will have non-zexro zlements on the diagonal
and in the first positions off the diagonsal.
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Many interpoiation schemes have been devised which make use of an increased
nunber of neighboring panel pcint displacements. Cubic rulec meke use of three
of these, and four-point rules use two cn each side of the lccal bay. Of the
four-point rules in existence, one will be chosen for description. This is referred
to as the diparasbolic formuta. It is felt to be superior to the cthers since
continuity of slope is preserved between bays.

Diparabolic Scheme

1t £ (¥)is the parabola drawn through the set of points atX - , Xi o
and X, #and £41 (€) is the parabola arewn through the set of points &t x:: ,

xj'“ » and x}',},z » then
PE)=(1-E)F;E)+ EFj+ (8) 0£E%] (p-13)

is the formula for interpolation in the4 -th bay. Thus the formula is a waighted
average of the two parabolss.

| - E

ﬁ ! ] 1 :‘e

. i
p & Pe) Pju ez
-1 'QL !

’F}'H ®)

£2)

This may be described in terms of the displacements at the panel points. The
parabolas

a9 @
f@zayraSeraet (P-4
. m . @ . (8) z
'ﬁj-rl (E)_aé+' +aJ.“ 5+a;H & (D-lS)
are defined by
. R . =z (B =r;
0= RL, FED=F, £ &) =Ry (p-26)

"3” (Ej}=P3 ? 'F;'H CE;'*,) :Pj-l-l ’ -F}-}-I -rg/‘“-) = P}'+z (p-17,
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The constauts, a,j , may be evaluated in terms of the panel point deflections by
combining the above forms. They may be written

2 m
P{"] } F-a#'—u’ Z}-i -l a} 1
P * ;
4

bl B I Eyé‘ a 3 ¢ (D-18)
2 3)
PjﬂJ ' Eaiﬂ' 5{# aj ( J
and
AR
z 2)
P{H =I" i Bjei |4 i () ? (p-29)
Pj.'*'Z.J ] ;5:'1'2- 23’.}-2 dé'.ﬂ
The solution of these equations is written in terms of the inverse matrices
-
— 21"
] .
. S %
A=l & & (p-20)
LD % B
-1
I
- J 1 2
E/\}/qr b B4y 514; (p-21)
K ‘Eé'i-z, g j+2 !
so that
r "
a'j ()] Pj—l
J&‘.}mL:[A ]4 P (0-22)
A
() ,
ajﬂ) F;'
(2 {po
ﬁaéy L-‘-l:/\]/j“ ";'4-! i \D-23)
\aé\"?z ij&
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Formulas for the parabolas are then

m
a
@1JEE}44
aj )
a, o
£,@{i5z “1<a
czj+l

The diparabolic formula is then

2

PE)={1z3

which is of the form

/
/

PE:={I & '5“5,3}[8]9.
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Mumericall;, for equal intcrvals,

-. —1 n-"'" ’-n i ]
i ! 8 0
[A]f I o ol = ,'/,e 0o W (0-29)
s RARER7Y
~ JE R -
I O 0 i1 o O
I=li + o]l=1]% 2 -% (D-30)
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(6] o Y% o
I -% 2 -% (D-31)
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The kinetic energy of a beam is written
pft e 2
T = 7 [ P/) " P(x)dx (D-32)
0

where ,o(x) is the mass per unit length,




In the é ~%n bay, coN
-
. P,
PE={1 £ 8°&*}[8],K.?
‘ r§+|
P,
C. Y / r N
P | £ £z
3 . ‘l-
o 2 P / Z 52 g3 _g
pEY=¢.1 3[2].
€) ﬁP,-,‘,>[ s £z g°
B g° £ 2% 5°
sa+zJ - J
The kinetic energy of the j -th bay is then
M ) -,
] [B)
P; P
T=400 YlElgst
?{+l ( f3+l
\Pj+24 LP’I“-Z'J
where
(1 £ 5 3
_ , , 5 Ez Es E“
[a]d‘:[s:]fl fj/o Ez Es 54 ES‘
Za Z'I Es E‘/
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If the displacements in the 4 -th bay are picked from all the displacements
by an operation of the form

Pior |
ij 4 (D-37)
ij-i-ZJ

where [BJ 4 is a matrix whose elements are one or zero, then one may write

T=L {{3}'(42_ [B];- [a];[8);) {P} (0-38)

or

T= ’:9: {P}’ [Aj {P} (p-39)
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