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FOREWORD

This is a final report on the Main Tank Injection (MII) Pras-
surization System Program sponsored by the Air Force Rocket Pro-
pulsion Laboratory, Edwards Air Force Base, California, under
Contract AF04(611)-8198, Mr, Charles H. Allen (DGRPT) of the
Rocket Research Laboratories, AFFTC, Edwards Air Force Base was
the Project Officer and Mr, Thomas R. Heaton of the Martin
Company, Program Manager. The technical effort was primarily
under the direction of Mr, Franklyn L, Roberts, Assistant Manager
and Richard J. Kenny, Project Engineer.

In addition to the primary authors, technical contributions
were also made by Messers, T. Pharo, T. F, Morey, A, Joslin, and
T. Blum who worked on specific areas of the investigation on a
part time basis, Acknowledgement is also given to Messrs,
D, Cary and T, Ward who conducted the Phase I and III test program,
respectively, and Mr, R. Yarrow who programed the MTI Mathematical
Model on the 1BM 7094 digital computer.

The research and development work was performed at, the Martin-
Denver Hazardous Materials and Cold Flow Laboratories, while the
major portion of the chemical analysis was conducted by the Na-
tional Bureau of Standards Laboratory in Boulder, Colorado. The
theoretical studies and engineering effort was the responsibility
of the Advanced Technology Unit, Propulsion Section. This re-
port covers the work performed during the l5-month period com-
mencing 1 June 1962,

The Martin Company report number for this document is FTC-CR-
63-23,
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ABSTRACT

This report describes the analytical and experimental effort
expended in the development of a flight type ground demonstra-
tion test article employing a Main Tank Injection (MTI) Pres-
surization System, The overall program was conducted in four
phases: (1) Preliminary investigations including the basic re-
search and development of a small-scale system; (2) design and
fabrication of a tlight-type test article; (J) Lull-scale system
development and demonstration test; and (4) system analysis re-
sulting in the formulation of a design handbook and study of
specific vehicle applications,

Several theoretical studies were performed to establish sys-
tem requirements and determine possible system configurations,
A brief investigation of materials required in the design of a
chemical pressurization system was also performed, Based on an
analysis of current vehicle requirements and information gained
in the small-scale test program, an MTI pressurization system
design criteria was compiled to direct the full-scale demonstra-
tion system design, An abbreviated version of the IBM-7094 MTI
mathematical model was used in the early performance studies
while a general description of the final version is contained
with a comparison made of experimental and theoretical data,

A considerable amount of experimental data were accumulated
during the course of the program and were analyzed to identify
pertinent effects resulting from the chemical pressurization proc-
ess. Composition and properties of the pressurizing gas and
rate of ullage saturation with propellant vapors are reported

based on extensive mass spectrometer gas analysis, An investiga-

tion of propellant degradation due to the reaction process and
dilution by condensate is.also included, . Determining reaction

_ process characteristics was a #iajor consideration SR g pEb-

gram to establish reagent consumption and system thevmodynmtics,
Theoretical heat and mass balances are described, based on the
reaction mixture ratio determination and combustion sone defini-
tion,
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(e e2 o
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1, INTRODUCTION

The Main Tank Injection (MTI) Pressurization System is a
chemical method of propellant tank pressurization, The process
is initiated by injecting a small quantity of hypergolic reagent
into the main propellant tank, Subsequent pressurization of the
other tank may be accomplished either by direct reagent injec-
tion or in the case of the oxidizer tank, may be pressurized by
the combustion products generated in the fuel tank, This system
is desirable because of the high density and low-pressure stor-
age of the reagent, and the capability for generation of a rela-
tively low density pressurant without the use of a heat exchanger.
This study concerns the adaption of an MII pressurization system
to a flight-type test article and to specific current propulsion
systems using the propellants nitrogen tetroxide and a 50/50
blend of hydrazine and unsymmetrical dimethylhydrazine,

The technical approach has been to study the important factors
influencing the pressurization process by laboratory experiments
and analytically determine system operating characteristics to
evaluate various possible designs, Several engineering studies
were completed initially to establish the pertinent design require-
ments of such a system, identify desirable configurations, and
determine the most promising applications, Verification of the
theoretical performance and development of a practical system was
accomplished by a considerable amount of testing on 5 1/3-cu ft
thick wall sgpherical tanks and subsequent demonstration in a
2,000-gal, full-scale flight~-type ground test article, The re-
search fixture was fabricated to investigate the actual reaction
process and develop components and operating procedures on a
small-scale basis at pressures up to 200 psia, Full-scale sys-
tem design recommendations were established from this program,
which involved approximately 80 tests,

Bagsed on the full-scale system testing and gorrelation with
the performance predicted by a mathematical model, the pertinent
system characteristics were compiled {n the form of a design
handbook, By using the knowledge gained from the entire program,
a atudy of two Air Force-designated vehicles was performed to
evaluate the possible adoption of an MTI Pressurizatidh System to
those designated vehicles,

I-1
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11. PHASE I PROGRAM

The primary objective of the Phase I program was to develop a
small~-scale MTI Pressurization System and obtain sufficient date
to identify full-scale system design requirements, Several pre-
liminary studies were performed to enable small-scale system de=-
sign and provide guidelines for research testing. These studies
included an identification of system requirements, an evaluation
of possible configurations and applications, a materials investiga-
tion, and the development of small computer program for determining
approximate system performance for separate tamk pressurization.
The major portion of the Phase I effort was devoted to closed sys-
tem testing of the small-scale research fixture with & small amount
of qualitative laboratory experimentation.

A. PRELIMINARY INVESTIGATION

A thorough search of the literature concerning similar processes
and a review of previous experimentation on the chemical pressuri-
zations of liquid propellant rocket propulsion system was performed
initially to acquire a knowledge of the process and identification of
anticipated problems, The feasibility of the process was established
by the smooth combustion reported by Lockheed (SSD~TR-61-21). Thus,
emphasis was placed on adapting the process to a flight weight sys=-
tem, and obtaining further informetion on process characteristics
in view of the high combustion temperatures involved.

Further identification of the combustion phenomena or identifi-
cation of influence parameters was not described in the literature,
and only a very small portion of the information acquired was ap-
plicable to the type process involved, Using experimental data from
the literature search and established techniques for equilibrium-
type combustion reactions, estimates of expected operating char-
scteristics were made., In addition, the general requirements,
construction, and application of the MI'l Pressurization System were
studied and pertinent results are summarized in this chapter.

1. Reguirements Study

The general requirements for edaption of the MI'1 pressurization
process for any particular rocket vehicle application were studied
to provide basic design and performance data. A specific attempt
was made to identify pertinent operating conditions or environments

I1-1
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that would impose unique design considerations on the various in-
jection techniques and system configurations. Where absolute values
could not be established due to the general nature of the study,

the important factors influencing the requirements were identified.
The significant design requirements affecting the MTI pressurization
techniques were studied for three basic applications, large boosters,
sustainer vehicles, and space exploration systems. These require-
ments are discussed with respect to the pressurization system, pro-
pellant feed system, engine system, and structural characteristics,

Pressurization System - The primery advantage of the chemical
pressurization system lies in its capability for high-density stor-
age at low pressures, and low-density pressurization of the propel-
lant tank ullege, The resultant overall system weight, however,
has to be determined for the particular application, since the op-
timum design will be & function of pressurization system confilgura-
tion and capacity. Therefore, a particular weight limit cannot be
established as & general requirement. Pressurization system weight,
however, can be computed from the sum of the weights of the pres-
surizing gas and components required. In the case of any pressuri-
zation system, the residual pressurant remaining in the storage
container should be included. In the gas generator and MI'I systems
any condensate formed must be identified. 1If extra capacity turbo-
pumps or gas generators are required to effect pressurization a
proportional share of the weight of these systems should be included.
For comparison, comparable pressurant storage density and final den-
sity of a stored gas in a helium system and an MII pressurization
system are shown in the following tabulation:

Storege Density Pressurant Density
Type Design (1b/ft3) (lb/fts)
Helium System 1.937 (525°R and 0,018 (750°R and
3000 paia) 36 psia)
MIT Syitem 67% (525°R and | 0.067* (750°R and
36 psia) . - 36 psia)

*Based on a reaction mixture raﬁio of 0.7 and molecula
weight of 15, ]

The final gas density of an MTI system operating at comparable
temperatures is 3.7 times heavier than the helium density. However,
the heat exchanger and large storage container required in the helium
system imposes a severe weight penalty. Although the MII system is
penalized by condensing products of reaction, the elimination of a
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heat exchanger and the lighter storage system required (due to the
~low storage pressure and 34,6 times higher initial density) makes
this system appear attractive for many applications,

A study of pressure control requirements has indicated that
separate characteristics are required for pump- and pressure-fed
engines. The propellant tank ullage pressure requirement would be
a function of the trajectory and vapor pressure (for pump systems).
In general, a tolerance of 3% is mendatory for most applications
for the pressure profile required during the mission. The pres-
surization system to be developed must maintain the desired tank
pressure under variable propellant outflow to demonstrate system
versatility, even though it may not be required for some future
applications. Changes in ambient conditions as a result of a par-
ticular flight pattern or mission must not affect tank pressure
control, That is, propellant slosh or inertia forces exerted on
the reagent injected should not adversely affect the process.
Based on possible future application, the pressure range for sys-
tem operation would be from 20 to 300 psia, Special applications
requiring higher operating pressures will cause unique problems in
tank and insulation material requirements due to the inherent high
temperatures encountered.

The system operating temperature limits have been established
( considering propellant, component, and teank materials. Although
’ the effects of propellant vaporization cannot be identified for
general application, an upper temperature limit of 1000°F at low
pressure (20 to 60 psia) has been esteblished for the storable pro-
pellants under consideration. This limit is based on possible rapid
decomposition of the hydrazine-unsymetriceal dimethyl hydrazine mix.
Similarly, a 1000°F hot gas temperature limit has been imposed due
to current component design. The following tabulation identifies
maximum system operating temperatures based on allowable tank wall

temperatures.
Estimated Maximum
Maximum Material Ullage Gas
Material Temperature (°F) | Temperature (°F)

Aluminum Alloy 300 ' $00
Titanium 700 1000
Stainless Steel 1000 1400
High Temperature

Steel Alloy 1300 1800

I1-3
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. A gas temperature tolerance of #4% in the 300 to 500°F range
and #5% tolerance in the 500 to 1000°F range has been established
to verify system performance repeatability, This temperature con-
trol must be inherent in the MII pressurization process to establis