NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
A "String Algorithm" for Shortest Paths in Directed Networks

Victor Klee
Mathematics Research

November 1963
A "STRING ALGORITHM" FOR SHORTEST PATHS
IN DIRECTED NETWORKS

by

Victor Klee
University of Washington

Mathematical Note No. 333
Mathematics Research Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES
November 1963
The literature contains several algorithms for finding the shortest path between two nodes \(P \) and \(Q \) of a network, where the distances or arc-lengths are assumed to be positive. (For references, consult the review article by Pollack and Weibenson [3] and the book by Ford and Fulkerson [1].)

Some of the algorithms, and in particular some of the analogue devices, are applicable only when the distance matrix is symmetric. As was remarked in [1] and [3], this is true of the simplest of the analogue procedures—the "string algorithm" reported by Minty [2]. It consists of making an inelastic string model of the network, with knots corresponding to nodes and string-lengths proportional to the corresponding distances, and then stretching the knots \(P \) and \(Q \) as far apart as is possible without breaking the string; this produces at least one straight path from \(P \) to \(Q \), and each such straight path corresponds to a shortest path in the network.

Networks with asymmetric distance matrices are most conveniently represented by means of directed networks, in which every arc is regarded as a one-way street of the appropriate length. In the present note we describe a simple cutting procedure (related to one suggested by Thomas Seidman) which can be combined with any algorithm for undirected networks (symmetric distance matrix) so as to form a shortest-path algorithm for directed networks (asymmetric distance matrix). In particular, the cutting and stretching can be alternated to form a "string algorithm" for directed networks.

For each directed network \(N \), let \(N^u \) denote the corresponding undirected network.
THEOREM Suppose that \(P \) and \(Q \) are nodes of a finite directed network \(N_1 \) which has \(v \) nodes and \(e \) arcs, and that there is a path from \(P \) to \(Q \) in \(N_1 \). Suppose that \(A \) is an algorithm for finding shortest paths in undirected networks, and let the sequential procedure \(S_1, S_2, S_3, ... \) be as follows:

1. Apply \(A \) to the undirected network \(N^u_1 \) to find a shortest path \(\pi_1 \) from \(P \) to \(Q \) in \(N^u_1 \). Suppose \(\pi_1 \) is given by

 \[
 V_0^i V_1^i V_2^i ... V_h^i V_{h+1}^i V_{h+2}^i ...
 \]

 where the arcs \(a_j^i \) and the nodes \(V_j^i \) are listed as they appear in traversing \(\pi_1 \) from \(P = V_0^i \) to \(Q = V_h^i \).

2. If \(\pi_1 \) is also a path in \(N_1 \), terminate the procedure. If \(\pi_1 \) is not a path in \(N_1 \), there exists a smallest index \(r(1) \) and a largest index \(s(1) \) (possibly the same) such that the directions of \(a_{r(1)}^i \) and \(a_{s(1)}^i \) in \(\pi_1 \) are opposite to their directions in \(N_1 \). Let \(N_{1+1} \) be the directed network that is obtained from \(N_1 \) by deleting every arc of \(N_1 \) that (like \(a_r^i \)) ends in \(N_1 \) at \(V_{r+1}^i \) but is not \(a_{r+1}^i \), and deleting every arc of \(N_1 \) that (like \(a_s^i \)) starts in \(N_1 \) at \(V^i_s \) but is not \(a_{s+1}^i \). There is a path \(\Sigma \) from \(P \) to \(Q \) in \(N_{1+1} \) such that \(\Sigma \) is actually a shortest path from \(P \) to \(Q \) in \(N_1 \).

The procedure terminates at some stage \(G_t \) for which

\[
t \leq \min (v, (e+2)/2),
\]

and the path \(\pi_t \) is a shortest path from \(P \) to \(Q \) in the directed network \(N_1 \).
(The same conclusion holds if G_2 requires only the first of the
two deletions specified above, or if it requires only the second.)

Proof. Of course the algorithm itself does not involve the actual
construction of Σ, but we require the existence of Σ (when G_2
does not specify termination) to show that the sequential procedure S_1, S_1, S_2, S_2, ...
can actually be followed and that each of the paths $\Sigma, \Sigma, ...$
is a shortest path from P to Q in N_1. Since N_1 is finite, the
procedure must terminate at some stage Σ_t and then π_t is a shortest
path from P to Q in N_1.

Suppose G_1 does not specify termination and let Σ be a shortest
path from P to Q in N_1, given by

$W_0^1 W_1^1 W_2^1 ... W_{l(i)-1}^1$, $r(i)$ $W_{l(i)}^1 s(i)$,

where of course $W_0^1 = P$ and $W_{l(i)}^1 = Q$. In constructing Σ,
we consider the following three possibilities:

(i) no W_j^1 is equal to either $V_{r(i)-1}^i$ or $V_{s(i)}^i$;

(ii) there exists j such that $W_j^i = V_{r(i)-1}^i$ and $j < k = W_k^i \neq V_{s(i)}^i$;

(iii) there exist j and k such that $j < k$, $W_j^i = V_{r(i)-1}^i$ and

$W_k^i = V_{s(i)}^i$.

When (i) holds, we define $\Sigma = \Sigma_t$ when (ii) holds, we obtain Σ
following π_1 from P to $V_{m(i)-1}^i$ and then following Σ from $V_{m(i)-1}^i$
to Q. When (iii) holds, we obtain Σ by following π_1 from P to
$V_{m(i)-1}^i$, next following Σ from $V_{m(i)-1}^i$ to Σ, and then following
\[n_i \text{ from } V_{n(i)}^i \text{ to } Q. \text{ In each case, it is easily verified that } \Sigma_i \text{ has the stated properties. Thus the existence of } t \text{ is established and it remains only to show that } t \leq \min(v,(e+2)/2). \]

Let us review the special properties of certain nodes and arcs of \(N_j \) relative to \(N_i \) itself and relative to \(N_j \) for \(j > i \).

(a) \(V_{r(i)}^i \neq Q \). If \(V_{r(i)}^i \neq P \), then at least one arc of \(N_i \) ends at \(V_{r(i)}^i \) but no arc of \(N_j \) ends there. If \(V_{r(i)}^i \neq P \), then at least two arcs of \(N_i \) end at \(V_{r(i)}^i \) but at most one arc of \(N_j \) ends there.

(b) \(\alpha_{r(i)}^i \) ends at \(P \) or is coterminal with another arc of \(N_i \); \(\alpha_{r(i)}^i \) does not end at \(Q \) and does not appear in \(N_j \).

(c) \(\alpha_{r(i)}^i \) does not end at \(P \) or \(Q \), and is nonexistent if \(\alpha_{r(i)}^i \) ends at \(P \). If \(\alpha_{r(i)}^i \) does not end at \(P \), then \(\alpha_{r(i)}^i \) is coterminal with another arc of \(N_i \) but not with another arc of \(N_j \).

We see from (a) that the \(t \) nodes \(Q, V_{r(1)}^i, V_{r(2)}^i, \ldots, V_{r(t-1)}^i \) are pairwise distinct, and consequently \(t \geq v \). From (b) and (c) it follows that the arcs \(\alpha_{r(1)}^i, \alpha_{r(2)}^i, \alpha_{r(2)}^2, \ldots, \alpha_{r(t-1)}^i, \alpha_{r(t-1)}^t \) are pairwise distinct. If \(\alpha_{r(i)}^i \) ends at \(P \), then \(\alpha_{r(i)}^i \) does not appear, but this happens for at most one value of \(i \), and since at least one arc of \(N_i \) ends at \(Q \) we conclude that \(e \geq 2t - 2 \).

The above reasoning completes the proof when \(G_4 \) is as originally described, and also when \(G_4 \) is replaced by \(G_4' \) which requires only the first of the specified deletions. Similar reasoning applied to \(G_4'' \), which
v nodes.

2(v-1) arcs, all of the same length.

t = v = (e+2)/2

(πₐ follows upper arcs except at αᵣ(1))

v nodes.

3v - 5 arcs, with lengths as indicated.

αᵣ(i) = αᵣ(i) indicated by (i)

t = v
Figure 3

3n - 1 arcs.

y_n is uniquely determined.

$t = n + 1 - \frac{y + z}{2}$

$z = \frac{y + 2}{2}$

4 nodes.
REFERENCES

