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FOREWORD

This report was prepared by the Engineering Analysis Division of
Computer Engineering Assoclates, Pasadena, California, on Air Force
contract AF 33(657)=8293, under Task Number 821901, Project Number 8219,
The work was administered by the Stability and Control Section, Control
Criteria Branch, Flight Control Division of the Air Force Flight Dynamics

Laboratory, Mr, Robert L. Swaim was project engineer for the Laboratory,

Work under the contract began in March 1962, and was concluded in
Augugt of 1963. Most of the research was ¢arried out by Robert G.
Schwendler and Jack H, Hill, and valuable contributions were made by

Dr, Richard H, MacNeal, who also directed the early phases of the research
activity,

This is the final report and concludes work on contract AF 33(657)=
8293,
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ABSTRACT

This report contains an investigation of "mode interaction" instabilities
of aircraft, "Mode interaction" refers to coupling between an elastic mode
and a rigid body mode of the free system, Three ratier general airframe
configurations ars analyzed in detail, It 1is shown that systems which tend
toward steady atate divergence are particularly susceptible to mode inter=
action, Also, that serodyunamic damping terms can have a destabilizing
effect upon a free system, The analyses show that aercelastlc systema which
possess no finite frequency elastic mode can be susceptible to a finite
frequency instability. Computer studies of several different airframe
configurations are discussed. An appendix to the report contains stability

charts for an aircraft having two rigid body modes and one elastic mode.
PUBLIC.TION REVISY

This technical documentary report has been reviewed and is approved.
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I. INTRODUCTION

The Investigation of reference |, titled "Optiwum Structursl
Representation in Aeroejastic Analyses" was (nitlated as a study of
the effects of elastic modes of an aeroelastic system on the low
frequency response of the system, The results of that investigation
provided a straight forwerd method of representing a system in terms
of a few of It3 normal coordinates and the “residual flexibliity® of
all higher modes which proved to be an accurste approximation of the
aeroelastic systex for the prediction of !ts dynamic behavior in the
frequency band from zero through the frequencies of the norms! modes

explicitly Included in the representation,

This method of structural representation was shown to be valld
In all conflgurations studied except In the case of "mode Interaction”
whers no conclusions were drawn, "Mode Interaction" is defined as a
conditlon of potential or inciplant asroelastic instabiility Invalving

one elastic mode and one riglid body mode of the free systew,

The Investigation reported here was undertaken to provide some
insight into the mechanism of "mode interaction™ and to provide a
means of predicting tha susceptibiiity of a given configuration to
this phenomenon, Since the ™aode interaction™ phenomenon Is definable
In terms of a potentlal seroelastic instabliity, this study was almed
particulariy at the prediction and understanding of the instability

rather than at prediction of the ragponse at a subcritical speed.

Manuscript relessed by authors August 1963 for publication as an
ASD Technical Documentary Report.




The predictlon of critical velocity (flutter speed) and the system
response at a subcritical speed Is caertalnly a solvable problem for any
system, Many standard references on flutter analysis and aeroelasticlty
present general methods which are comprehensive In their potential
appiication. Reference | presents equations of motion of an seroelastic
system which are an example of a completely comprehensive analysls,

Equation (3,69) of reference | Is

d {6 = [3ad (0] = Lo D) ( o [0 {8347 o0

where ;

[YK Is a dlagonal matrix of the generalized mass and stiffness
of the normal modes, [YK] - [KK] - (u2 [mK] .

{ék} Is the vector of normal coordinate deflections.

[@md Is the matrix of normal mode shepes or the "modal matrix"
of physical coordinates m. [QmK] Is a square matrix.

[anJ is the serodynamic Influence coefflcient matrix In the
physical coordinates m, deflined by {Fm}- [Qmm] {Vm} .

[)g:;:] ie the residual flexibility matrix or a matrix defining
the stiffness propertlies of the system which are not
Included In the generallzed stiffnesses [KK] .

{Fm(a)} Is a vector of additional externally applled forces.

Equation (I-1) can provide a rigorous statement of the equations of
moticn of a system [f all elestic modes of the system are included In
the K coordinates and at least an excellent approximation of the system
equations when the K coordinates include a reasonable numbsr of the

lowest modes of the system,

-y




Equation (I~1) 1s useful In providing an accurate prediction of
the dynamic response of a complicated systems Such predictions, how-
ever, do not elways glve an understanding of the basic mechanism of
the phenomena being studied., Thus, such an equation can provide means
of discovering that a given alrcraft design has unsatisfactory stabl|-
ity and control characteristics, but unless the basic mechanism of the
Instabl ity is understood by the designer, he will be unable tc foresee
which design changes result in improvement., The systems analysed in
this study were selected so as to throw llght on the basic mechanisms
of mode Interactions In order to lllustrate these mechanisms cleariy,
It was often found useful to make simplifylng assumptions. Therefore
the results of this study spply to more definite stabllity and control

problems than does equation (I-{), which is very general,

Three analyses are made In this study. These analyses conslder

the followlng systems:

I« (Section II) Analysis of an alrframe represented by two rigid
body modes, one elastic mode, and the "residual flexibility"
of all hiyher modes. The chief simplifying assumption of this
analysis is the omission of all damping terms from the equa-
tions of motion of the system,

2, (Section III) Analysis of an alrframe consisting of a simple
ajrfoll flexibly attached to a rigid fuselage. In addltion to
the assumption that the fuselage is rigld, It is also assumed
that the alrfoll has no mass.

3, (Section IV) Analysis of an alrframe having two rigid body modes

and one elastic mode. This analysis omlits all consideration of

~ e



residual flexlbillty of the higher modes of the system,

Since this study is almed particulerly at the supersonic and high
subsonic veloclty regime, aerodynamic lag functions were omitted In all

analyses.




II. ANALYSIS OF AN AIRFRAME REPRESENTED BY TWO RIGID BODY MODES,
ONE ELASTIC MODE, AND THE "RESIDUAL FLEXIBILITY"
OF ALL HIGHER MODES

The "residual flexibiiity® approximation, derived in reference |,
In generalized modal analyses provides a means of including all stiffness
properties of a system In the analyses while the mass Is represented by
the generalized mass of a selected number of lower=frequency normal modes.
Advantages In simplicity of solution of the conventional truncated modal
approach are obtalned when the coordlinate veloclty dependent terms are
omittede The omission of these damping terms In the equations of motion
will be detrimental to the accuracy of the predicted stabliilty boundaries,
but this enalysis will be shown to be useful by providing some Insight

into the stabl ity problems of more complex structures.

The afrframe configuration considered In this anaiysis will be a
general one defined only by the following parameters.
m = the total mass of the system.
r = the radius of gyration of the system (then mra is the
pitching mass moment of Inertia of the alrframe about
118 CoQe)e
r “m = the generallzed mass of the first elastic mode of the
systeme Thus r, Is just a radius of gyration obtalned
by dividing the generallzed mass of the first elastic
mode by the total mass, and taking the square root.

) = the undamped natural frequency of the flrst elastic mode.

= the modal matrix defining the mode shapes at the h (plunge)

coordinates and the 0 (pitch) coordinates of the system




for the r nodes iIncludeds 3 modes are included, the
zero frequency plunge mode (mode 1), the zero frequency

plich mode (mode 2) and the flrst elastic mode (mode 3).

! T
Xhh 1 %on
-—-1-——-— = the flexibility matrix of the complete free system
X X
L Bh 1 66__ when the zero frequency modes are restrained to zero
displacement, partitioned by h and @ coordinates.
F oa | wl
nh | *en
—~—w{——=— | = the "residual flexibllity" matrix. of all elastic modes
oo | o0
_ﬁeh | Xeo__ higher than the first, partitioned by h and @ coordinates,

Thls matrix actually is not needed to define the system
since (from a special case of equation (3.21) of refer-
ence I) it is determined from system parameters |listed

above by the equation

(] L] [l frel[]

where X, . Is the flexibility matrix with the zero fre-

quency modes restrained.

The aerodynamic forces included In this analysis wili be defined by

the following partitioned matrix equation

F |
h 0 i0Q h
LY P S (11-1)

=q
M LO:O ]

where q Is the dynamfc pressure % X% .

The equations of motion of the aeroelastic system can be written by
a process of partitioning equation (I-1). The quantity - o in equation
(I-1) Is replaced by % In equation (II-2), since we look for solutions of
the equations of motion having time dependence of the form eSf, where s

may be complex,
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In order to shorten subsequent matrix equations we shall define an

"acroelastic serodynamic Influence coefflcient matrix" [—Q‘ha as follows

[0he) - {[1] - a [0ng] [xﬂ}-l [2ne] (11-L)

it is well to note that [Oha Is a function of the dynamic pressure
(q) and the number of elastic modes explicitly Included in the analysis

(In this case | mode),

The equations of motlon of equation (II-3) may be further simplifled
by recognizing that the modal column {%l} s the pltching slope deflec~
tions In the riglid plunge mode, Is equal to zero, and that the modal col-
umns {éh'} and {%2} , the plunge deflectlons In the riglid plunge mode
and the pltch slopes In the rigld pitch mode, are equal to {l} , @
colunn of ones, due to normallization, The equations of motlon now may

be written In the form

pr

SRR O ERCMED - 0¥ o o {07}
o=| 0 mrPs?- {“’hz}T q [5119] { '} '{’ha}T e [6h9] {’93}

In an effort to obtaln a solution in terms of parameters for which
englneers are more likely to have intultive judgment than for the general-
lzed modal parameters of equation (1I-5), we will introduce the concepts

of steady-state elastic divergence and short period mode frequencye.

Conventionally the short perlod mode frequency Is the pltching fre-

quency exhibited by the rigld system when aerodynamic forces are included.

| ° ) {*hB}T 9 [6h9] {r} mr 5%+ 0,%) _{,,hs}r 9 [ahe] {%3}

(11-5)

-




For this analyslis we will defline the Maercelastic short period mode
frequency”" (a%*) to be simlilar to the conventional definition except
that the system, instead of being rigid, will include the "residual
flexiblifty" of ail elestlc modes higher then the first., Thls fre-
quency can be obtalned from equation (II-5) by letting 53 be zero,

then assuming harmonic motion.

e () o B

Steady-state elastic divergence 1s conventionally defined for a
supported system as that aeroelastic instabllity which can occur at
zero frequency and Is therefore Independent of the mass of the system,
This simple definition cannot be applied to 2 free system because In
this case:

l. Other potentlial zero-freguency Instabliities exist which

are not aeroelastlic In nature,

2. The mass distribution of a free system must be considered.
The only reasonable definltion for steady-state elastic divergence of
a free system Is avallable through the description of the elasticity
of the str-.cture when restraints are placed on the zero-frequency
normal modes of the system. In this case steady-state divergence can
be defined by the singularity of the matrix {[I] -q [Q"‘":I [’ﬁnn;]}
where q [Qmm] is the matrix of aerodynamic Influence coefficients and
[}mm Is the deflection Influence coefficlent matrix of the structure
when the zero~frequency modes are restrained. ln/fhls analysis elastic

divergence is determined by fthe vanishing of the determinant

(=] - ong [xen]




which may be expanded as follows In the parameter q

[2] = o [ng] [Xen]

where: D| Is the sum of the first symmetric minors of [Qhe] [Xeh]

h
-I-D'q+Daq-.....Dhq (11“7)

(sum of the dlagonal elements),

O, s the sum of the second symmetric minors of E}he][xed .

th symmetric minor of [Qhe] [xeh] .
Then deflnlng the Maercelestic Index" D by

C)h Is the sum of the h

= 2 h
D=Dg=09"%.....D9q (11~8)
from equation (II~7); D wiil equal O when q = 0 and D will equal | when

q is the dynamic pressure at divergence,

Steady=state divergence of the free system cen also be determlned

from equation (II-5) by letting E, =& =s=0. Then

mre2 mee -{Qh5}T ap [6he] {%3} s 0 (11-9)
where 9% Is the dynamic pressure at dlvergence. We now note that the
quantlty | 5 T . 5

;:?u? {éh } q [Qhe] {q’e } (11-10)

exhiblts the same known dependence on q as D; that is both functions:
1. Equal | when q = 0,
2. Equal O when q = the dynamlc pressure at divergence.
3. Are equal to q Qxhe when applied to a system containing
only | elastic degree of freedom, | palr of aerodynamic
coordinates,

It is then postulated that

0" ;:"5;‘2 {“’hB}T a [‘Q'he] {“’95} (12-11)
e e

10




A rigorous proof of equation (Il=il) was not obtalned and its valldlty

witl be tried by exampie problems.

The characteristic equation obtained from the determinant of the

matrix coefficients of equation (II-5) Is

52 [s"‘+ As? + a] -0 (17-12)

where

oot o <Rt - T o 8

- 6T B e B B 6T 5T )

- AT o[ {1

For a configuration where the siope deflections "sensed" by the
aerodynamic representation are all equal in the first elastic mode,*
then the last term in equation (II-12) for the factor B is zero, since
through normalization {1’93} can be made equal to {l} o For the
conflguration considered In Sectlion IV (since only | aerodynamic cell
Is Included) this term Is zero and probably for a rather large range
of confligurations this term has little Importance. Therefore because
this term is of doubtful signlficance and because Its omission greatly

simplifies the results of ‘this analysis It will be assumed that
{1} {‘}"rﬁ}T [6re] {e0° - {2} {“’h}}T (G {17 - © (11-13)

*An example of this configuration s one containing a rigld lifting
surface.




Then by substitution of equations (1I=6), (II-1!) and (IX~13) into

equation (II-12), the characteristic equation can be wrltten

o [sh+ As® + B] = 0, (II-1L)
where
2 *
A-me(l-ﬁ)#mo
2
* 2
B = W, @

In equation (II-tL) with (I - D) =0, 32 will be real and negative
unless A2 -« LB is negative, |f A2 - 4B is negative, then two of the
roots s of equation (II-IL) will have a positive real part. The

system is therefore on the verge of Instability when

A2 = I8,

Then margine! stabiiity 1s given by

-2 (. -\/%) ; (11-15)

£
» oe|o€
*

and since both D and 3‘9- are always continuous functions of the dynamic
]

pressure beginning at the origin, the lowest dynamic pressure which will

satisfy equation (II-15) is given by
*

o -\© (11-16)

(1]
e

Both sides of equation (II-~16) are functions of the dynamic pressure,

The dynamic pressure at flutter is defined as the intersection of these

2 functlons,

The first observation we may make from the results of this analysis

is that a strong relationship does exist between mode interaction, or




flutter resulting from coupling of the first elastlc mode and the rigid

body modes, and elastic divergence, This analysls shows that for free

systems which fit the assumptions made, classlical "elastic divergence® |
will not occur because a flutter instabiilty will always exist at a

velocity lower than that corresponding to divergence.

The second observation we may make from equation (II=16) Is that
when D, the Maercelastic Index", is negative the frequency ratio is
complex and therefore flutter will not occur.e The significance of a
negative D Is that the system Is losing aerodynamic effectiveness (at
a gliven rigid body mode pitch angle, the aercelastic deflections of the
structure reduce the total |1ft force)s This observation provides the
following useful qualltative criteria for the susceptibllity of a given
configuration to mode Interaction:
le |f a system loses aerodynamlc effectiveness as veloclity Is
Increased, then mode interaction will not occur,
2, |f a system increases in eerodynamic effectlveness as velocity
Is Increased, then mode interaction will probably occur; the
system will be unstable at & velocity less than that predicted {
for steady-state dlvergence. At the velocity of instabillty j
the ratio of the uncoupled short perlod mode frequency to the |

first elastic mode frequency will be less than [,

COMPARISON WITH KNOWN SOLUTIONS

A nunber of aircraft were studied on the CEA analog computer in
the course of this project and that reported in reference l. Most
configurations studied exhibited a flutter instability involving the

rigid body modes and the first elastic mode, end in all but one of

13




these cases the system tended to diverge at some hlgher speeds One con-
flguration, (configuration 3 of reference 1) a swept wing alrplane, lost
serodynamlic effectiveness as velocity Increaseds This configuration
showed no tendency to flutter even though the short period mode frequency
virtually coincided with the elastic mode frequency. The one configura-
tlan which did not tend to diverge but did exhiblt mode interactlion was
one where finite aerodynamic damping will be shown to be a necessary
parameter for flutter to occur and therefore could not be predicted by

this analysis which ignored all damping terms,

These results In general colncide with the qualitative criteria
drawn from this analysis; however, in most cases fthe aercdynamic damp=
Ing appeared to have a reasonably large effect on the quentitative value

of the flutter speed, precluding accurate prediction by this analysis.

Conflguration lj of reference I, the delta winged alrplane, showed
very rapid varlations in damping at flutter. This phenomenon usually
Indicates that aerodynamic damping terms have Iittle Influence on the
Instability because they do not vary rapldiy with speed or A.C, location.
The criterion of equation (II-16) was applied to conflguration 4 because
damping did not appear to be a controllling parameter in this case. This
criterion was the only one produced In this study which was in a form

applicable to this "plate-iike" structure,

DESCRIPTION OF CONFIGURATION L

The alrcraft used in this comparison [s identicel to configuration
Ly of reference |s The geometry, mass distribution and structural param-

eters are repeated in this report In Figures i through 5. The aero~-

4




dynamic forces were represented as follows:

l+ For the purposes of describing aerodynamic forces, the wing
was divided Into three strips shown In Figure 6, The strips
are assumed to be rigld planes whose deflection Is defined by
the plunge deflections at the 1/l and 3/} chord coordinates
shown In Figure 6, The aserodynamic |ift and moment on each
strip are rigidly beamed to these same I/L and 3/& chord co=
ordinates of the elastlic structure.

2, The aerodynamic center of each strip is located on the mean
chord of the strip and aft of the effective leading edge of
the strip a distance xc (¢ = mean chord length of strip).

x was varled In the study.

3, The serodynamlc I1ft force on a strip Is given by
| z
L--E-PVZSCL (e'v)
a
where

@ = % (z%_- z%) is the plitching slope of the strip

(positive nose up),

z Is the plunge deflection at the A.C. (positive up),
23 and z3 are the plunge deflections at the 1/l
chord and 3/& chord polints of the elastic structure
(positive up),

Thus

*This equation is glven incorrectly In reference |,




Le The aesrodynamic moment about the A.C. Is given by

case

v {positive nose up).

me-gpVPsg
5 The basic flight condition used In the following numerical
study !s described by the parameterss
Veloclty = 1655 mph
AltT tude = 40,000 feet
Dynamic Pressure = q = 11.9 lb./ln.2

Lift Curve Stope = cL = 5,0 per rad.

a
The dynamic pressure Is varied In the numerical study and Is

expressed as fraction of the baslc value given above (qo).

NUMER!CAL COMPARISON

This configuration was simulated on the CEA passive analog computer
in the pro ject reported in reference |y At that time it was observed to
exhibit the following unusual aeroelastic properties:

|, Three distinct flutter Instabilities were observed for various

combinations of dynamic pressure and A.C. location, Two of
these Instabiilties were Identifled as conventional flutter
phenomena Involving the coupling of 2 elastic modes, The third
instabiiity was the result of coupling of elastic modes and
rigld body modes, It is the latter case which will be consider-
ed In this comparison,

2. The system was observed to have a much smaller stabie region

when the system was represented by one elastic mode than when

the higher modes were included In the representation.




3. The stability of the system was sensitive to small variations

in flexibility,

The appiication of equation (II-16) to configuration & Involvaed

two ma jor stepss
*

o
l« The determination of Z;L' for various A.C, locations and
e

values of él « This calculation was accomplished using
o
equations (IY=6), (II-L) and the modal properties of the

system presented In reference I.
2. The calculation of D from equation (II-8) and the flexi~
billty matrix of the system given In reference |,
The results of these calculations are presented graphically in Figures
7 through |1 for values of x of «25, «30, «35, .375 and 4D. Also

Inctuded on Figures 7 through 11 are curves of the dimensionless short

w, —

period mode frequency of the rigid system - and the curve of | =V D
e

when the elasticity of the system Is represented by only the generallz-

ed flexibllity of the flrst elastic mode. The intersection of the latter

two curves defines the dynamic pressure ratio (éL) at marginal stability
o

when the "residual flexibility" of all elastlc modes higher than the

first Is ignoreds The intersection of the upper curves defines the

stability boundary for the system when all flexibility of the system

is included.

The stabliliity boundaries calculated from equation (II-16) are pre-
sented in Figure 12 along with the corresponding boundary observed In

reference |,




Curve A of Figure 12 Is the low frequency stabi!lty boundary of
reference | (dynamlc pressure ratlo (éL) has been substituted for the
equivalent parameter "flexibliity facfgr" of reference | for convenience).
Curve B of Figure 12 Is the stablillty boundary caiculated from equation
(II=-16) Including the residual flexibility of all modes of the system,
Curves A and B are in substantial agreement, The discrepancy between
curves A and B can be attributed to any one or all of the following
reasons.,

l. The approximations made in this analysls,

2. The omisslon of all damping terms from this anaiysis,

3. Experimental error In the determination of system flexibility.

Discrepancies were also observed on the analog computer between
the modal simulation and the "exact" representation, The sta-

billty boundaries were recorded for the "exact" representation.

Curve C of Figure 12 is the stability boundary, determined from
equation (I1-15), when the flexibillity of the system Is represented by
the generalized flexibility of only the first elastic mode. The stable
reglon above curve B is much larger than that above curve C. This fact

agrees with observations of the analog computer analysis of reference I.

It is not claimed that this comparison proves the validity of
equation (XI=-16), However It Is known that equation (I1I-16) is valld
for very simple systems and thls comparison does show that It is useful
for qualitative evaluation of a complicated systeme The conclusion is
made that the criterla of equation (II-16) Is useful in the prediction
of the susceptibility of a configuration to the ™mode Interaction™

phenomenon,
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III. ANALYSIS OF AN AIRFRAME CONSISTING OF A SIMPLE
AIRFOIL FLEXIBLY ATTACHED TO A RIGID FUSELAGE

In order to place frequency coalescence methods in proper perspective,
It 1s useful to analyze a basic aeroelastic system consisting of a simple
rigid 1fting surface flexibly mounted to a rigld fuselage (see Figure 13),
Since we are nat concerned here with conventional binary flutter, we shall
assime that the inertia of the 11fting surface Is entlrely negligible,
Of course, by ignoring the Inertia of the IT1fting surface, we leave out
of account Instabi!itles which occur because of coupling between the short
period mode and a low frequency elastic mode., This type of Instablility

will be discussed In Sectlon IV of the report,

Clearly, If the system possesses instabiilties, they are not of the
type which can be predicted by frequency coalescence methods, since there
is no finlte frequency elastic mode which can coalesce with the short
period mode, We will demonstrate that this system can exhiblt three

distinct types of instability,

The conflguration of the system can be specified by four coordinates:
2 » vertical deflection of the center of mass, positive up,
@ = pltch angle of the fuselage, positive nose up,
z, = vertical deflection of the aerodynamic center, positive up,

Oa = pltch angle of the |ifting surface, positive nose up.

All coordlnates are measured relative to an Inertial reference system,
The equations of motion are

mz = K(za -z %0 = %, Oa) =L

e,)

I0 = k(ea -8) + Xg K(za -z-x0-x, 8
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0--K(za-z-xee-xaeaa)+l.

0=

6,)

xae

K(za -

Z=x0-x
_

ae &

- k(g, = 0) + M

The 11ft and moment at the aerodynamic center are

s
z

L-qS(CL

a

6, ~C
a Lo

2sc
v
q

c ea
L v

2,
M=q$s <~Cmq—v—)
qngpv

(the geometrical quantities Xot Xgs Xag 8r€ defined in Figure 13),

ae

Introducing matrix notation, these equations may be writtens

— ]
N mza' x wze ! -l ! Xgq ¥ 2
_orl e 2 ez

2 |22, 22, 2 2] 2 | 2_2, 2
%o wz LZ_S rr me * %e wz *e wz L~f? xae mz - r “e
2 2 2 2

-, | - X0, l w, [ - Xpo Oy
T A T R T Y,
L_’ae W7 | % Xae O TN Wy [ Xeq 0,7 | rT 0T 4 X" 0,
.J
PO i ar, 7
0 0 0 z
___L___I___.T'___o___ :
o | o | 0 0 e
s -4 - — N [N
*q - 3 | £
ololcl_V ¢+ C |2
e e 9
] I | 2 ||
c 8
OIOI 0 I---Cm - Oa
- q N S
K
where mka "= mee - % s I =m rz.

Introduce ¢ as & unit of langth, é as a unit of time, and PSc as

3R
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a unlt of mass. Then the following quantities are non=dimensional:

§-:g §-.E.s. ﬁ-m 6 -CLa
(-] [ Vv PSc La o
C
% o L
ae 2z q
§cna"c 6z“v -CLqiaﬁ
¢
cw m
. r ("} -
Feg By = o B
i-_z.
c
2z
- a
L <

N w2 %, 8,7 —L -a? i e 5,2 1.

%, ®° ,-2g2_+r2502+§2152| :;}lze;;w}—‘:?a—me: :
—_— — e — — —_—,—— — —| | —~ | =0
- aza | X, asza | EL 5+ ® 11_-_'c"_q§ - ELQ - 7“!322 zZ, ’

o A [t e A
B (1;1-2)

and the characteristic equation s obtalned by faking the determinant
of the matrix of coefficients. Laplace's method of expanding a deter~
minant (reference 3) Is convenient and ylelds the following characteristic
polynomial:

2 3 ]

$ [ahslh a3§ + a2§2+ a'§+ a " o,

where

2
ay =7 C €
L M Lo
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3 -3 ae ae CL ] o
a a
.=h-2-2 2.2 o o2, 22 x 2 =
8, = T Wy G- - T B, ae(:L+(e+r)w EL cm+F2we ¢ G
a a 4 a
2. 2 2 2 ‘@,
a =78 BST 2 v ox -84 8
z e "L ac
a T, T
L L
a a
2.2 = —
8% ° ° © B, B CLQ (Réc = Cn )

Before deriving any conclusliens concerning the stablilty of the
system, 1t Is useful to introduce a fictitious frequency, Gy o which

would be the undamped short period frequency if the alrframe were rigid.

(111-3)

The usefulness of this parameter depends upon the fact that glven W the
velocity V Is determined and vice versa, and upon the fact that stabll=
Tty criterla are more convenient!y expressed In terms of frequency ratios
than in terms of velocity, The non-dimensional frequency corresponding

to w, Is simply

In the characterlstic equation replace EL by
a
~ a1
C s -

La 'iac

and divide the equation by Fh Boh. In this way we obtaln

z° [Ah?,l"-b A3§3+A2§2+Al§+ Ao]-o, (111-1)
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7 g
A = (111-5)
L 52T
ac a
2 C G 2
® L m 2 /0
- z) s & __11) P ( e)
A, = AR - % * - - (111~6)
s e (&) (o et 1 o
[~} 2 (] 2 ) 2 X W 2 2 (! 2+ Pe) cm we e r2 (1) 2 Cm
Ag.(_2> (__1.>+(_5‘) =.°.E.+(a£> 0 A_TCJ+(_)___§_E_.‘1
mo wb “5 Xac o ° iac La Rac La
(111-7)
~ 2 2 2 (o C
8, wz> g s 5 L m
Al " -§:—; -w—o- z’-;) iac + P - Xac'ara'f -qﬂ (III-B)
Q a
2 2 c
2 wz Wy FE L
A =g (—) (-) | + 7) (111-9)
o o \&, 0 ;::E o L,

Obviously, the characteristic polynomlal has a palr of zero roots,
These roots merely express the fact that all altlitudes and all directleons

of fllght are equivalent, Thera are several interesting special cases,

A. Suppose the torsional stiffness is Infinite (69 = 0},
In this case the characteristic polynomial Is
= _2
4,8 b, 5+ b =0, (I11-10)
where
%o wz>2 5 o
b = = ORI P (III=11)
2 ;2"(@0 Xac L
a
-2 2 C c
[5) L m
) z 2 2 _ 9 -
°) T(T) (*ac FE Rt g > (131-12)
F () L L
a a
. 2 c
X ) 2 m
. . _8C .. 2172 s 2
- 24 (3 (;"2 fﬁ) ()
ac a
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For a given alrframe, it Is convenient fo take the frequency ratlo

W

‘m_o as a measure of velocity, Since w, Is known and 1s independent of
z

)

veloctty, 59 s proportional to velocity Vo The value of V &t which
z

the alrframe Is neutrally stable Is of particular Interest, and can be

determined as follows, Suppose the alrframe is neutraliy stable, then

there Is at least one root of the form s = & where © is real, It

follows Immediately from the characteristic polynomial that if w ¥ 0

& = b,
b
2 o
B =
Bp
or
bl b2 = bQ.
@
This condltion determines the value of - at neutral stablillitys
2
[ 2 cm
© 2 2 Cm b 2 % El-.-
] 2 9. ac e (T11-14)
@ % ° T 2 L cm
° ac a r i rﬂ* 1 EJ'
x é 'g L X L
ac ac a

In many cases, especlially In cases where the surface Is mounted

well aft of the center of mass of the alrframe, the effects of CL and

q
Cn (pltch demping coefficients) will be negligible compared to the
q CL Cn
effects of C - In such a case we cen ignore the ratios -C—L-ﬁ » Clﬂ .

a a

,
and an especlally simple expression for the frequency ratlo Tn'z' (at
o
neutral stablility) is obtained:




wz) r'2
= = (I11=1
("’o r + xac 5)

This criterion can be given a simple physical characterization. Imagine
the aerodynamic center to be rigidly constrained, the airframe being
otherwise free of forces and constraints, then the natural frequency

of the system Is

. 2+ xaca
0 e, | ——— (111-16)

Therefore, when the short perliod frequency @y (computed as though
the airframe were rigid) equals the frequency m', neutral stability

occurs, The frequency of the neutrally stable oscillations of the air=

b
frame Is simply m? = 33 = wba, the short perlod frequency computed by
2

assuming the alrframe to be riglds Although the presence of pitch damp=

Ing due to c and C wiil modify these conclusions slightly, the baslc

q q
mechanism of the Instabllity for practicai cases Is revealed by (III-15)

and (III-16).

Notice that the frequency ratio at neutral stabliity can be express—

ed in terms of four dimensionless parameters:

re

oel mx“J
oo
r-‘-’lna;‘j
a

(9]

x1
1
a lo
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Cm‘

|
A
ac a
ra
and 1f damping terms are small, only a single parameter is [nvolved, -
*ac
B. Infinlte plunge stiffness (&, =00 ).
The characteristic polynomlal Is agaln of third order:
=3 2 = - -
¢y B4 ¢, B4 ¢ 4 ¢y 0, (111=17)
where
C o
L m
Lz 2_< _9
Cop B e | X - X + (III-IB)
3 Yac ( ae ae CL L >
a a
we 2 R;e 2 R‘e + ?2 cm B
" - (zr) tyo 8 (111-19)
(o) ac X L
ac a
- 2 2 C c
@ W L ]
o e) 7 2, p8 -9 q
C B o | X + - % + (111-20)
I (wo ac ac T 3:_
a a
2 c
W 2 m
Co - wO (uo) (l + (1)0 -5 T ) (III 2')
X L
ac a
Suppose § = |G, W real, Then
- —3 -
c3 w o+ < ®=0,
.-2 -
- ce W + co 0.
“8
Obviously, @ = O Implies ¢, = 0, and this Is not possible unless - 0.
o

This last condition implies that the surface Is connected to the airframe
by means of a torsional spring of zero stiffness or else the velocity Is

infinites |f Gy O then

%8



Co cl
“
and we get for ol
o
c C
L m
- & _ = qQ q
73 X et 4
N e ® 3(‘2+F2 C:m 2 Cn ae ae CL CL
<_°; --._a.f.-a‘a Ld -ﬁ.-l—l-i—ﬁa r .9 a a
@y iﬁc ° 5 CL ° < 2 cL CL Cm
ac a ac a ’F2+Y 2“.’? 9, 9
ac ac C C
L L
a a
(111-22)
Now Eac Is negative if the alrfreme has a posltive static margln, There-
X
fore 1f the elastlc axls Is aft of the aerodynemic center, = §£5 Is
ac

posltive, and Instablilty is certalnly possible, |t appears that the
exlstence of an instability Is closely connected with the divergence
properties of the Ii1fting surface, Thus, 1f = i;e is positive, the
surface Is capable of divergence when the fuselage of the alrframe Is
restralned, The Instablilty predicted by (III-22) Is as close as the

free system can come to divergence. The Instablilty is not ordinary

divergence since the frequency of the instability Is greater than zero.

It is not generally possible to Ignore the pltch damping terms CL .
q

C, 1n equation (I11-22), since the character of the instablility can be

q
drestically modified by these terms. In fact, there Is one Interesting
cese where the pitch damping terms can produce instabillty at a very
low sirspeeds Suppose we positinn the aerodynamic center with respect

to the elastic axls In such a way that

2 g, g
Xae - Xae -C:- + -6[-- =0 (111’23)
a a

39




We can then position the lifting surface with respect to the center of

gravity of the airframe so that

C C
L m
2 . 2
e e %o = Ko —-g»cL + FﬂL =0 (111-2L)
a a

Then 1t Is obvious from the expressions given for the coefflicients of

fhe characteristic polynomtel that

[196)" , % 2§2* N 2 2
o ac
L %ac o

w.\2

and therefore the system can be neutraily stable for all values of (52>
o

(esg. the system is neutrally stable at every airspeed from O to ©0),

Notice that ch Is cruclal to this phenomanon, |[f CLq =0 it Is mot
possible to satisfy elther of equations (I1I-23) or (III-24). It would,
of course, be rare to encounter an airframe which satisfied the cond!tlons
of equations (II1I1-23), (II11-2L) exactly. However the example does show
that the effects of pitch damping can be very Important, Note also that
structural damping (dashpot In paraliel with the torsional spring of

Figure 13) would tend to eliminate this instabiiity at low alrspeeds,
The frequency of the instabiilty Is apparent from equation (III-25),

In the general cese, where both wy and w, are finlte, the substitu-

tion § = {® Into the characteristic equetion (III=}) ylelds

Abﬁh’-Aeﬂz‘t AO-O

where the A's are given by equations (I1II1-5), (III1-6), (I1I-7), (111-8),

-A353+A =0

(111-9). 1f @ ¥ 0, these two equations can be combined into

Lo
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Happlly, If this equation Is rearranged, it becomes linear in (-w—a) ’
(]
and we find
2 2 r< -2, .2 c (o
N o X X+ ¥ m (]
(_a) .-(_5) e, e s2.ra|. P e
@y me Xae % 2 o] CL % 20 cL
ac a ac a
c c
L m
2
c P2"'2&.: "Raz:'(f"g"*'c"i1
m 2 L L
+62 s . a a
O T R %, G
a ac € 2
Fa (-6;) + Yae - YBB t‘-ﬁ*’ Y
a a
2 C c
L m
2 (% 2
R
s 2 a a
+ (I + 4 B, .cTﬂ> <. (111-26)
ac a 2 2
')?ac + P -yacqﬁ-t -
a a
2 A
The frequency of oscillation Is obtained from B = ik
; 3

c c
L m
(?2+2 2 _ q. g)
) ac
(ﬁ) . a ,
Y ¢ n )

() 2 (- m gt

4

(111-27)

)
The frequency ratio Fe- at neutral stability is determined by the
o

following set of seven non-dimensional parameters:
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X
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Our conclusions regarding alrframes which consist of a single 1ight

11fting surface elastically mounted to a rigld fuselage may be summarized

ss followst

As

B.

Ce

The system may be dynamlcally unstable even though 1t Is
statlically stable,

The veloclty at which the airframe becomes neutrally stable
“6

can be determined from the frequency ratio o’ which can
o

be expressed In terms of the seven non-dirensional parameters

Cm

listed above, The parameter 502 E_ﬂ is usually quite small
La

and is less Important than the other parameters.

If the torsional stiffness between the lifting surface and the

fuselage is infinite, an instability will occur when the short

period frequency w, equals the frequency w‘. The latter fre=

quency is simply the natural frequency of the fuselage on the

L2
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E.

Fe

plunge stiffness when the displacement of the Iifting surface
at the aerodynamic center Is restrained. Thls simple criterion
Ts strictly correct only if the effects of aerodynamic pltch
damping are Ignored; however, the criterion is not sensitive
to pitch damping for practical alrframes.

if the plunge stiffness between the |ifting surface and the
fuselage Is infinite, either of two types of instability may
occur. |f the aerodynamic center 1s forward of the elastic
axls (xae<: 0), an instability occurs which Is connected wlth
the possibility of 11fting surface divergence, In addition,
by cereful posltioning of the elastic axis with respect to the
aerodynamic center and the center of gravity, 1t Is possible
to obtaln an airframe which Is neutrally stable at all air-
speeds, This type of instabillty can only be produced if C
Is dlf¢ferent from zero, |
None of the above instabilifles can be predicted on the basis
of frequency coalescence methods, We can describe the Insta-
bilities as being due to aerodynamic coupling between zero
frequency modes (rigld motions) and infinite=frequency modes,
since the structure in vacuo possesses only these types of
modes.

The conclusions of this section should apply to airframes with
a simple, light, 1ifting surface and a falrly rigld fuselage.

A more realistic type of airframe is analyzed in Section IV.

L3
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IVe ANALYSIS OF AN AIRFRAME HAVING TWO RIGID
BCDY MODES AND ONE ELASTIC MODE
The conflguration shown in Flgure |l Is In some ways more general

than the configuration analyzed in Sectlon III and is also a configura~
tlon which frequentiy occurs in practices A detalled analysis should
therefore be useful, [t Is convenient to glve the equatlions of motion
in modal form, There are two rigid body modes and one elastic mode.
If the rigld mode shapes are properly normallzed, the equations of
motfon of such a system can alweys be written In the form

nz = / p(x, y)ds

16 = /xp(x, y)ds (Iv=1)

n (& + 028 = Rlx, y)o(x, y)ds

where
m = the total mass uf the system
I = the total plitehing inertia about the center of mass
m, = the generallzed mass of the elastic mode
p(x, y) = net vertical pressure on the element of area
ds at the point (x, y)

#(x, y) = mode shape of the elastic mode

1f £= 0, then the two normal coordinates z and @ have a simple geomet=
rical significance, z being the vertical displacement of the center of
mass and © the pltch angle of the fuselage. The geometrical significance
of £ depends upon the way in which the mode shape $(x, y) s normalized.
We shall assume that a single rigid lifting surface is mounted at some
point on the fuselage as shown {n Figure 1. Then .the vertical displace-
ment of any point of the surface Is

z+ x0+ ¥(x, y)E

Ls




and the slape of the I1fting surface is
99
0+ T £,
obtained by taking the partial derivative of the verftical deflection

with respect to x. Slince the surface is assumed to be rlgid, 3¢ must

ox
be a constant over the surface. |f we normallze the elastic mode shape
by setting ~g% = |, then & has & simple geometrical significances When
6 =0, £ is simply the piteh angle of the [1fting surface. It follows
from g-? = | thet ®(x, y) = x + constant. It Is convenlent to express
this constant In terms of the posltion of the node llne of the elastic
mode. When z = 0, @ = 0, the vertical deflection of the node line Is,

by definition, zero. Therefore #(x, y) = x = %y Over the Ilfting sur-

8
face and the vertical deflection of any polnt on the I1fting surface is

zZ+ x8 + (x - xns)ﬁ

while the slope of the |1fting surface Is 0+ & .,

The total lift, L, and the moment about the aerodynamic center of
the 1ifting surface, M, can be expressed In terms of p(x, y)1
L= /p(x, y)ds
M=/ (x = x, JP(x, y)ds = fxp(x, y)dS = x, L

It follows that the equations of motlon can be written

mz = L

10 = M + X,0 L (1v-2)

=1

me('éa« wzg)-NH- Xpp L

where x__ = X_ = X

an ac o The 11§t and moment on the 1ifting surface can

‘

be expressed in terms of the vertical displacement of the aercdynamic

center, the pltch angle of the surface, and the derivatives of these

L6
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quantities:

L = qS (cLa 6, ~ C,

a q
CQéB (1v-3)
Bh=aegsc
\Y
"
where
2"zt ox, 04 (xye = Xngl8 = 2% Xy 8% X0 &
Ga =6+ £
q -%Pva
In matrix forr, the equations of motion are
ms2 o 0 2
AR DS I
o | 162 0 6 (1v=L)
—_— e e e - -
ol o tm(s®+w 2) &
1 t e
s s s T
o 7 o (xacCL <, )V | u '("ancL oL )V
e e | e
| !
S 2 2 2
xacha‘V lxacha (xac cLa- x CCLQ* ¢ cmq)v [*acCL Xac¥anCL T Xac® * ¢ Cmq)v
R e S SN U
s | ) 2 S | 2 2 )
xC—xC-(xxCx *cC)xC-(xC-ch*-cC—
anL V| en'L an“ac’L, anchq mqVI an"L an L Lq qV

Introduce ¢ as a unit of length, 6-&5 a unlt of time, and P5c as a

unit of mass, Also, introduce the radli of gyration

r2 = I/m

2
" = meAm

L7




Then the foliowing are convenient non-dimenslonal quantities:

F =r/le T = sV 7 = m/PSc
7, - re/c g, = cme/\/ CLa = CLa/Qm
Koo ™ xac/c I =z2/c an = CLq/2Fn‘
LS xan/c Cmq " Cmq/QM
The equations of motion can now be written
/.2 2 o _ —
-(g + T, a)l g, -(YBCCL -7, )3 | T -(wancL - )§
o /i a a q l a a q
Efﬁl'if % %¢ -YC+C)!-PQEZIYE-(?§§-§"+§—)§
ac La l ac La ac L ac Lq mq ac't ac an L ac Lq mq
-Yﬁslyi-iwf-’itwy % € A% % «x. & +C
an L an L an"ac L an~L m an-{ an L an'L m
e | T q a q q
_2f.2 2
| l l “Te (s +q, ) N
(Iv~5)

The characteristic equation Is obtalned from the determinant of the

matrix of coefflclents In (IVaB):

Pl a, a2 A TrA) =0 (1v-6)
3 2 ) -]
2 c c C C
(5] L m L m
5% _2_.2 q, " P 2__ ‘4
A} X Fa*xac i‘ac * +_§(xan Xan T * )
ac L L (d L L
a a e a a
2 < C - 2
3 X 2 ’m _2 F
A-&"2I+—g~ +F2 .ﬂ+52r.rgl+r+n
2 [} W ~2 % o — 2 - B
o r ac X L F r
e ac a e e
L c c 2
- (“2+"2-? .y "‘q)("’e)
I X ac ac C C o
ac L L (]
a a
C 2
A ,—)4 '+m2 P2 mq @
o a o = 2¢C W
X L ]
ac a




where w, and 'u')o are defined as in Section III of this report:

(o) 55
TN TR

In order to determine the velocity at which the airframe becomes

neutrally stable, substitute 8 = I 1in the characteristic equation,

then 1f @ / 0

2
-A3B 4Al-0

1 2
[ -AEB +A°-0

or
A A
x—) -Aa(r)'f AO-O (N'?)
3 3
o 2 0 \2
This equation Is linear in{— | 1f we divide through by =) . f
@, g
w, is given, then w, can be datermingd from the ratio Eg' o Furthermore,
o
since
R L
i Va *ac cLu | Xac CLu
b)o" --zp S—Tmr - -598——-2—-'" v

Is a Ilnear function of V for a given airframe, it follows that the
veloclty at neutral stabillty can be determined from (Iv-7). Note that
the frequency ©, does not represent the short period frequency of the
alrframe except In the trivial case where the airframe is rigid. 0,

s simply a convenlent way of specifying the velocity V. From (Iv=7)

we get 2
(-%) - (1v-8)
w, b= ¢ -

L9




where

o c
Y- L m
r | q | q
| + ﬂ—-) - —— +—-—-z
(xac Xac L X L
am < a 5 ac a . .
C
-~ \2 L m 2 /% X L m
- q | q(F an _ “an | q | q
'+<§ac> *ac O *E Ec:L <e> (R ? " e *ac “L +S‘( 2 L )
a ac a T} a ac a
(1v-9)
C 2
’ 2 % m 2 4
- I an 2 ?2 q d né
b |+(?:> =t B e |1 ¢ ('*T) (1v-10)
ac ® L F o
ac a e
c
2 m
~ 2 P
cm 1+ B :7—§'E_S (Tv-11)
x L
ac a

Equations (Iv=8), (Iv=9), (Iv-10), and (IvV-11) were used to construct

the stabillty boundaries presented in the Appendix. The frequency of the

A
neufrally stable oscillation Is obtalned from © = Zl
3
s 2 c c
Yan _Zan 1 _q, 1 T
2 ; 2 % _¥_T -
w 2 X ac “ac L X L
e o ac [+ ac a
—— ﬂ|+—7 (IV-I2)
@ F 2 G ‘n
e r I q 1 'q
R R 2T
ac a ac a
w
Six parometers suffice to determine the frequency ratlos E; and
o
®
]
ke They are
*an
—
ac
Fe = R
;T?
e
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¢
1 __"q
% 20
‘ac a
c C
2 °m m
2 F 9. q
ao_E X
Ko La ac

where m 1s the mass parameter, @ = m/OSc. These parameters are the same

as appeared In connection with the simple alrframe discussed In Sectlon

=2
III of the report, except that the parameter 2—2' replaces the frequency
r

e

-

)
ratio parameter -(55- , and the node line position ina replaces the elastic
]

axls position Xy o

in the |imiting case, where the generallzed mess of the elastic mode
1s allowed to approach zero (Fea-—-0), equation (Iv=6) becomes ldent!cal
wlth equation (III-17) of Sectlon III, provided wa identify the node !lne

position %, with the elastlc axis position Xg

As was found previously, the presence of aerodynamic damping can
have a profound influence on the stability of the alrframe, Consider,

for example, the case where

iﬁne-—iﬂnrg.*tj-o’ (N-'})

then




which shows that the airframe Is neutrally stable at zero airspeed. This
Instabiiity Is caused by the loss of aerodynamlc damping on the elastic

mode due to the destabilizing effect of C Thus, since structural damp=

L

ing Is Ignored, the structural mode is neutrally stable in the absence of
aeradynamic damping. Now the aerodynamic damping can be positive or nega-
tive in general, and the condition (Iv={3) is Just the condition that the

agrodynamic damping be zero, |f ¢ - 0, the instability cannot occur
q

since equation (IV-13) cannot be satisfied, This type of Instabliity
Is entirely similar to one of the instabllities discussed in Section III

and accounts for a prominent feature of the stabliilty boundarles present-

W *

ed in the Appendix. The curves of given In the Appendix for the

ofc

case of subsonlc aerodynamics display a sharp dip. The value of Eﬁn at
which the dip occurs is correctly predicted by equation (Iv-13), The
curves drawn for supersonlc aerodynamics do not exhibit this feature,

since L = 0 for these curves, Instability due to loss of aerodynamic
q
damping is very sensitive to the presence of structural damping and may

be masked at low alrspeeds by the structural damping,

A much more violent instability will be exhiblted by the airframe
of Filgure I 1f the aerodynamic center 1s forward of the node Iine. In
this case the short perlod frequency and the elastic mode frequency will
come close together at a sufficlently large alrspeed. At higher alr-
speeds, one of these two roots will become quite unstable. It Is useful
to examine this type of Instabillty by the frequency coalescence technique.

*
Yofe Is deflned In equation (IV-i9).
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ignore all damping terms in the equations of motion (IV-L)., Then the
characteristic equation can be obtalned from (IV-8) by setting CL =Gy
= 0 and dropping the terms of odd order In ¥. In this way we obtain the

following characteristic equation:

2iadigao (Iv-1L)
2
2 w% gﬁn
AwB l+(;;) +R-;,—a-; (1Iv=15)
2
()]
5=l (Ba) (1v~15)
(o]
2
where R = {72 .
r
-]

52 will be real and negative unless A2 -« LB 18 negative, |f A2 - 4B

Is negative then two of the roots of equation (Iv-14) will have a positive

roal part, The alrfreme Is therefore on the verge of Instablilty when
R -lp=o (v=17)

or, according to equations (IV~I5) and (Iv~-16), when
2

2 < 2

To distingulsh the value of ©, determined by equation (Ive8) from

the value given by equation (IV=18), denote the solution of (Iv-i8) by

%o /. g lan
— = |+ -R-;;-; (1v~-19)

ofc

mofc « Then

Thus, according to the frequency coalescence criterion, there are only

two parameters involved In the stability problem,
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2
< T
R ;:15 (generallzed mass ratis)

e
X X . =X
an _ “ac né

Xac Xac

X
The parameter ;22 Is negative if the aerodynamic center is forward of
ac

the node |lne, According to fregquency coalescence, instablility can occur

only 1f the aerodynamic center ls forward of the node line of the elastic

“ofc Xan
mode, is plotted versus e in Figure 15 for several values of
e ac

R. The frequency coalescence solution of the stability problem Is re-
markably simple, however 1t can be highly unconservative due to the fact
that the effects of aerodynamic dampling are entirely Ignored. Also, only
one of the two essentially distinct instabillty mechanisms Is explained

by the frequency coalescence approach,

The discrepancles between the predicfions of the frequency coales-
cence method and predictlions of the more exact theory are cleariy exhibit=
ed in the stabillity boundaries of the Appendix, On the graphs presented

in the Appendlix the frequency coalescence solution Is simply the stralght

line = |,

ofc
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Ve CLASSIFICATION OF AEROELASTIC STABILITY PROBLEMS

The study and analysls of the stability of alrborne vehicles was
historically divided Into three flelds of interest:

la Stabitity and control.

2., Flutter,

%, Steady stote aercelasticlty (divergence).

A deflinition of scopes of these flelds has never been established; how-

ever, in thelr origin these areas of technology were directed at specific

phenomena.

l» The analytical effort, most commoniy called the study of
"stabillty and control®, was concentrated on alrcraft
stabllity problems which exist when the alrcraft is a rigld
bodys The effects of elasticity have been Incorporated Into
these analyses but often in such a manner as Yo exclude the
dynamlic response of the system In any of Its finite frequency
normal modes.

2, The field of flutter analysis has been limlted to the study of
aeroelastic Instabllfties which arfse from the "coupling” of
two or more finite frequency elastic modes of the alrcraft,

In many, and possibly most, flutter analyses of alrcraft, the
vehicle has been represented by a relatively small number of

(10 or less) finite trequency elastic modes of the free system,
Zero frequency modes have commonly been omitted from flutter
analyses along with consideration of the generalized flexIbility
of modes higher than those specifically included In the analyses,

3. Steady state aeroelastic instabllity, commonly called divergence,

57
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has been a recognized problem since the very early days of
aircraft design. The analyses of steady state aeroelastic
phenomena In essence fgnore the Inertia of the vehicle except

for the consideration of "Inertia relief" In free systoms.

Recent years have brought about some changes In the analytical fields
discussed above which tend to merge thelr technologless The results of
this study indicate that a unification of these analytical fields Is
desirable and necassary to produce a reiiable aeroelastic stability

analysis of a modern alrborne system.

CLASSIFICATION OF AEROELASTIC PHENOMENA

Collar presented a classification of aeroelastic problems in the
well known "Collar's triangle of forces™ by which seroelastlc phenomena
are described as being the result of various combinations of aserodynamic,
elastlc and inertia forces., We propose another aeroelastic triangle

(Figure 15) for free systems as a supplement ts Collar's triangle.

A classification of aeroelastic phenomena is made In the triangle
of Figure 16 by the normal modes of the system which are required in a
representation of the system to produce the phenomenon, The apexes of
the triangle of Figure 16 are:
0 = zero frequency or rigld body modes
F = finite frequency modes
o « infinite frequency modes or residual flexibility

Since Figure 16 applies to aeroelastic problems, aerodynamic forces are

involved In all phenomena described.

The problems included in the numbered boxes ares

58
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2.

3

ke

5.

Classical stability and control problems Involving a rigld
vehicle and aerodynamic forces.

Classical flutter problems Invoiving 2 or more finlte frequency
modes and aerodynamic forces.

Classical steady state aeroelastic probtems Invelving only
elasticity and aerodynamic forces.

"Mode Interaction,” To a stabllity and control analyst this
problem Is described us one where elastlc modes have a pro~
nounced effect on the low frequency response of the system.
To a flutter analyst this Is a problem involving coupling of
the rigid body modes with the elastic modes. This phenomenon
13 shown to be a stability problem In the analysis of Section
IV of this report and is undoubtedly a problem In the predic~
tion of the dynamlic behavior of a system at a velocity below

the flutter speed.

The analysis of Section IV shows that this stabiiity
problem can be predicted, for many systems, by "frequency
coalescence™ methods (omitting damplng terms) but for certaln
systems the damping terms can have a dominating effect on the
solutlon,

"Elastlc Interaction.” This problem ares will include the
modification of "rigld body" dynamic response by the elasticlty
of the system and the stabiliity problem shown by the analysis
of Section IIX of this report where a free system can be une
stable by virtue of only plunge or pitch flexibllity of its

aerodynamic surface.
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This stablllty problem Invoiving plunge fiexIbitity Is

quite interesting because:

&, |t Is a flutter problem which can exist for an
ideallzed system which has no finite frequency
normal modes.

be It Is a fiutter probiem for which the "mechanism®
of instabllity can be easily understood.

Most flutter phenomena are the result of complicated, relative
phasing between structural motlons which cause aerodynamic

forces to elther add or subtract energy from the system, For
this case of "elastic interaction™ the structural deflections
have no relative phase angle and the phenomenon can be easily

explained as follows.

Consider the alrframe of Figure 13 with a rigid piteh
spring (Ke) and a flexible plunge spring (Kh). Figure 17
shows the alrframe at the Instant of maximum deflection (of
unit pitch angle) in Its short period mode for varlous values

of velocity.

Flgure 17a corresponds to a low value of velocity, The
short period mode frequency is low as well as the 1ift force
L. The short period mode is well damped by virtue of the

I1ft due to the plunge veloclty h,

Figure |7b corresponds to a higher value of velocity.
The 11ft force has increased from thet of Figure 17a; and,
therefore, the short period mode frequency and the deflection
of the spring K, have Increased. Since h Is smaller, the

damping of the short period mode has decreased.
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6.

Figure 17c corresponds to a higher velocity than Figure
I7b. At this speed the 11§t force on the aerodynamlc surface
ts sufficient to deflect the plunge spring (Kh) the distance
y and therefore reduce the plunge of the surface to zero,
Since the plunge of the surface Is 2ero, the damping due to
plunge !s also zero, If this system Is subjected to a stlil|
higher velocity the asrodynamic surface will plunge in a
direction opposite from Its attachment point. Since the
plunge velocity h of Figure 17 contributed positive damping
to the system, 1t Is only reasonable that when the algebraic
sign of h Is changed the damping will be negative. Since the
damping In the short period mode is attributable primarily to
the plunge velocity, the system wll! be unstable at a dynamlc
pressure siightliy higher than that depicted In Figure |7c.
"General Aeroelasfic Problem." Sectlon II of this report
presented an analysls and comparlison of the solution of con-
flguration 4 of reference |, 1t has been demonstrated that
a reliable prediction of the dynamic response of this con-
flguratlon can be attalned only through the inclusion of zero
frequency modes, finite frequency modes, and the residual
flexibility of all hlgher modes of the system in the modal

representation,

The analysis of Section II omitted the aerodynamic damp=
ing terms for simpliclty. Thls assumption was apparently

reasonable for the solution of configuration L because of the

relatively high altitude considered. The enalysis of Section

I11 shows that this assumption cannot be used in the generatl
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case and for many configurations can lead to an extremely
unconservative prediction of the flutter speed,

The problem area described by area 7 of Figure 16 can be
described as an aeroelastic Instability which can be repre-
sented analytically when only an elastic mode and the residual
flexibility of the system are includeds Such a phenomenon Is
not known fo exist but it Is postulated that the problem area

witl be discovered In the future,
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Figure 16, Diagram of Aeroelastic Phenomenon
ot Free Systems
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Figure 17, Missile With Elastical!ly Attached massless
Lifting Surface



vI. COMPUTER STUDIES OF MISSILE CONF|GURATION
AND COMPARISON WITH THEORY
Studles were made on the Computer Englineering Assoclates' passive
anaiog computer of a number of Malrborne missile" conflgurations. The
purpose In making these computer studies was to provide a check or
Independent verlfication of the analyses of this report and to study

the effects of parameters not Included in these analyses.

The basic missile configuration considered In all computer studies
was configuration 2 of reference |, The geometry, mass and stiffness
data for this basic configuration are repeated In Figures 18, 19, 20
and Table |, During the conduct of this study numerous varlations were
made in this configurations In most computer analyses the forward asro-
dynamic surface was omitted, All variations to the configuration are
surmarized in Table 2, In all cases the aerodynamlc surfaeces were
consfdered to be rigid and elastically restrained by & "pltch" and
"plunge®™ spring at the missile station listed In Table 2 as "e.a,

Station®,

The eerodynamic forces were represented as follows:
ls+ The forces on the body of the missife were assumed to
be zero,.
2, The 1lft forces on the surfaces, normal to the surfaces

and positive upward are given by
} sZ _ csé
L'z""esﬂu("‘v*w)

where Z is the normal deflection (positive up) and @ is
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the pitching slope (positive nose up) of the surface at
the aerodynamic cenfer of the surface.
3, The moments about the centers of pressure of the surface
are given byt
M= -'% P Vs g -%; s 0

L. The effects of downwash were neglected.

The "basic™ flight condition is defined by the following aerodynamlc

constantss

Velocity 2250 mph
Al ti tude = sea level
Dynamic Pressure = q_ = 90 lb./ln.2

LI ft Curve Siope = cL = |45 per rade

a
The flutter speeds measured In the studies were tabulated as a fractlion

of the basic veloclity (Vo)' thus flutter speed is listed as the ratio

v/Vo.

The computer studies of the configurations listed In Table 2 deter-
mined the dynamic pressure corresponding to flutter, 1In all cases the
flutter encountered was of the general type discussed In this report;
that is, it Inwlved the rigic body modes of the system as indicated by
a flutter frequency below the lowest natural frequency of sfructure In

a8 vacuum,

RIGID FUSELAGE ~ CASES | THROUGH 9

Cases | through @ considered a rigid fuselage with a single aero=

dynamic surface elastically attached near the aft end of the missile,
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L.isted at the right side of Table 2 are the values of flutter speed
measured on the analog computer, calculated from the criteria of Section

III and from the criterla of Section IV,

Cases | through 5 considered an aerodynamic center which colncided

with the elastic axis of the I1fting surface.

Cases |, 2 and 5 are ldentical except for the pitch Inertla of the
elastically supported aft surface. The correlation between theory and
measurement was falr for cases | and 5 where the Inertia was qulite small
(zero In case 5) but much poorer in case 2 where the Inertia was |0
times larger, The flutter speed calculated from the criteria of Section
III is ldentical for cases 1, 2 and 5 because the mass of the surface
is completely Ignored in the analysis of Section III, The discrepancy
between the theory of Section IXI and measurement In case 2 Is easily
explained by omisslon of the mess from the Section III criteria but
the discrepancy between the measurement and the criterla of Section IV

cannot be explained,

Cases 3 and L are Identlcal except that the mass of the lifting
surface, elastically mounted by a plunge spring, wss omitted In case L.
The identical flutter speed was measured on the computer for these 2
cases as also was, of course, predicted by the theory of Section III
which fgnored the mass completely. The criterfe of Section IV could
not be appllied to cases L and 5 due to the absence of a flnite frequency
elastic mode. The correlation between theory and measurement |s con-
sidered reasonably good for these cases. The discrepancies can be

ascribed to the equivalent structural damping inherently present in
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the passive analog computer,

Cases L and 5 are interesting specimens of flutter because In a
vacuum the sfructures in both cases have no finite frequency modes.
When described by thelr normal coordinates these conflgurations possess
two zero frequency degrees of freedom and one Infinite frequency degree
of freedom, Nevartheless these conflgurations exhiblit a flutter in=-

stabllity at a finite frequency.

Cases 6 and 7 are similar to cases | and 3, respectiveiy, except
that the aft aerodynamic surface was shifted forward 10% of its chord
In cases 6 and 7 while retaining the attachment point of the surface
to the fuselage at the same polnt on the fuselage. The effective
elastlic axis of the aerodynamic surface wes, therefore, at the &0%
chord, 10% of the chord aft of the aerodynamic center, The configura-
tions of case 6, where the pitch restraint between the fuselage and the
aerodynamic surface Is flexlble, tends toward steady state elastic
divergence. Divergence would be encountered at a dynamlc pressure
corresponding to V/Vo of 1.39, Table 2 shows that a dynamic Ingtability

is encountered at a somewhat lower speed than the divergence speed,

The comparison of cases 6 and 7 to cases | and 3 demonstrate the
sensitivity of the flutter phenomenon to the relative locations of the
aerodynamic center and the elastic axis of the lifting surface.s This
extreme sensitivity may be considered as an explanation for some of the
discraepancies in theoretical predictions and computer measurements shown
in Table 2, The precise location of the aerodynamic center is difficult

to control In the experimental procedure followed on the analog computer.




I+ seems also worthwhile to point out that the precise location of the
asrodynamic center Is generally not known for a physical system and, In

fact, cannot be defined as physical point except for ideallzed systems,

Cases 8 and 9 are simllar to cases 7 and 6, respectively, except
that the Iifting surface was moved aft 300 Inches In cases 8 and 9,
This varlation affected the flutter speed very 1ittle In the computer
measurements and had a somewhat larger effect on the theoretical pre-

dictions.

FUSELAGE WITH SINGLE BENDING DEGREE OF FREEDOM = CASE [0

Case 10 considered a configuration where the entire system was
rigld except for a single flexibly restrained "hinge™ at fuselage sta-
tion 700. The purpose of studying this deslgn was to experimentally
evaluate the phenomenon shown on the charts of Section IV where the
flutter speed Is zero for speciflic parameter combinationse The flexi~
biltty of the system was reduced to the single flexibly restrained
"hinge"™ in the fuselage to preclude conslderations of "resldual flexi=
bitity". The location of the tifting surface was varled In this cese
to provide a variation In the dimensionless parameter :&!—:;535 .

xac

Figure 21 shows a comparison between the flutter speeds predicted
by the theory of Section IV, frequency coalescence, and analog computer

measurements., The radical difference between theoretical prediction by

Section IV and computer measurements is easli!y explained by the presence

of a smal!l amount of equivalent structural damping In the computer

solution,
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Flgure 22 shows some typlcal v-g dlagrams for the conflguration of
case 10, The curve labeled "structural damping" shows the equivalent
structural damping level which existed In the analog computer at the

values of dimensionless velocity V/Vo. For the curve corresponding to

X ., =X
nd ac

xac

is at a value of V/Vo virtually ldentical to that at Its intersection

of 3.8l the intersection with the structural damping curve

with the O damping axls which Is consldered to be the flutter speed.

“ng " *ac
At this value of —— theory and computer measurement are In
né

reasonable agreement as shown in Figure 21,

X, =X
The curve on Flgure 22, corresponding to "‘x 2€ of 426l never
ac

Intersects with the "structural damping" curve; and 1f the structural
damping curve were subtracted out of the solutions, this conflguration
would apparently be unstable at all finfte velocities as shown In

Figure 21,

Thls single example cannot be considered to prove that the low
speed instability problem shown in Section IV can ba compietely Ignored
In the presence of a small amount of structural damping. This example
does show that this problem may not be as serious as might be concluded

from a consideration of only the results of Section IV,

EFFECT OF ALTITUDE « CASES || AND |2

Cases 11 and 12 may be compared with cases | and 3, respectively,
to show the effect of an increase in altitude. Cases I} and 12 correspond

to an alr density 1/10 of the alr density considered In cases | and 3.
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The change In the flutter speed Is shown to be an increase of 12% to
16%s |t may be concluded that the "mode interaction" phenomenon Is

not sensitive to air density or altitude parameters,

FLEXIBLE FUSELAGE = CASES 13 THROUGH 25

The comparison between theory and computer measurements for cases
fnvolving a flexible fuselage, in all cases, showed rather poor cor-
relation, This lack of correlation Is probably due to:

a, The presence of higher elastlc modes In the computer repre=

sentation which were lgnored In the theoretical analyses,

be Equivaient structural damping in the computer measurements

which was Ignored in the theoretical analyses.

The analyses of Sections II and III were not applied to these con=
figurations because they were known to include assumptions which pre-
cluded their applicability, The analysis of Section II cannot be con=-
sidered applicable to any ceses of this configuration because it lgnores
aerodynramtc dampings The results of cases | through 9 and the analysis
of Section III identify the mode interaction phenomenon of this "missile
confliguration™ to be intimately related to the aerodynamlc dampinge Howe
ever the flutter phenomenon observed In some cases of this configuration

were undoubtedly related to the Instability studled in Section II,

EFFECT OF FLEXIBLY MOUNTED LIFTING SURFACE = CASES I3 THROUGH 16

Cases |3 and I consider configurations that are identical except
for the flexibility of the attachment of the 1ifting surface to the
fusolage, Case |3 considered the attachment to be rigid and case 1L con-

sldered the attachment in pltch and plunge fo be of "basic®" flexibillity.
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The flutter speeds measured for these cases were virtually ldentlecal,
but the system damping at speeds less than the flutter speed were quite
different, Flgures 2% and 24 show the V-g dlagrams for these cases In-
cluding the "short period mode™ and the lowest "elastic mode of the
system®. In case |3, where the aerodynamic surface was rigldly connect-
ed to the fuselage, the short period mode remalned well damped throughout
the speed range up to the vieinity of the flutter speed where Its dampling
Increased. In case 14, where the I1fting surface was elastically connect«
ed to the fuselage, the damping in the short perlod mode became progres-
sively smaller as velocity Increased unt!l 1t became unstable at the

flutter speed.

The simptifled analyses of thls study are not capable of elther
predicting or providing an explanation for this difference between cases
13 and 4. The results of thls study are capable, however, of defining
the minimum complexity of an analysis which would be appticable to these
cases as an analysls which Includes consideratian of

a. Two rigld body modes.

be One elastic mode,

ce The residual flex!bility of the higher modes of the system.

de Aerodynamic damping terms.

e. Prediction of system damping at speeds less than the flutter

speed.
Such an analysis of a speciflc configuration is not considered overly
complex for practical solution, but the complexity does appear too great
for the type of generally applicable solutions sought In thls study.

1t should be noted that the Intention of the analyses of this study
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was to predict the susceptiblllty of a configuration to "mode inter-
action" and that the difficulties experienced in predicting precise
flutter speeds or the response of the system at subcritical speeds

does not Impair the fulfilliment of this intention.

A comparison of cases |5 and |6 show that when the rigidly mounted
surface Is moved aft of the node Ilne of the first elastic mode, the
Instability disappears; but that when the flexlble mounting of the Iift=
Ing surface is introduced the system Is again unstable at virtually the
same speed as in cases 13 and |lj where the surface is forward of the

node |ine,

EFFECTS OF CANARD SURFACE = CASES 18 AND 19

The configurations studied In cases 18 and 19 are identlcal to
those considerad in cases |4 and 13, respectively, except that the
canard surface of the "baslc" conflgyuration is added in cases 18 and
19« The effects of the canard surface are simply to increase the
flutter speed about 7%. The V=g curves of cases 18 and 19 are similar
in character to those of cases |l and 13, respectively, shown In Figures

23 and 24,

EFFECTS OF THE POSITION OF THE SINGLE LIFTING SURFACE = CASES 22 THROUGH 25

Cases 13 through 16 and cases 22 through 25 show the effect of posi-
tioning the Iifting surface at four locations along the fuselage from
station 800 to station 1000, At each location the effect of flexibility
of the lifting surface attachment was investigated, As shown In Table

2, the flutter speed was affected very little by the varliations In position
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of the I1fting surface or the flexibillty of the aerodynamic surface
attachment, In each case, when the attachment was rigid the short
period mode damping remalned constant over the speed range studled,
and when the attachment was flexible the short period mode damping
became progressively small as speed was Increased until the short

period mode became unstable at the flutter speed.
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Table |« Mass Distribution for Conflguration 2
Mass No, Condition 30 Condition 3j
(Figure 20) Station Mass Mass
('ﬂo) lbo-SECoa/'no 'bo-seCoa/' Ne
| 0 514728 Le.728
2 50 18.911 184911
3 150 18,911 18,911
L 250 31,605 31,605
5 350 564734 18.911
6 1,50 82.122 27.374L
7 550 94.816 31,605
8 650 9L.816 31,605
9 750 51.812 17.270
10 900 51,812 17.270
I 1000 189.632 63.210
12 1100 L5.854 15.285
13 1200 22,929 7.642
A 250 14554 1,554
Af rface 900 15,504 15450k
Pltching Mass Moment of Inertia
'b."sec.a"] Ne I‘bo -39302-I Ne
Forward . 250 155044 1554
M;urface 00 2L8T. 2L87.
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Table 2, Missile Confliguration

Fuselage Forward Surface Aft Surface

Case

Noe 'Flexlbi ity | tnertia | Position | Area s:;:;on e;:.%Pg;;:Lon a;:.%Pg:;:Lon Area
q Rigld Basic of f - 900 504 50% Basic
2 | - -

3 ---

L i |

5 .- 50

6 - 1 60%

7 --=| o900 |

8 - =< | 1200 f 1

9 - == 1 1200 60% 50%

10 --- 25% 25%

" 1 - | 900 50% 50%

2 Rigld - ==

13 Basic - -

i\ - - 900

5 \ Y === | 1000 J \ \
16 Basic Basic Off - == | 1000 50% 50% Basic |
I8 Basic Basic Baslc gasic 900 50% 50% Basic
19 Baslc Basic Basic | Basic 900 504 50% Baslc
22 Basfic Basic Of f --- 850 50% 50% Basic
23 S 850 |
2h r --- ] 80 ! 1 ‘
25 Basic Basic of f - 800 50% 50% Baslic
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Table 2,

Miss!le Confliguration = Description of Cases

Aft Surface

q/q, at Flutter

Air
Cind onord | “Tnk chord | 290 | Tnartla | inertia | Flow | Flawe | o7 | Messurea |catc, 111 | Goles v
50% 50% Basic | Baslc Baslc |Rigid Baslc Basic 2.56 2,80 2.73
Basic | x 10 |[Rigld | Basle 1.66 2,80 2,24
Basic Baslc |Baslc Rigld 2426 2,13 2,18
{ 0 Baslic |Baslc | Rlgld 2.26 2.13
50% Basic 0 Rigld | Baslc 2.69 2,80
60% Baslc |[Rigld Basle (o1l tel9 1,22
] Basic | Rigld 2420 2,20 2.2l
{ | Basic | Rigld 2,20 2.1 1,86
604 50% Rigld | Basic 1.10 .13 .17
254 25% Rigld | Rigld Baslc
50% 50% Rigld Basic X ol 2,97
Basic |Basic Rigld X ol 2.53
x . 161 | Rigid Rigid Baslc 1.10 «586
Basic Basie l lof2
i 1 1 1 Basiec | Basic ‘ le16
50% 50% Basic | Basic x + 161 | Rigld Rigld Basic Stable
50% 50% Basic | Baslc x + 161 |Basic Basic Basic 1.18
50% 50% Basic | Basic x +161 | Rigld Rigid Baslc 1.17
50% 50% Basic | Basfe | x .16l |Rigld | Rigid Basic 1,08 «5U6
l l | Basic | Basic 1.09 193
* 1 * 4 1 Basic Baslc \ 1.18 549
50% 50% Baslic | Basic x +161 [Rigid | Rigld Basic 1.18 920
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VII. CONCLUSIONS

An accurate approximation for the aercelastic behavior of a structure
may be made In terms of Its normal coordinates by including some of
its modes expifcitiy and the “residual flexibility" approximation to
all higher modess This approximation for the system, derived In
reference |, 1s applicable In the presence of "mode interaction",
This conclusion is drawn from the fact that "mode Interaction" was
found to depend on only the parameters listed In the foregoing

approximation.

In the presence of "mode interaction,® the accurate determination
of "residual flexibl!ity” is extremely Important. In the presence
of "mode Interaction" the dynamlics of a system can be very sensltlve

to slight changes in flexiblllty,

Systems which tend toward steady state divergence are particularly

susceptible to "mode Interaction,™

In most free systems where steady state divergence ls predicted to
occur, a mode interaction or flutter Instabiiity will probably occur

at a veloclty lower than that predicted for steady state divergence.

Aerodynamic damping terms can have a destabliizing effect on a free

system.

Aeroelastic systems which possess no finlte frequency normal modes,

can be susceptible to a finite frequency flutter Instabllity,

8L




7+ A reliably accurate method for predicting the dynamic response of

a general, free, aeroelastic system must Include conslderation of

a.
b.
Ce
ds

(1Y

The rigid body modes of the system.

The |owest elastic mode of the system,

The "residual flexIbility™ of all higher modes.
Aerodynamic damping.

Structural demplng.

8, Fliutter analyses of free systems must include the zero frequency

modes of the systems,
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APPEND{ X
STABIL ITY BOUNDARIES FOR AN AIRFRAME HAVING TWO
RIGID BODY MQDES AND ONE ELASTIC MODE

A brief summery of the analysis of section IV Is flrst presented.

The aercelastic system of Figure 25 Is characterized by two rigid
body modes and a single elastic mode., |t Is assumed that aerodynamic
forces act only upon a rigid Ilfting surface and that these forces produce

a |ift and moment about the aerodynamic center which are given by

- s | - OF cs
L Ly &t (h=2%)c o || 2,
a , a
——-qS—--—.—-—.—I. ——————————— ———
M 0 ! c s ®
! " 2 ac
where
q= -é- P V2 1s the dynamle pressure.
CL Is the 11ft coefficlent.
a
o
L
| = 2% = z—ﬂ Is the ratio of Iift coefficient caused by pitch
L
a

rate to the 11ft coefficient caused by angle of attack,

Cm Is the pltch damping moment coefficlent,
q
c Is the chord length.

s Is the Laplace transform differentlation operator (SN'BSF) .

The equations of motion for the system of Figure 25 can be written

[x3

m o

2 oo
mer 8 =M+ xacl.

-

m re2(2+ wee E) = M+ (x“ - xM)L

and the motion of the lifting surface is related to the normal coordinates
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z, 6, & as follows:

Zag "Bt X O (xac - xna)g

bac = 0+ &

The symbols appearing In these equations have the following
significance:

m is the total mass of the system (generslized mass of rigld plunge

mode) .

m r2 Is the total pitching Inertla about the center of mass (general=

1zed mass of rigld pltch mode).

m rée Is the generalized mass of the elastic mode when the elastic

mode shape is normallized by maklng the slope of the elastic mode

unfty at the node Ilne,

wea is the frequency of the elastic mode,

Xac Is the x=coordinate of the aerodynamic center relatlve to the

coordinate system of Flgure 25 (1§ the aerodynamic center Is behlnd

the center of mass, then x, will be negative),

Xng Is the x-coordinate of the node llne of the elastic mode (negative

1# the node line Is behind the center of mass).

Analysls of the above system of equations produces the following

resul tss

a, Let w, be a fictitious short period frequency defined by

Then the system is neutrally stable whenever the frequency ratio T
e




takes on the value given by

2 .
%) .a°-a
) ab -
e
where
C
1+ (_L.)a- ! '2"4-._.2.' q
Xac Yac X CL
.. ~ . s ac a .
- ( r ) T S R W ("ne - "ac>+<xn3 "x°°)<_',;§<>+ _‘z_mﬂ
X—_ -'g"""'" "_?_ C _—2- X X X = ¢
ac ac Xae Lo Te ac ac ac Xae ‘g

R TS
uac

be As a corollary, it follows that the stability of the system of
Figure 25 is determined by six parameters:

Xng T xac

g2




The last of these parameters is much less Importent than the other flve,
and the first two parameters are decisive when the effects of damping

are neglligible.

c. If all damping terms are lgnored in the equations of motion,
then a frequency coalescence type of analyslis can be appliied, with the
following result. Let ® ¢c be the value of W, at which the system is

neutraliy stable according to frequency coalescence. Then

©
ofc _ |

[
[} X - X
nd

I +3\ /R

In this case we see that the stabllity boundarles are especially simple,

and only depend upon the first two of the six pareameters |isted above.

The above conciusions suggest the following as a reasonable approach
tfo the construction of stabillty boundaries:
D

a. Plot versus the six paremeters |lsted above. This mode

ofc
of presentation has the adventage that the frequency coalescence

0]
solutlon appears as the stralght line ) o - I3 thus, when the
ofc

exact solutions deviate significantly from this Iine, we know

that we are working In a regime where damping effects are

W @ w .
slgnificants Since 52 =5 2 : €, It follows that the
e ofc e
® ER
value of Eg at neutral stabllity can be determined from
-] ofc
“of
provided that 2% s plotted separately. The latter plot
e
ot
Is extremely simple, since : < depends only upon two param-
e
¥ng " *ac
eters, R and ———2 Such a plot Is presented In Flgure 26,
ac
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be

Ce

Note that the velocity V corresponding to neutral stabiiity

can be found {f the frequency of the elastic mode W, is known,

since
[N
w =2 ®w_ and
=] W, © o

Note that w, Is not a function of V, but Is the frequency of
the elastlc mode in vacuo, If the frequency of Instabliilty w

is desired, it can be found from the equation

2 c
X8 = *ac R *ne ~ Xac | - 2% s ] CES
2 X X x - 2
(3] 2 ac ac ac x L
(——) . |+ I;E ac a
r 2 — cm
e |+ ( r ol 1 =-2% " |
x ® T % -z
ac ac ac xac La
2 X ., = X
The three parameters R = _r___E ’ _n_ix____a_c , and -,-(—"—- are
o ac ac

Important, and wide variation of these parameters must be

taken Into account, We need only consider negatlve values

of x,.» slnce otherwise the system Is statically unstable.
Cc
m
The ratios of aerodynamic coefficients, (! = 2%) and Erﬂ-,
L
a

will be allowed to take on values characteristic of subsonic
and supersonic conditions, Thus, for subsonic flow (Flgures

27 through 35)
| - 2% = 05
c

Ezﬂ = ,0625

ta

L = 6028
Qa

C

9L



and for supersonlc flow (Flgures 36 through LL)

| «2%x =0
c
m
‘C-‘g = 00625
L
a
CL w |5
a

X
i¥ we then allow iac = —%5 to vary over reasonable ranges,
we obtain practical ranges for the aerodynamic stabillity

parameters
| - 2%
X
ac

cm

I
Z 2 ??Jl'

X L
ac a

Cn

de The parameter ;—gﬂ— is not an imporftant one for vehicles
ac

moving In air, since the mass parameter

m
=75

Is apt to be very large and R will not be zero for statically

stable vehicles, Thus, It suffices to choose a single value

for 1 (k = 100)s The procedure of c above then determines the
c

m
range of the parameter §-§ﬂ~ « Figure 15 shows that the effect
ac
C

m
of varying ‘H—§3~ by a factor of 100 produces less than 7%
ac

X o = X
» except at polnts near LU 0.

variation in ”
ofc ac
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