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DETERMINATION OF THE ENERGY OF A
PULSED LASER BEAM BY TRANSFER OF THE PHOTON
MOMENTUM TO A BALLISTIC TORSIONAL PENDULUM

Prepared by:
M. Stimler

ABSTRACT: An instrument has been designed and constructed
which is capable of measuring high energies of pulsed laser
beams, without seriously interfering with their simultaneous
use in an experiment. Transfer of the photon momentum of the
beam to angular momentum of a doubly-reflecting ballistic
torsional pendulum was the principle by which photon momentum
effects were successfully measured. The instrument operates
at 105 mm of Hg with a sensitivity of 2.55 + 0.04 cm/joule,
and does not require damping of the initial oscillations
before making a measurement. In addition to providing the
capability of simultaneous energy measurement and use of a
laser beam, the measurements made with this instrument appear
to be more accurate than with a commercial calorimeter used
for comparison.
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This report presents the results of an experiment in
which the photon momentum of a pulsed laser beam was used to
make a fundamental measurement of the beam energy. The work
was performed under "New Component Developments", WEAPTASK No.
RREN-04-322/212/1/F008-21/02. The report will be of interest
to anyone concerned with laser energy measurements.

R. E. ODENING
Captain, USN
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CHAPTER I

INTRODUCTION

Less than two years after the first ruby laser was
made to operate successfully by T. H. Maimanl in May 1960,
the technological advances in this field resulted in
increased laser energy outputs of two orders of magnitude.
Maiman's laser had outputs ranging from several tenths of
a joule to nearly one joule. By April 1962 one company2
was offering a ten joule ruby laser with a future capability

of fifty joules. A second company3

was guaranteeing a ruby
laser capable of thirty joules output. Further increases
in laser output were being sought at that time and with the
efforts being expended toward this goal, it appeared reason-
able to assume that lasers of hundreds of joules of output
could be expected. With such energies available having the
properties of coherent plane waves, in addition to having
high photon concentrations, an excellent means was presented
for performing experiments on the interaction of electro-
magnetic radiation with matter.

In order to carry out a quantitative study of this

nature, however, it would be necessary to measure the radia-

tion used. The blackbody calorimeter, which had been used
1
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satisfactorily, heretofore, was already being found to have
serious drawbacks. Vaporization of the blackbody material
and its associated decomposition resulted in measurement
errors with usage4. Furthermore, by its principle of opera-
tion, the calorimeter absorbs the incident radiation making
it impossible to use this radiation and simultaneocusly
measure its energy.

It is generally agreed that the performance of high
energy laser experiments should produce much useful informa-~
tion®. Some fundamental method, therefore, was sought for
measuring the energy of a lagser beam, without appreciably
reducing this energy while permitting it to be simultaneously
used in an experiment.

The idea of converting the photon momentum of a laser
beam into mechanical momentum of a gsensitive reflecting vane
instrument appeared to be an ideal solution to this problem,
since the laser beam could be made to enter and leave the
instrument by reflection, and since a negligible amount of
energy is absorbed by a good reflector. Furthermore, the
total photon momentum, p, is proportional to the total beam
energy, E. Thus, a measurement of total photon momentum is
also a measure of the energy. This may be seen from the
following relations heginning with

E = mc2 (1)
2
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where ¢ is the velocity of light, and m represents the
associated photon mass. The total linear photon momentum
in the beam is given by

P =me (2)
which leads to the relation between momentum and energy

p = E/c (3)

The existence of radiation pressure was first predicted

by J. C. Maxwell® in 1873 from mathematical studies of the
stresses in an electromagnetic field. This was corroborated
from thermodynamic principles by S. Bartoli7 in 1876.
Attempts to experimentally verify the Maxwell-Bartoli theory
failed prior to 1901 because of inability to secure a
sufficiently high vacuum. Gas effects resulted which were
orders of magnitude greater than the radiation pressures
sought. The first experiments giving indications of radi-
ation pressure were described in 1901 by P. Lebedew® at the
University of Moscow, and Nichols and Hull® at Dartmouth
University. 1In 1924, J. D. TearlO combined the best features
of the two earlier experiments and made a careful study of
the factors contributing to gas effectsll. He used this
information to construct a torsion balance with the object
of keeping gas effects to a minimum. However, he did not
observe effects caused only by radiation pressure. At best,

radiation pressure was indicated in his work by extrapolation
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methodsl2, These experimenters were troubled by radiometer
forces, spurious gas effects, and by the long time required
for stabilization prior to making a measurementl3 with very
sengsitive torsion balance systems.

With the high photon concentrations available in
pulsed laser beams, it appeared feasible to design an
instrument which could be operated at reasonable vacuums
with deflections due mainly to photon momentum, thereby
making the instrument sensitivity predictable and repeatable.
With these features the instrument would provide a means for
making quantitative fundamental measurements of the momentum
and energy in pulsed laser beams.

By employing a pair of vanes at 45 degrees to the
incident beam instead of normal to the incident beam as
previously done, it appeared that a couple could be produced
thereby obtaining a maximum rotational effect. Furthermore,
by applying this to a torsional ballistic pendulum system
rather than a balance, the need for bringing the system to
rest before making a measurement could be eliminated. Opera-
tion under conditions of initial oscillation appeared possible
because it could be shown that the change in peak amplitude
was proportional to photon momentum. (This is demonstrated
in Chapter III, "Theory of Instrument Design” by the appli-
cation of principles of conservation of momentum and energy.)

4
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This experiment was, therefore, conceived to demonstrate
that an instrument of sufficient sensitivity could be
designed and built to convert the photon momentum of pulsed
laser beams to readable mechanical deflections which would
be proportional to the laser energy. As part of this experi-
ment, energy measurements were also made for the purpose of

comparison with a typical commercial calorimeterl4

of the type
now used extensively for laser measurements. The difference
found between these two methods suggests an interesting

future problem for research which would be a detailed study
of calorimetry problems and their solution leading to a satis-
factory calorimeter for use with lasers.

In addition, the results obtained at the higher pressures
although difficult to account for quantitatively, are very
reproducible. This implies the existence of systematic gas
effects in the free molecular flow regime not heretofore

observed. This could well be a subject for future investiga-

tions.
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CHAPTER II

APPARATUS AND EXPERIMENTAL PROCEDURE

1. Description of momentum transfer instrument. The

instrument designed for this photon momentum experiment was
a torsion ballistic pendulum shown diagrammatically in

Fig. 1. A pair of reflecting vanes were mounted on a
structure of fine aluminum tubing (0.91 mm outside diameter)
and suspended from a ground glass joint at the top of the
instrument by a gold suspension wire. This joint was
rotatable and provided a means for initially positioning
the reflecting vanes while the system was under vacuum. A
galvanometer scale mirror for indicating deflections was
fixed to a portion of the aluminum structure, which is shown
in Fig. 1, attached to the lower end of the suspension wire.
The vanes were hooked to the bottom of this tube after which
the vacuum chamber cover and suspended vanes were lowered
into position to complete the instriument. The suspension
assembly was held together by vacuum wax melted by a warm
soldering iron held close to the joints. A pair of entrance
and exit windows were provided in the vacuum chamber to
permit the laser energy to enter the chamber, undergo double

reflection when the suspension was in the zero position, and

6
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leave the chamber. This is shown more clearly in Fig. 2, an
enlarged top view of the chamber. The suspension is shown
in its zero position with the cross arm at right angles to
the axes of the windows. The vanes were mounted at an angle
of 45 degrees with the cross arm to produce the desired
double reflection of the laser beam and to permit an impulse
couple to be produced. This will be more fully explained in
Chap. III, Theory of Instrument Design. The vanes were made
by vacuum deposition of aluminuml3 on circular glass micro-~
scope cover slides (0.22 mm thick x 2.5 cm in diameter) and
positioned on the suspension assembly so that the aluminized
side received the incident laser energy as shown in Fig. 2.
The object of this was to help reduce heating effects by
presenting a surface of low absorbtion to the incident
radiation thereby maintaining the front and back faces of
the vane at nearly the same temperature to prevent the instru-
ment from behaving as a radiometer.

To reduce possible interaction of the vanes with ambient
magnetic fields due to the earth, or laboratory equipment,
the vacuum chamber was made of magnetic material for shielding.
Although the vanes and galvanometer scale mirror were made of
aluminum on glass, the scale mirror was found to be slightly
magnetic. Other experimenter916 have noticed similar effects.

This feature was taken advantage of by using a permanent

8
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magnet to control the initial oscillations before taking
data.l7 shown in Fig. 2 are the galvanometer scale mirror,
a conventional galvanometer light source aimed at this
mirror and a scale upon which movement of the reflected
gscale indicator may be observed to indicate suapension
position and deflection. The distance between the centers
of the vanes was made the same as the distance between the
window axes, shown in Fig. 2 to be 7.4 cm. The torque
constant of the suspension wire was 1.17 dyne cm/rad, per
cm of length of the suspension wire.l8 The suspension wire
length, as shown on Fig. 2 was 117.0 cm. The distance from
the scale mirror to the scale, 200 cm, is also shown on Fig. 2.

2, Oyer-all experimental gsetup. A diagrammatic sketch
of the experimental setup is given in Fig. 3. The laser is
shown emitting a pulse of energy which passes through a
filter and collimator, a glass beam splitter, designated
"entrance beam splitter”, and the entrance window of the
vacuum chamber to the first of the reflecting vanes. After
reflection from both vanes it passes through the exit window
and a second glass beam splitter designated "exit beam
splitter."” Fractions of the incident energy reflected from
the beam splitters enter two photoelectric cells as shown in
Fig. 3. The ground glass zero-adjust at the top of the

instrument was adjusted to make the rest position of the
10



63-82

NOLTR

43114

HdV¥90T7110S0
(08
¥3sv1

dN-13S TVIN3IWIY3IIX3I € 914

HOLVWITI0D

H3111MdS Wv3E8 30NVULIN3

woxam/ﬂ.@:
~ -
*
I 5
- .
TM30040Hd
3ONVYIN3 ¥31117dS
wWv3g 1iIx3

HdvYd901110S0

oL O
L

H3IEBWVHD WNNOVA T130010Hd
LiIxX3




NOLTR 63-82

suspension coincident with the zero position as shown in

Fig. 3. This was done at atmospheric pressure to take
advantage of air damping which prevented sustained oscilla-
tion of the suspension assembly, bringing it to rest in a
relatively short time. With the suaspension at rest, final
orientation of the laser and collimator could be effected

by sighting back through the exit window to the laser crystal.
Next the scale light source was adjusted so that the hairline
of its reflection lined up with the zero of the scale.

The voltages across the capacitors, C, were recorded,
with each laser fire on a two channel Sanborn Pen oscillo-
graph model No. 322. The oscillograph may be seen in Fig. 4,
a photograph of the experimental setup, which also shows the
suspension zero, glass tube, vacuum chamber and scale of the
instrument. The glass tube was painted with an electrically
conducting paint which was grounded to prevent static charge
effects. The laser head, console, capacitor bank and Dewar
of the laserl? used in this work may also be seen in Fig. 4,
as well as the photocell power supply and one of the clock
timers used to plot deflection versus time of the suspension
system.

Figure 5 is a close-up photograph of the experimental
setup showing the instrument mounted on an optical bench.

It was connected to the vacuum system by a ground glass

12
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spherical joint to permit final orientation. Components of
the vacuum system were a fore pump which is not shown, an oil
diffusion pump, a liquid nitrogen cold trap and two vacuum
gages of different pressure ranges. The higher range gage
gerved the purpose of indicating when the proper operating
range of the diffusion pump had been reached, and the low
pressure gage, a Phillips gage, was used for the pressure
measurements in the experiment. The collimator was made of
two aluminum tubes which were threaded for adjustment of the
distance between two convex lenses as shown schematically in
Fig. 3. The focal lengths of the two lenses were 112 mm and
67 mm, resulting in a reduction in laser beam cross section
of approximately 0.6. In this way, it was assured that the
entire laser beam would be incident on the vanes. The filter
was a No. 70 Kodak, Wratten filter for attenuating the shorter
wavelengths of the Xenon flash lamp output below the laser
wavelength of 6943 A. The beam splitters were uncoated glass
microscope slides ground to the shape of the holders, and the
photocells were RCA type 925 with the S-1 sensitivity surface.
The commercial calorimeter20 used in the experiment was
a blackbody thermocouple type. The blackbody was contained
in an evacuated glass chamber with a focusing lens as the
front window. To determine the energy of incident radiation

on the calorimeter, the thermocouple output, in microvolts,

15
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was multiplied by 0.12 joules per microvolt, the constant
determined for this calorimeter. The calorimeter parameters
were obtained?l and the value of the constant was checked.
3. Measurement procedure. The system was evacuated
to a point where damping of the oscillations was negligible
(10°3 mm of Hg) and measurements of the period of oscilla-
tion were made in order to check the manufacturer's value
of the torque constant of the suspension wire. A compgrison
of this value with the calculated value was then made. The
moment of inertia used in this calculation was calculated
from the masses and dimensions of the suspension components
measured during assembly.22
The next step in the procedure was to determine the
pressure below which deflections of the suspension system
would be due to photon momentum of the laser beam with
negligible contributions from radiometer effects due to vane
heating. Since radiometer effect is pressure dependent, the
object of this portion of the procedure was to find the
pressure region where deflection changes were not pressure
dependent. The pressure was stabilized at values giving
molecular mean free patha greater than the suspension dimen-
sions as calculated in Chap. III. At each pressure the initial
oscillations of the suspension were recorded for several cycles,

and then after each laser fire in a sequence of laser fires to

16
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be more fully described. The major difficulty in past use

of sensitive torsion balance systems, that of trying to zero
the instrument before taking a measurement23, was solved by
the following procedure: The peak amplitudes of the initial
oscillations were recorded with at least two maxima and two
minima being taken. In addition to reading the peaks,
intermediate readings of deflection were also recorded with
measurements of time elapsed between readings made with a
pair of stop clocks. It was thus possible to plot the
oscillations against time s0 that any deviations from normal
harmonic oscillation due to external causes, such as building
vibrations, could be detected. Typical plotas of the oscilla-
tions observed are shown in Figs. 11A and 11B (Chap. IV,
Results and Discussion) in which the horizontal tangent lines
are the observed maxima and minima. The laser was first fired
as the suspension and the scale indicator passed through the
zero position rotating in the positive direction; i.e., toward
the position shown in dashed lines in Fig. 2. At laser faire,
indicated in Fig. 11A by "lst Fire," the clocks were started
from zero. As previously described, the entrance and exit
photocell outputs were recorded on the Sanborn Oscillograph,
Fig. 4. The suspension oscillations were recorded after the
laser fire for two cycles while the laser was brought to the

same conditions of ruby crystal temperature and capacitor bank

17
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voltage for ti.c next fire. As the suspension crossed the
zero position in the negative direction, the laser was fired
to give the "2nd Laser Fire" as indicated. In the pressure
region where no spurious gas effects were present, this
procedure was continued for at least six laser fires at the
pressures investigated. The attempt was made to reproduce
the laser output energy for all laser fires in obtaining
these data on deflection as a function of pressure. To
minimize errors in peak measurements due to damping, it was
desirable to fire the laser on the next zero crossing of the
desired direction after the two cycle oscillation data had
been recorded. The effect of laser fire on deflection was
observed at pressures of 5.2 x 10-4, 3.4 x 1074, 8.2 x 1075,
4.5 x 1075, and 10~5 mm of Hg. 1In the low pressure region24
data was taken at pressures of 8.2 x 10~5, 4.5 x 10~5 and 10-5
mm of Hg to see if deflection remained constant independent
of pressure, as expected, where deflection is due mainly to
photon momentum. At the higher presasures, where the mean
free path was ~ the dimensions af the system, the foregoing
procedure required modification at the second laser fire.
Instead of firing as soon as possible, a long enough time was
permitted to elapse after the first laser fire to permit
temperature stabilization in the vacuum chamber. (This

condition was reached when gas effects were no longer observed

18
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to shift the zero of oscillation). The resulting oscilla-
tion was then recorded as the "initial oscillation" for the
second laser fire. To obtain the deflection at theae
pressures, the oscillation data obtained from three laser
fires were averaged. A typical oscillation curve obtained
in the higher pressure region23 is shown in Pig. 12.

The next step in the measurement procedure was to
stabilize at a pressure in the low pressure region to see
if deflection was proportional to laser energy in accordance
with the sensitivity calculations of Chap. III. The output
energy of the laser was varied from threshold to maximum,
with a relative measure of energy being given by the photo-
cell outputs. Peak deflections of the suspension, as well
as data for plotting the oscillations, were recorded before
and after each laser fire. It should be noted that an
important part of this procedure, in varying the output of
the laser, was to charge the capacitor bank of the laser to
the same value for each fire, thus maintaining the xenon
optical pump energy constant. The varying laser output was
obtained by controlling the flow rate of the coolant thereby
to vary the temperature of the laser crystal. The laser

fires were made in pairs with the suspension rotating first
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in the positive, then in the negative directionzs, the
laser energies for each pair being duplicated as closely
as posgible. Included in these data were measurements at
full optical pump energy, but below laser threshold27 to
see if any deflection could be observed when laser action
did not take place in the ruby crystal.

Table I. Coefficients of transmission and reflection
of optical components

Angle of Coefficient Coefficient

Component incidence of reflection of trangmigsion
Reflecting vane 45° 0.753 0
Collimator Qe - 0.80
Entrance beam

splitter 45° 0.034 0.865
Exit beam

splitter 45¢° 0.023 0.830
Vacuum chamber

window 9° 0.072 0.922
No. 70 Filter (at

A = 6943A ge -- 0.71

Measurements of the coefficients of reflection and
transmission28 of the optical components of the system were
made and the results of these measurements are given in
Table I in which the coefficient of reflection is defined
as the ratio of the radiant energy reflected to the incident
radiant energy. The coefficient of transmission is defined

as the ratio of the radiant energy transmitted to the incident
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radiant energy. A plot of the response of the No. 70 Kodak
Wratten filter is given in Fig. 6.

Calibration of the Phillips vacuum gage was performed
on a vacuum system using a McLeod gage as a standard2?.
The calibration curve is shown in Fig. 7.

To compare the energy measurements made by the torsion
pendulum instrument with the calorimeter, the collimator
and photocell assembly, shown in Fig. 3, were aligned with
the calorimeter so that the blackbody was in the same
relative position as vane 1. The laser was fired at tempera-
tures from 120°K to room temperature and measurements of
photocell output vs energy obtained from the calorimeter
readings were recorded. Sufficient time between lagser fires
was allowed to elapse for the calorimeter to become atabilized.
This was approximately thirty minutes. The curve of photocell
output vs energy indicated by the calorimeter is shown in

Fig. 8.
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CHAPTER III

THEORY OF INSTRUMENT DESIGN

1. Two vane design. Since the desired object in this
experiment was to transfer the linear photon momentum of a
laser beam into angular momentum of the suspension system
of a torsion pendulum instrument, it was desirable to obtain
a maximum of rotation with a minimum of translation. The
idea of a pair of reflecting vanes was therefore employed.
The vanes were fixed at an angle of 45° to the cross arm,
as shown in Fig. 2. In the rest position, shown by the
solid lines, incident light energy was reflected from the
vanes with an exit direction parallel to the incident
direction. This was to provide an impulse couple about the
axis of the suspension wire as will be described in greater
detail. With this arrangement, it was not necessary to
constrain the center of mass (c.m) of the suspension from
the bottom of the instrument. This feature provided greater
sensitivity.

2. Ideal cagse. Consider first the ideal case of =1
(perfect vane reflectivity equal to unity), an initially
stationary suspension in the zero position, as shown in

Fig. 2, and no gas effects. Assume a pulse of electromagnetic
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energy, U, such as the output of a pulsed ruby laser, of
short time duration t. If t << T/4, where T is the period
of oscillation of the suspension system, then the suspen-
sion position will remain essentially unchanged for the
duration of the laser pulse. The total linear momentum, p,
of the photons in the laser beam before reflection from
the first vane may be obtained by substitution into Eq. (3)
giving

p = U/c (4)
where ¢ is the velocity of light in vacuum. Since the mass
of the vane is >> the equivalent mass of the photon, the
recoil momentum of the photon must be very nearly the same
as the incident momentum. For I, = 1 there is no loss on

reflection and the total photon momentum before and after

each reflection is also given by (4). By summing the
components of momentum in the initial beam direction and the
components normal to it (along the cross arm) it will be
seen that the suspension will acquire no translational
component of momentum. The total angular momentum, Iw, of
the suspension about the axis of the suspension wire,
immediately after reflection of the pulse from the second
vane, may be found by applying the principle of conservation

of angular momentum to the laser beam and the suspension
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system. This results in

PR = Iw - PR (5)
where I is the moment of inertia of the suspension about the
axis of the suspension wire, w is the angular velocity of
the suspension immediately after the beam leaves the second
reflector, and R is the distance from the axis of the
suspension wire to the centers of the reflecting vanes.
Substitution of Eq. (4) into (5), and rearranging terms
results in

Iy = 2RU/c (6)

If 0 is the peak rotation of the suspension from the

zero position, then the potential energy, PE, stored in the
suspension wire at deflection ¢ is given by

PE = kk§2 (7)
where k 18 the torque constant of the suspension wire. The
kinetic energy, KE, of the suspension, immediately after the
laser pulse has passed the second vane, may be written as

KE = kI,2 (8)

If there are no frictional losses in the suspension

wire and no losses due to air damping, then by application
of the principle of conservation of energy,

PE = KE (9)
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and by substitution of (7) and (8) into (9) one obtains

ko2 = X142 (10)
k92 = (Iw2/1
Ip = g(x1)™ (11)

Substitution of Eq. (11) into (6), and solving for @ results
in

6 = 2RU/c(x1)% (12)
Equation (12) shows that the angular deflection of a torsion
pendulum, of the type herein described, is proportional to the
energy of a short time duration pulag. The more general
case will be considered next.

3. Generxal case. Consider the more general case,
shown diagrammatically in Pig. 9, of vané reflectivity equal
to some value, Iy, with initial suspension rotation about
the c.m., shown at S. There is no initial translation of
the ¢.m., and gas effects due to vane heating are assumed
to be negligible. Air damping is also assumed negligible.
The position of the suspension, as shown in Fig. 9, is both
the zero position and the center of oscillation. A short
pulse of laser energy, U, is aasumed to pass through a
vacuum chamber window having a coefficient of transmission,
Ty When the suspension is in the position shown in Fig. 9.
The energy incident on vane 1 will be T,U with a photon

momentum, T,UR/c, about the axis of the suspension wire.
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(The clockwise direction as viewed in Pig. 9, will be taken
as positive). If Iy, represents the initial angular
momentum of the suspension on crossing the zero position,
and I“h repregents the resulting angular momentum of the
suspension immediately following a laser fire, then applica-
tion of the principle of conservation of angular momentum
results in

Iwg + TWUR/C = Iwg - T, 2UR/c (13)
Rearranging terms gives

Tog = Twe= (1 + ry’) T,RU/c (14)
where (Iw' - I"’o) represents the difference between the
initial angular momentum on zero crossing just before laser
fire, and the angular momentum on zero crossing just after
laser fire, i.e. immediately after reflection of the energy
from vane 2. By application of energy conservation principles
and following the procedure used in going from Eg. (6) to
Eq. (12), one finds that Bg. (14) may be written in the form

8g - 6o = (1 + I,?) T RU/c(kI)™ (15)
where 6, represents the peak angular deflection of the
suspension before laser fire, and (4 represents the peak
angular deflection after laser fire. It should be noted
that Eq. (15) shows that the difference in peak angular
deflections of the suspension is directly proportional to

the laser energy irrespective of the initial oscillation

of the suspension.
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one obtains
MV, = (T, U/c) - (T,I,U/c) . (20)

Solving Egqs. (19) and (20) for Vy and Vy respectively gives

2
Ve = TWU (1 -1, )/ (21)
and
Vy = O (22)

This indicates that translational motion only in the
direction of laser beam incidence may result. For the case
where I, = 1, Eq. (21) reduces to
Vy = 0 (23)
with no translational motion as previously indicated. Also,
for I, = 1, Eq. (18) reduces to 8g = 6. as would be expected.
It will be shown in the next section that the trans-
lational motion described in Eq. (21) is negligible compared
to the scale deflections observed.
4. Scale readings. The angular deflections, g, and
6g in Eq. (15) have corresponding linear deflections d, and
ds which are read on the scale by the galvanometer scale
mirror arrangement. (Refer to Fig. 2). For a deflection ¢
we have, from Fig. 2,
a = 26 (24)
where o is the angle through which the reflected scale light

rotates for the suspension rotation, §. If the distance
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from the scale to the scale mirror is represented by D, then
the deflection, d, on the scale may be written

d = D tan ¢ (25)
and

d = D tan 2¢ (26)
For small angles3° of deflection, Eq. (26) becomes

d = 2D (27)

which, when applied to the angular deflections 64 and 6.,

leads to

65 = dg/2D (28)
and

6 = do/2D (29)
Substitution of Egqs. (28) and (29) into Eq. (15) gives

dg - 8o = 2(1 + [,2)T ROU/c (kI)% (30)

This result indicates that the difference in the peak
deflections, (dg - 4,), before and after laser fire, is
proportional to laser beam energy, U, regardless of the
initial deflection, d,. This difference may be positive or
negative in sign depending on the initial direction of
rotation of the suspension system when the laser is fired.
For a positive direction of suspension rotation, i.e. vane 1l
(Pig. 9) moving away from the laser, there should be an

increase in peak deflection, and (dgq - dy) should be positive.
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For the case of vane 1 moving toward the laser at fire, i.e.
negative rotation, the quantity (dg - do) should be negative,
but of the same magnitude for the same laser energy. It was
this result that indicated that a sensitive torsion pendulum
could be used for this experiment in the manner described in
the Measurement procedure section of Chap. II.

5. Instrument sensitivity calculations. The sensi-
tivity of this instrument will be defined as the linear
change in peak deflection (cm), as read on a scale D (cm)
from the suspension wire, per unit of incident pulse ot energy
(joules). The sensitivity of the instrument used in this
experiment may be calculated by substituting the values of
the physical characteristics of the instrument into Eq. (30).
These values are listed in Table II.

TABLE II. Physical characteristics of the
torsion pendulum instrument

P ——_ —— — — — — — — — -
Physical Characteristics

of Instrument Value
Moment of inertia3l 7.75 gm cm?
Torque constant 32 33 1.00 x 10~2 dyne cm/rad
Distance between vane centers ,(2R)34 7.40 cm
Diastance of scale from suapension35 200. cm
Coefficient of transmission of window 0.92
Coefficient of reflection of vane36 0.75
Mass of suspension3” 0.98 gm
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Upon substitution of the values given in Table II, assuming
an energy of one joule, and using ¢ = 3 x 1010 cm/sec, the
sengitivity obtained is
dg - dg = 2.55 cm/joule (31)
The e¢ffect of the translational motion may also be

determined by substitution of the appropriate values from
Table II into Eq. (21). Solving for the velocity of trans-
lation, for a laser pulse of 1 joule, results in

Vg = 1.37 x 1074 cm/sec . (32)
The time required to make a measurement of the first peak
deflection of the suspension is T/4 where T is the period
of oscillation. The displacement, Sy, of the c.m. in this
time, moving at the velocity given in Eq. (32), may be
calculated from

Sy = VyT/4 . (33)
The period for this instrument was found to be 175 seconds.
Substitution of this value of the period, and the value of
Vy given in Eq. (32), results in

Sy = 6.0 x 1073 cm/Joule . (34)
This displacement is negligible compared with the scale
reading of 2.55 cm/joule as given in Eq. (31). Therefore,
translational effects may be neglected with the use of this

instrument.
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This was borne out experimentally. For scale deflec-~
tions in the order of 5 cm, no translational effec*s could
be observed. Thus, Eqs. (30) and (31) are valid and give
the instrument sensitivity. The inatrument sensitivity
curve is given in Fig. 10, and the calculations of Egs. (31),
and (32) are shown in Appendix B.

6. Choice of vane geparation. Because of the double
reflection of the laser beam by the two vanes of the instru-
ment it was desirable, for practical considerations, to
have the entrance and exit-window axes (see Pigs. 2 and 3)
separated by a distance of at least 5 cm. It was, however,
desirable to have the vacuum chamber sufficiently small so
that a reasonable vacuum would be sufficient to reach the
region where gas effects become small compared to momentum
effects. This should begin to occur where the molecular
mean free path is of the order of the vacuum chamber dimen-
sions38., The equation for the mean free path, A, is given
by32

A = 1/Nga? (35)
where N represents the number of molecules per cm3 and 4
represents the molecular diameter which may be taken approxi-
mately equal to 3.1 x 10°8 cm. To find the pressure, P,

necessary in the vacuum chamber to attain a mean free path
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of the diameter of the chamber (~15 cm), the value of N from
Eq. (35) is found to be

N = 2,2 x 1013 molecules/cm3 . (36)
Since molecular density is directly proportional to pressure,
one may write

P/Patm = N/Natm (37)
where Paem i8 atmospheric pressure (760 mm of Hg) and Ny¢y
is the molecular density at STP which is ~ 2.7 x 1019
molecules/cm3. Substitution into Bq. (37) yields

P=6.2x 1074 mmof Hg . (38)
The value of pressure given in Eq. (38) represents the
pressure at which gas effects should begin to disappear.
Thus, with an instrument of this size the required pressures
appeared reasonable?o with the pressure range to be investi-
gated expected to be between 10~3 and 1076 mm of Hg. The
results which were obtained agree with this. These results
are discussed in Chap. IV.

7. Suspensgsion torque constant. The suspension torque
constant, k, was calculated from the manufacturer's value
and the measured length of the suspension wire. It was
found to be 1.17/117.0 = 1.00 x 102 dyne cm/rad. This
value was checked by calculating the period of the system
which is given by

T = 2¢(I/k)% . (39)
38
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Substitution of the calculated value of moment of inertia,
7.75 gm cm? (Appendix A) and the above value of k into
B3. (39) resulted in a calculated period of 174.7 seconds.
This compared remarkably well with the observed period of
175 + 1 seconds, verifying that the manufacturer's value
was correct.

It might be interesting to note that this instrument
would give a deflection of one radian for a pressure
differential of the order of 10~3 dynes/cm2, or 1076 mm of

Hg, on opposite surfaces of the vanes.
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CHAPTER IV

RESULTS AND DISCUSSION

1. Introduction. Readable deflections of the momentum
trangfer instrument were observed in this experiment. At
pressures below 5 x 10~5 mm of Hg, these deflections appeared
to be due mainly to the photon momentum of a pulsed laser
beam. The observed deflections were repeatable within the
accuracy of the experiment. 1In a series of laser fires,
with alternately positive and negative initial rotation of
the suspension, the changes in peak deflection were equal.
This was the necessary condition for deflection to be due to
momentum as shown in Sec. 4 of Chap. III, Theory of Instru-
ment Design. The procedure is described in Sec. 3 of Chap.
II. Verification was made that contributions to deflections
in the momentum region were not due to gas effects of small
time duration. This was done by observing instrument deflec-
tions over a pressure range in which the dependency of deflec-
tion on pressure disappeared as the pressure was reduced. As
an additional cross-check, deflections at the lowest required

pressure, 10~ mm of Hg, were observed for two values of
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initial peak deflection. These results experimentally
verified Eq. (30), the instrument sensitivity relation of
Chap. III.

The experimental results which were related to the
effect of pressure on deflection will be presented in two
parts, as "Low pressure results" and "Higher pressure
results”. The low pres: -¢ results are for the data taken
at pressures of 10~5, 4.5 x 105, and 8.2 x 10~5 mm of Hg.
These results constitute the major part of the data to be
presented and discussed. The higher pressure results are
for the data taken at 3.4 x 104 and 5.2 x 10~4 mm of Hg,
and are presented here to indicate how the low pressure
region was determined for performing this momentum transfer
experiment.

In Sec. 6 of Chap. III, a calculation was made of the
pressure corresponding to a molecular mean free path of
15 cm, the diameter of the vacuum chamber. This pressure,
at which gas effects should begin to disappear, was found
to be 6.2 x 10~4 mm of Hg. At a pressure just below this
(5.2 x 10~4 mm) definite gas effects were observed. The
pressure was then lowered to look for momentum effects and
the pressures, given above, were investigated.

It should be noted that it is sometimes assumed4l that

operation at mean free paths of the order of the instrument
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dimensions will give results free of gas effecta. Our
results indicate, however, that experimental verification
is required in experiments of this nature.

2. Low preasure resultgs. A typical plot of the
observed instrument suspension oscillations, in the low
pressure region, is given in Figs. 11A and 11B. The
pressure was 10~> mm of Hy, and the initial peak amplitudes
were relatively large. As shown, the first two cycles
represent the initial oscillation before laser fire, having
amplitudes of + 42.4 cm and - 43.2 cm. The first laser fire
was triggered as the suspension crossed the zero position
while rotating in the positive direction (vane 1, Fig. 9,
moving away from the laser). An increase in peak deflection
resulted with the new peak values of +47.1 cm and ~48.4 cm.
This calculates out to an increase of 5.0 cm, obtained by
averaging the positive and negative peak changes. The values
of "Vpy" and "Vgx" in Figs. 1l1A and 11B represent the inte-
grated output voltages of the entrance and exit photocells
respectively (see Fig. 3). The second laser fire occurred
as the suspension croased zero in the negative direction.

A reduction in peak amplitude resulted with the new peak
values of +42.1 cm and -43.4 cm. This corresponded to a

change in peak deflection of -5.0 cm, and reestablished the
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suspension to its initial condition of oscillation. This
result indicated that the deflection was due to an impulse
such as photon momentum change on reflection from the instru-
ment vanes. To determine the degree of repeatability of this
observation, the laser was fired four more times for alternate
directions of rotation of the suspension, and the data has
been plotted on Figs. 11A and 11B for all six laser fires.

The horizontal tangent lines in Figs. 11A and 11B are drawn
for the peak readings which were observed. These peak values
have been tabulated and are given consecutively in Table III.
In this table, the first column gives the peak number as
counted consecutively in time, The second column gives the
initial oscillation and the number of the laser fire for which
the peaks are being observed. The direction of rotation of
the suspension at laser fire is given as positive or negative
in the third column. The values of entrance and exit photocell
voltages are given in the next two columns. The positive and
negative peak deflections are given under the heading of

"peak deflection". The average values of the positive and
negative peak deflections are given under "Max" and "Min" of
the column "Average peak deflection". The averages of the
positive and negative change in peak readings are given in

the last column, and represent the changes in deflection due

45



NOLTR 63-82

TABLE 111, Observed pesk deflections at P = 10=3m of Hg
{Lerge initial amplitudes)

Direction vepn Vex Av peak Av change
Laser of Peak defliection in pesk
Peak fife rotation deflection Mex  Min defiection®
No. No. (+ or =} (voits) (volts) tem) tem)  (cm) {em)
| Initial - - «42,6
2 Oscile +42,5
3 lation -43,5%
4 +42,4
5 -‘3.5 *4204 -‘392 bkl d
6 | (+) 0.400 0.,22% +47,2
? «48,5
8 +47,0
9 -48.2 ‘f‘?o' "“80‘1 +50°
10 2 («) 0.390 0.21% -43,%
i +42,2
12 -43,2
l} "’4200 +‘2o‘ -‘30‘ -500
14 3 (+) 0.380 0.220 +47,3
15 «48,%
16 +47,2
7 «48 .4 +47.2 48,4 "500
18 4 (=) 0.390 0.220 -44,0
19 +42,%
20 44,0
24 *‘2.2 +42,.4 «-44,0 -4,6
22 5 (+} 0.385 0.215 +46,6
23 -48.|
24 +46,.4
2% -48,0 +46,5 48,0 +4,0
26 6 () 0.3%5% 0.19% -43,2
27 +41 .7
28 43,1
29 +4) 5 +41 ,A ~143,.2 -1.8

a
The averaqe of the values in this column is 4,7 cm with an average
deviation of 10,3 em,
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to the laser fires. The average of the magnitudes of the
values given in the last column of Table III (10~5 mm) is
4.7 cnm.

The observations made at 10”3 mm of Hg for "“small
initial amplitudes" following the same procedure, are given
in Table IV where the column headings are identical with
those of Table III. The average change in deflection was
found to be 5.5 cm, resulting in an average change at 10~5 mm,
of 5.1 cm. The mean deviation of these results was 1 8%.

Results were obtained following the same procedure at
the pressures of 4.5 x 10~3 and 8.2 x 10~5 mm of Hg. These
results are given in Tables V and VI respectively. The
average change in deflection at 4.5 x 10~ mm of Hg. calcu-
lated from the results given in Table V was found to be
5.0 cm. At 8.2 x 10~ mm, the average change was 4.4 cm.

3. Higher pressgure resultg. A typical plot of the
observed oscillations in the higher pressure region is shown
in Fig. 12 taken at 5.2 x 104 mm of Hg. As described in
Chap. II, the procedure in the higher pressure region was
to f£irst record the initial oscillation, as shown in Fig. 12,
then to fire the laser once with the suspension rotating in
the positive direction. It may be clearly seen from Fig. 12

that spurious gas effects control the instrument deflection.
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TABLE 1V, Observed peak deflections at P = 10~mm of Hg
(Small initial ampiltudes)

Direction V¢, Vex Av peak  Av change
Laser of Peak deflection in peak °
Peak fire rotation deflection Max Min deflection

No, No, (+or =) (volts) (volts) {cm) tem) _ {cm) Jem)

| Initial 00000000000 00000000s «9,.0

2 Oscill= +10.,0

3 lation -8.9

4 +|0.0 +'|000 '900 LRk
) { {+) 0.400 0.220 +15,9

6 -12,%

7 +15,.4

8 -12,0 +15,6 =12.8 +4,7
9 2 (=) 0.400 0.220 -8,0

0 +8,%

1] -8,2

12 +8,0 +8,2 =81 «6.0
3 3 {+) 0.405 0.230 +13.,%

i4 -14,%

% +13,1

16 =-14,2 +13.,3 <l4.4 +5,7
17 4 (+) 0.400 0.215% +19,3

i8 =17.9

9 +19.,7
20 ={7,.5 +19.% <17.7 +4,.8
21 5 (+) 0.400 0.225 +25.,0
22 «23.5
23 +24,2
24 -24,2 +24,6 223.8 4+5.5
25 6 (=) 0.410 0.23%5 «l7.6
26 +17.3
27 -17.7
28 +17.6 +17,4 =1747 6,6
29 7 {(+) 0.410 0.223 +23.9
30 -22,0
31 +23.9
32 =22.,0 +23,92 22,0 +5.4

® The evernge of the values in this column is 5.5 cm with an average
deviation of 0.5 cm,
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TABLE V. Observed peak deflecticns at P = 4.5 x 10~mm of Mg

Direction Ven Vex Av peak Av change
Laser of Peak deflection in peak
Peok fire rotation deflection Max Min deflection®
No. No. (+or -) (volts) (volts) lem) fem) __tcm) {em)
l Ini"a' [ E NN NN YNNI NN N NN YN N -400
2 Oscil- +2,3
3 lation 4,1 +2.3 -4 ,0 o
4 1 (+) 0.380 0.225 +6,7
5 «9.6
6 +6.8
7 =96
8 +7,0
9 -90‘ 4'608 '906 +5 .O
10 2 (=) 0.380 0.222 1Y)
i +2,0
12 1.5
13 +2.0 +2.0 1.6 =5.4
|8 3 ("') 00380 0.2‘0 "6.'
15 -8,
16 +6,1
7 -8,.4 +6.1 8.4 +4,.4
e 4 (=) 0.280 0.210 -4,
o +1,5%
20 -4,0
21 +1.9 +1.5 =4,0 -4,5
22 5 (+) 0.390 0.230 +6.8
23 -9,0
24 +7.2
25 «9.0 +7.0 =9.0 +5,2
26 6 (=) 0.380 0.220 -4,%
27 +1.9
28 -4,5
29 +1 .8
20 -d 2 +| .8 4,4 -4,9
3 7 (+) 0.390 0.230 +7.3
32 -9.7
33 +7.4
34 «9.6 +7.4 29,6 +5,3

a
The average of the values in this colunn is 5,0 cm with an average
deviation of +0.3 cm,
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TABLE Vi, Observed pesk deflections at P = 8,2 x 10~5 mm of Hg

Direction Ven Vex ' Av peak Av change
Leser of Peak defliection in peak
Peak fire rotetion deflection Max Min deflection

No, No, (+or «) (volts) (volts) tem) fem) (cm) {em)

I Initial s00000000000000000 000 +7.0

2 OSC“- -504

3 lation +7.0

4 «5,3 +7.0 =5.4 —-
5 ! {+) 0.370 0.220 +1 17

6 =109

7 +11.8

8 «10.8 +i1.8 =10.8 +5,.1
9 2 (=) 0.360 0.200 -1y

10 +7.0

| «6.4

12 +7.2 +7.1 6,6 -4,4
i3 3 {+) 0,365 0.200 +10.8

14 «10.5

15 +10.7

16 «10.,0

7 +10.5

18 «10,1

19 +1C.0 +10,7 «10.3 +3.6
20 4 {=) 0.370 0.210 «6.0
21 +4,8
22 5.5
23 +4.8
24 =5,1
25 +4.8
26 5,0
27 +4,5
28 -4,9 +4,7 <=5.3 5.4
2 5 (+) 0.385 0.215 +8.6
30 -9.5
31 +8,.7
32 =9.3 +8.,6 9.4 +4,0
33 6 () 0.390 0.210 «5.5
34 +4,5

35 «5.5
36 +4.3 +4,4 <55 -4.0
37 7 {+) 04390 0.215 +8.4

38 «10.0

39 +8.%

40 =9,.8 +8.4 9.9 +4.2

—————
S

8 The average of the values Qg this colunn is 4,4 cm with an average
deviation of +0.5 cm, S
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Although the initial rotation is in the positive direction
when the laser is fired, the first peak after fire is
decreased in amplitude,and a negative peak larger than the
initial value is produced. This indicates a long time
heating effect with a force direction opposite to that
expected for front surface heating of the vane. This effect
has been observed by others, and is generally referred to
as "spurious gas effects".42 A deflection, for the purpose
of this experiment, may be calculated from Fig. 12 on the
basis of the second peak (negative) after laser fire. The
difference between this peak and the initial negative peak
has been defined as the change in deflection. 1Its sign is
negative because of the reversing effect observed. At
3.4 x 1004 mm the average change in deflection for three
separate laser fires was found to be -6.0 cm. For three
separate laser fires at 5.2 x 104 mm, the average change
in deflection was found to be -9.0 cm.

4. Deflection versus pressure. The observed deflections
over the pressure range investigated are shown in Fig. 13.
The dependence of deflection change on pressure may be seen
to disappear as the pressure is reduced from 5.2 x 10~4 to
about 5 x 10~5 mm. Below this, down to 10~5 mm, the deflection

change remains constant independent of pressure. The recorded
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deflection at 10”5 mm, on Fig. 13, was calculated from both
the large initial amplitude data given in Table III and the
small initial amplitude data given in Table IV. The lager
crystal temperature and capacitor bank voltage were held
approximately the same for each laser actuation, as
described in Chap. II, in order to maintain constant laser
energy.

5. Deflection versus lager enerqy. Observations of
deflection change as a function of relative laser energy,
as measured by the entrance photocell (Fig. 3), are shown
graphically in Fig. 14. The procedure is described in
detail in Sec. 3, Chap. II, the main feature being that
each point was determined from an average of the deflection
changes due to a pair of laser fires. One laser fire is
triggered for a positive initial rotation, and the second
for a negative initial rotation with approximately the same
output energy for each pair. It may be geen from the curve
that below laser threshold43, there is no instrument deflec-
tion. Since there is no lagser energy, this is a reasonable
result. There is, however, some photocell voltage apparently
caused by the Xe flash tube. This may be explained by
referring to the experimental setup of Fig. 3. Note that

vane 1 of the instrument is further away from the laser than
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FIG.14 AVERAGE OBSERVED SCALE DEFLECTION VERSUS
RELATIVE INCIDENT ENERGY (PHOTOCELL OUTPUT)
AT PRESSURE = 10"®mm OF Hg
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the entrance photocell.44 Because of this additional
distance, a fraction of the diverging Xe flash tube light
may be reflected to the photocell with a negligible amount
of energy reaching vane 1 of the instrument. This would
result in some photocell current with negligible contribu-
tion to instrument deflection. To give some idea of the Xe
energy, other than the laser wavelength at (6943A), that
may affect the photocell, a plot has been made of the 925
photocell sensitivity superimposed on the No. 70 filter
response curve of Fig. 6. This is shown in Fig. 15. The
pass band at half power, as may be seen from Fig. 15, was
approximately 6700 to 9600 A. The photocell voltage of
0.12 volts (Fig. 14) may be considered, therefore, to be
in the nature of a bias which must be subtracted from all
photocell readings. This was further verified by the fact
that below laser threshold, although there were readings of
entrance photocell voltage, there were no exit photocell
readings. A corrected curve of deflection versus photocell
voltage is shown by the s0lid curve in Fig. 16. The dashed
curve is a replot of the observed results of Fig. 14.

6. Photocell calibration and comparigon. The relation
between incident laser energy on the vacuum chamber window
and photocell voltage may now be obtained by applying Fig. 10,

the instrument sensitivity curve drawn from Eq. (31), to the
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corrected curve of deflection vs photocell voltage, of

Fig. 16. The result is shown in Fig. 17 by the solid curve
which represents the photocell calibration by the momentum
transfer experiment. The dashed curve, shown in Fig. 17,
represents the photocell calibration using the calorimeter.
The same photocell correction described in Sec. 5 of this
chapter has been applied to the observed photocell curve

of Fig. 8, since the blackbody was placed in the same
relative position as Qane 1. In an attempt to correct

the energy collected by the lens window of the calorimeter,
a feature not present in the vacuum chamber window, a further
correction has been applied to the calorimeter curve. Wwhen
the photocell bias voltage was subtracted, the calorimeter
curve was shifted to start from the origin of the coordinate
axes. This corresponded to subtracting the small collected
energy associated with the photocell bias.

It will be observed that there is reasonable agreement
between the two methods below about one joule. Above this,
the calorimeter curve deviates appreciably from linearity.
As a result it indicates higher laser energies, for the same
photocell outputs, than the momentum transfer instrument.
This may be due to reduction in mass of the blackbody

material due to vaporization.45 Higher temperatures would
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therefore result, giving higher thermocouple outputs and
higher apparent energies.

According to the data there is a slight nonlinearity
between the photocell output and the deflection as indicated
in Fig. 14 and again in the momentum curve of Fig. 17. It
is reasonable to assume that this nonlinearity is in the
photocell, possibly due to the shadow of the anode on the
cathode.

From the momentum curve of Fig. 17 it can be seen that
for an entrance photocell voltage of 0.4 volts, the laser
energy incident on the vacuum chamber window was approxi-
mately 2.5 joules. To determine the laser energy which
results in this photocell voltage, the attenuation of the
optical system ahead of the momentum transfer instrument
must be accounted for (see Fig. 3). This attenuation, K,
may be found from the values given in Table I.

K = (0.71)(0.80)(0.865) = 0.49 (44)
The laser output, E, at VEN = 0.4 volts is, therefore,

E = 2.5/0.49 = 5.1 joules (45)
This was approximately the energy at which the laser was
maintained in obtaining the data on deflection vs pressure

in this experiment.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The results obtained in this work confirm that useful
measurements of the energy in a laser beam may be obtained
by reflecting the beam from its original path in order to
transfer the photon momentum to a calibrated mechanical
system operating on the principle of a torsional ballistic
pendulum. The use of a pair of reflectors provided several
advantages. The incident laser beam could be brought out
of the instrument after the double reflection and used for
a simultaneous experiment. In addition, the need for
pinning down the suspension was eliminated by the fact that
there was very little unbalanced force,or that nearly a
pure couple resulted which gave higher instrument sensitivity.
For high energy laser beam measurements, the instrument offers
advantages over the use of calorimeters since it does not
require long stabilization times, nor does it absorb the
energy, with good reflectors.

This has been demonstrated by the design, construction,
and operation of a reflecting vane measuring instrument having
a torsional ballistic element. The deflection of this element
was found to be proportional to laser energy after applying a

photocell bias correction.
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The instrument was designed and constructed on the basis
of calculations of the momentum transfer which were verified
experimentally. The change in peak deflection due to a laser
pulse was found to be independent of any rotational motion
present before laser actuation. This introduced a meagure-
ment simplification whereby damping out of the oscillations
between measurements was unnecessary.

The proper operating pressure in which to perform the
momentum experiment was found by reducing the pressure until
gas effects disappeared. An interesting gas effect was
observed which appears worthy of future research because of
its systematic behavior. In the region where gas effects
became negligible, it was verified that deflections were due
to the photon momentum of the laser beam.

For this instrument the calculated sensitivity was
2.55 cm/joule. Observed results indicated that this instru-
ment gave a more accurate measure of the energy than the
commercial calorimeter with which it was compared. It is
estimated that the measurements could be made to an accuracy
of £+ 0.04 joule. A detailed study of calorimetry problems
is suggested by the difference in the two methods. This

could well be another problem for future research.
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APPENDIX A

MOMENT OF INERTIA CALCULATIONS

Mass of each reflection vane . . . . . . . . 0.267 gm
Mass of wax joints . . . . . . . . . . . . . 0.015 gnm
Distance between centers of vanes® ., . . . . 7.40 ocm

Letting I; = The moment of inertia of vanes and joints
and M; = The mass of vanes and joints

mR? = [(2)(0.267) + (0.015) |(7.40/2)2
2

I

Mass/unit length of cross arm material (Al)P  4.48x1073 gn/cm

Length of Cross arm. . . . . « « o « « o o & 7.40 cm
Letting I2 = The moment of inertia of cross arm,
and M, = The aass of cross arm

I, = MyL2/12 = (7.40) (4.48x1073)(7.40)2/12
I = 0.15 gm cm?
Diameter of scale mirror . . . . . . . . . . 2.50 om

Mass of scale mirror . . . . ¢« ¢ « ¢« o o o o 0.267 gn
Letting I; = The moment of inertia of scale mirror,

and M3 The mass of the mirror
I, = Myr?/a = (0.267)(2.50)2/16
I, = 0.10 gm cm?
Letting I = Total moment of inertia of suspension,c
I=1;+1I,+1I3=7.50+0.15 + 0.10
I=7.75 gm cm?

2 see Figs. 1 and 2.

See Sec. 1, Chap. II.
€ The contribution of the vertical portion of the Al
structure has been assumed negligible.
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APPENDIX B

CALCULATIONS FROM CHAPTER III

Instrument sensitivity®
dg - do = 2(1 + I, ?)TyRDU/c (kI)* (30)

2[1+(o.75)2](o.92)(7.40/2)(200)(107)/(3x101°)(7.75x10'2)k

(1.56) (0.92) (7.40) (200) (10~2)/(3) (7.75)%

dg - do = 2.55 cm/joule (31)

Translational motion
Vy = (0.92)(107) (1 - 0.56)/(0.98) (3 x 1010)

(0.92)(0.44) (10-3)/(0.98) (3)

<
]

1.37 x 104 cm/sec. (32)

‘<<
n

2see Table II, page 34.
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NOTES

1 7. H. Maiman, Nature, 187, 493, (1960).
2 Raytheon Instrument Corporation.

3 Trion Instrument Corporation (later changed to Laser
Systems Center/Lear Siegler Corporation). The laser used
in this experiment was purchased from this company.

4 The commercial calorimeter used in this experiment
had to be replaced, for this reason, by the company from
which it was purchased.

5 Large Government and private industry expenditures
have been made for research of this nature.

6 3. c. Maxwell, Elec, and Mag. Vol. 2, lst ed.
(Oxford University Press, New York, 1873).

7 g, Bartoli, Sopra i movimenti prodotti della luce e
dal calore, (Florence, Le Monnier, 1876).

8 p. Lebedew, Ann. Physik, 11, 433, (1901).
9 E. P. Nichols and G. F. Hull, Phys. Rev., 5, 307, (1901).

10 5. Dp. Tear, J. Opt. Soc. Am. & Rev. Sci. Instr., 11,
135, (1925).

1 Tear used a silver vane torsion balance and attempted
to operate in a high pressure region.

12 mis was done by plotting high pressure “radiometer

deflections" vs "radiation pressure deflections" and assigning
"zearo pressure” to gzero radiometer deflection.

13 See reference 10, p. 136.

14 mme calorimeter used in this experiment was purchased
from the Trion Instrument Corporation (see reference 3).
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15 The vacuum deposition was performed in the Naval
Ordnance Laboratory (NOL) Glass Laboratory, which is under
the supervision of Mr. W. L. Clark.

16 4. v. Neher, Am. J. Phys., 29, 666, (1961).

17 Professor Karl F. Herzfeld made the suggestion to me,
for a nonmagnetic mirror, to induce eddy currents in the
aluminum for damping. Such an eddy current effect must
also be present in the gontrol of oscillation by the method
used in this experiment.

18 The wire was manufactured by the Sigmund Cohn Corpora-
tion, from whom this valuye was obtained.

19 See reference 3.
20 See reference 14.

21 Thig information was obtained through private communi-
cations with the Operations Manager of the Laser Systems
Center (see reference 3).

22 These values and the calculations are given in
Appendix A.

23 See reference 10, p. 136.

24 pefined in Chap. IV, Results and Discussion.

25 gee reference 24.

26 The positive direction of rotation has been defined
in thie paper as the direction of rotation for which vane 1
(Figs. 3 and 9) moves away from the laser. It has also been

defined on p. 17 with reference to Fig. 2.

7 This condition could be obtained with the laser crystal
at room temperature.

28 Thigs was done with the cooperation of Mr. P, R. Wessel
of NOL who made available his reflectivity apparatus for
these measurements.
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29 The Phillips gage was connected to a vacuum system
whose pressure readings were obtained from an ionization
gage which had been calibrated in that system by a McLeod

gage.

30 This approximation is correct, in this experiment, to
better than 1.7%, this maximum error occurring at a scale
deflection of 48 cm.,

31 See Appendix A.

32 See reference 18.
33 gee Sec. I, Chap. II, and Sec. 7, Chap. III.

34 gee Fig. 2.

35 See reference 34.

36 This value was measured at the same angle of incidence
as in the experiment, 45°,

37 These measurements are given in Appendix A.

38 . s. Taylor and S. Glasstone, Treatise on Physical
Chemistry Vol. 2 (D. Van Nostrand Company, Inc., New York,

1952).

39 mhis is for the simple case given by K. F. Herzfeld and
H. M. Smallwood in Eq. (11.2), p. 42, of the Kinetic Theory of
Gases Chapter of reference 38,

40 1t was not desirable to bake, or similarly heat treat
the instrument, for obtaining ultra-high vacuums.

41 J. J. Cook, W. L. Flowers, and C. B. Arnold, Proc. Inst.
Radio Engrs., 1693, (July, 1962).

42 See p. 136 of reference 10.

43
27.

This condition was with full pump energy. See reference

44 qmig additional distance was approximately 20 cm.

45 See Chap. I, and reference 4.
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