NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.
COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
The Theory of Surface Wave Diffraction
by
Symmetric Crustal Discontinuities
by
JULIUS KANE
and
JOHN SPENCE

University of Rhode Island
Kingston, Rhode Island

Work sponsored by Advanced Research Projects Agency
Project Vela-Uniform

Air Force Cambridge Research Laboratories
Office of Aerospace Research
United States Air Force
Bedford, Massachusetts
Scientific Report No. 2
ARPA Order No. 180-62 and 292-62
Project Code No. B100 and B104
Contract No. AF 19(625) 315
Project No. 8652
Task No. 865203
Contract Monitor, K. C. Thompson

"Requests for Additional copies by Agencies of the Department of Defense, their contractors, and other Government agencies should be directed to the:

DEFENSE DOCUMENTATION CENTER (DDC)
CAMERON STATION
ALEXANDRIA, Virginia

Department of Defense contractors must be established for DDC services or have their 'need-to-know' certified by the cognizant military agency of their project or contract."

"All other persons and organizations should apply to the:

U. S. DEPARTMENT OF COMMERCE
OFFICE OF TECHNICAL SERVICES
WASHINGTON 25, D. C."
THE THEORY OF SURFACE WAVE DIFFRACTION BY
SYMmetric CRUSTAL DISCONTINUITIES

By

J. Kane
and
J. Spence

Summary

A major barrier in comparing seismic theory with observed wave
trains, stems from the fact that elastic wave characteristics are in-
fluenced by discontinuities along the propagation path, and any
understanding of such signal corruption would require a knowledge of
the diffracted fields at the appropriate obstacles. However, even a
relatively simple crustal feature such as a discontinuous change in
terrain presents major difficulties if the relevant problem of
diffraction in a wedge-shaped region is considered. Although some
first-order calculations have been made by Lapwood (1961), Kane and
Spence (1963), and Hudson and Knopoff (1963), the theoretical discussion
of the diffraction effects are hampered by the intractability of the
associated boundary value problems. In this report, we show how one
can take advantage of symmetry considerations and variational techni-
niques to rapidly estimate reflection, transmission, and conversion
coefficients for elastic wave diffraction at symmetric wedge-shaped
obstacles. In Part I, we illustrate the ideas by a discussion of the
vector problem of Rayleigh wave propagation along the faces of an elastic
wedge with tree boundaries. In Part II, we analyze the scalar problem of
multi-mode Love wave diffraction in a symmetric layered wedge.
PART I. RAYLEIGH WAVES ON AN ELASTIC WEDGE

1. Fundamental equations

The tremors \(\hat{u}(u,v,w) \) of an elastic solid characterized by the Lamé parameters \(\lambda \), \(\mu \), and density \(\rho \), can be derived from a scalar potential \(\phi(x,y,z) \), and a vector potential \(\Psi[x_1(x,y,z), x_2(x,y,z), x_3(x,y,z)] \) by the relation

\[
\hat{u}(u,v,w) = \nabla \phi + \nabla \times \Psi.
\]

(1.1)

For two-dimensional motions which are independent of the \(z \)-coordinate, both \(\phi \) and \(\Psi \) are but functions of \(x \) and \(y \), or \(\phi = \phi(x,y) \), and \(\Psi = \Psi(x,y) \). Furthermore, we can neglect pure distortions by setting \(x_1 = x_2 = 0 \), so that the vector potential \(\Psi = \Psi[0,0,x_3(x,y)] \) is characterized by one scalar component and the subscript on \(x_3 \) can be dropped without confusion. If we assume that the vibrations are harmonic, we can suppress a time factor \(e^{ik_0 t} \), and it can be shown that \(\phi \) and \(\psi \) the \(z \)-component of the vector potential, satisfy the reduced wave equations

\[
(\nabla^2 + k_c^2) \phi = 0, \quad k_c^2 = \frac{1}{\rho} \omega^2, \]

(1.2)

\[
(\nabla^2 + k_h^2) \psi = 0, \quad k_h^2 = \frac{1}{\rho} \omega^2. \]

(1.3)

Once the potentials \(\phi \) and \(\psi \) are known, the displacement vector \(\hat{u} \) is given by (1.1), and the resultant stress dyadic \(\sigma(\hat{u}, \psi) \) can be given
in symbolic notation as

$$\mathbf{E}(r, \theta) = \mathbf{J} \cdot \mathbf{v} \cdot \mathbf{s} = \mu \left(\mathbf{\nabla} \mathbf{v} + \mathbf{v} \mathbf{\nabla} \right)$$ \hspace{1cm} (1.4)$$

where \(\mathbf{J} \) is the unity dyadic, the idempotent.

2. The Rayleigh wave potentials

A time harmonic Rayleigh wave, or \(R \)-wave for brevity, is comprised of a pair of exponential solutions of (1.2) and (1.3),

$$\mathbf{v} = r(\xi, \eta) \textbf{e}^{i \omega t}.$$ If the elastic solid lies within the half-space \(y < 0 \) (cf. Figure 1a), then these solutions, in polar coordinates

$$x = r \cos \theta, \quad y = r \sin \theta,$$

assume the form

$$\begin{bmatrix}
 R(t, r, \theta) \\
 I(t, r, \theta)
\end{bmatrix} =
\begin{cases}
 \mathbf{e}^{i\omega t} \cdot \mathbf{\phi}(r, \theta) & \text{for } \mathbf{R} \\
 -\mathbf{e}^{i\omega t} \cdot \mathbf{\phi}(r, \theta) & \text{for } \mathbf{I}
\end{cases} \hspace{1cm} (1.5)$$

where \(\mathbf{\phi}(r, \theta) \) is the exponential variation given by

$$\mathbf{\phi}(r, \theta) = \begin{bmatrix} \phi_r(r, \theta) & \phi_\theta(r, \theta) \end{bmatrix} = e^{i\omega t} \begin{bmatrix} \kappa & \gamma \\
-\gamma & -\kappa \end{bmatrix}$$ \hspace{1cm} (1.6)$$

and \(\kappa \), the magnitude of the ratio of the shear wave speed \(c_s \) to the compressional wave speed \(c_p \), is

$$\kappa = \frac{v_p^2 - v_s^2}{c_s^2 - c_p^2}.$$ \hspace{1cm} (1.9)$$
Figure 1: A unit Rayleigh Wave incident along one face of an elastic wedge is equivalent to four partial waves. The partial waves of like parity comprise the excitation for the even problem, and the partial waves of unlike parity furnish the initial disturbance for the odd problem.
and c is a dimensionless distance parameter

$$c = \frac{k_r r}{v_R},$$

(1.10)

The parameters v_c and v_s represent the velocities of the compressional and shear body waves respectively. For a given Poisson's ratio v,

$$\nu = \frac{\mu}{2(\lambda + \mu)},$$

(1.11)

one needs choose the Rayleigh wave velocity v_R, which is less than v_s, so that the stresses induced by τ_R and ψ_R vanish at the surface $y = 0$

$$\tau_R(0, x_R) = 0, \quad \psi_R(0, x_R) = 0, \quad y = 0.$$

(1.12)

With this choice of v_R, the τ_R and ψ_R given by (1.5) and (1.6) are the vector and scalar potentials characterizing a Rayleigh wave traveling to the right with unit amplitude. (We shall speak of the coefficient of the compressional potential as the amplitude.) It is very convenient to note that we can reverse the direction of any harmonic wave by the operation of complex conjugation; thus

$$R [\tau_R, \psi_R] = R [\tau_R^*, \psi_R^*] = R e^{-i\rho(0)}$$

(1.13)

represents a Rayleigh wave traveling in the opposite direction with amplitude R.

(1.14)
3. Formulation of the boundary value problems

a. The major problem

The conundrum posed by Rayleigh wave diffraction in a wedge-shaped region is to find additional solutions \(\hat{z}_{d} \) and \(\hat{y}_{d} \) of (1.2) and (1.3) which represent diffracted fields in the interior of the wedge such that the stress dyadic \(\hat{\sigma}^r = \hat{\tau}^r = \hat{\sigma}^d \) vanishes on both faces of the wedge for \(R \)-wave excitation along one face. In our geometry, (cf. Figure 1a), the \(R \)-wave is incident from infinity along the negative \(x \)-axis. We shall be principally concerned with calculating the complex amplitudes of the reflected and transmitted \(R \)-waves as a function of the wedge angle \(\theta \) and Poisson's ratio \(\nu \). This task can be substantially eased by reducing the major problem to a pair of minor problems involving even and odd symmetries. Consider the incident \(R \)-wave along the left wedge face to be the sum of two waves, each of half amplitude. Likewise, the absence of any excitation along the right wedge face is equivalent to a pair of incident \(R \)-waves along it, each of half amplitude, but opposed in sign, (cf. Figure 1b). The four partial \(R \)-waves can be separated into two groups: First, a pair of \(R \)-waves on either face of like parity which serves as the excitation of what we call the even minor problem. Second, another pair of \(R \)-waves whose amplitudes are of unlike parity which constitutes the excitation of the odd minor problem. If we designate the diffracted fields of the even and odd problems by the subscripts \(e \) and \(o \) respectively, then since we are dealing with linear equations, the desired major potentials \(\hat{z}_d \) and
\(\psi_d \) can be expressed as a superposition of the minor potentials

\[
\psi_d = \psi_e + \psi_o, \quad (1.15)
\]

\[
\hat{\psi}_d = \hat{\psi}_e + \hat{\psi}_o, \quad (1.16)
\]

and likewise the displacement vector \(\hat{s} = \hat{s}_e + \hat{s}_o \) can be decomposed into even and odd components.

b. The even minor problem

In the even problem, the wedge will suffer only even displacements \(\hat{s}_e \) about the plane of symmetry, and as a result, there can be no component of normal displacement along the plane of symmetry at \(\theta = \Theta/2 \). It follows that the even problem is equivalent to finding the potentials in a bisected wedge with one face free of stresses which supports the incident Rayleigh wave, and the other face so constrained that the normal displacement vanishes there. That is, we seek solutions \(\hat{s}_e \) and \(\hat{\psi}_e \) of (1.2) and (1.3) in a wedge of half-angle \(\Theta/2 \)

\[
EVEN \left\{ \begin{array}{l}
\frac{\partial}{\partial \theta} (\hat{\tau}_r \cdot \hat{s}_e) + \frac{\partial}{\partial r} (\hat{\psi}_r \cdot \hat{s}_e) = 0, \quad \theta = \Theta \\
0 < \theta < \Theta/2
\end{array} \right. \quad (1.17)
\]

\[
EVEN \left\{ \begin{array}{l}
\frac{1}{r} \frac{\partial}{\partial \theta} (\hat{\tau}_r \cdot \hat{s}_e) + \frac{\partial}{\partial r} (\hat{\psi}_r \cdot \hat{s}_e) = 0, \quad \theta = 0, \quad 0 < \theta < \Theta/2
\end{array} \right. \quad (1.18)
\]

c. The odd minor problem

By the same arguments, the odd problem which involves \(\hat{s}_o, \hat{\psi}_o \) is a complementary version in the bisected wedge, wherein the tangential

N.B. The displacements, and the compressional potential will be even about the plane of symmetry, but the shear potential will be an odd function, and vice versa for the odd problem.
displacements must vanish identically along the plane of symmetry, i.e.,

\[
\begin{align*}
\text{EVEN} & \quad \left\{ \begin{array}{l}
\mathcal{E}(z_R + z_0, z_R - z_0) = 0 \\
\frac{1}{i\rho} \left(z_R + z_0 \right) \cdot \frac{1}{i\rho} \mathcal{O}(z_R - z_0) = 0
\end{array} \right. \\
& \quad 0 = \pi (1.19)
\end{align*}
\]

\[
\begin{align*}
\text{ODD} & \quad \left\{ \begin{array}{l}
\mathcal{E}(z_R + z_0, z_R - z_0) = 0 \\
\frac{1}{i\rho} \left(z_R + z_0 \right) \cdot \frac{1}{i\rho} \mathcal{O}(z_R - z_0) = 0
\end{array} \right. \\
& \quad 0 = \pi (1.20)
\end{align*}
\]

d. The Reflection Coefficients

For either the even or the odd problem, the solution will contain a reflected Rayleigh wave. Let \(z_c(\Theta/2, \gamma) \) and \(z_o(\Theta/2, \gamma) \) be the complex ratios of the reflected to the incident Rayleigh wave amplitude for the even and odd minor problems in the bisected wedge. The reflection coefficient \(R(\Theta, \gamma) \) for the original major problem will be

\[
R(\Theta, \gamma) = z_c(\Theta/2, \gamma) \cdot z_o(\Theta/2, \gamma),
\]

and likewise the overall transmission coefficient \(T(\Theta, \gamma) \) will be

\[
T(\Theta, \gamma) = z_c(\Theta/2, \gamma) \cdot \overline{z_o(\Theta/2, \gamma)}.
\]

Formulas (1.21) and (1.22) can be verified to be shown at Figure 1b which indicates that the overall reflection coefficient \(R \) results from a superposition of the partial reflection coefficients \(R(z_c, z_o) \), and the transmission coefficient \(T \) from their interference \(T(z_c, z_o) \).

4. The Variational Principle

a. Discussion

Variational principles consist of assuming a suitable trial function containing unspecified coefficients, and then choosing these
parameters to minimize certain quantities. One major advantage of the variational method is that first-order accuracy in the trial function usually gives results which are accurate to second-order, because of the stationary character of the approximation.

A natural aperture in the present problem is the plane of symmetry and we can assume it to be illuminated by an incident \(R \)-wave, and a reflected one with an adjustable amplitude. In the even problem, the net angular displacement must vanish along the plane of symmetry. A unit \(R \)-wave traveling to the right gives rise to the angular component of the displacement

\[
\mathbf{s}^{\text{inc}}_0 = k_R \left[\frac{\partial}{\partial x} e^{j \frac{2\pi}{\lambda}} \cdot \frac{\partial}{\partial x} \right],
\]

and likewise an \(\varphi \)-wave of amplitude \(c_\varphi \) moving to the left generates the disturbance

\[
\mathbf{\varphi}_0 \mathbf{s}^\text{ref}_0 = c_\varphi (\mathbf{s}^{\text{inc}}_0)^* \tag{1.24}
\]

which apart from an amplitude factor is the complex conjugate of (1.23). Only if there is no discontinuity, or if \(\Theta = a \) can we make the angular displacement of the trial function

\[
\mathbf{s}^T_0 = \mathbf{s}^{\text{inc}}_0 \cdot c_\varphi (\mathbf{s}^{\text{inc}}_0)^*
\]

vanish for all \(r \) along the plane of symmetry by properly choosing \(c_\varphi \). Otherwise \(\sigma \neq \sigma^* \), \(\varphi \neq \varphi^* \), and no choice of \(c_\varphi \) can make \(s^T_0 \)
vanish at more than an isolated set of points. There are at least two ways by which we can improve matters: We could use a more complex trial function which acknowledges body-wave contributions to the diffracted field, or, since the residual displacement s_0^T is explicitly known, we can use it as the aperture illumination of a Green's theorem type calculation to correct the variational estimate.

However, the practical seismic interest is in the realm of small discontinuities, and for this case we shall see that the elementary trial function yields satisfactory results.

b. **Definition of the scalar product**

While there are many guages by which s_0^T can be minimized, we shall choose c which minimizes s_0^T in the mean square sense. For this purpose, let us define the complex scalar product of two functions $u(r,0)$ and $v(r,0)$ to be

$$ (u, v) = \int_0^\infty u(r,0) \overline{v'(r,0)} \, dr, \quad (1.26) $$

where the integration is to be carried out along the plane of symmetry $0 = \phi/2 - \pi$. To each complex function $u(r,0)$ we can attach a positive definite number, the norm of u or $\| u \|$ which is defined to be $\sqrt{(u,u)}$. The norm $\| u \|$ depends on the wedge angle, and is to be distinguished from $u^2 = (u,u^*)$ which is in general complex.

c. **The Even Subsidiary Reflection Coefficient**

With this notation, the mean square value of the angular displacement of the trial function s_0^T is

$$ \| s_0^T \|^2 = (s_0^\text{inc} + c_s (s_0^\text{inc})^* s_0^\text{inc} + c_s (s_0^\text{inc})^*), \quad (1.27) $$
and this will be a statement if and only if \(c_o \) is chosen as

\[
c_o(\Theta/2, \gamma) = \frac{u}{\| \mathbf{u} \|},
\]

(1.28)

or explicitly in terms of \(\eta(0), \eta(u) \) and \(\gamma \),

\[
c_o(\Theta/2, \gamma) = \frac{1}{2} \frac{\delta u^2}{\delta 0} \frac{1}{2} \frac{\delta u}{\delta 0} \frac{1}{\delta u} \left(\frac{1}{\delta u} \right)^2 \left(\frac{1}{\delta u} \right)^2 \left(\frac{1}{\delta u} \right)^2
\]

(1.29)

d. The Odd Subsidiary Reflection Coefficient

If we use an analogous trial function, and similar reasoning, we find that if \(c_o \) is to be an optimal choice we need make the selection

\[
c_o(\Theta/2, \gamma) = \frac{(\text{inc})^2}{\| \text{inc} \|^2}
\]

(1.30)

or

\[
c_o(\Theta/2, \gamma) = \frac{x^2}{2} \frac{x}{2} \frac{\text{inc}^2}{\text{inc}} \frac{2}{\| \text{inc} \|^2} \left(\frac{2}{\| \text{inc} \|^2} \right)
\]

(1.31)

5. Discussion of the overall reflection and transmission coefficients
Figure 2: The diffraction coefficients R and T for a trial function consisting of but an incident and reflected wave. In this case, Poisson's ratio $\tau = 1/4$.
With an explicit r_e and r_0 at our disposal, we can evaluate the $R(\sigma, r)$ and $T(\sigma, r)$ germane to our elementary trial function. For reference, their complex variation is plotted as a function of the discontinuity angle $\Theta - \eta$, in Figure 2 for Poisson's ratio $\nu = 1/4$. The present magnitudes $|T|$ are somewhat smaller than those given by earlier first-order calculations (Kane and Spence 1969), which do not simultaneously give both R and T. Since we evaluate both R and T together, we must, in effect, withdraw some energy from the transmitted field to allow for the reflected wave. Furthermore, it is the nature of the variational technique to underestimate the subsidiary diffraction coefficients r_e and r_0 since it only yields their projection in the sub-space spanned by the trial function.

Although the analysis is certainly valid for a small enough discontinuity in wedge angle, the utility of the procedure can not be established until there is some estimate of the errors committed. A feature of the present procedure is that it suggests a natural gauge of the accuracy. While s_0 and s_T are so chosen that $||s_0||$ and $||s_T||$ are minimized, both s_0^T and s_T^T are non-zero along the aperture plane. These residuals, which are explicitly known, can not be further reduced without introducing new features such as body wave contributions into the analysis. Since $[1 - |R|^2 - |T|^2]$ represents the fraction of energy unaccounted for, we can estimate the need for improving the calculations by examining this quantity.
This error estimate is a very generous one because only part of it implies higher-order corrections to R and T, the remainder representing energy which is accounted for by R-wave to body wave conversion. The data of Figure 2 shows that if $\left| e^{-i\pi} \right| > 10^0$, the present analysis accounts for at least 92 percent of the energy, and therefore the theory should not require further improvement within this range. We can also compare the present theory with experiment, but we must be very careful if we do so, because there are fundamental distinctions between analysis in the harmonic domain and pulse measurements (cf. Appendix).
PART II: LOVE WAVES ON AN ELASTIC WEDGE

1. Introduction

A layered solid can support surface waves which are not contained in polarized shear waves trapped in the superficial layer. Since these Love waves, as they are known, have no compressional component, it is not necessary to introduce potentials, and it is possible to work directly with one scalar function $w(x,y)$, the z-component of the displacement vector

$$\vec{s} = [0, 0, w(x,y)]$$

Within the E_1 layer, w satisfies the wave equation

$$\left(\nabla^2 + k_1^2\right) w(x,y) = 0, \quad k_1^2 = \frac{c_1^2}{\mu_1}, \quad (2.2)$$

and within the E_2 substrate, w obeys

$$\left(\nabla^2 + k_2^2\right) w(x,y) = 0, \quad k_2^2 = \frac{c_2^2}{\mu_2}, \quad (2.3)$$

At the free surface of E_1, the stress dyadic $\mathbf{\mathcal{S}}(s)$ must vanish, which will be true provided that the normal derivative

$$\frac{\partial w}{\partial n} = 0 \quad (2.4)$$

vanishes there.

We assume the E_1-E_2 interface to be welded so that the displacement and normal stress must be continuous across this boundary. Along wedge face A, these conditions will be satisfied provided that the Love
By use of symmetry considerations and variational techniques, reflection, transmission, and conversion coefficients are obtained for elastic wave diffraction at symmetric wedge-shaped obstacles for both Rayleigh and Love wave excitation.
Figure 3:
The geometry of a symmetrically layered wedge which can support Love waves. In the figure, it is assumed that the height H is such that only two modes propagate.
waves, or δ_1-waves of amplitude A_i, have the form

$$A_i^{(1)} = \begin{cases} A_i \cos \sqrt{k_1^2 - k_2^2} y e^{i k_1 x}, & 0 < y < H \\ A_i \cos \sqrt{k_1^2 - k_2^2} \exp \left(\frac{k_1^2 - k_2^2}{2} y \right) e^{i k_1 x}, & y \leq -H, \end{cases}$$

and the propagation constants δ_i are the real roots of the period equation

$$\tan \sqrt{k_1^2 - k_2^2} H = \frac{\mu_2}{\mu_1} \sqrt{\frac{k_1^2 - k_2^2}{k_1^2 - k_2^2}}$$

If the shear wave is to be trapped in the layer, or if the Love wave is to propagate, we need $|k_2| < |\delta_1| < |k_1|$. For any thickness however small, there is at least one root δ_1 corresponding to an acceptable solution --- the fundamental δ_1-wave. As the acoustic thickness $k_1 H$ increases, other modes can propagate. In our discussion, we shall assume that the thickness is such that only two modes propagate, the fundamental, and one harmonic: the δ_2-wave with a propagation constant δ_2. The analysis proceeds in a similar fashion if an arbitrary number of modes can propagate.

2. Formulation of the boundary value problem

We assume that an δ_1-wave is incident along one face of a symmetrically layered wedge. At the discontinuity, four surface waves will be excited: a reflected and transmitted δ_1-wave with amplitude coefficients R_{11} and T_{11} respectively, and reflected and transmitted δ_2 waves whose amplitudes are the conversion coefficients R_{12} and T_{12} respectively. Our task will be to determine these diffraction coefficients as functions of the wedge angle φ, the layer thickness h, and the elastic constants μ_1, μ_2. "φ
By the same argument as in Part I, we can add and subtract a symmetric f_1-excitation on the right wedge face which leads us to consider a pair of even and odd problems in a bisected wedge. Since Love wave diffraction is a scalar problem, the subsidiary boundary conditions along the aperture or plane of symmetry are simply

\begin{align}
\text{EVEN:} \quad \frac{1}{r} \frac{\partial w}{\partial \theta} &= 0, \quad w = \Theta/2 - \pi \quad (2.8) \\
\text{ODD:} \quad w &= 0, \quad \theta = \Theta/2 - \pi \quad (2.9)
\end{align}

for the even and odd problems. The trial function will consist of an incident f_1-wave, and reflected f_1^* and f_2^*-waves, with unknown amplitudes. If we denote the subsidiary reflection and conversion coefficient for the even problem in the bisected wedge as r_{11}^e and r_{12}^e, and similarly r_{11}^o and r_{12}^o for the odd problem, then the desired major coefficients are

\begin{align}
R_{11} &= \frac{1}{2} (r_{11}^e + r_{11}^o), \\
R_{12} &= \frac{1}{2} (r_{12}^e + r_{12}^o), \\
T_{11} &= \frac{1}{2} (r_{11}^e - r_{11}^o), \\
T_{12} &= \frac{1}{2} (r_{12}^e - r_{12}^o),
\end{align}

As in Part I, we shall determine these coefficients by a variational procedure which ignores body wave contributions.
3. Solution

In the odd problem we shall choose \(r_{11}^o \) and \(r_{12}^o \) so that the residual variation \(c(r) \) along the aperture plane

\[
c(r) = 0_1 + r_{11}^o \bar{u}_1 + r_{12}^o \bar{u}_1, \quad 0 = (\bar{\theta})/2 - \pi \tag{2.14}
\]

is as small as possible in the mean square sense. Using the same definition of scalar product as in Part I, we have

\[
\|c(r)\|^2 = (0_1 + r_{11}^o \bar{u}_1 + r_{12}^o \bar{u}_2) (0_1 + r_{11}^o \bar{u}_1 + r_{12}^o \bar{u}_2), \tag{2.15}
\]

and this expression will be a minimum if and only if \(r_{11}^o \) and \(r_{12}^o \) satisfy the normal equations

\[
(0_1, \bar{\theta}_1) \cdot r_{11}^o (\bar{\theta}_1, \bar{\theta}_1) + r_{12}^o (\bar{\theta}_2, \bar{\theta}_1) = 0, \tag{2.16}
\]

\[
(0_1, \bar{\theta}_1) \cdot r_{11}^o (\bar{\theta}_1, \bar{\theta}_2) + r_{12}^o (\bar{\theta}_2, \bar{\theta}_2) = 0. \tag{2.17}
\]

Equations (2.16) and (2.17) can immediately be solved for \(r_{11}^o \) and \(r_{12}^o \)

\[
r_{11}^o = - \frac{1}{\text{DET}^o} \begin{vmatrix} (0_1, \bar{\theta}_1) (\bar{\theta}_1, \bar{\theta}_1) \\ (0_1, \bar{\theta}_2) (\bar{\theta}_2, \bar{\theta}_1) \end{vmatrix}, \tag{2.18}
\]

and

\[
r_{12}^o = - \frac{1}{\text{DET}^o} \begin{vmatrix} (0_1, \bar{\theta}_1) (\bar{\theta}_1, \bar{\theta}_2) \\ (0_1, \bar{\theta}_2) (\bar{\theta}_2, \bar{\theta}_2) \end{vmatrix}. \tag{2.19}
\]
In the same fashion, for the even problem we need choose r_{11}^e and r_{12}^o as

$$
\begin{pmatrix}
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}} \\
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}}
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}} \\
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}}
\end{pmatrix}
$$

where

$$
\begin{pmatrix}
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}} \\
\frac{1}{r \frac{\partial}{\partial r}}, & \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial r} - \frac{1}{r \frac{\partial}{\partial \theta}} \frac{\partial \psi_i}{\partial \theta}, & \frac{1}{r \frac{\partial}{\partial \theta}}
\end{pmatrix}
$$

With this knowledge, the reflection, transmission and conversion coefficients are given by (2.10) - (2.13).
C. Discussion of the results

1. Numerical Data

We have used the preceding formulas to calculate the diffraction coefficients for an E-layer and E-substrate for which \(k_1/k_2 = 1.297 \) and \(\mu_2/\mu_1 = 2.159 \). The phase and group velocities for this case have been given by Stonely and are available in a standard reference (p.213, Ewing, Jardetzky, and Press). Figures 4 through 7 illustrate the variation of the magnitude of the diffraction coefficients which are even functions of the discontinuity angle \(\phi \). The curves are indexed by four values of the dimensionless parameter \(\epsilon \), namely 5, 6, 7, 8; if \(\epsilon = 5 \), then the second mode is just above cut-off, and if \(\epsilon = 8 \), the third mode is just below cut-off. It is very interesting to note that the conversion coefficient \(I_{12} \) exceeds the reflection coefficient. That is, there is a tendency for the energy to continue to propagate in the same direction even if it necessitates a transfer of modal characteristics.

2. Interpretation

If we compare any two waves of identical characteristics, then their relative energy is proportional to the absolute square of any corresponding amplitude. On the other hand, before we can compare the energy in the fundamental \(S_1 \)-wave to that of an \(S_2 \)-wave or its first harmonic, we need make some further calculations. With no loss in generality, let us specialize our discussion to the horizontal plane face for which the \(S_1 \)-waves are given explicitly by (2.5) and (2.6), and evaluate the scalar product along the wavefront \(y = 0 \). Thus \(|A_1|^2 \| S_1 \|^2 \) represents
Figure 4: The magnitude of the Love wave diffraction coefficients for $\lambda_1 = 5$; they are even functions of the discontinuity angle $\pm\pi$. In this case $k_2/k_1 = 1.297, \mu_2/\mu_1 = 2.159$; the normalization value $N = 2.0$.

Figure 5: The magnitude of the Love wave diffraction coefficients for $\lambda_1 = 6$; they are even functions of the discontinuity angle $\pm\pi$. In this case $k_2/k_1 = 1.297, \mu_2/\mu_1 = 2.159$; the normalization value $N = 1.2$.

Figure 6: The magnitude of the Love wave diffraction coefficients for $\lambda_1 = 7$; they are even functions of the discontinuity angle $\pm\pi$. In this case $k_2/k_1 = 1.297, \mu_2/\mu_1 = 2.159$; the normalization value $N = 1.1$.

Figure 7: The magnitude of the Love wave diffraction coefficients for $\lambda_1 = 8$; they are even functions of the discontinuity angle $\pm\pi$. In this case $k_2/k_1 = 1.297, \mu_2/\mu_1 = 2.159$; the normalization value $N = 1.0$.
\[\lambda_1 H = 5. \]
FIG. 7

$\lambda_1 \ H = 8$

MAGNITUDE

T_{12}

T_{11}

R_{12}

R_{11}

$|\Theta - \pi|$
the mean square energy flux transported by an \(f_1 \)-wave of amplitude \(A_1 \).

If we denote the group velocity of an \(f_1 \)-wave as \(\beta_1 \), it follows that the ratio

\[
\frac{|A_1|^2 \cdot ||f_1||^2}{|A_2|^2 \cdot ||f_2||^2}
\]

(2.24)

compares the power flow of an \(A_1 f_1 \)-wave to an \(A_2 f_2 \)-wave. In particular, a mode near cut-off behaves like an unbounded plane wave in the \(E_2 \)-medium; hence such a wave can carry large amounts of power even if its amplitude is deceptively small. As a result, if we are to discuss power transfer, we should renormalize the amplitudes of the conversion coefficients

\[
R_{12}^N = N R_{12}^T
\]

(2.25)

\[
T_{12}^N = N T_{12}^T
\]

where

\[
N^2 = \frac{2 \cdot ||f_2||}{1 \cdot ||f_1||}
\]

(2.26)

so that \(|R_{12}^N|^2 \) and \(|T_{12}^N|^2 \) are proportional to the power transferred by the diffraction of a \(f_1 \)-wave of unit amplitude at a wedge discontinuity. The appropriate values of \(N \) for the previous numerical example are cited in the captions of Figures 4 - 7.

In a fashion similar to the error analysis of Part I, the function

\[
[1-|R_{11}|^2 - |R_{12}^N|^2 - |T_{11}|^2 - |T_{12}^N|^2]
\]

represents the amount of ambiguous energy. These values are more satisfactory in the present analysis than in Part I; this can be explained by the fact that we have a more flexible trial function since we can vary the coefficients of two reflected modes.
APPENDIX

Love wave diffraction coefficients would be very difficult to measure in the laboratory, but the techniques of two-dimensional model seismology offer a means of determining Rayleigh wave reflection and transmission coefficients with an accuracy of about 10-20 per cent. The present theory and experiment agree if \(\phi \approx \pi \), but outside this range, there are experimental features which are not duplicated by the results of the present elementary variational procedure. The analysis in the harmonic domain could be refined by employing various devices to reduce the amount of unexplained energy. Such calculations would probably require substantial effort, and the idealized formulation of the present problem should be reviewed if the labor is to have relevance to pulse measurements.

There are major distinctions between analysis in the harmonic and time domain. For example, whereas a harmonic Rayleigh wave is a uniquely defined entity, Friedlander (1948) has pointed out that a Rayleigh pulse can assume a variety of waveforms. Furthermore, any Rayleigh pulse can not have a sharply defined wavefront, and theoretically must give infinite advance notice of its arrival, unless it merges continuously with a precursor, typically the shear pseudo-surface wave (Cagniard 1939). Although the amplitude of this shear wave decays with distance, its integrated flux remains constant. It is difficult
Figure 8: The diffraction coefficients R and T for a trial function consisting of an incident and reflected Rayleigh wave. However, the shear coefficient of the incident Rayleigh wave has been incremented by a factor $(1 + \cos \theta + \cos^2 \theta)$. In this case, Poisson's ratio $\sigma = 1/4$.
to separate the far-field effects due to the arrival of a Rayleigh pulse and its shear companion at the second wedge face. In other words, in addition to Rayleigh-Rayleigh interactions, there will be some shear-Rayleigh conversions. What contributions might this shear wave introduce? Whereas we cannot give a rigorous answer to this question, we can however make a rough, but simple, estimate.

We first note that if the wedge angle is \(\pi \) or \(\pi/2 \), then we would expect little or no shear-Rayleigh conversion. In the first case, there is no discontinuity, and the second case corresponds to a geometry for which the shear wave is essentially normal to the second wedge face, and we know that for normal incidence, a shear wave is reflected as a shear wave. Then, from Equation 11.6, we note that we can easily add some additional shear potential to the original excitation by incrementing the Rayleigh wave's shear coefficient \(\gamma \) by an additional contribution \(f(\gamma) \) depending on the wedge angle

\[
\gamma' = \gamma + \left[1 - f(\gamma) \right]
\]

Quite arbitrarily, we have chosen

\[
f(\gamma) = \cos^2 \gamma + \cos^4 \gamma
\]

whose sole merit is that it is the simplest function we could think of that vanishes for \(\gamma = \pi, \pi/2 \). It is then a trivial matter to repeat the calculations appropriate for Figure 2, and the results are plotted in Figure 8. The shaded area indicates the range of experimental points...
as measured by Knopoff and Gangi (1960), de Bremaecker (1958), and Viktarov, (1958). Of course there is limited justification for this heuristic procedure, but it is remarkable that with this naive device the coefficients R and T adopt many of the characteristics of the experimental data. In any event, we conclude that more refined calculations should use a more realistic excitation.
References

deBremaecker, J. C., 1958. Geophysics, 23, 253

