TECHNICAL MEMORANDUM 1234

A DIGITAL COMPUTER PROGRAM
FOR A
BRUCETON ANALYSIS

FORREST L. McMAINS

AMCMS 5023.11.18400

COPY NO. 1 OF

AUGUST 1963

PICATINNY ARSENAL
DOVER, NEW JERSEY
The findings in this Report are not to be construed as an official Department of the Army position.

DISPOSITION

Destroy this report when it is no longer needed. Do not return.

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.
TECHNICAL MEMORANDUM 1254

A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

BY

FORREST L. MC MAINS

AMCNS 5023, 11, 18400

SUBMITTED BY: S. KRAVITZ
Chief, Evaluation Unit

REVIEWED BY: A. BERMAN
Chief, Special Ammunition & Analysis Section

APPROVED BY: E. H. BUCHANAN
Chief, Artillery Ammunition Laboratory

AMMUNITION ENGINEERING DIRECTORATE
PICATINNY ARSENAL
DOVER, NEW JERSEY
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td></td>
</tr>
<tr>
<td>PART I -- Input and Output Format</td>
<td>2</td>
</tr>
<tr>
<td>A. Input Format</td>
<td>2</td>
</tr>
<tr>
<td>B. Output Format</td>
<td>2</td>
</tr>
<tr>
<td>PART II -- Numerical Calculations</td>
<td>4</td>
</tr>
<tr>
<td>A. Primary Statistics</td>
<td>4</td>
</tr>
<tr>
<td>B. Secondary Statistics</td>
<td>5</td>
</tr>
<tr>
<td>C. Confidence Interval</td>
<td>6</td>
</tr>
<tr>
<td>D. Final Calculations</td>
<td>6</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>7</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A. Fortran Program for a Bruceton Analysis</td>
<td>8-10</td>
</tr>
<tr>
<td>ABSTRACT DATA</td>
<td>11</td>
</tr>
<tr>
<td>TABLE OF DISTRIBUTION</td>
<td>12</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

The author is grateful to Richard Aaron and Frederick Correll of the Artillery Ammunition Laboratory for suggesting that such a program was necessary and their invaluable aid in performing the calculations. Also appreciated is the assistance of Dusan Georgevich of the Artillery Ammunition Laboratory, who supplied the data to test the program.
ABSTRACT

A digital computer program was developed for performing the Bruceton statistical analysis on an IBM 709 or IBM 7090. A brief description of the Bruceton test is given — followed by an outline of the method of analysis which this program uses. Input and output formats are discussed.

INTRODUCTION

The purpose of this report is to describe a digital computer program which was developed for performing a statistical analysis of sensitivity data obtained from the Bruceton Test.

Part I discusses the input and output formats. Part II discusses the numerical calculations used. The appendix lists the program as written in Fortran.

The Bruceton Test — developed by the Explosives Research Laboratory at Bruceton, Pennsylvania — measures electrical sensitivity of an electro-explosive device at a specific level of frequency. The lowest power level should fall above the "no-fire" level for the device being evaluated and the highest power level should fall below the "all-fire" power level. This test is preferable to other similar tests in that it concentrates the testing near the mean. Therefore, in most situations, a desired degree of reliability can be obtained with a smaller sample.

With the data from a Bruceton Test the mean (m) or the 50% firing level and the standard deviation (σ) can be calculated. Further computation yields the extreme probabilities such as the 99.9% and the 0.1% levels. These are expressed with the confidence intervals included.

This statistical analysis is based on the Bruceton Report (Reference 1). It is assumed that the calculations found in Part II will be used in conjunction with the Bruceton Report and the Franklin Institute Memorandum (Reference 2).
DISCUSSION

Part I - Input and Output Formats

A. Input Format

The first ten data cards will be the same for any group of runs. These are constant values (G, H and S) obtained from the graphs found in the Bruceton Report.

Following this set of cards, any number of runs may be included provided each run is in correct sequence.

The format for the first data card is:

Spaces 1 through 20 (inclusive) are reserved for an identification.
Spaces 21-25 are reserved for the number of levels used.
Spaces 26-35 are reserved for the common logarithm of the lowest level.
Spaces 36-45 are reserved for the constant interval between the logarithms of the levels.
Spaces 46-50 are reserved for the probability level (in percent).
Spaces 51-55 are reserved for the confidence level (in percent).
Spaces 56-60 are reserved for the value of the first (lowest) level (in milliwatts).
Spaces 61-65 are reserved for the number of "fires" at that level.
Spaces 66-70 are reserved for the number of "no-fires" at that level.
Spaces 71-80 are blank.

Each successive level, followed by the "fires" and "no-fires" at that level (in that order), are placed on the second card with five spaces reserved for each value. If more data remains after the second card is used; a third, fourth, etc., may be used with the same format.

As a convenience those numbers above, which are whole numbers, need not be written with a decimal.

B. Output Format

The output will list all the input data as well as every intermediary value used in the analysis. The values used in the primary statistics and in the secondary statistics are so labeled.
If P and E equal the input probability and confidence levels respectively, then in the final calculations the values (both in logarithmic units and milliwatts) consist of

$P\%$ probability with $E\%$ confidence and
$(100-P)\%$ probability with $E\%$ confidence.
Part II - Numerical Calculations

A. Primary Statistics

Let \(N \) equal the number of levels used.
Let \(X(i) \), where \(i=0, 1, 2, \ldots N \), equal the value of each level.
Let \(n_x(i) \) equal the number of "fires" at each level.
Let \(n_0(i) \) equal the number of "no-fires" at each level.
Let \(c \) equal the logarithm of the lowest level.
Let \(d \) equal the constant logarithmic interval between levels.
Let \(P\% \) equal the probability level.
Let \(E\% \) equal the confidence level.

\[
N_x = \sum_i n_x(i) \quad N_0 = \sum_i n_0(i)
\]

\[
A_x = \sum_i i n_x(i) \quad A_0 = \sum_i i n_0(i)
\]

\[
B_x = \sum_i i^2 n_x(i) \quad B_0 = \sum_i i^2 n_0(i)
\]

\[
M_x = \frac{N_x B_x - A_x^2}{N_x^2} \quad M_0 = \frac{N_0 B_0 - A_0^2}{N_0^2}
\]

\[
m_x = c + d\left(\frac{A_x}{B_x} - \frac{1}{2}\right) \quad m_0 = c + d\left(\frac{A_0}{B_0} - \frac{1}{2}\right)
\]

If \(M_x < 0.3 \), the smallest absolute value \(R = \left| \frac{m_x - \log X(i)}{d} \right| \) is evaluated and Graph I in the Bruceton Report is used to find \(s_x \). Incorporated in the program (data cards 3-10) are 268 points taken from this graph with \(M_x = .05, .06, \ldots, .30 \) and \(R = 0, .5, 1, .15, \ldots, .5 \)

-4-
Similarly \(s_0 \) if \(M_0 < 0.3 \).

the computation is \(\sigma_x = s_x d \)

\[\sigma_o = s_o d \]

However, if \(M_x \geq 0.3 \) then

\[\sigma_x = 1.62d (M_x + 0.029) \sqrt{\frac{N_x}{N_x - 1}} \]

\[\sigma_o = 1.62d(M_o + 0.029) \sqrt{\frac{N_o}{N_o - 1}} \]

B. Secondary Statistics

\[m = \frac{N_0 m_0 + N_x m_x}{N_0 + N_x} \]

\[\sigma = \sqrt{\frac{N_0 \sigma_o^2 + N_x \sigma_x^2}{N_0 + N_x}} \]

\(\zeta = \text{Antilog } m; \ m \text{ equals the mean or } 50\% \text{ firing level} \)

\(\sigma \text{ equals the standard deviation.} \)

\[S = \frac{\sigma}{d} \]

\[N = N_0 + N_x \]

\[n = \frac{N}{2} \text{ when } N \text{ is an even integer} \]

\[= \frac{N + 1}{2} \text{ when } N \text{ is an odd integer} \]
C. **Confidence Interval** \((Y)\)

\[
Y = k_E \cdot \left(\frac{n + 1.2}{n} \right) \left(\frac{G^2 + H^2k_p^2}{n} \right)^{1/2}
\]

where \(k_E\), \(k_p\), \(G\) and \(H\) are obtained from the Bruceton Report.

\(k_E\) and \(k_p\) are found in the table on Page 19 and \(G\) and \(H\) from Graphs III, IV and V. The table, in its entirety, is incorporated in the program, and 17 points are taken from each of the graphs and placed on data cards 1 and 2. \((S = .2, .3, \ldots, 1.0, 1.5, 2.0, \ldots, 5.0)\). Straight line interpolations are made for values between these points.

D. **Final Calculations**

\[
P\% \ (E\% \ confidence) = m + k_p + Y
\]

\[
(100-P)\% \ (E\% \ confidence) = m - k_p + Y
\]
REFERENCES

APPENDIX A

FORTRAN PROGRAM FOR A BRUCETON ANALYSIS
BRUCETON STATISTICAL ANALYSIS

LCGF(W) = 0.434343 * LOGF(W)
ANTF(W) = EXPF(W/0.4343)

DIMENSION G(50), H(50), X(50), IDENT(20), FIX(50), FAX(50), Y(50), AB(30, 115)

1 READ INPUT TAPE 2, 2, (G(I), I=2, 10), G(15), G(20), G(25), G(30), G(35), G(40), G(45), G(50)
2 FORMAT(17F4.3)
3 READ INPUT TAPE 2, 4, (H(I), I=2, 10), H(15), H(20), H(25), H(30), H(35), H(40), H(45), H(50)
4 FORMAT(17F3.2)
5 READ INPUT TAPE 2, 6, (IDENT(J), J=1, 20), N, C, D, P, E, (X(I), FIX(I), FAX(I), Y(50), AB(30, 115))
6 FORMAT(20A1, 15, 2F10.0, 5F5.0, 2X/(14F5.0, 2X))

P1 = 100.0

AFIX = 0.0
AFAX = 0.0
BFIX = 0.0
BFAX = 0.0
SFIX = 0.0
SFAX = 0.0
I = 0

10 W = W
AFIX = AFIX + W * FIX(I+1)
AFAX = AFAX + W * FAX(I+1)
BFIX = BFIX + (W**2) * FIX(I+1)
BFAX = BFAX + (W**2) * FAX(I+1)
SFIX = SFIX + FIX(I+1)
SFAX = SFAX + FAX(I+1)

11 IF (I = N) 10, 10, 11
R = 0
TFIX = ((SFIX * BFIX) - AFIX**2) / (SFIX**2)
TFA = ((SFA * BFA) - AFA**2) / (SFA**2)
13 UIFX = C + R * (AFIX / SFIX - 0.5)
UFAX = C + R * (AFAX / SFA + 0.5)
IF (TFIX < 0.3) 118, 23, 23

118 CIX = TFIX * 100.
LIX = CIX

111 WEEIX = 500.
I = 0
112 WEEIX = MIN1F(WSEE, ABSF(UFIX - LCGF(X(I+1))))
I = I + 1
IF (I = N+1) 112, 112, 113

113 RIX = ABSF(WSEE/R)
KIX = XINTF(RIX+22.) + 1
VFIX = (AB(LIX, KIX)/100.) * R
14 IF (TFA < 0.3) 117, 25, 25

117 CAX = TFA * 100.
LAX = CAX

114 WEEAX = 500.
I = 0
115 WEEAX = MIN1F(WEEAX, ABSF(UFA - LCGF(X(I+1))))
I = I + 1
BRUCETØN STATISTICAL ANALYSIS

IF(I-N+1) 115,115,116
116 RAX=ABSF(WEEAX/R)
 KAX=XINTF(RAX*2o.)*1
 VFAX=(AB(LAX,KAX)/100.)*R
 GØ TØ 26
23 VFIX= 1.62*R*(TFIX+0.029)*SQRTF(SFIX/(SFIX-1.))
 GØ TØ 24
25 VFAX= 1.62*R*(TFAX+0.029)*SQRTF(SFAX/(SFAX-1.))
26 U =((SFA*X*VFA*X)*(SFIX*UFX))/((SFX+SFIX)
 V = SQRTF((SFA*X*(VFA*X+2)+SFAX*(VFA*X+2))/((SFA+SFIX))
 ZETA=ANTF(U)
 IF(99.-P) 51,50,50
50 KP=99.9-P
 GØ TØ 60
51 KP=(100.-P)*1000.
60 IF(99.-E) 53,52,52
52 KX=99.9-E
 GØ TØ 61
53 KX=(100.-E)*1000.
61 Y(49)=0.0
 Y(24)=0.075
 Y(9)=1.282
 Y(4)=1.645
 Y(0)=2.326
 Y(10)=3.090
 Y(1)=3.719
 S= V/R
 Z = S*10.
 SX= SFIX+SFA
 SX2 = (SX+1.)/2.
 KS2 = SX2
 SX3 = KS2
 IF(Z-2.)100,14,14
14 IF(Z-50.)115,15,100
15 IF(Z-2.)100,16,16
16 IF(Z-10.)40,17,18
17 K=T
 A=G(K)
 B=H(K)
 GØ TØ 19
40 K=Z
 S2=K
 A=((G(K+1)-G(K))*(Z-S2) + G(K)
 B=((H(K+1)-H(K))*(Z-S2) + H(K)
 GØ TØ 19
18 S1= Z/5.
 K1= S1
 K=5*K1
 S2=K
 A=((G(K+5)-G(K))/5.)*(Z-S2) + G(K)
 B=((H(K+5)-H(K))/5.)*(Z-S2) + H(K)
19 T =Y(KX)*((SX3+1.2)/SX3)*SQRTF((A+2*(B+2)*(Y(KP)*2))/SX3)*V
 CFL1 =U*Y(KP)*V+T
 CFL2 =U-Y(KP)*V-T
 CFN1 = ANTF(CFL1)
 CFN2 = ANTF(CFL2)
BRUCETON STATISTICAL ANALYSIS

WRITE OUTPUT TAPE 3,20,(IDENT(J),J=1,20),P,E,(X(I),FIX(I),FAX(I),I=1,N)
20 FORMAT(1H1,10X,20A2,5X,13HPRB, LEV, = F7.3,5X,13HCNF, LEV, = F7.3,10X,1H10X,11HTEST LEVELS,5X,12HN,0.0F FIRES,5X,11HN,0.0F FAILS//10X,F7.3,10X,F7.3))
WRITE OUTPUT TAPE 3,21,SFAK,SFIX,C,R,AFAX,AFIX,BFAK,BFIX,TFAX,TFIX
UFAK,UFIX,VFAK,VFIX,U,V,ZETA,P,PI,ES,SS,SSX,Y(KP),Y(KK),A,B,T,P,
2E,CL1,CF1,PI,E,CLF2,CFN2
21 FORMAT(1H0,10X,9H N0,NX = 2F11.5//26H SPECIAL PARAMETERS C,D = 2F11.5/66H PRIMARY STATISTICS A0,AX,0X,N0,M0,MX,M01,MX1,SIGMA0,SIGMA
2GMAX = //5(13X,FL11.5,5X,FL11.5/),10X//45H SECONDARY STATISTICS ME
3AN,STAND.DEV.,ZETA = 3F11.5//16H PROB. LEVELS = 2F11.5,14HCNF, LE
4VEL = F11.5/5X,19HS,N,N1,KP,KX,G,H = /10X,6F11.5,3X/10X,F11.5,3X
5/25H CONFIDENCE INTERVAL Y = F11.5//11X,F7.3,5H WITH,F7.3,8H CONF
6 = F11.5,9HL0G UNITS,4H = F11.5/))
G0 T0 102
100 WRITE OUTPUT TAPE 3,90,(IDENT(J),J=1,20),P,E,(X(I),FIX(I),FAX(I),I
1=1,N)
90 FORMAT(1H1,10X,20A2,5X,13HPRB, LEV, = F7.3,5X,13HCNF, LEV, = F7.3,10X,11HTEST LEVELS,5X,12HN,0.0F FIRES,5X,11HN,0.0F FAILS//10X,F7.3,10X,F7.3))
WRITE OUTPUT TAPE 3,91,S
91 FORMAT(1H0,10X,44H THIS ANALYSIS WAS NOT COMPLETED BECAUSE S = F11.
15,103H IT IS NOT OF THE RANGE FROM .2 TO 5 AND HENCE G AND H CANNOT
2T BE DETERMINED. CHECK LEVEL DISTRIBUTION.)
102 G0 T0 5
END(1,1,0,0,0,0,1,1,0,0,0,0)
ABSTRACT DATA
A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

Forrest L. McMains

A digital computer program was developed for performing a statistical analysis of sensitivity data obtained from the Bruceton Test on an IBM 709 or 7090 Computer.

The input and output format are discussed as well as the numerical calculations used in the program. The program, as written in Fortran, is also contained in the study.
A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

I. Digital Computers - Statistical Analysis
 1. McMains, Forrest L.
 2. Bruceton sensitivity analysis

UNITERMS

Bruceton
Sensitivity
Analysis
Computer
IBM 709
IBM 7090
Fortran
McMains, Forrest L.

UNCLASSIFIED
A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

Forrest L. McMains

Technical Memorandum 1254, August 1963, 12 pp, listings. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Engineering Directorate.

A digital computer program was developed for performing a statistical analysis of sensitivity data obtained from the Brueton Test on an IBM 709 or 7090 Computer.

The input and output format are discussed as well as the numerical calculations used in the program. The program, as written in Fortran, is also contained in the study.

1. Digital Computers – Statistical Analysis
I. McMains, Forrest L.
II. Brueton sensitivity analysis

UNITERMS

Brueton
Sensitivity
Analysis
Computer
IBM 709
IBM 7090
Fortran
McMains, Forrest L.

UNCLASSIFIED

Accession No. AD
Picatinny Arsenal, Dover, New Jersey
A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

Forrest L. McMains

Technical Memorandum 1254, August 1963, 12 pp, listings. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Engineering Directorate.

A digital computer program was developed for performing a statistical analysis of sensitivity data obtained from the Brueton Test on an IBM 709 or 7090 Computer.

The input and output format are discussed as well as the numerical calculations used in the program. The program, as written in Fortran, is also contained in the study.

1. Digital Computers – Statistical Analysis
I. McMains, Forrest L.
II. Brueton sensitivity analysis

UNITERMS

Brueton
Sensitivity
Analysis
Computer
IBM 709
IBM 7090
Fortran
McMains, Forrest L.

UNCLASSIFIED

Accession No. AD
Picatinny Arsenal, Dover, New Jersey
A DIGITAL COMPUTER PROGRAM FOR A BRUCETON ANALYSIS

Forrest L. McMains

Technical Memorandum 1254, August 1963, 12 pp, listings. Unclassified memorandum from the Artillery Ammunition Laboratory, Ammunition Engineering Directorate.

A digital computer program was developed for performing a statistical analysis of sensitivity data obtained from the Brueton Test on an IBM 709 or 7090 Computer.

The input and output format are discussed as well as the numerical calculations used in the program. The program, as written in Fortran, is also contained in the study.

1. Digital Computers – Statistical Analysis
I. McMains, Forrest L.
II. Brueton sensitivity analysis

UNITERMS

Brueton
Sensitivity
Analysis
Computer
IBM 709
IBM 7090
Fortran
McMains, Forrest L.
<table>
<thead>
<tr>
<th>#</th>
<th>TABLE OF DISTRIBUTION</th>
</tr>
</thead>
</table>

TABLE OF DISTRIBUTION

<table>
<thead>
<tr>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-10</td>
</tr>
<tr>
<td>11-25</td>
</tr>
<tr>
<td>26-28</td>
</tr>
<tr>
<td>29-33</td>
</tr>
<tr>
<td>34-35</td>
</tr>
<tr>
<td>36-55</td>
</tr>
<tr>
<td>56</td>
</tr>
<tr>
<td>57-58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td>Dover, New Jersey</td>
</tr>
<tr>
<td>ATTN: SMUPA-DR3</td>
</tr>
<tr>
<td>SMUPA-DR4</td>
</tr>
<tr>
<td>SMUPA-VC4</td>
</tr>
<tr>
<td>SMUPA-VA6</td>
</tr>
<tr>
<td>SMUPA-DX1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Defense Documentation Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cameron Station</td>
</tr>
<tr>
<td>Alexandria, Virginia</td>
</tr>
</tbody>
</table>

| 3. Department of Mathematics |
| University of Arizona |
| Tucson, Arizona |
| ATTN: Dr. Louise C. Lim |

| 4. Harry Diamond Laboratories |
| Connecticut & Van Ness Avenue |
| Washington 25, D. C. |