NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ATMOSPHERIC TRANSMITTANCE CURVES
FOR SEVERAL METEOROLOGICAL CONDITIONS

25 March 1963
DDC Availability Notice

Qualified requesters may obtain copies of this report from the Defense Documentation Center for Scientific and Technical Information, Cameron Station, Alexandria, Virginia 22314.

Destruction Notice

Destroy; do not return.
ATMOSPHERIC TRANSMITTANCE CURVES
FOR SEVERAL METEOROLOGICAL CONDITIONS

by

M. W. Harper

Electro-Optical Branch
Electromagnetics Laboratory
Directorate of Research and Development
U. S. Army Missile Command
Redstone Arsenal, Alabama
ABSTRACT

This report is intended to provide a tool for use in designing infrared systems, and is not a theoretical treatise on atmospheric effects in optical transmission.

Spectral transmission curves are furnished for several different combinations of atmospheric conditions and ranges. These infrared spectral transmission curves were calculated assuming the earth to be flat for the ranges of interest, and assuming the infrared systems to be at sea level.
TABLE OF CONTENTS

I. INTRODUCTION 1

II. DISCUSSION .. 1

III. CONCLUSIONS AND RECOMMENDATIONS 3

LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Sample Calculated Date</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Path for 1 mm of Water (ft/mm)</td>
<td>5</td>
</tr>
</tbody>
</table>

Atmospheric Transmission Curves:

<table>
<thead>
<tr>
<th>Range</th>
<th>Visibility</th>
<th>Relative Humidity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. 1 km 10 km</td>
<td>40%</td>
<td>70°F</td>
<td>7</td>
</tr>
<tr>
<td>3. 2 km 10 km</td>
<td>40%</td>
<td>70°F</td>
<td>9</td>
</tr>
<tr>
<td>4. 3 km 10 km</td>
<td>40%</td>
<td>70°F</td>
<td>11</td>
</tr>
<tr>
<td>5. 4 km 10 km</td>
<td>40%</td>
<td>70°F</td>
<td>13</td>
</tr>
<tr>
<td>6. 5 km 10 km</td>
<td>40%</td>
<td>70°F</td>
<td>15</td>
</tr>
<tr>
<td>7. 1 km 5 km</td>
<td>90%</td>
<td>100°F</td>
<td>17</td>
</tr>
<tr>
<td>8. 2 km 5 km</td>
<td>90%</td>
<td>100°F</td>
<td>19</td>
</tr>
<tr>
<td>9. 3 km 5 km</td>
<td>90%</td>
<td>100°F</td>
<td>21</td>
</tr>
<tr>
<td>10. 4 km 5 km</td>
<td>90%</td>
<td>100°F</td>
<td>23</td>
</tr>
<tr>
<td>11. 5 km 5 km</td>
<td>90%</td>
<td>100°F</td>
<td>25</td>
</tr>
<tr>
<td>12. 1 km 5 km</td>
<td>40%</td>
<td>70°F</td>
<td>27</td>
</tr>
<tr>
<td>13. 2 km 5 km</td>
<td>40%</td>
<td>70°F</td>
<td>29</td>
</tr>
<tr>
<td>14. 3 km 5 km</td>
<td>40%</td>
<td>70°F</td>
<td>31</td>
</tr>
<tr>
<td>15. 4 km 5 km</td>
<td>40%</td>
<td>70°F</td>
<td>33</td>
</tr>
<tr>
<td>16. 5 km 5 km</td>
<td>40%</td>
<td>70°F</td>
<td>35</td>
</tr>
<tr>
<td>17. 1 km 10 km</td>
<td>90%</td>
<td>100°F</td>
<td>37</td>
</tr>
<tr>
<td>18. 2 km 10 km</td>
<td>90%</td>
<td>100°F</td>
<td>39</td>
</tr>
<tr>
<td>19. 3 km 10 km</td>
<td>90%</td>
<td>100°F</td>
<td>41</td>
</tr>
<tr>
<td>20. 4 km 10 km</td>
<td>90%</td>
<td>100°F</td>
<td>43</td>
</tr>
<tr>
<td>21. 5 km 10 km</td>
<td>90%</td>
<td>100°F</td>
<td>45</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

During the course of calculating infrared spectral transmission values, it became clear that some means was needed to obtain these spectral transmission values more quickly. This report is intended to provide a tool for use in designing infrared systems, and is not a theoretical treatise on atmospheric effects in optical transmission. This report furnishes spectral transmission curves for several different combinations of atmospheric conditions and ranges.

These infrared spectral transmission curves were calculated assuming the earth to be flat for the ranges of interest, and assuming the infrared systems to be at sea level.

II. DISCUSSION

The main factors in atmospheric infrared attenuation are absorption by water vapor, carbon dioxide, ozone, and scattering by airborne particles. The water vapor content(Figure 1) of the atmosphere is weather-dependent. Thus, either the amount of water vapor between the target and observer (the optical thickness) must be known for a particular problem, or an average-weather assumption must be made. For simplicity of calculations, average-day values and bad-day values were assumed for water vapor content and visibility. The carbon dioxide content of the atmosphere was taken to be 3.2×10^{-4} parts per unit volume of air. The ozone content of the atmosphere was taken to be .002 mm per kilometer.

The scattering coefficient of transmission has to be calculated as

\[T_{si} = e^{-\frac{3.91}{V} \left(\frac{i}{.55}\right)^{-q} R} \]

where

- T_{si} = Transmission due to scattering at wavelength (i).
- V = Visibility (kilometers)
- $q = .585 V^{1/3}$
- i = Wavelength (microns)
- R = Range (kilometers)
This relationship enables us to compute the transmission at the midpoint of window i for any value of R if the visibility is known.

(Sample Calculation)

\[
V = 5 \text{ km}, \quad q = 1.0, \quad i = 1 \text{ micron}, \quad R = 3 \text{ km}
\]

\[
\frac{3.91}{V} \left(\frac{\lambda_i}{0.55} \right)^{-q} R
\]

\[
T_{si} = e^{-3.91 \left(\frac{1.0}{0.55} \right)^{-1.0} (3)}
\]

\[
T_s(1\mu) = e^{-0.782 \left(\frac{0.55}{1.0} \right) (3)}
\]

\[
= e^{-1.29}
\]

\[
= .275
\]

Precipitable H\textsubscript{2}O is taken from Figure 1 of this report. With 90\% relative humidity and 100° F. temperature, there is 1 mm H\textsubscript{2}O for every 75 feet of path length. Dividing range by this factor gives the total precipitable H\textsubscript{2}O for a 3-km range.

\[
\text{Total Precipitable H}_2\text{O} = \frac{\text{Range (feet)}}{\text{feet/mm precipitable H}_2\text{O}}
\]

\[
= \frac{9842 \text{ feet}}{75 \text{ feet/1 mm}}
\]

\[
= 131.22 \text{ mm}
\]

Transmission due to absorption by water vapor is plotted as a function of precipitable H\textsubscript{2}O versus wavelength, as shown in Figure 8, Reference 7. Knowing that the precipitable H\textsubscript{2}O is 13.1 cm, T\text{H}_2\text{O}(1\mu) is .64.

Transmission due to absorption by carbon dioxide is plotted as a function of range versus wavelength (Figure 17, Reference 7). Knowing the range is 3 km, T\text{CO}_2(1\mu) is 100\%.

From Figure 7, Reference 7, there is .002 mm of ozone at STP per kilometer at sea level. The total amount of ozone for XKM range equals the product of XKM and ZM.M of ozone.

\[
\text{Total ozone for 3-km range} = 3 \text{ km} \times 0.002 \text{ mm/km}
\]

\[
= 0.006 \text{ mm}
\]
Knowing the amount of ozone in the path length, the transmission due to absorption by ozone is 100% at one micron (Figure 23, Reference 7).

After the coefficients of transmission due to absorption by water vapor, carbon dioxide, ozone, and scattering have been found, the atmospheric transmission is calculated as the product of these functions:

\[Ta(\lambda) = T_{H_2O}(\lambda) \cdot T_{CO_2}(\lambda) \cdot T_{O_3}(\lambda) \cdot T_{si} \]

\[T_a(1.0 \mu) = (.64) \cdot (1.00) \cdot (1.00) \cdot (.28) \]

\[= .18 \]

\[= 18\% \]

III. CONCLUSIONS AND RECOMMENDATIONS

Value for \(T_{H_2O}(\lambda) \), \(T_{O_3}(\lambda) \), \(T_{CO_2}(\lambda) \), and \(T_{si} \) were calculated at one-tenth micron intervals. The resolution of the transmission curves is, therefore, not much better than ± .1 micron. Moreover, the apparent smoothing of the curves used as source material for this report (Reference 7) suggests that the results be applied judiciously, especially for very narrowband applications. It should be remembered that the atmospheric conditions considered herein are highly generalized and worst-case conditions may reduce transmission far below the values shown.
TABLE OF CONTENTS

I. INTRODUCTION.. 1
II. DISCUSSION ... 1
III. CONCLUSIONS AND RECOMMENDATIONS............... 3

LIST OF ILLUSTRATIONS

Table

I. Sample Calculated Date 4

Figure

1. Path for 1 mm of Water (ft/mm) 5

Atmospheric Transmission Curves:

<table>
<thead>
<tr>
<th>Range</th>
<th>Visibility</th>
<th>Relative Humidity</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1 km</td>
<td>10 km</td>
<td>40%</td>
</tr>
<tr>
<td>3.</td>
<td>2 km</td>
<td>10 km</td>
<td>40%</td>
</tr>
<tr>
<td>4.</td>
<td>3 km</td>
<td>10 km</td>
<td>40%</td>
</tr>
<tr>
<td>5.</td>
<td>4 km</td>
<td>10 km</td>
<td>40%</td>
</tr>
<tr>
<td>6.</td>
<td>5 km</td>
<td>10 km</td>
<td>40%</td>
</tr>
<tr>
<td>7.</td>
<td>1 km</td>
<td>5 km</td>
<td>90%</td>
</tr>
<tr>
<td>8.</td>
<td>2 km</td>
<td>5 km</td>
<td>90%</td>
</tr>
<tr>
<td>9.</td>
<td>3 km</td>
<td>5 km</td>
<td>90%</td>
</tr>
<tr>
<td>10.</td>
<td>4 km</td>
<td>5 km</td>
<td>90%</td>
</tr>
<tr>
<td>11.</td>
<td>5 km</td>
<td>5 km</td>
<td>90%</td>
</tr>
<tr>
<td>12.</td>
<td>1 km</td>
<td>5 km</td>
<td>40%</td>
</tr>
<tr>
<td>13.</td>
<td>2 km</td>
<td>5 km</td>
<td>40%</td>
</tr>
<tr>
<td>14.</td>
<td>3 km</td>
<td>5 km</td>
<td>40%</td>
</tr>
<tr>
<td>15.</td>
<td>4 km</td>
<td>5 km</td>
<td>40%</td>
</tr>
<tr>
<td>16.</td>
<td>5 km</td>
<td>5 km</td>
<td>40%</td>
</tr>
<tr>
<td>17.</td>
<td>1 km</td>
<td>10 km</td>
<td>90%</td>
</tr>
<tr>
<td>18.</td>
<td>2 km</td>
<td>10 km</td>
<td>90%</td>
</tr>
<tr>
<td>19.</td>
<td>3 km</td>
<td>10 km</td>
<td>90%</td>
</tr>
<tr>
<td>20.</td>
<td>4 km</td>
<td>10 km</td>
<td>90%</td>
</tr>
<tr>
<td>21.</td>
<td>5 km</td>
<td>10 km</td>
<td>90%</td>
</tr>
</tbody>
</table>

iii.
I. INTRODUCTION

During the course of calculating infrared spectral transmission values, it became clear that some means was needed to obtain these spectral transmission values more quickly. This report is intended to provide a tool for use in designing infrared systems, and is not a theoretical treatise on atmospheric effects in optical transmission. This report furnishes spectral transmission curves for several different combinations of atmospheric conditions and ranges.

These infrared spectral transmission curves were calculated assuming the earth to be flat for the ranges of interest, and assuming the infrared systems to be at sea level.

II. DISCUSSION

The main factors in atmospheric infrared attenuation are absorption by water vapor, carbon dioxide, ozone, and scattering by airborne particles. The water vapor content (Figure 1) of the atmosphere is weather-dependent. Thus, either the amount of water vapor between the target and observer (the optical thickness) must be known for a particular problem, or an average-weather assumption must be made. For simplicity of calculations, average-day values and bad-day values were assumed for water vapor content and visibility. The carbon dioxide content of the atmosphere was taken to be 3.2×10^{-4} parts per unit volume of air. The ozone content of the atmosphere was taken to be .002 mm per kilometer.

The scattering coefficient of transmission has to be calculated as

$$T_{si} = e^{-\frac{3.91}{V} \left(\frac{\lambda_i}{.55}\right)^{-q}} R$$

where

- $T_{si} =$ Transmission due to scattering at wavelength (i).
- $V =$ Visibility (kilometers)
- $q = .585 V^{1/3}$
- $\lambda_i =$ Wavelength (microns)
- $R =$ Range (kilometers)
This relationship enables us to compute the transmission at the midpoint of window i for any value of R if the visibility is known.

(Sample Calculation)

\[
V = 5 \text{ km, } q = 1.0, \quad i = 1 \text{ micron, } R = 3 \text{ km}
\]

\[
T_{si} = e^{-\frac{3.91}{V} \left(\frac{\lambda_i}{.55} \right)^{-q}} R
\]

\[
T_{s(1\mu)} = e^{-\frac{3.91}{5} \left(\frac{1.0}{.55} \right)^{-1}(3)}
\]

\[
= e^{-0.782 \left(\frac{.55}{1.0} \right)} (3)
\]

\[
= e^{-1.29}
\]

\[
= .275
\]

Precipitable \(H_2O \) is taken from Figure 1 of this report. With 90\% relative humidity and 100\(^\circ\)F, temperature, there is 1 mm \(H_2O \) for every 75 feet of path length. Dividing range by this factor gives the total precipitable \(H_2O \) for a 3-km range.

\[
\text{Total Precipitable } H_2O = \frac{\text{Range (feet)}}{\text{feet/mm precipitable } H_2O}
\]

\[
= \frac{9842 \text{ feet}}{75 \text{ feet/mm}}
\]

\[
= 131.22 \text{ mm}
\]

Transmission due to absorption by water vapor is plotted as a function of precipitable \(H_2O \) versus wavelength, as shown in Figure 8, Reference 7. Knowing that the precipitable \(H_2O \) is 13.1 cm, \(T_{H_2O(1\mu)} \) is .64.

Transmission due to absorption by carbon dioxide is plotted as a function of range versus wavelength (Figure 17, Reference 7). Knowing the range is 3 km, \(T_{CO_2(1\mu)} \) is 100\%.

From Figure 7, Reference 7, there is .002 mm of ozone at STP per kilometer at sea level. The total amount of ozone for XKM range equals the product of XKM and ZM.M of ozone.

\[
\text{Total ozone for 3-km range} = 3 \text{ km} \cdot .002 \text{ mm/km}
\]

\[
= .006 \text{ mm}
\]
Knowing the amount of ozone in the path length, the transmission due to absorption by ozone is 100% at one micron (Figure 23, Reference 7).

After the coefficients of transmission due to absorption by water vapor, carbon dioxide, ozone, and scattering have been found, the atmospheric transmission is calculated as the product of these functions:

\[
T_a(\lambda) = T_{H_2O}(\lambda) \cdot T_{CO_2}(\lambda) \cdot T_{O_3}(\lambda) \cdot T_{si}
\]

\[
T_a(1.0\mu) = (.64) \cdot (1.00) \cdot (1.00) \cdot (.28)
\]

\[
= .18
\]

\[
= 18\%
\]

III. CONCLUSIONS AND RECOMMENDATIONS

Value for \(T_{H_2O}(\lambda), T_{O_3}(\lambda), T_{CO_2}(\lambda),\) and \(T_{si}\) were calculated at one-tenth micron intervals. The resolution of the transmission curves is, therefore, not much better than ±1 micron. Moreover, the apparent smoothing of the curves used as source material for this report (Reference 7) suggests that the results be applied judiciously, especially for very narrowband applications. It should be remembered that the atmospheric conditions considered herein are highly generalized and worst-case conditions may reduce transmission far below the values shown.
Table I.
SAMPLE CALCULATED DATA
CALCULATED VALUES FOR $T_{H_2O}(\lambda)$, $T_{CO_2}(\lambda)$, $T_{O_3}(\lambda)$, T_{si} AND $T_{a}(\lambda)$

METEOROLOGICAL CONDITIONS:
TEMPERATURE - 100°F RELATIVE HUMIDITY - 90% RANGE - 3-km
VISIBILITY - 5-km PRECIPITABLE H_2O - 13.1-cm

<table>
<thead>
<tr>
<th>Wavelength Micron</th>
<th>$T_{H_2O}(\lambda)$ Decimal</th>
<th>$T_{CO_2}(\lambda)$ Decimal</th>
<th>$T_{O_3}(\lambda)$ Decimal</th>
<th>T_{si} Decimal</th>
<th>$T_{a}(\lambda)$ Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>.4</td>
<td>.34</td>
<td>1.00</td>
<td>1.00</td>
<td>.041</td>
<td>.014</td>
</tr>
<tr>
<td>.5</td>
<td>.50</td>
<td>1.00</td>
<td>1.00</td>
<td>.08</td>
<td>.04</td>
</tr>
<tr>
<td>.6</td>
<td>.89</td>
<td>1.00</td>
<td>1.00</td>
<td>.12</td>
<td>.10</td>
</tr>
<tr>
<td>.7</td>
<td>.90</td>
<td>1.00</td>
<td>1.00</td>
<td>.16</td>
<td>.14</td>
</tr>
<tr>
<td>.8</td>
<td>.60</td>
<td>1.00</td>
<td>1.00</td>
<td>.20</td>
<td>.12</td>
</tr>
<tr>
<td>.9</td>
<td>.11</td>
<td>1.00</td>
<td>1.00</td>
<td>.24</td>
<td>.02</td>
</tr>
<tr>
<td>1.0</td>
<td>.64</td>
<td>1.00</td>
<td>1.00</td>
<td>.28</td>
<td>.18</td>
</tr>
<tr>
<td>1.1</td>
<td>.16</td>
<td>1.00</td>
<td>1.00</td>
<td>.31</td>
<td>.05</td>
</tr>
<tr>
<td>1.2</td>
<td>.33</td>
<td>1.00</td>
<td>1.00</td>
<td>.34</td>
<td>.11</td>
</tr>
<tr>
<td>1.3</td>
<td>.00</td>
<td>1.00</td>
<td>1.00</td>
<td>.37</td>
<td>.00</td>
</tr>
<tr>
<td>1.4</td>
<td>.00</td>
<td>.98</td>
<td>1.00</td>
<td>.40</td>
<td>.00</td>
</tr>
<tr>
<td>1.5</td>
<td>.85</td>
<td>.99</td>
<td>1.00</td>
<td>.42</td>
<td>.36</td>
</tr>
<tr>
<td>1.6</td>
<td>.98</td>
<td>.98</td>
<td>1.00</td>
<td>.45</td>
<td>.41</td>
</tr>
<tr>
<td>1.7</td>
<td>.93</td>
<td>.99</td>
<td>1.00</td>
<td>.47</td>
<td>.44</td>
</tr>
<tr>
<td>1.8</td>
<td>.00</td>
<td>1.00</td>
<td>1.00</td>
<td>.48</td>
<td>.00</td>
</tr>
<tr>
<td>1.9</td>
<td>.04</td>
<td>1.00</td>
<td>1.00</td>
<td>.51</td>
<td>.02</td>
</tr>
<tr>
<td>2.0</td>
<td>.45</td>
<td>.89</td>
<td>1.00</td>
<td>.52</td>
<td>.21</td>
</tr>
<tr>
<td>2.1</td>
<td>.86</td>
<td>.99</td>
<td>1.00</td>
<td>.54</td>
<td>.46</td>
</tr>
<tr>
<td>2.2</td>
<td>.93</td>
<td>1.00</td>
<td>1.00</td>
<td>.56</td>
<td>.52</td>
</tr>
<tr>
<td>2.3</td>
<td>.86</td>
<td>1.00</td>
<td>1.00</td>
<td>.57</td>
<td>.49</td>
</tr>
<tr>
<td>2.4</td>
<td>.35</td>
<td>1.00</td>
<td>1.00</td>
<td>.59</td>
<td>.21</td>
</tr>
<tr>
<td>2.5</td>
<td>.00</td>
<td>1.00</td>
<td>1.00</td>
<td>.59</td>
<td>.00</td>
</tr>
</tbody>
</table>
Figure 1. PATH FOR 1 MM OF WATER (FT/MM
Figure 1. PATH FOR 1 MM OF WATER (FT/MM)
Figure 2. ATMOSPHERIC TRANSMISSION CURVE
Figure 2. ATMOSPHERIC TRANSMISSION CURVE
Figure 3. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 10 km
Range = 2 km
Temperature = 70°F
Relative Humidity = 40%
Precipitable H₂O = 1.47 cm

Figure 3. ATMOSPHERIC TRANSMISSION CURVE
Figure 4. ATMOSPHERIC TRANSMISSION CURVE
Figure 4. ATMOSPHERIC TRANSMISSION CURVE
Figure 5. ATMOSPHERIC TRANSMISSION CURVE
Figure 5. ATMOSPHERIC TRANSMISSION CURVE
Figure 6. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 10 km
Range = 5 km
Temperature = 70°F
Relative Humidity = 40%
Precipitable H₂O = 3.686 cm

Figure 6. ATMOSPHERIC TRANSMISSION CURVE
Figure 7. **ATMOSPHERIC TRANSMISSION CURVE**
Visibility = 5 km
Range = 1 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 4.26 cm

Figure 7. ATMOSPHERIC TRANSMISSION CURVE
Figure 8. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 2 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 8.52 cm

Figure 8. ATMOSPHERIC TRANSMISSION CURVE
Figure 9. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 3 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 12.78 cm

Figure 9. ATMOSPHERIC TRANSMISSION CURVE
Figure 10. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 4 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 17.04 cm

Figure 10. ATMOSPHERIC TRANSMISSION CURVE
Figure 11. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 5 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 21.30 cm

Figure 11. ATMOSPHERIC TRANSMISSION CURVE
Figure 12. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 1 km
Temperature = 70°F
Relative Humidity = 40%
Precipitable H₂O = .7373 cm

Figure 12. ATMOSPHERIC TRANSMISSION CURVE
Figure 13. ATMOSPHERIC TRANSMISSION CURVES
Figure 13. ATMOSPHERIC TRANSMISSION CURVE
Figure 14. ATMOSPHERIC TRANSMISSION CURVE
Figure 14. ATMOSPHERIC TRANSMISSION CURVE
Figure 15. ATMOSPHERIC TRANSMISSION CURVE
Relative Humidity = 40%
Precipitable H₂O = 2.95 cm

Visibility = 5 km
Range = 4 km
Temperature = 70°F
Relative Humidity = 40%
Precipitable H₂O = 2.95 cm

Figure 15. ATMOSPHERIC TRANSISSION CURVE
Figure 16. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 5 km
Range = 5 km
Temperature = 70°F
Relative Humidity = 40%
Precipitable H₂O = 3.68 cm

Figure 16. ATMOSPHERIC TRANSMISSION CURVE
Figure 17. ATMOSPHERIC TRANSMISSION CURVE
Figure 17. ATMOSPHERIC TRANSMISSION CURVE
Figure 18. ATMOSPHERIC TRANSMISSION CURVE
Figure 18. ATMOSPHERIC TRANSMISSION CURVE
Figure 19. ATMOSPHERIC TRANSMISSION CURVE
Visibility = 10 km
Range = 3 km
Temperature = 100°F
Relative Humidity = 90%
Precipitable H₂O = 12.78 cm

Figure 19. ATMOSPHERIC TRANSMISSION CURVE
Figure 20. ATMOSPHERIC TRANSMISSION CURVE
Figure 20. ATMOSPHERIC TRANSMISSION CURVE
Figure 21. ATMOSPHERIC TRANSMISSION CURVE
Figure 21. ATMOSPHERIC TRANSMISSION CURVE
REFERENCES

(Reference to Published Reports on Atmospheric Transmission Curves)

1. G. J. Zissis, "Fundamentals of Infrared Technology," The University of Michigan (UNCLASSIFIED)

(Reference to Reports Using Methods for Calculating Atmospheric Transmission Coefficients)

BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>Accession No.</th>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Atmosphere--Absorptive properties</td>
</tr>
<tr>
<td></td>
<td>2. Atmosphere--Optical properties</td>
</tr>
<tr>
<td></td>
<td>3. Atmosphere--Spectrum</td>
</tr>
<tr>
<td></td>
<td>4. Infrared systems--Design</td>
</tr>
<tr>
<td></td>
<td>5. Infrared waves--Transmission</td>
</tr>
<tr>
<td></td>
<td>I. Harper, M. W.</td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTION: Copies obtainable from DDC, Cameron Station (Bl. 5), Alexandria, Virginia, 22314</td>
</tr>
</tbody>
</table>

This report is intended to provide a tool for use in designing infrared systems. Spectral transmission curves are furnished for several different combinations of atmospheric conditions and ranges. These curves were calculated assuming the earth to be flat and the infrared systems to be at sea level.