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aneralized Pauli end Dirac matrices are derived for
arbitrary Riemannian spaces. Lac¢ determination qf such
ratrices is bazed on the theory of transférmationa

to principal axes, whioch ias devaloped from a new point

of view and expressed by explicit formulae, The .- '
rolutionship between tensors nn. upinors is defined in a
very neneral way, and H. Weyl'a “acory of omsvariant
spinor difforontiation,(leo H, Wayl, Elektron-and
Sevitation, Zeitechr., £. Pays.. 54, 1929) is generalized
in nceordance with the general *.nror-spinor relationship.



2. General Introduction

In his clagsical paper cn the spinning electron P. A. M. Dirac
asked whether it is possible to interpret the square sum of four

variables x, us the square of a linear form:

2
+ X

2
x 2

1 + X

2 2 2

3+ %y = (ByXy * 2p%p g%y ¥ Rgx,)

The coefficients Py must then be quantities satisfying the
relations

2

p; =1, PP+ PP -~ O (i £ k).

Four quantities of this kind define a certain non-commutative
asgociative abstract algebra, which was introduced by W. K.
Clifford as early as 1878: Am. Jour. of Math. 1, 1878, p.350.

If we now consider X4 Xps X = ict as the coordinates of

3. ];4 =
gspace-time, then

is the equation of the light--unc, the generators of which are
the possible paths of light. In the restricted theory of
relativity normal coordinate systems for space~time are connected
with each other by arbitrary lLorintz transformations, i.e. by

any rcal linear transformation which leaves the form

2

invariant and which does not ir.’'erchange past and future, Lorentz
transformations constitute a grenp, the "complete Lorentz group",
and this group describes the homogeneity of the 4-dimensional

world. This group consists c¢f "positive" and "negative" transforma-

tions, i.e, transformations with dctcrminants +1 and -1,
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respectively, The former constitute the "restricted Lorentz
group", from which the complete group is obtained by
introducing in addition the spatial reflection

x4 -A/ x4l xj _-’ _xJ (j = 1!2’3)‘

An important mathematical fact is the following:

any binary linear transformation with determinant of
absolute value 1 induces a positive Lorentz transformation
in the xj. Trangformations which differ only by a factor
eiA of absolute value 1 give rise to the same group element.
4 new aspect arises in the general theory of relativity.
Einstein recognizes as the source of the gravitational forces
the metrical structure of the world and considers this
structure as a formal property of the world. According to
this, it must be assumed that the world-points form a four-
dimensional manifold, on which a measure determination is
impressed by a non-degenerate quadratic differential form @
having one positive and three negative dimensions. 1In any

coordinate system x, (i =1,2,5,4), in Riemann's sense, let
Q = gikdxldxk.

Physicael laws will then be expressed by tensor relations that
are invariant for arbitrary continuous transformations of the
arguments X5 Now the question arises whether the correspondence
between the Lorentz group and the binary unimodular group has
an analogon in the general theory of relativity. The purpose
of our invegtigations is to answer this question. Attempts
in this direction were made ty several authors more than

30 years ago (Fock-Iwanenko, Weyl, Einstein, Schrddinger,
Levi-Civita, and others, see our list of literature in the
First Final Technical Report and at the end of this report.
In all these attempts rigid local "four-legs" are uged in
order to transfer the clascical asninor concept to Riemannian
geometry. Our studies have the advantage of being without
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such rigid restrictions. The most important conception we
have introduced is our fundamental decomposition formula
of the first year. It is the mathematical basis on which
the theory elaborated in the second year is established.
The content of these recent gstudies is comprehended in the
atetract, cf. page 1.

3, Generalized Pauli matrices

Pauli's spin matrices

/o 1 \ /0 -i 10
1) = ) U(2) =( >,U(3) -
\1 o/ i o0 0 -1
fulfil the gommutation relations

)=J2(J-k),

U(3)u(x) + U(k)U(3) = 26(3k
’ ’ Lo (3 #£K).

The indices are written as arguments because they denote
neither ccvariance nor contravariance. The linear
combinations

vy = ay(k)u(k)

J
are said to be generalized Pauli matrices if they fulfil
the commutation relations

where the functions gjk are to be interpreted as the
components of the metrical fundamental tensor of the
space under consideration, The question now arises what
conditions have to be satisfied by the coefficienta
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aj(k). It is answered easily: From
285 = ViV + Vi ¥y =
- (85(1)e () + & (1)ay())0(1)0(a) =
- ad(l)ak(m)(U(l)U(m) + U(m)U(1)) =

- 2ad(l)ak(1)

we see that the condition

has to be satisfied. Such metrical decompositions have been
derived by several authors (Einstein, Voek-Iwanenko, Weyl,
and others; c¢f. our list of literature in the First Final
Technical Report and at the end of this report).

In addition, Pauli's matrices fulfil the following anti-
communication relations:

U(2)u(3) - v(3)u(2) = 2i0(1),
u(3)u(r) - u(1)u(3) = 2iv(2),
U(1)u(2) - u(2)u(1) = 2iU(3).

What are the corresponding generalized relations 7 In order
to answer this question we use the matrix calculus. On
introducing the notations



B i ]

a1 e (5) 8 (3)

A= 32(1) 32(2) 32(5) ’
\\a5(1) 85(2)  a5(3)

7
811 812 843
G= | 82 & 83 |
813 823 833

.

we may write the relations derived above in the following

abbreviated form:

v = Au,
AM' = ¢ ,
and [u,u] = 2iu.

The relations under consideration are derived as follows:
LV,V] = [Au,Au] det(A)A’-1 [u,u] =

2i det(A)A'"Tu =

2i det(A)A"1A‘1v =

21 aet!/2(g)e" v .

L]

Explicitly, they read

1/2, 11 12 13
Vo5 - V3V2 = 2ig /(g Vo +8 'V, +8g v3),

1/2, 12 22 22
v3v1 - v1v3 = 2ig '“(g Vo + eV, + 8 vj),

1/2, 13 23 33
V,V, = V,V, = 2ig (g vV, +87V, + 8 v5),

where g = det(G) and ng are the components of the matrix

G-1, i.e. the contravariant components of the metrical

fundamental tensor.
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4. Generalized Pauli matrices

and infinitegimal motions

As it is well-known, Pauli's spin matrices represent an
operator of infinitesimal rotation. This fact is due to the
relations of anticommutation. Now we shall show that our
generalized Pauli matrices may also be regarded as
representing an infinitesimal motion. OQur proof is based
on Lie's theory of continuous groups of transformations.

A motion is a transformation M satisfying the relation of
automorphism

M'GM = G.

It may be represented by a matrix

M= (I+D)(1-1),

where
? =65
and
0 53 -8,
S = -55 0 8,
8, -8, 0

with arbitrary »arameters 840 8y sj.
According to Lie, an infinitesimal motion is represented
by the matrices

I = (GT'/ask)’_o.

Explicit calculation yields

813 11 13

12 12 1
8,78 8; 8 838 "8, & 878 8,

2 22 2 2 22 12
T = 8 392'8 83 51 55'8 551 ) B‘-g 52

LA N N L
and 0 0 0
PR ] e e
12 22 23
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13 23 33

8 g g
Jy = 0 0 ,
11 12 1
-8 -8 -g'’
12 22 23
-8 -8 -8
- | &' 82 '3 .
0 0 0

From this ternary representation the general anticommutation

relations may be derived. They read:

11 12 13

J2J3 - J3J2 = g J1 + &g J2 + & sz
12 22 23
_ 13 23 33

J1J2 - J2J1 = g J1 + 8 J2 + g J3.

These relations are in structural accordance with those for

» Voo V3.

form a binary representation of the

the matrices V1

Therefore, V1, V2, V3

operator of infinitesimal motion.

5. Generalized Dirac matrices

The well~-knewn Dirac matrices

0 0 0 -i 0 0 0 -1

0 0 -i o0 o 0o 1 o0
W) =lo 5 o0 o) U= o ¢ o o |

i 0o o0 o 4 0 0 0

0 0 -i 0 1. 0 0 0

o 0 o0 i 0o 1 0 0
U3 =y o o o y W) =t 5 0 a1 0

0 -i 0 0 0 0 0 -1

fulfil the commutation relatious
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U(3) U(k) + U(k)U(J) = 28(3k).

Therefore, the same procedure as in the case of the Pauli
matrices will lead us to generalized Dirac matriees V1, V2,
V39 V4: .

vj = aj(k)U(k),

where the coefficients aj(k) have to satisfy the conditions

ay(1)e (1) = gy

We know from chapter 3 that the generalized matrices V1, V2,
V3, V4 fulfil the commutation relations

IASER M AR

These relations are of fundamental importance for any general

spinor calculus.

6. Metrical decompositions G = AA' and transformations on

principal axes

From the preceding chapters we see that one of the fundamental
problems of the spinor calculus in Riemannian geometry is to
determine the coefficients aj(k) satisfying the condition

a‘j(l)ak(l) = 8Jk

which we have written in the form

AA' = G,

This matrix equation is equivalent to the equation
B'GB = I,

where
Baa"l,
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The transformation B consists of a transformation on principal
axes and of a transformation of normalization. The main
difficulty is to obtain the part transforming on prinoipal
exegs. This problem has been golved theoretically a long

time ago. There is, however, no practicable explicit formula
for transformations on principal axes or, what is the same,
for transformations of gimilitude. We have found such a
formula for the simplest case of distinct roots of the
characteristic polynomial belonging to the matrix %o be
transformed. The theory of this formula will be developed

in extenso in the following chapter.

7. On the theory of similitude of matrices

Two matrices are said to be similar to each other if they
represent one and the same homogeneous linear transformation
in two coordinate systems which are equivalent to each

other. This relation of similitude is a relation of
equivalence due to the equivalence of the coordinate systems.
Therefore, each matrix of a class of simiiitude represents
the entire class.

Any homogeneous lincar transformation or class of similar
matrices may also be characterized by invariant quantities
the values of which do not depend on coordinates. Such
invariants are the coefficients and the roots ol the
characteristic polynomial of the transformatioh, rational the
coefficients, irrational the roots, which are called the
eigenvalues of the transformation. If all the eigenvalues
are different from each other, then they will correspond to
a special coordinate system with reference toe which the
transformation assumes diagonal form. This case shall be
congideredq.

Any real or complex matrix R with n rows and n columns

possesses a characteristic polynomial

f(x) = det(xI =~ R) =

n Ne=
- X +a1x 1+...+an_1

X+a = (x = b,)(x = by) eeo (x - bn).
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The coefficients 849 8y +ss g B aTE the elementary symmetriocal

functions of the roots b1, b2, cee g bn:

a1 = f1(b1, L] bn) - (b1 + ceo + bn),

* s 0 *« & e ® & 2 e o 3 & o * & & o o .

n
an = fn(b1, ees 0y bn) (-1) b1 LN ] bno

B dsnotes the diagonal matrix with the diagonal elements

b1, b2, s 0y bn:
B = Diag(b1,b2’ coay bn)o

The matrix K and the matrix B have the same characteristic

polynomial. Therefore,

f(R) = £f(B) = 0
is valid according to Cayley and Hamilton« This identity is the
basis of the property

RP = PB
of the matrix

P = a

2 2
nol * a _o(R + B) + an_3(R + RB+ B°) + .40

e + B L B*%8 4 ...« RBP4 Y,

The proof is very simple:

RP - PB =

2 n

2 n
= an_1(R - B) + an_z(R -B)+ +4.0+R =B =

= f(R) - £(B) - 0.
If the matrix P is regular, then the relation of similitude
P 'Rp - B

between the matrices R and B will follow.from the relation



- 12 -

RP = PB. In order to investigate the determinant of Py we

shall consider the structure of P.

For this purpose we introduce the diagonal matrices
I1 = Dias(1 ’O’O’ L) ,0,0) ]
I, = Diag(0,140y...:,0,0),

e ® o ¢ s & * * s & ¢ o

I, = Diag(040,0y«+.,0,1).

The "projectors" 11, I2, ey In have the properties of

complimentarity:

I1 + I2 + e+ I =1,

c¢f idempotence:

and of orthogonality:

I =0 if i 4 k.

i1k

The matrices
J1=I-I1,000,Jn=I-I

are introduced in order to define the matrices

B, = b,J

1 4999 eees By = b J

which are related to the matrix B by the identities

f1(B1,uuo,Bn) = a1I + B’

e o o s o 4 o e & e s o o

ne1

fn_1(B1"°'9B‘) = an_1I + 3n_2B + 100 + B .
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These identities describe the rel-%ionship between the elementary

symmetrical functions of n variables and the elementary symmetrical

functions of n - 1 variables. When we consider the matrix P
in the form

P =

§ _ pn=1 ne2 . ne1
= R + R (a1I + B) + oou + a I +a B+ e v+ B

which is ordered with respect to the powers ¢f R, then we see
immediately the formula
P =

i n-1 n

-2
'—'R +R f1(B1,o|.’Bn) + tcl+fn-1(B1’c.D'Bn)o

Now we distribute one of the matrices

B1, Bz, coey Bn’ let it be, the matrix Bk’ onto the remaining cnes

in the following way:

Q
i

= B1 + ka1, L) Ck-1 = Bk-1 + kak-1,

= B =.Bn+b

ket * Piligyrr coor Gy xln®

The sum C1 + co0 + Cn_1 is equal tc¢ the sum B1 + eee + Bn .

The same holds for the corresponding power sums of higher degree:

h
C? + o0 + Cn-1 =

k-1 * Prlk-1

R

h
(B1 +ka1) + oo-+(B
h . h
+ (Bk+1 + kak+1) + see + (Dn + kan) =

h h h
-B1+...+Bk-1+Bt+1+'..+Bn +

h
bk(I1 + ees + 1

+

Lt e+ 1) -

= B

e

h
+o-o+Bn.
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From this we obtain the relations

f1(C1,..-,Cn_1) = f1(B1’000,Bn))

fn_1(C1,o..,Cn_1) = fn-‘](&’...’Bn)'

Therefore, we may write the matrix P in the form

ne-2
P =R + R f1(C1,---’Cn-1) + ses + fn_1(C1,...,Cn_1).

Now it is easy to show that the matrix P will be singular if
two eigenvalues of R are equal.
We assume that bi is equal to bk and that i is less than k. Then

the matrix Ci will be equal to the matrix biI’ which may be

commuted with any matrix. Therelore, the matrix P contains the

factor R - Ci the determinant of which is equal to

(-1)nf(bi). Hence, the determinant of P vanishes.

From now we propose that all the eigenvalues of the matrix R are
different from each other. This assumption, however, does not

imply the regularity of P.

This fact ~ay be seen by the example of the matrix
R = Dia€(1 ,"1)’

the eigenvalues of which ar:z the numbers 1 and -1. The two
possible matrices B,

B = Diag(1,-1) =R
and

B = Diag(-1,1) = =R,

involve the two matrices

P = 2R
and

P = 0.
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The former one is regular, the latter one is singular.

The following is valid generally: There is at least one
matrix b among all the possible matrices B, to which a regular
matrix P is coordinated. This is the fundamental theorem

of our theory. It is proven as follows.

By V we denote the set of all variations with repetition,
by Q the set of all permutations of the eigenvalues

b1, b2, e ey bn. The set Q consisting of n! permutations

splits into (n-1)! classes of cyclic permutations, a certain
one of which we denote by Z. The sets V(P), Q(P), and
Z(P) of matrices P correspond to the sets V, Q, and Z of per-
mutations. The matrix
§=f'"(R) =a_ ,I+2a_ ,R+ «o0o + ng®!

n=-1 n=-2
is the sum of all the matrices of a class Z(P). This relation
is based on NEWTON's formulae which describe the connection
between elementary symmetrical functions and power sums; The
determinant of § is equal to the discriminant of the
characteristic polynomial or f, disregarded the sign. Hence,
det(S) is different from zero. On the other hand, it is
equal to the sum of all detcrminants of the matrices from V(P).
This sum, however, is equal to the sum of the determinants
of all matrices from Q(P) because all matrices from the set
difference V(P) - Q(P) are singular. Therefore, at least one

matrix from Q(P) must be regular. This proves our fundamental
theorem.

We are not able to say more about the matrices P if we do not
know the structure of the radical field of f.

—
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8. The general relationghip beiween tensors
and spinors

If we have a metrical decomposition

¢ = U'(HeH)U,

then the connection between a first-rank tensor u and a

first-rank spinor v is given by
u=U"EQv)
because this relaiicn involves
u'Gu = (v'H v)(v'H v).

A transformation T of v which is automorphic with respect to
H (T'HT = H) induces a transformation

s=0"(fom)U
of u which is automorphic with respect to G

For Cand V = U™ we use the notations

uy(11) u3(11)

(s'Gés = aG).
u1(11)

u1(12)

u1(21)
u1(22)

and

v (11)
v2(11)
v3(11)
v4(11)

The following relations of orthogonality are valid:

u2(12)

u2(21)
u2(22)

v(12)
vi(12)
v3(12)
v4(12)

u3(12)

u3(21)
u3(22)

v1(21)
v2(21)
v3(21)
v4(21)

u4(11) \\
u4(12)

u4(21)
u4(22)

vl (22)
v2(22)
vI(22)
vA(22)

/
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up(mn)vp(rs) = 8(mr)é(ns),
)% P
vi(mn)u (mn) = &%,
(m)u (mn) = o
Now the relations between tensors and spinors may be written

in the form
wP = JryPy (p = 1,2,3,4),

o ('vp(11) vp(12)‘)
© o\ vP(21) vP(22) )

where

The only restriction we make is the condition of Hermitean
symmetry:
T”p = Vpo

The metrical decomposition
¢ = U"(EgH)U
reads explicitly:

8pq = up(mn)uq(rs)ﬁ(mr)h(ne).

From
vP(mn)v3(rs)

€04 up(ab)uq(cd)ﬁ(ac)h(bd)vp(mn)vq(rs) -

5(am)é(bn)o(cr)é(ds)h(ac)n(bd) =

R(mr)h(ns)

we derive the important relation

Pyd _ &
V'V*® = HH.
qu

Now we consider a metrical decomposition

G‘AA'.
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Using the notations

8 (1)
8(1)
a5(1)
8y (1)

and a1(1)
8’ (2)
a'(3)
a' (4)

-1

ay(2)
2,(2)
a5(2)
a,(2)

a2(1)
a’(2)
a°(3)

a2(4)

a,(3)
a,(3)
25(3)
2,(3)

a’(1)
a’(2)
a3(3)
a’(4)

a,(4)
32(4)
ay(4)
a,(4)

at(1)
a*(2)
34(3) ’
a*(4)

we may write:

1]
]

pq = 2p(30a,(3),

qu = ap(j)aq(j)’

We say that
u(3) = 2 (3)u"

are the components of the tensor u with respect to the

"four-leg" A. The ccnversion is also peasible

P = aP()u(y).
Analogously we write
V() = a,(5)vP

and

u(y) = v'v(3)v.

- 18 -



.
¥
]
[
:

- 19 -

9. Weyl's concept of covariant spinor
differentation

In his paper Elektron and Gravitation (Zeitsohr. f. Phys., 54,
1929), H. Weyl inaugurated a concept of covariant sgpinor
differentiation which forms the basis of our generalization.

In this chapter we shall consider its essential properties.

When a metrical decomposition

8pq = 3p(1)ag(3)

is given, then the Christoffel quantities

r

par = (agpq/axr + agrp/axq - agqr/axp)/Z

have the form

Moqr = (8503032, (3)/0x, + & (5)0a,(5)/0x  +
+ ar(a')a«'=tp(:i)/6xq + a (3)3a (3)/ox, -
- aq(j)aar(;j)/bxp - ar(j)aaq(j)/axp)/Z.

The quantities

Woar = Fpgr = 8p(3)08 (3)/0x =
- (2,(3)0a,(3)/ox, - a (3)0a,(3)/ox))/2 +
+ (2 (§)2a,(3)/ox, - 8 (3)a (J)/0x,)/2 -
- a(3)(0a (3)/0x, - da,(5)/ox ) /2

have the property of antisymmetry:

qur =z = qurc
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They are the coefficients of an infinitesimal rotation
which has the same sbsolute character as lLevi-Civita's

infinitesimal parallel displacement. The quantities

Wo(3k) = aP(3)a(xw

are its components with respect to the four-leg A.

Weyl assumes that the connection between tensors u and

spinors v is characterized by the relations
u(j) = ¥v'u(j)v,
where U(1), U(2), U(3) are Pauli's spin matrices, and U(4)/1

is the binary unit matrix. An infinitesimal W-rotation has
the effect

su(j) = W(sk)u(k) = W (jk)u(k)dx" .

What is its effect on the associated spinor v ?

Without any loss of generality we may assume that
6V = 8Tv = T v dx .

Now we have
du(j) = 2v'U(j)ov = 2v'U(J)oTv

= SW(jk)u(k) = v'6w(jk)U(k)v,

and therefore,
20(3)6m = 8W(jk)U(k),

48T = SW(Jk)U(J)u(k).

Finally, covariant spinor differentiation is defined by

~

DV = dv + ov a (d + 67)v,

Dv = (a/bxr + Tr)v,
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where

T, = W (3k)U(3)u(k) /4.

10. The general concept of covariant
spinor differentiation

We assume that the relationship between tensors and spinors is

given in the same general way as in chapter 8. Then we have:

u(d) = V'V, T (3) = v(§).

An infinitesgimal rotation & has the effect

su(3) = v' av(idv + 2 V'V(j)ov =

v(av(3i) + 2V(3)8T)v =

Vr(av(3)/ox_ + 2v(3)T )v dx.
If & is an infinitesimal W-rotation, we have
su(y) = W (ik)u(k)ax" = ¥'W (jk)V(k)v ax".
Hence, the relations
2v(3)T, = W (5K)V(k) - av(3)/ox,,
2v(3)V(3)T, = W (3K)V(3)V(k) - v(§)av(y)/ox

are valid. Now we have to calculate the invariant V(j)V(j).
We obtain the following result:

v(3)V()) = ap(;i)aq(m"vq =g qvpvq - BiH,

P

Therefore, we may write
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-1==1 . .
T.o= BB (W (3R)V(3)V(K) - v(3)av(y)/ex,)/2.
Following H. Weyl, we define
Dv = dv + OTv,

Drv = (a/axr + Tr)Vc
This definition of covariant spinor differentiation is much more
general than that by H. Weyl, where the matrices V(j) are constant.
Our definition seems to be the most general one that is possible

at all.

11, Schwarzschild space

In this chapter we shall illustrate some of our theoretical
conceptions by the example of the Schwarzschild space. The
quadratic differential form

(ds)?

= =(1 - 2n/r)(at)% + (1 - 20/r)"M(ar)? +
+ rz(du)2 + r°sinu (dv)2

is the Schwarzschild metrical fundamental form. On introducing

the coordinates x, = t, Xp = Ty X; = Uy X, =V, We obtain the

1

3 4

matrix

//—(1-2m/r) 0 0 0
0 (1-2m/r)-1 0 0

G = \‘ 0 o :2 0 //
0 (o} 0 r251n2u

as the metrical fundamental matrix of Schwarzschild space. The
matrix
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1(1-2m/r)! /2 0 0 0

0 (1-2m/r)"]/2 0 0

A= 0 0 r 0
0 0 0 r sin u

ig uniquely determined by the metrical decomposition

G=AA'.
The matrices
i(1-2m/r)1/z 0 0 r sin u
0 (1-2m/r)-1/2 ir 0
7. 1271/2 -1/2
0 (1-2m/r) -ir 0
i(1-2m/r)1/2 0 0 -r sin u
and
0 -1
H =
\i o

lead to a metrical decomposition

¢ = U (HxH)U.

From
/ 1(1-2n/r)"*/? 0 0 1(1-2m/z)"1/2
-1/ 0 (1-2m/r)"/2 (c2u/z)'/? 0
Vo= -2 0 -i/r i/r 0
1/r sin u 0 0 -1/r sin u

it follows that
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= O
~

v 22 2m/r)’1/2(g

Voo -2 /24(1 2wy /2 (?

3 2‘1/2i/r (0 -i) ,
i 0

1 0
2'1/21/r gin u ) .
0 =1

O—l
~

<}
]
]

v -

Conversion of indices yields the matrices

V(1) = ~i2"1/2 (1 -O) '
0o 1
v(2) = -12"1/2 (O 1 ) ,
10
. _1/2 ( 0 -1i ,
V(3) - -i2 L )
v(4) = -1271/2 (1 o> .
o -1

This shows that in the case of Schwarzschild space our
theory of covariant spinor differentiation does not differ
from Weyl's theory. The same helds for all diagonal
metrical fundamental forms.
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13, The decomposition of the Gordon operator

1. Introduction:

Dirac's celebrated method of deriving the euqation of the !
electron was based on the decomposition of the Gordon operator
. 2 y ‘q‘: . I
in the form: (i - m®)Y = ( §~ yidi+m) (2; 149, - m¥ =0 (1),

", which led him automatically to both the known Dirac
matrices with their commutation relations, snd to the Dirac
equation. By a decomposition of this kind it is obviously possible
to reduce a second order differzntial equation (Klein-Gordon
Eq.) to a differential equ-tion of the first order (Dirac Eq.).
This was so far the decisive point since positive definiteness
of the probability density ard ..la*ivistic covariance

postulated a differential cquavion of thr first order.

To find the equation of the electron (and also of other
elementary particles) in the uneral theory of relativity it
appears obvious to procecd =nalo.ously, i.ei to decompose the
Gordon operator and reduce it to a form which is analogous to
(1). In the following, thc n»ossilili:ies nnd conditions of a
decompogition of that kind are studied more thoroughly and are

then discussed. *)

2. Decomposition of the Gordon op:rator:

In the general theory of relativity equation (1) has the
following form:

(2) (= - - (2 6o - a)y - (F Vi, + 2)( EVD,-0)2-0

x)
At this place we shall notice that our derivation of Dirac's

equation in the First Final Technical Report is wrong because
it was based on an uncritical conceprt of covariant spinor

differentiation.
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where D is a differential operator acting on the wave function
¥, (it may e.g. be the covariant differentiation, but it may
also be much more general. Any assumption in point is
withheld here intentionally).

If we now form the product (_> ViDi +m) (X Vka - m)
i k

we arrive at:

(3) % = (v'p, 1+ V‘kaViDi) - m

i,

If, then, we postulate that D,V° = VD, for all i and k,
it is found that (3) passes over into

(3) £ > (viv"nink + vkvinkni)

i,k

For the purpose of making a comparison with the left side of
(2) we write:

ik 1 ik ki, .
(8) 0 -J¢ D,D, = 5Z(g D,D, + & Dk“i)
The comparison of (3') with (4) gives:

(5)  vivk o ik

It must, however, be mentioned that this derivationm includes
the assumption that D D, £ DD, » which usually applies in

the general theory of relativity. If D,D, = DD, (as e.ge

in the Lorentz metrics), (5) is replaced by the condition

(ViVk + Vkvi) - 251k, as can readily be seen from (3') and (4),
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Hence, for a decomposition in the form of (2), the following

conditions must be satisfied:

(1) D, v VD,

[
#t
[

for all i and k
(17) vivk ik

]
[6;2]

(II) can also be written in the form V.V, = 84, since
i k. il ku il ku il ku il E = glk Vi
V'V =g Vlg Vu = g 78 Vqu =878 81, =8 8 ’ thus

being equal to gllvl.

3., Digcussion:

a) It is easily seen that et AR 2glk follows from (II),

ik ki ki

sincc g = g = V7, and hcnce Vle + Vk

ik ki

via gttt gt 2g1k.

It must, however, be noted that this conclusion cannot be reversed.
The condition (II) thus implics a restriction for the v? which
is essentially greater than that <f the usual condition

ik

gk, vkt gtk

v

b) From (I1) it can furthcr be derived immediately that

Vin = VkVi, hcnee [&i,vk] =0

¢) From (I) and (II) it follows morcover that glkDi = Diglk or

. ‘ 3 ’ .
that Diglk = 0, sincc vlvkni - glkni - Divlvk - Digik. (6)

-
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That means that if Di ie assumed to be the covariant
differential operator for a tensor of the second rank,

(6) represents nothing else but the Ricci theorem of the
general theory of relativity. The conditions (I) and (II)
thus appear to be consistent with the general theory of

relativity.

d) It is above all the condition (II) that seems to postulate

rather too much since it fails to be satisfied already in
the case in which the metric is diagonal. For if the metric

is assumed to be composed of the diagonal elements 8y 859

aa, a4, the following relation must necessarily be valid

according to (iI):

V2 a and hence

i =843 78

2 Y '
(det v;)° = (det ggy) 4 f.e. det V; = +Y(det g;;) £ 0

for all i (x)

But on the other hand also Vin = 0 must be satisfied

= 84k

for i § k. From this it can be concluded that either det Vi
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or det V, must be zero, which is inconsistent with (x).

k

4. A method for decomposing the Gordon operator so that

Vlvk + vkvl = Zglk:

In the following an attempt is made to decompose the Gordon
operator, retaining the commutation relation: Vin + VkVi = 2gik.
We are prompted by two reasons to proceed in this way:

On the one hand it appears extremely difficult, and most

probably even impossible, to satisfy the eonditions (I) and

(11), as is apparant from 3d), on the other hand, the natural

extension of the ordinary Dirac commutation relations

vivk + Vkvi = zbik to the general theory of relativity is given

by 6ik - gik' 8o that

vivk + vkvi = 2gik or

e ————nn < e S

© e m—n a4
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il

v s v . 2gik are obtained directly (Vi = & Vl).

Here we start again from (2) and (3): Hence

- ol k 1 5 i oK i o2
(7 (;,iv Di+m) (Zkv Dk-m)=2i,_'_l; (v D,V Dk+vknkv Di) m

We must now again postulate that Divk = VkDi, writing at the
seme time additionally DD, = DD + A, (the A, will be

determined more accurately later). (See appendix). Then (7)

passes over into

(8) (;_'ivlni + "‘)(?;ank -m) =% Zic(Vin + V'), n
1,

+ 15 p VkV]'Aki - m2
ik

We novw assume that Vle + VkV1 = 2g1k and that the KleineGordon

Eq. is valid: (¢m - mz)i = (F?glkD D, - mz)W =0

i

Hence (8) reads to

(9) Z vyl

ki =0

which means that if condition (9) is satisfied, it will be
possible to decompose the Gordon cperator and reduce it to
the form of (2) and hence to a Dirac equation
ik

and ZVkViAki .0

(Zv'D, - m)¥ = 0 using VIVE 4 Vvl . g
{ ik
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5. Conclugions:

It is possible to decompose the Gordon operator in the form

(o - m2)§ = (}%ViDi - m) (}%Vka + m):

1) 1f 'Divk V¥,

i
vlvk gik

2) or 41 D,V* - V¥, W
vivE . vyt L 2gtF }
o J

and :Z:vkleki -

. y Aki being defined by DkD1 =
H

= Dka + Aki'

Appendix.

Determination of the Aki:

From the equation defining the Aki:

(10) DD, = DD + Ay

it can be derived immediately that the Aki nmugt be anti-
symmetrical.

For if in (10) i and k are commutated one obtains

Dka = DkDi + Ay or DD, = Dka - Ay (11)

Hence the comparison with (1C) entails the antisymmetry
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Aki - - Aik' It musat be pointed out that, in the case in which
the Di indicate a covariant differentiation and DkDi acts on a

vector, Aik is the Riemann-Christoffel curvature tensor.
If we assume for Dy quite generally the form:

(11) D, = 8, + C; we obtain for D,D,:

DkDi = D.D =~ aick - C. o, - C;C + 0

1 Dy 1% k*t %Gy + C

K% * Ol =
= ;D + (09, - ciak) + (9, 0y - 8.0.) + (CCy - 6,C,)
i.e. for the Aki:

(12) & = (08 - €;0,) + (9,0; - 3,0,) + (€04 - C4C)

which also shows the antisymmetry at first sight. (12) shows that
the Aki will be determined as soon as the differential operator

Di is known.




14. Development of the srinor thrsory in the Riegannian geometry
during the lagt yearsg

A. Introduction:

In this chapter a survey will be given on the efforts made and
the developments in the spinor theory in the general theory of
relativity in the course of the recent years.

Since about 1930 when Fock, Iwanenko, Weyl, Schrddinger, Infeld
and Van der Waerden [4] attempted for the first time a
generalization of spinors and of the Dirac theory of the electron
to the Riemannian geometry and obtained fundamental results,

no esgentially new results had been obtained in this field for a
long time.

Only less than ten years ago interest in this field grew again
in order to study the relationship between the field theory and
the elementary particle theory and the quantum electrodynamics
on the one hand and the general theory of relativity on the
other.

What are the main problems that rémained unsclved in 1930 and
which, therefore required a mcre detailed investigation in the
lagt years and even now are not completely solved ?

(1) In mcst of the studies with the what is called "four-leg"
formalism a special system of co-ordinates was used. Only
Schrbdinger [}j based the calculations on fully general,
curvilinear co-ordinates. He did not succeed, however, in
establigshing a completely consistent spinor theory. (See the
following points.)

(2) There was no general analytical cxpression for the spinor
affinity in arbitrary curvilincar co-ordinates. Hence the
analysis was widely uncertain,

(3) The hermiticity propertics of the y-matrices required by most
of the authors were admissible only for special systems of
co-ordinates but not for general ones. As a result, difficulties
arose later in the formation of covariant exypressions.

(4) The relationship between spinor theory and bispinor theory
including the relationship between the y-matrices and the

.
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J-matrices was not known at all.

(5) The behavior of spinor equations towards P-,C= T. transforma-
tions which play an important part in the theory of elementary
particles has not yet been discussed sufficiently. Above all

the problem of the violation of parit, in the general theory of
relativity has hitherto not been explained.

All these shortcomings might perhaps be explained best by the

lack of an axiomatic theory of spinors in the Riemannian space.
Above all, E. Schmutzer [5,6,7,8] dealt with thie axiomatic

theory and made studies on spinor algebra and spinor analysis

in this sense. He also succeeded in solving a large number of
the above problems. The following considerations are baged on
his studies.

Also the papers of P. Bergmann [9] , Green [16}, D1], Fletcher
[12], Nalcamura and Toycda [13), Stephenson [14], Higgs [15]

ani others are worth being mentioned. They also contributed to
the soluticn of the problems mentioned above.

The following pages give a survey on the results of the most
important studies.

D.__Spinor algebra in the Riemannian space:

1. Fundamental conceptions:

Nenotations: Greek indices refer to the real tensor space which
5161l have the signature (+,+,+,-).
Latin capital indices refer to the twodimensional
spinor space.
The following formulas are defined in simple extension to the

corresponding formulas in the Minkowski space.

It has been found that spinor algebra as well as spinor analysis
can be constructed fully consistently.

a) The metric im the spinor spacc shall be given by hAB’ so that
for a spinor u:
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where By A =% 3 Myp

The behavior for automorphic transformations of a spinor is
described by

A A' A
u. = A A u
A
Upr = Ay
. A c c B A' B
with A B AA' = hB and AA' A A= hA

b) The relationship between vectors (gecnerally tensors) and
spinors, in analogous extension to the Lorentz case, is given
by:

b L guAR .
a” =7 o] uip and the inversion
- u .
UAB = a CMAB

G“AB is called the metric spin tensor

2. _Fundamental axioms for the construction of the spinor algebra:

The whole algebra is dominated by 2 axioms:

First Axiom; Hermiticity of the metric spin tensor:

dpAB - " BA
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Second Axiom:

B
g . =
waSyBe =8yl =

rof-

QB
Euver @ 4 98

(€ uVor + - « Levi - Jivitd's pseudo-tensor)

The second axiom is substantiated by splitting the spinor

product d“ A GVﬁC into one part symmetrical in ua and

into another antisymmetrical in u§ , in the following form:

3

B 4 =hg Mo+ BE L0 9T

9 4 "V3C

For simplicity A is normalized to 1. B is then obtained from
the inner consistency of the axiom (left-hand side of the
equation is substituted in the right-hand side).
The folloving important and interesting relationships follow
from the two axiomu:

duBA dVﬁA

-2
Suv

B om,
O, a 9 3c = 4y

S a8 %6p = ~2hig Bpp

VB _ 0 he.
= =2 hAC hBD

[ .5

VAB duéD

The last formulas are derived mainly by interchanging in the

second axiom g and V, then once adding this expression to, cmoe

subtracting it from the second axiom and then multiplying it
with adequate factors.

Ce_Spinor analysis in the Riemannian space;
A covariant derivative of the spinors shall be defined in the
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Riemannian geometry. For only epinor algebra and spinor
analysis make it possible to establish spinor equatiors.

Definition of the covariant derivative:

B
Yagw T YA, T PAv up

A A A B
u ’v = U 1\) + r'B\) u

B . .
r‘AV « « o« gpinor affinity

The purpose is to find an expression for the spinor affinity.
The following axiom (Third Axiom) shall be added to the above
definition with which spinor analysis will then be set up:

d\?AB 0

tu

Hence it determines the covariant derivative of the metric
spin tensor. :

The definition of the covariant derivative gives the

following relations for the covariant derivative of the metric

in the spinor space:

B
n® ., =0
[
cD
Bamjv = M0y Byo by
LAB. i DB CA

by = = Bepyy,

With the abbreviation

AB
huw h - 2i {:\‘

the following rclations are obtained with the aid of the sgecond

axiom:




hAB;v =-1 ‘i’\) Pan

Hence these equations detcrmine the covariant derivative of

the metric spinor.

Since it would be too long to give all formulas and derivatives
which e¢ventuully lead to an explicit expression for the

affinity, we shall briefly outline the method:

r’i\) is split in the following form

The significance of this splitting will become manifegt only
in the following considera*iocus. The following conditions for

the l?/.} follow dircctly from the formulas derived above:

AB,V

AB
%

i
]
[ay
(e}
s}
| el

benides

A 4 -
[AVJ+ [It\Jz J’,V, where ,r.‘zenw; h = hss b,y

(the latter formula is the relation following from the

definition of the covariant derivative:
A A 1
Cav * P.w =(inn) - 50y

[:9} shall be split inteo rcal and imaginary part:
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A -
£Av] = | " +i TTV (for significance of TTV see below)

The following explicit expression can be obtained for the

spinor affinity: (for more detailed derivation see thc original

paper [5] ):

B §: i, B T o
Au=(A\7§+-2-hA (év*ﬂ-v*”“,v)

whers

—
> o
<
\,—4'~’
1
S
AN
=
S
Q
>
r
PS
Q
h <4
Qe
o
'
&=
Q
=
Q
o
Qa
h =
Q
5
-
<

Significance of T,

.

According to E. Schmutzer (in contrast to Van der Waerden and
Infeld) 'nv can be related to the four-potential A\’:

A, == T

vV "~ 2¢ 'V

since in a phase transformation (rotation in the spinor spacc)
, .
Ai = 6AB et ?/2, TTV transforms like the electromagnetic

potential:

A A, -
v A

“:¢ -3 TTV - * '

In this respect the spinor affinity is thus determined. Of
course we can write ﬂ'v = 0 (space without electromagnctic
field) .
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D. _Dirac equation:

To develop a Dirac equation in the Riemannian space two
independent ways are possible, in analogy to the Lorentz space)
e.8. that of Infecld and Var der Waerden [jé] which is based
on the spinor theory, and that of the bispinor theory which
Schrodinger [3] ugsed for the first time. However, he did
not succeed in developing it fully consistently.

E. Schmutzer [5,7,&] cserdinated these two forms.

(1) For this purpose il iz important to construct a theory

of the Dirac y-operators:

Unlike most of the author:; which based the theory on the
Dirac y-matrices, hence r:ign.ded it as primary and the
metric as secondary dn. to i'.c relation

Yuyv + 7 yﬂ = 2g y we £lie.ll integrate the y-operators

\Y (1Y

into E. Schmutzer's axiomatic theory ['7] +« The commutation
relation shall, however, he valid:

Since, like in the Lorentz metric, the d“AB are very probably
(as will be proved loter c¢o, releted to the Pauli matrices,
the following extremely, generzl statement is made upon

which alsn the secona axiom s based:

- . aff
YHY“ = Luv ¢ £ " 7a7p ¢

where C (an operator) ir s'. 1l unknown, but is determined to
be -4C3 = C, if Yoo ig9 asnin exvoressed by the same formula.
~

75 can be defined in analosy to the Lorentz case:

LA v,
/ Y 4,i - /V ‘ypyaYp

Eventually, C = % 175 ip ~*»*ained so that the above statement

can be written as follovws «nd at the same time regarded as the
{ourth axiom:




1 op
Ty =8,y *TLE T 1,775

Besides, also 7y = g“vyv shall be defined.
It is evident at first sight that the gencrally known

commutation relation LY o, is a direct

= 2
B Euv
consequence of this axiom.
In the theory of y-operators its hermiticity conditions are
of great importance.
It has been found that the simple extension of hermiticity

in the Lorentz space to the Riecmannian space

Y, =17
v Y (%)

= oy, (o real)

-
S
[

is imposgsible in tkhe framework of this axiomatic theory but

that either only

+ v +
fv = ¥ and Ty =< 74
+ 4+ - - 4
or YV =7, and y Yy

is compatible with the previously derived conditions and in this

metric. In toth cases, howevcr, it follows that 75 = 75.

(2) In order to establish the relationship between spiror geometry
end bigpinor geometry the problem of the splitting of y-operators
into the Pauli o-operators has still to be solved.

If the most gencral formulation

" . / au, -du ’
Yy =1 ’
( Qu, ﬁu

which may bring about such a splitting, enters the above formulas
for the y and G“A etc. then we obtain o B“ = 0 in any cnse.

Thus, it follows generally that
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yr =1 with the relations

where o = d“AB
B _aM,
and Q g AB
1 0
For y. we obtain the splitting Ve = *
> > T \o -1

(It should be reminded that 1 is the binary unit matrix)
If the above hermiticity condition (x) is impo-<d on the
y-matrices, then the following simple formulas are obteined:
i i
6 = 6 = - 2 h=1 =
Q 4 Q47 ’ r"u 0

i.e.y furthermore

el 4+ oot - 2g%d

2
(04) = = 844

(3) Construction of the Dirac equation:

(a) Spinor theory:

According to Van der Waerden [?6 the Dirac equation in
riemannian geometry has the following form:
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u;\B, _ s A
o] qB;u iu ](

m B ,
o - 1 v
3a X LY

1]
(@]
x

==

=8

i
o

where wB;u was dctermined in chapter C:

v

i}

A
Bju = ¥Byp " PBu'A

B B - B A
A SH_X,’H+ ‘Au7\,
where
1B %B )

1. B ]
Ay " Au§+21hA (&Bu+ﬂ'p+1l )

'
(For more dctailcd significance of the individual quantities

sec chapter C). [ . O, if hermiticity is imposed on the
H

y-matrices in the 2bove gensc.

T . 2¢€ Au Au = four potential

The physical significance of é‘l has hitherto not been
fully explained.,

(b) Bispinor theory:

In this theory the Dirac equation can be written in the
following form [8] :
MY + ¥ =0
fu

where

K .
0, o uAB

-ak
¢ ¢ ¢ = =0 AB



and LI B F‘u ¥ ¢ - bispinor

Both forms become identical if J

A L]
Y- ZE v (A oY)
i
and r Ff;u , 0
p - 3
O » "P'

B
"'4-’[11‘4:’ 0

b !
o , -pk

Adjoint Dirac equation:

In analogy to the Lorentz case it is

]
-
=
]
x
velt
t
o

vy
]
ey
[
et
-

Continuity equation:

¥ LB
L4 = 0
Ty,
where ¥F-v'p

f is determined from the adjoint equation, thc continuity equation
and the covariant di.ferentiation of the bispinor with the
exception of & constant factor, which, in this case, was put

equal to 1;

p={ ;g B =1,p -8
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E. Formation of covariants:

The problem of the formation of covariant expressions is of
special importance in formulations in the field theory and the
theory of elementary particles. For this reason the formation
of covariant expressions within the framework of this theory
shall be dealt with briefly.

In the sense of the spinor theory developed in B. and C. the

transformation behavior with rcspect to spinor and tensor space

can be read easily from the above index form and,therc¢fore, neceds

no further discussion.

This is also possible easily within the framework of the
bispinor theory if the relations between spinor and bispinor
theory given in thc last chapter are used. With the aid of
these expressions the bispinor theory can be reduced to the
spinoxr theory.

In this way the transformation behavior of the following

quantities can be undirstood easily:

¥¢.... hermitian, scalar
(i ¥ y*y) ... . vector, hermitian

(i

L=l

Te, ¥) « « . . pgeudoscalar, hermitian
etc, i.¢. expressions, fully an:ilogous to the Lorentz case.

It is pointed out that for this purpose no hermiticity

conditions are imposed on y“.

F. Generalized Dirac eguution according to E. Cartan

It is of some interest to compore E. Cartan's method of
"repere mobile" with H. Weyl's “reatment as represented in the
preceding two chapters. Cart.u. writes the Dirac equuation in

the form ((h/1)D = m K)u = 0,
where
-1 0 0 0
0 -1 0 0
K = 0 ) 1 0 )
0 o 0o 1

D i3 thc oper~tor of covariant differentiation. 1Its effcct onto a
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vector x is the following:

Dx = dx + Jx, (1)
in which d is the relative differentiation, and J ie a certain
infinitesimal rotation. The vector x corresponds to a spinor
gquantity X of the second rcnk. The co-ordination x-»X is
such that

(xy) = (XY + ¥X)/2, (12)
where (xy) is the inr.r product of the vectors x and y. The rclation
(12) is the fandamental formula of Cartan's spinor calculus. The

effect of the operator D onto a spinor X is

DX = dX + IX (13)
in which

dx = (X - flix))2 (14)
and

det+ 400 = 0. (15)

These relations are in full agreement with the case of an euclidean
metrical ground form. The transition from a spinor X of the second
rank to a spinor u of the first rank is symbolically done as follows:

X = uu*, (16)
The infinitesimal rotation corresponding to the infinitesimal rotation
1X is

du = - u.lu/2, (17)

Proof’s
X = suw’ o+ uin” e o-diuu*/2 - w22 - (xS - L00x)/2.
Therefore we obtein

Du = du - Jdu/2,
The infinitesimal matrix e depends on the metrical ground foes.
Its calculation is formally similar to that of Weyl's dE, Its meaning

is, however, somewhat different from that of dE.
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G. Remarks to the preceding report on recent literature

The investigations rererrcd to in the preceding chapter
have some features in common with our own investigations.
The most remarkable of them is that covariant spinor
differentiation is undcrstood in the sense of the
tensor gpace and not in that of the spinor space.

This has been done for the first time by H. Weyl after
E; Cartan had shown that the other way was

impossible. There is only one possibility of
generalizing Weyl's concept of spinor differentiation:
variable spinor metricel fundamental form H.

This possibility has been used by the authors

mentioned as well as by ourselves. Our fundamental
agsumptions, however, arc much more general than those
of othcr authors. Therefore, our recsults do not go
into such detail and 2rc not yet capable of special
physical interpretation. Some of the axioms

introduced by other authors scem, however to be

artificial and not suggested by geometrical facts.
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15fathematical appendix: A guudratic calculus

T.is chapter contains a calculus similar to the Kronecker one. We have
developed it in order to inveetigate spinor algebras in a formally

simple manner, Let u and v be two binary vectors the elementes of which

are operators:

/U1 /V

! 1 ‘
u = ’ v = ( ) .
. U2 \ V2 I
Let A be a binary matrix with real or complex elements,

/ %11 &2\

N ,
\ 321 822

~izh interrelates the vectors u and v:
v = Au.
7y means of the matrix

2 0 0 0\

R = 0 1 1 0

0 0 0 2

= define the squares

202
2) o
U = R(u&u) = (0,0, + U,U,1
[|
‘\'\2U§ /‘
2nA
2 2\
LT 2894845 842
. (2) P 891824 81480 " 2Py 840822 |,
2 , 2
221 28,48y, 850

10w we have
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2
. 284, 2844845 2845844
/
. {
R(4gA) = \2311a21 841822%84%47 814850%8498)
\\ 2
\ 2221 2851522 2822821

N\

From this basic relation we decive the folldwing:

v(2) | R(v®v) = R(Ax4)(uldu) = A(Z)R(ut&'u) = A(Z)u(z).

As an example we consider a two-component model of our derivation of

generalized Pauli and Dirac matrices. We assume that the operators

U1, U2 fulfil the commutation relations
U+ TU =29,

which we may write in the form

Then we have

//
v@) _ o [

11521 * 842822 .

The requirement that

Vin + Vkvi = 2§.

ik’
or
.8
849
(2) ,
v.oo= 2; €42 ’
\ 822

a8 + & =
11 12 81‘1’

811%21 * f42%22 = 820
2 2
8pq9 * 835 = Eppy
which may be written in the form
AA' = Go

this result is well-known to us.
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