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INTRODUCTION

The first, short section gives a brief introduction to the scatter-

ing matrix. In the next two sections we consider the heart of our present

problem. Section II deals with the scattering of electrons by diatomic

molecules, specifically oxygen. The treatment is restricted in such a

way that electronic computing machinery is not requisite to the final solu-

tion. In the electron case the Born approximation is, of course, applica-

ble and we carry the problem to the point w h e r e a numerical solution,

which could readily be carried out on a desk calculator, is required. In

Section III the proton-molecule scattering problem is discussed, specifi-

cally proton scattering by oxygen. The Born approximation is not appli-

cable in this case. We begin by carrying a distorted w ave treatment to

the point where a very small set of one dimensional differential equations

are obtained. The equations are not solved although their hand solution

would pose no particular problem. We then consider the impact param-

eter treatment of this same proton-oxygen problem. For the familiar

two-state case we carry through the problem to obtain the total cross-

sections. In addition, we introduce a general multi-state treatment of

this impact parameter problem which is no t specifically applied. In

both these latter sections target distortion by the projectile particle is

included in the scattering potential. The last section is concerned with

additions to Professor Takayanagi's bibliography.
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SECTION I

THE SCATTERING MATRIX*

We consider first the scattering of electrons by diatomic molecules

in the energy range from one to fifty thousand electron volts. One here

encounters elastic, inelastic, and charge exchange scattering where the

inelastic scattering may involve electronic, vibrational, and rotational

excitation, ionization, and dissociation either alone or in combination.

As an example of what may occur we remark the following reactions

* AB + e = AB +e (elastic)

AB + e = AB + e (charge exchange)

AB + e = AB* + e (inelastic)

AB + e = AB + + 2e (ionization)

AB + e = A + B + e (dissociation)

which may of course also occur in any combination.

In considering the problem we may begin by indicating the scattering

matrix form although the individual elements therein will not be evaluated

until a later stage in the development., The wave function for the electron

in the absence of the neutral molecule will have the asymptotic form

*The material in this section is of a review nature. References are pro-.
vided in Section IV and in the Takayanagi review.
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in the case where. the electron is in channel Y. The normalization is to

unit amplitude at infinity. The fir s t term in the bracket represents the

incoming electron while the second term represents the outgoing. We shall

define the term "channel" after our introduction of the scatterer. When we

introduce the scatterer we have the following expression for the f r e e elec-

tron in the presence of the molecule:

r ) (2)

We now define "channel" as a specific set of parameters defining the trans-

lational state of the electron and the electronic-vibration -rotation state of

the molecule. In an elastic collision the electron-molecule system will re-

enter the entry channel after collision. We now consider the exit channel

parameter, By , for the case of an elastic collision.

In order to do so we consider the familiar asymptotic solution for
all

they -th partial wave for a potential falling off more rapidly than V"

This may be re-written as

- (4)
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where we now define the factor S as the scattering matrix element. It

is apparent that it gives us the ratio of the outgoing to the incoming waves

thus yielding at least one description of the scattering. In terms of t he

channel dispersion parameters, A and B , this may be written:

= ZE O(5)

Now we remark that in our elastic case above the exit channel para-

meter was of amplitude equal to that of the entrance channel p a r a m e t e r.

This, of course, would not be the case in inelastic scattering. In that

situation the system sometimes departs partially through the e n t r a n c e

channel. However it departs partially through at I ea s t one additional

channel so that entry and exit amplitudes must differ. Here a gain, how-

ever, the matrix element is still defined by the channel parameter ratios.

The diagonal elements correspgnd to the ratios between the e 1 a s t i c para-

mefts (AY and By ). The inelastically scattered electron has only an out-

going wave viz:

-ry, ] -(6)

The off-diagonal elements in the scattering matrix then are given by

the ratio By f/A e . We discuss the scattering matrix no further but refer

the reader to the extensive work which has been done in this field in recent

years.

In introducing the scattering matrix we have in Eq. (1) assumed the

partial wave form for the free electron. The r e a d e r will, of c o u r s e,
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recall that the partial wave is specified by the momentum quantum number

"I " in the above equations. Although the partial wave analysis is u s e d

quite extensively in actual scattering problems, we revert to a more gen-

eral form in what follows:
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SECTION II

ELECTRON SCATTERING BY DIATOMICS

A. General Formulation of the Problem

First, we are going to assume that the Franck-Condon principle

is operative, that is, we suppose that the molecular wave function can

be written as a product of electronic, vibrational, and rotational w ave

functions. Therefore we are going to somewhat simplify the following

by considering only the electronic function, the vibrational and rotation-

al being possible of later, consideration.

The wave function for the molecule - electron system is taken as:

In Eq. (6) P is the permutation operator; k_$is the molecular w ave

function and consists of a simple product of the molecular orbitals. We

have, of course, assumed a single determinant LCAO-MO form for the

molecular wave function.

We take H O to be the Hamiltonian for the molecule in the ab-

sence of any external interaction. The interaction Hamiltonian will be

Al (8a)

*The general development general case and Born approximation are dis-

cussed in Theory of Atomic Collisions, Quantum Theory I. Elements etc.
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which leads to:

mot (8b)

Under the constraint

and after substitution for Eq (8b) becomes:

(9)

The are spin functions for the free electron, X, referring to

a free electron spin parallel to the molecular spin, X- referring to theaA

anti-parallel situation. Now multiply through on the left by the plus spin

function and integrate appropriately to get

e. 0t (10)

Further we now suppose that the molecule is stationary so that r becomes

r e , the coordinate of the free electron referred to the center-of-mass of

the molecule as a coordinate center. Next the specific product nature of

PA is introduced.
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and we multiply Eq. (10) through on the left by 4 and integrate over all

space. The result is:

,n 4

(1 ic)

where

7 (12a)

.4-- (1 2b)

Now note that in Eq. (lc) the individual molecular orbitals must

have their spins parallel to that of the free electron. Finally, one is able

to apply Green's Theorem to Eq. (llc) with the result:

Eqs. (Ila), )llb), and (11c') are the general forms for the free elec-
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* tron wave function where spin-orbit type interactions have been left out of

the original Hamiltonian. These rather fine interactions appear to have no

particular place in this treatment. Some simplification of these equations

has to be made in order to carry their solution any further. A number of

such approximations have been made most of them having to do w i t h t he

relative magnitude of the Unm and Knm.

The most drastic assumptions lead to the Born approximation where,

in effect, one supposes that the scattering molecule is hardly the r e a t all.

We shall show that this appears adequate for the molecule-electron s c a t t e r -

in g and inadequate for the molecule-proton scattering case.

B. The Born Approximation for Electron Excitation

As we remarked above, the Born approximation is basically p r e d i -

c a t e d on a rather small interaction between electron and molecule. Under

these conditions, we suppose the diagonal elements in Vqs. (11) to be zero,

and we replace 0 on the right hand side of the equation by the plane w a v e

If we now eliminate exchange from the equation; the result is:

On the other hand if the exchange term is maintained we obtain:
I

r)o4
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We consider Eq. (13a). It is well known that the solution to the

equation, F~

is:

where:-0

In quite precise analogy we may write the solution to Eq. (13a) as

'ii' (14)

We may now use this expression to obtain the scattering c r o s s

section for the general case. It should be remarked here that the s o u r c e

of difficulty in Eq. (14) is, of course going to be Unm to which we return

shortly. For now, however, we recall that the c r o s s section makes use

of the scattering amplitude which in turn is available f r o m the asymptotic

form of the wave function. The asymptotic form of Eq. (14) is:

ee (15)

from which we obtain the cross section for scattering of the s y s t e m into

the n-th channel, the electron undergoing a deflection through an angles:

/ jf,
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Eq. (16) is written in atomic units, and kn refers to the entry channel.

In essence the collision has induced a transition from molecular state "m"

to molecular state "n" and a change of free electron linear momentum from

km to kn. Eq. (16) is, of course the required result. Before considering

it in more detail we inquire of its validity.

The requirement which must be fulfilled in this electron - molecule

case is: the velocity of the free electron must be much larger than the veloc-

ity of the orbital electrons. If we suppose something like one-half of the

orbital energy is associated w it h kinetic energy of the orbital electrons

then we may compare this energy to the translational energy of the incident

electron.

The 2 . 2 - and 3c electrons in oxygen, for example, have ki-

netic energies of around ten or twenty electron volts. Thus, one thousand

volt electrons should be sufficiently energetic. We therefore accept the

Born approximation for this problem and return our attention to what we

may designate "the potential", namely Unm.

We are using a simple determinant LCAO-MO form for the molec-

ular wave function. Let us suppose that:

(1) The state "n" differs from the state "m" in only one orbital

and

(2) The orbitals that remain the same are orthonormal and the

orbital which changes is orthogonal to the one which does not.

Actually we can check with little difficulty on the two electron-jump

case at some later point. We shall consider Eq. (lb) later; we now write
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the diagonal element as:

a,

(17)

We consider Eq. (17). If for the9 2 we take the un-perturbed molec-

ular orbital, Eq. )17) will yield, in essence, the Coulomb potential produced

by the isolated molecule. It has been shown recently 1, in the case of two

oxygen molecules that this potential is particularly unrealistic. In order to

get the proper repulsive form for the potential it was necessary to introduce

the reciprocal effect of the other molecule on this potential. The Coulomb

potential alone yielded a nice attractive potential. Therefore, there doe s

not appear to be any point in taking the )%as unperturbed orbitals. On the

other hand we do not wish to go back beyond the Born beginning to the coupled

set through which polarization can be introduced automatically. Therefore

we may sensibly begin with molecular orbitals already distorted by the pres-

ence of the free electron. This we have done recently in the case of molectile-

molecule collisions. 1

On the other hand we might take the type potential used by Fisk2 in

his treatment of the scattering of slow electrons. If "d" is the internuclear

separation in the molecule and "r 1", and "r 2 " the free electron separation

from the two nuclei then the following coordinates may be adopted:

" r Y- 6-- t-'
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Then the potential due to the nuclei may be written:

a Z@ > (18)

In or d e r f or this to approximately represent the field of the molecule, it

must go to zero at some boundary, say,/ =,= constant. Fisk s e le c t s

functions f to multiply and produce a potential function which meets

the following criteria

(19)

Of several forms for f ( ) considered Fisk settled on:

(20)

Stier 3 had previously appealed to the following form for t hi s f u n c t i o n-2$FE')_-

At any rate a value forj' is chosen, and, after the evaluation of

the integral over the charge density, a factor is determined to c o r r e c t the

atomic number in Eq. (18). This essentially completes F i s k' s evaluation

of his potential. He then proceeds to evaluate the elastic scattering cross

section for a number of molecules including oxygen and nitrogen. This e -

valuation itself is, of course, available and could be extended to the ener-

gies of our interest. On the one hand it has the advantage over the Born
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approximation of yielding precise results for the scattering while on the

other hand it has the disadvantage which arises from the approximate

nature of its potential.

We could develop a Coulomb potential for the isolated m o 1 e c u 1 e

which would be quite general. However, it becomes somewhat more com-

plicated when the polarization of the molecular charge cloud by the free

electron is included. In this case one must first obtain expressions f or

the molecular orbitals distorted by the free electron. This can, of course,

be accomplished for the general case on a digital computer. Since we d o

not intend to appeal to computing machinery at this stage we restrict the

position of the free electron to either the internuclear axis of the molecule

or the plane perpendicular to this axis and containing the center-of-mass of

the molecule. For the present we shall restrict ourselves to the latter path.

In arriving at our potential we first determine the f o r m f or t he

perturbed MO's. We begin with the on-axis case. The form for the dis-

torted molecular orbital is as follows: 1 '4

400 (2 la)

where is the undistorted molecular orbital and "a i " is a parameter.

The angle is referred to the center-of-mass of the molecule. The p ar -

ameter ai is given by:
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(

where:

(21c)

The matrix elements of cosJ. have already been evaluated. 4 The e-

valuation of the matrix elements of HI remain to be carried out. Having ob-

tained this distortion we shall now apply it to each of the two atomic orbi-

tals in the molecule. This will yield the potential in which our f r e e elec-

tron exists. This potential in turn is to be used in Eq. (16) to obtain the

scattering cross section.

In evaluating these matrix elements we first specifically restrict our-

5
selves to oxygen. Next we note the MO's whose distortion we consider;

6 -(22a)

a~r (2 2b)

= *7o oo - .Il/Q p(22c)

or (22d)

The matrix elements between pairs of these orbitals will then consist of ob-

vious linear combinations of matrix elements over the orbitals T-4 and

We remark that there can be no difference between such g e r ad e
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and ungerade matrix elements. The reason for this may be explained as

follows.

In the on-axis case one can readily demonstrate that the contribu-

tion to the matrix element from the nether nucleus is negligible. This

means in essence:

so that our integrals simplify considerably. We shall follow through the

evaluation of the first of these matrix elements. The general expression

will be:

(o 14 '1cxs TO (23)

wherein the rij represents the separation of the electron from the element

of the molecular charge cloud under consideration. The "r" represents

the MO coordinate referred to the nucleus closest to the perturbing proton.

The effective nuclear charge has a value of 2. 275. The familiar Legendre

expansion reduces as follows for this case:

For the Czcase all terms in Eq. (24) save the first (k = 0) will

disappear during angular integration so that there results:

(25)
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where R is the separation of the electron from the near nucleus.

In like manner we obtain:

-6 (26)

7

The matrix elements of cos-i1 have been obtained by us previously

4
for oxygen. Hence all information is now available for the evaluation

of the a i in Eq. (21b) and hence the distorted orbitals. In Figure 1 we in-

dicate the a i of interest as a function of electron separation from the near-

er nucleus. The perturbation scheme appealed to in distortion coefficient

calculation may be expected to break down at some minimum proton separa-

tion.

We are now in a position to evaluate the Unn of Eq. (15) for the

ground electronic state of the oxygen molecule. We now make use of the

appropriate distorted orbitals in Eq. (17) to obtain:

, 41 (2 )
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OC ls*4 (2 8b)

. 4- (2c

In Eq. (28a) "a" is one-half the internuclear separation in the mole-

cule.

We next evaluate Eq. (28a) numerically, the result being displayed

as Figure II. We are able to make a reasonable fit to this figure with the

much simplified function:

64 O-- ,(28e)

We now recall that our objective is the evaluation of Eq. (16) for

some pair of electronic states and that Unm hot Unn is needed for this e-

valuation, although the latter will be utilized in Eqs. (45). We now discuss

our reason for the Unn evaluation at this point.

The development leading to Eq. (29) illustrates our method of includ-

ing polarization, a phenomena which is generally of some importance. The

effects of polarization cannot be included in our derivation of Unm where n

and m correspond to the Schumann-Runge system. However, these effects

likewise cannot be included in the corresponding contribution to Unn above
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or to the U of another problem we discuss below. Even so these latternnl

results are in reasonable agreement with experiment. The inference

then is that our Unm is nevertheless reasonably good. We now discuss

this in more detail.

We have computed the interaction potential between two aligned

oxygen molecules whose charge clouds are undistorted. The result is

V -1Y
Vanderslice, Mason and Maisch 1 3 on the other hand have obtained

the following from experiment: - a Z--

V =-C
When we polarize certain molecular orbitals we compute the follow-

ing potential: ,.

V

Since this is effectively doubled for the off-axis case it is apparent t ha t

the improvement through the introduction of polarization is a considerable

one. Even so, only the sigma orbitals were Polarized; it was not possible

to polarize the pi orbitals.

The evaluation of the ai of -q. (21b) is carried out between two

states which must, of course. be of the same symmetry. What we shall

call our basis set consists of eight orbitals, three of one sigma symmetry

(/ ) )~), three of the other (/gj 3)one of one pi symmetry ( ) and

one of the other (, ). It is obvious then that we can compute no ai for the

piwhile we can compute them for the sigma. Even so our

results for 02 - 02 are as given above,
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that is, they are in reasonable agreement with experiment. We shall

take this as support for the unpolarized orbitals to be used in comput-

ing Unm.

We suppose that the inelastic collision of the electron with the

oxygen molecule leads to the excitation of the upper state of the Schumann-

Runge system. Hence, we will deal with an upper Z-state and a lower

state. The basic difference is that what was a 1?j orbital in the

ground state is a 7r-orbital in the upper state. Our potential is then:4 T j f)r /
e Yi -

The rather extreme reduction from Eq. (17) is due to the one particle

nature of the interaction operator. This, coupled with the orbital ortho-

gonality leads to the simple (and necessarily unpolarized) result. Tlh e

entire molecular orbital (i.e., we do not reflect the contribution
-If

from the nether molecular atom) is here considered and only is

taken in the . expansion:

- - - -22T04

( 6,/A 1
c~t 4-f'~e

~ ~AC cA4C

c~ Ws.58/6
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this may be plotted and fitted to:

/,69-6/ /061/ >07
-- ~O~ o C4 ) O . "- .~ > (29)

Eq. (29) is now to be used in the evaluation of Eq. (16) with the re-

sult:

V ~ 4;KrA} (3 0)
--

In the close-collision approximation we suppose that the e 1 e c t ron

follows a straight-line approach path until it collides head on with the mole-

cule at which time it turns abruptly and proceeds out along its departure

path. This approximation is not really very drastic for a close collision.

If we now take angles as indicated in Figure III, the exponent in Eq. (30) be-

comes

~ 4r#~- ~i'e~-h~4 (31)

Thus the integral in Eq. (30) becomes

-, }Lec (32)

Certain obvious analytic integrations can be carried out in Eq. (32),

but the lion's share would require numerical integration. It is not our pur-

pose to accomplish this evaluation at this time.

Eqs. (30) and (32) yield the cross section for the excitation of the

Schumann-Runge upper state through an electron collision along the molecular
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symmetry axis. We now consider the ionization of the oxygen molecule

by electron collision.

C. The Born Approximation for Electron Ionization

The only real difference in the Born cross section for ionization

is, of course, in U . The initial state of the molecule system is still
nm

the ground state while the final state is the free electron and the 02O2

ion in the state:

7 7) (33)

The Unm is here the integral over U of the product of the /li-orbi-

tal and the ejected electron wave function. The problem then is first to

determine the wave function for the ejected electron.

Bates et al 6 and others, 7 have shown that in the case of the oxygen

atom, the hydrogenic cross section for photo-ionization serves quite well

to describe the oxygen phenomenon. The important point is not the method

of ionization but the fact that the hydrogenic free electron wave function

serves reasonably well. We shall use it in our evaluation. The or b it a ls

are thus

(34a)
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)/J / (34b)

As usual our operator may be represented by the Legendre expansion:

V~(O/ ik'7 ef)eo)2~((l() (35)

of which we shall only take the first term. This means that, in order f or

the angular integrations to be non-zero, we must take alp/ angular state

for the free electron. The contribution to Unm from this may be w r i t t e n

down as follows: ,_-"7

- e-~'l

(36)

We now integrate over "r":

We next integrate over/* " . When we substitute the a I: o v e t he

-integral becomes
3Z r A~ - s a ~
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We shall evaluate this by integrating around the closed path in the

complex plane continuing its pole and extending the path to infinity. T he
pole is at,= 4', Z-z a

pol is . The value of such an integral is equivalent to

RIF when R is the residue at the pole, here of order two. We recall

When we make use of the relation:

The derivative may be evaluated as:

and when this is substituted in Eq. (36) the result is:

nm + -) Zi,(S-1 (37)

We carry this no further but simply remark that one gets an equa-

tion similar to Eq. (32) and requiring numerical integration.

This ends our consideration of electron scattering for the p r e s e n t.

We remark that we have failed to consider (1) elastic scattering, (2) disso-

ciation and (3) the existence of rotational and vibrational motion. Under the

Born approximation in use here, these pose no problems which are essen -

tially different from those treated a b o v e a n d can be dealt with in t h i s
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general fashion at a later stage. However, it does appear that the excita-

tion of electronic upper states and the ionization of the molecule are phe-

nomena to be treated first in our scattering consideration.

There is a portion of the electronic excitation scattering which we

have deliberately ignored and which certainly can be of definite importance.

In the above sections we have considered what is generally referred to a s

the direct scattering. Now let us consider Eq. (16). We remark that in

the exponential "rj" is associated both with the incoming momentum vector

and the outgoing momentum vector. This in essence describes the d i r e c t

scattering. To this must be added a consideration of the exchange scatter-

ing, and, if we again refer to Eq. (16), our inbound electron will be asso-

ciated only with the incoming momentum vector while some one of the mo-

lecular electrons will be associated with the outgoing momentum vector.

This develops naturally from the fact that an exchange is made in the course

of the collision. The treatment of this is certainly of some importance and

must be presumed to be carried out in conjunction with and subsequent t o

the treatment of direct scattering.
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SECTION III

PROTON SCATTERING BY DIATOMICS

A. Distorted Wave Treatment of Proton - Oxygen Scattering

This scattering problem cannot be treated by the Born a p p r o x i -

mation, for the velocity of a 50 KeV proton is a great deal less than

that of the outer orbitals in the scattering molecules. He n c e, w e shall

first appeal to W-at might be called a distorted wave a p p r o x i m a t i o n. *

F or the wave function for our molecule -proton system, we refer to

Eq. (7) with the exchange effects dropped therefrom:

where now r is the inter-particle coordinate. Eq. (9) becomes

-t- t 'I t)(39)

We now multiply through on the left by and integrate over

the space of the molecular electrons. The result is:

21. C (40)

' In general, the following derivation is the standard one, and the reader
is referred to the textual references.
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This is the familiar infinite set of coupled equations. We pro-

pose to simplify the equation by eliminating those Unm which are of

little consequence in the oxygen case.

We begin by eliminating spin flip Unm. Since the Hamiltonian

is linear in spin and Coulomb parts, two collisions are necessary for

changes in both. Further the proton spin-electron spin interaction may

well be small due to the mass relations in S. S. Therefore we need con-

sider only triplet states. Further the symmetry of the integral must be

the same as that involved in the dipole selection rules since the opera-

tor symmetry will be the same. These considerations eliminate a num-

ber of levels and, if we consider the first ten or so known levels, w e

find combination only with the upper state of the Schumann-Runge system.

This is. of course, the level we considered for the electron scattering

case.

We shall also include the continuum. Eq. (40) now becomes:

e 1 a h 4 (41a)

4 (41lb)

~7~L?4YzJae . fJC/4 (41 c)

We shall treat these equations in cylindrical coordinates for which

(42)
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We now consider the reduction of the w a v e functions to partial

waves. As, for example, Geltman 8 has shown, one may choose a form

for 0 on the basis that, in:

as V- - a plane wave. We therefore choose the following form

for:

(43a)

(43b)

9 ) .(43c)

A~-'~(43d)

) 4A%(4 3e)

wherein O is the angle between k and the molecular symmetry axis and

Sis the azimuthal angle of k.

The num ber of protons in the scattered wave crossing an element

of area dS per second is:

from which we can get our cross section as

-- _ r •(44)

We now introduce an approximation which leaves a great

deal to be desired but with which we do so little that

it is of little moment anyway. We suppose the wave function
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independent of the - -coordinate. Eqs. (43d) and (42) are substituted into

Fqs. (41) with the result:

&L~~J~A At) ~±LJ/ (4 5a)

PAL (4 5b)

4 ~I fJ) ijFAc't (45c)

Je wave func Zns will in each case have an asymptotic form

corresponding to a cylindrical wave. An iterative method of solution is

contemplated The Ull and U2 2 will be given by Eq. (28e), the U 12 by

Eq. (29) and the Ulc by Fq. (37).

B. The Two State Impact Parameter Treatment

The central assumption in the impact parameter treatment is that

of the classical path. The establishment of the validity of the c 1 a s s i c a 1

path essentially assures us that we may deal with the projectile-target sep-

aration as a classical parameter. This validity is assured if the diffusion

of the quantal wave packet representing the proton is s u c h that during pro-

ton passage through the interaction region a separation is definable. I n the

present case, the applicability of the classical path is indeed assured.

Let us begin by writing out the I-hrr.iltonian for our proton-oxygen sys-

tem
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,iA / -(46)

where all symbols are the familiar standard ones and we shall work i n

atomic units.

We shall take ( as the wave function for the initial proton-molecule

system. By initial, we mean the system which existed at an infinite time

in the past. In the same way is the final wave function for our system.

in this case the system which will exist at an infinite time in the f u t u r e.

The solution to the Schroedinger equation will assuredly be

_ -(4 7b)

The refer to the molecular wave functions for oxygen. We shall con -

t i n u e to use the single determinant LCAO-MO form for the oxygen wave

5
functions as computed by Kotani et al. The k's in the equations corre-

spond to the proton momentum before and after the collision. The 'r' is

the radial coordinate of the proton with respect to the center of mass o f

the oxygen molecule; the energy indicated is the translational energy of

the proton.

Eqs. (47) may be used to obtain the following approximate t i m e -

dependent system equation
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i this equation the a i and bi are the state growth coefficients correspond-

ing to the initial and final state of the system. The complete determina-

tion of these coefficients constitutes the two state impact parameter treat-

ment. The treatment of this problem to which we shall appeal was, f or

all practical purposes, introduced by Gurnee and Magee. 9 It has b e e n

discussed in connection with certain inelastic and charge transfer colli-

sions by Bates 1 0 and somewhat improved upon by McCarroll. 11

It is surely true that after an infinite time, the system will be in

the final state. Therefore by the definition of the state growth coefficient

the probability that the inelastic collision in question will have taken place

is given by the square of this coefficient after such a time. Our objective

in the calculation then is to determine this coefficient. When we substi-

tute Eq. (48) into the Schroedinger equation, those terms present at in -

f i n i t e separation will cause a number of terms in the equation to drop

out. The result is

(49)

wherein the H' has been taken as representing those terms in Eq. (46) re-

lating to proton-molecule interaction.
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We are now going to make the rather trivial transformation:

with the obvious effect on Fq. (49).

We multiply Eq. (49) through on the left first by

9Ae~ iw/ilkil re1/9I4vJ and then by '-
to obtain

A~4~ ~f S 12Z4(50a)

where we define the matrix elements in Eqs. (50) as follows:

/-4 'I

A~<= . I =(51)

Eqs. (50) may surely be added with the obvious result

(-- I(52) ,

We now introduce the specifics of the impact parameter treatment.

Let us consider Figure IV. The proton in colliding with the molecule,

*Here H'i = Hif leads to this result for , say, oxygen.
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follows a straight-line path whose minimum separation is the impact

parameter f . This straight-line path, for our purposes of consider-

ation here lies entirely in the plane which is perpendicular to the mol-

ecular symmetry axis and which contains the molecular center of sym-

metry. Under these classical path conditions the time may be simply

and linearly related to the distance along the path through the velocity.

When we make this approximation Eq. (52) leads to

(53)

which the reader will immediately see to be equivalent to:

(A. d.,

14! , (54)

of solution:

A~3~V (55)

The normality requirement on the wave function of Eq. (48) will

lead to the following relationship between the state g r w t h coefficients:

(6/ (6)

The two state growth coefficients will at most be complex quanti-

ties so that under any condition we can replace them as follows:

57)
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From Eqs. (56) and (57) we obtain the following relationship be-

tween the amplitudes of the two state growth coefficients

. (58)

which leaves the phase relationship to be determined. Eq. (57) as. modi-

fied by Fq. (58) may now be substituted in Fqs. (50) and we obtain the

following:

j4 (59a)

- (59b)

Eqs. (59) provide us with four equations, two real and two imagi-

nary. The imaginary equation arising from Eq. -(59).allows, us b u t t w o

choices

~C)

The solution requiring the time derivative of the initial state amplitude to

be zero would mean that no transition could be induced by the collision.

This forces our acceptance of the second equation which yields the final

state growth coefficient. Our state growth coefficients are now:

A(60)

We consider the imaginary equation from Eq. (59) as modified by
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Eq. (60):

Again appaling to the classical path relationship between distance and

time, we may obtain the following equation from this:/ K

j-ei; 4-f1-'LV1)7c/ (61)

From this equation one may obtain the following expression for the final

state growth coefficient:

,00) (62)

The probability for transition and hence for the inelastic scatter-

ing under consideration here is the square of this state growth coefficient

after infinite time. In order to obtain the cross section, we simply aver-

age over impact parameter with the following results:

00

The expansion of the sine leads to an expression whose first term

Arthurs 1 2 has shown is equivalent to the Born approximation.

C. The Two State IP Treatment of the Proton Oxygen Case

We write down the interaction Hamiltonian as follows:

4 6 (64)
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Our first task is the evaluation of this Hamiltonian over the t w o

molecular states involved in the inelastic collision. This matrix element

was defined by our development, and we recall that it involves o n ly t he

molecular coordinates. A point here is that we should evaluate this m a -

t r ix element over the states of the molecule as perturbed by the incident

proton, but we refer to our discussion in connection with Eq. (28e).

This matrix element is given by Eq. (29) with opposite sign:

I- (65)

Eq. (65) describes that case where the proton proceeds in along

the molecular figure axis. We shall suppose one-third of the oxygen mole-

cules are so aligned, that is, we shall suppose their internuclear axis are

aligned along, say, the Z -axis which is taken as the proton path. The

other two-thirds of the molecules are aligned one-half along the x-axis and

one-half along the y-axis. Let us consider this other two-thirds.

Let us suppose the proton is inbound toward the oxygen molecule

in the plane which is perpendicular to the molecular symmetry axis and

which contains the molecular center of symmetry. The 7r" orbital is

identically zero in this plane with the result that Unm is identically zero.

As we move the proton path away from this plane it is apparent that Unm

will increase to a maximum at the internuclear axis. But it is also ap-

parent that the majority of collisions will occur more nearly under this



-37-

than under the former (perpendicular centrsl plane). Therefore we are

simply going to assume the axis collision path to be valid.

Eq. (65) is now substituted into Eq. (63). We suppose that the

proton maintains its initial velocity -- which corresponds to the momen-

tum k - - until it reaches a particular point on the trajectory. At t hi s

point it instantaneously attains its final velocity -- which corresponds to

the momentum k'. The space point selected for the change is x = 0. The

inner product in the exponential now becomes:

_0 (66)

and the bracketed expression in Eq. (63) becomes
OO

7F /Ar/1a-W2X]4 (67)

Eq. (6) may be re-written as:

+j tK/14 -X 4,( -, (68)
0

The right side of Eq. (63) now becomes:

X -,- j (69)

The second term in Fq. (69) becomes important at energies below

one thousand electron volts. At one KeV for our case it is about two orders



of magnitude smaller than the first term for all values of the impact

parameter. We therefor drop the term.

For one thosand volts and above:

Thus Eq. (63) becomes:

/6 =0 (70)

which is what would have resulted from am assumption of post and prior

momentum equality.

This expression was evaluated on a desk computer for a sufficient

number of impact parameters to allow evaluation of Eq. (63) for the Schumann-

Runge excitation and for values of the proton translational energy ranging

from 1 to 50 KeV. A word on this latter evaluation is in order.

If one traces the behavior of 14(1 inward from largef one finds

that it is a monotonically increasing function until a point a few units from

the nucleus is reached. At this point the function passed through a maxi-

mum and then oscillates more and more rapidly at lesser separations.

The integration inward is numerical to the first minimum and will be dis-

cussed in a moment. From the first minimum, however, we take

so that the integral has a value7fl for this inner portion.

If one retains the infinite upper limit for the integral in Eq. (63)

the form of the interaction will lead to a divergence, This is a formal
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difficulty at worst since the upper limit on the interaction will not be in-

finite; it will be determined by the shielding effect of the other particles,,

We choose the upper limit in Eq. (63) as the Debye radius,. For the present,

however, we may not specifically evaluate this since we are working with

no particular temperature and density. We choose the limit as fifty units.

In Figure V we illustrate the behavior of the cross section for

various energies as a function of impact parameter. The total cross sec-

tions which result are given for this energy range in Figure VI.

We show that Eq. (62) reduces to the Born approximation for

large v or small H!f° We first make the following approximation:

which depends for its validity on large v. Next the sum is expanded in a

MacLaurin series:

, 33.Zr

which reduces to its first term for large v or small H! Arthurs 1 2

ifm

has shown that this term is equivalent to the Born approximation.
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SECTION IV

THE MULTI STATE IMPACT PARAMETER TREATMENT

We consider the molecule as possessing a large number of bound

states. In this development we do not include continuum s t a t e s for the

molecule. We take the following expression as the wave function for the

proton-molecule system:

In this equation each term is an exact solution to the Schroedinger equa-

tion for infinite separation of the proton-molecule system. The subscript

"i" runs over the states of the molecule. When Eq. (71) is substituted in-

to the Schroedinger equation, all terms save the following drop out:
bE7fl/ /)t]

L (72)

We remark here that the ki is negative for i = 1 and positive of v a r i o u s

values for all other i. The normality condition for the wave function leads

to

4 C(73)

Again we take a general form for the state growth coefficient as

follows:

(74)
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At minus infinity of time we again suppose the coefficient corres-

ponding to the molecular ground state to be unity. Depending on the trans-

ition in which we interest ourselves we then are concerned with the v a 1 u e

of the upper state coefficient after an infinite time. This we p r o c e e d t o

determine.

First we make the following rather trivial transformation in Eq. (72):

ji=~ d.e (75)

We shall now multiply Eq. (72) through on the left, first by

Eh~4J~7 thn by ~ 9[-4 4 Jand so on.

The result is:

L~4/~7~(76a)

(76b)
e I

=-C (76c)

We now add Eqs. (76) to obtain:

4) 6 t " ee(77)

Eq. (77) may be rewritten as follows:

14 '1(78)

There are two ways in which this equation could hold. Fir s t the

various terms or certain of the various t e r m s could be non-zero w h i 1 e

some remain zero under all conditions. This is certainly n o t t r u e at
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minus infinity of time since' there the time rate of change of the c o e f f i -

c i e n t i s zero while the matrix element of the perturbing Hamiltonian is

zero. Hence it follows that Eq. (78) is zero because each term in Eq.

(78) is zero. We now introduce the impact parameter treatment and again

replace "t" by "x". Under these conditions any term in Eq. (78) may be

written as

J(79

Eq. (79) has the familiar and immediate solution:

cr (80)

Relationships among thef. and the 4. are required n o w f o r t h e

completion of the calculation. We begin by forming the column matrix

which we term the amplitude matrix and which may b e represented a s:

) (81)

With this definition the Schroedinger equation m a y b e w r i t t e n in matrix

form as follows:

-ci?!(82)

We multiply this equation through on the right by the a s s o c i a t e matrix a+

to obtain:

Iia -- (83)
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Let us write down the product of the matrix "a" and its associate

as follows:

Q2 - (84)

This matrix is possessed of no inverse and its adjoint ma tr ix

is a null matrix. However, we may form the pluverse matrix which when

it multiplies the matrix b on the right yields the null matrix. We p r ov e

this as follows.

First of all the elements of the pluverse matrix are d e f i n e d a s

follow s:

(85a)

(8 5b)

We now write out a typical element of the product matrix as

b..~4,

[~ y ~ z'0 (86)

which demonstrates that multiplication on the right by the pluverse matrix

yields the null matrix.

We multiply Eq. (83) through on the right to obtain the following

5 r--0 (87)
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An an example we treat the two state case. First of all the coefficient

matrix and the product of this matrix with its associate may be w r i t t e n

down as:

1A-

(88)

We may form __ through Eqs. (85) as

-fy (89)

The matrix manipulation indicated by Eq. (87) next leads to t w o

equations in the amplitudes and phases. First through, the assumption

of a constant difference between the two phases leads to the following ex-

pression:

(90)

Eq. (90) now allows us to write down one of the two equations arising from

Eq. (87) as:

The solution is:

b-=- 1(92)

The normality condition, of course, leads immediately to the re-

lationship among the amplitudes and we have obtained t he same result
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which was obtained in the previous section in a somewhat more straight-

forward, if less generally applicable, manner.
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SECTION V

BIBLIOGRAPHICAL REMARKS

We first list those books which are of particular interest to

scattering problems in general.

The Theory of Atomic Collision. N. F. Mott and R S. W.
Massey Oxford University Press: 1949.

Theoretical Nuclear Physics. J. M. Blatt and F. B. Weisskopf
John VWey & Sons, New York: 1952

The Theory of Protons and Electrons. M. M. Jauch and F.
Rohrlich: Addison-Wesley Publishing Company, Inc., Reading:
1955.

Quantum Theory. I. Elements. Edited by D. R. Bate4 Academ-
ic Press, Inc. New York: 1961

The Shift and Shape of Spectral Lines. R. G. Breene, Jr., Perg-
amon ]Ress Inc. London: 1961

Atomic and Molecular Processes. Edited by D. R. Bates, Aca-
demic Press. New York: 1962.

Quantum Theory of Scattering. Ta-You Wu and T. Ohmura. Pren-
tiss Hall, Inc. New York: 1962.

For general information we also call the reader's attention to the

following review type articles:

"On the Convergence of Born Expansions" W. Kohn. Rev. Mod.

Phys. 26, 292 (1954).

"Theory of Scattering of Slow Electrons". H. S. W. Massey, Rev.
Mod. Phys. 28, 199 (1956).

"Theory of Atomic Collision" H. S. W. Massey, Handbuch der
Physik XXXVI, Page 232 (1956).

"Excitation and Ionization of Atoms by Electron Impact". H. S. W.
Massey, Handbuch der Physik XXXVI, Page 307 (1956).
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Professor Takayanagi has developed a very comprehensive ex-

planatory bibliography of non-nuclear scattering phenomena. It consists

of three parts plus a supplement which is dated August 1962. Although

No. 1 is no longer available it is understood that the remaining parts

may be obtained by writing

Professor Kazuo Takayanagi
Department of Physics
Saitama University
Urawa, Saitama, Japan

The bibliography is broken down as follows:

Collision Theory. Part 1
I. Excitation and Ionization of Atoms byElectron Impact
II. The collision of Electrons with Molecules
III. Theory of Inelastic Molecular Collisions

Collision Theory. Part II
IV. Atom - Ion Atom - Atom Inelastic Collisions
V. Charge Transfer

Collision Theory. Part III
VI. Inelastic Collisions of Electrons with Atoms or Molecules

(experimental)
VII. Photoionization and Radiative Recombination
VIII. Theory of Intermolecular Forces

The supplement lists additional references divided into the same

categories.

We now list some additional references which we do not believe

appear in the Takayanagi bibliography. No claim to exclusiveness is

made for the following listing, and we hope to add to it in future.

I. EXCITATION AND IONIZATION OF ATOMS BY ELECTRON
IMPACT (here to include elastic scattering of electrons)
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(Paris) 249, 2060-1 (1959)

Collisions of an Electron With A Hydrogen Atom.

1959P R. Peterkop. Latv. PSR Zinat. Akad. Vestis. 10, 91 (1959)
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On the Choice of Atomic Electron Wave-Functions for Scattering Problems
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Figure I. The molecular distortion parameters for the electron-oxygen
or proton-oxygen case,
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Figure II. The electron or proton oxygen interaction potential to include
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Figure III. The definition of the angles referred to in Eq
(30) and subsequent.
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Figure IV. The geometry for the Impact Parameter treat-
ment of the proton-oxygen collision.
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