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S UMMARY

Donnell type equilibrium and stability equations are derived for stiffened thin conical sheils.

The stiffeners are considered closely spaced and are therefore assumed to be “distributed” over the
whole surface of the shell. In the proposed theory the stiffeners and their spacing may vary in any
prescribed manner, but here only equally spaced stiffeners are dealt with. The force — and moment —
strain relations of the combined stiffener-sheet cross-section are determined by the assumption of
identical normal strains at the contact surface of stiffener and sheet.

The stability equations are solved for general instability under hydrostatic pressure by the method
of virtual displacements. The solution used earlier for unstiffened conical shells, which satisfies some
of the boundary conditions of simple supports only approximately, is again applied here. The effect of
this incomplete compliance with boundary conditions is shown- to be negligible by consideration of
“boundary work” . The solution proposed for stiffenied conical shells involves the concepts of “correc-
ting coefficients” and minimization of corresponding “error loads”.

Typical examples are analysed and the effect of eccentricity of stiffeners is investigated.
Simplified approximate formulae for the critical pressure of frame-stiffened conical shells are also

proposed.
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(see Fig. 1).

distance between the rings (see Fig. 1).

defined by Egs. (97).

real displacement coefficients defined by Eq. (67).

expressions defined by Eqs. (96).

cross-sectional area of stringer or frame (ring stiffener), respectively.
complex displacement coefficients defined by Eqs. (46).

distance between the stringers at x = 1 (see Fig, 1).

wp. /6 , see Eq. (161).

real displacement coefficient defined by Egs. (46).

defined by Eqgs. (76) to (78).

Eh’/12 (1 - 13)

distance of the ceatroid of the stringer cross section from the shell

middle surface (see Fig, 1).

distance of the centroid of the ring cross section from the shell middle

surface (see Fig. 1).
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moduli of elasticity of sheet or stiffeners, respectively,
effective moduli of elasticity of stiffeners (see Section 16).
expressions defined by Egs. (128) to (142).

defined by Eq. (115).

Poy/Pers defined by Eq. (159).

shear moduli of the stiffeners,

thickness of shell,

moment of inertia of stringer or frame cross-section respectively, about

the line of reference (the middle line of the sheet).

moment of inertia of stringer or frame cross-section, respectively, about

their centroidal axis.

torsion constants of stiffener cross-section.
expressions defined by Eqs. (98).

correcting coefficients defined by Egs. (87) to (92).
spring constants defined by Eqs. (106).

a(x, ~ 1), see Egs. (161).

integers.

moments and forces prior to buckling.

additional moments and forces caused by buckling.
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total moments and forces during buckling,

moments and forces acting at the boundaries prior to buckling.
number of displacement terms .

expressions defined by Eqs. (69).

hydrostatic pressure, critical pressure of stiffened conical shell and

critical pressure of unstiffened conical shell, respectively,
critical pressure of equivalent cylindrical shell,

external loads .
radii of small or large end of truncated cone, respectively,
complex number , s =y + ingf

2

¢ 2
0+C0,

see Fq. (163) .

number of circumferential waves .

t/cos a, see Eq, (161)

expression defined by Eqs. (117) and (126).
displacement along a generator

non—dimensional displacement along a generator = u¥/a

total potential energy prior to buckling .

additional potential energy caused by buckling .
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v* = circumferential displacement

v = non-dimensional circumferential displacement = v¥/a

w* = radial displacement, i
|
|

w - non-dimensional radial displacement = w%/a |
1
!

x> = axial coordinate along a generator.

x = non-dimensional axial coordinate = x%/a

x, - ratio of the distance of the bottom of a truncated cone from the vertex,

to that of the top,
2* = radial coordinate,

2, % ~ distance of the centroid of the stringer-shell, or ring-shell combination

from the middle surface (see Fig. 1).

o = cone angle

B = n/ln x,, see Eq. (50).

y = defined by Eq. (56),= (1/2) [1 — v/(1 + ny,)]
€r €0 Vach = middle surface strains.

¢, = E,A e a/bD

¢, = E,Ae,a/aD

Moy = Byl /bgP
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12(1-3)E /)L, /b b® + (A, /b h)l(e, —2,)/n] I+ 12(z, /h)’ % , Eq.(155),
12(1-12)E, /E)L,, /2 h® + (A, /a,h) (e, — 2,)/A1 } +12(2,/h)? | Eq.(147),
changes of curvature and twist of the middle surface .

non-dimensional changes of curvature and twist of the middle surface
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padtan a/D

(1-vDEA /E b,h

(1 -2) E,A,/Eah

defined by Eqs, (64).
Poisson’s ratio.
circumferential coordinate .
(1-% E Al e/Eb ha
(1- %) E,A,e,/Ea ha

Subscripts following a comma indicate differentiation,




L. INTRODUCTION

In order to increase the resistance of shells to buckling, they are strengthened by stiffeners. In
this manner, the critical load can be increased several times by only little addition of material. It is
assumed that the buckling is of the general instability type, that is, the shell and its stiffeners buckle
together,

The stiffeners are considered closely spaced, and are therefore assumed to be “distributed” over
the whole surface of the shell. In the proposed theory, the stiffeners need not be equal and equally
spaced, but may change in any prescribed manner, The present report, however, deals with conical shells
stiffened by equal and equally spaced frames (rings) and stringers. This is the usual way of stiffening,
though not necessarily the optimal one. There may be some other law of stiffener distribution which
would yield maximum stiffening for a given addition of material. This optimization problem is not con-
sidered here, but could be solved by the proposed method of solution.

The relations between the strains and the internal forces and moments of the combined stiffener-
sheet section are found by the assumption that the normal strains, in the stiffener and in the sheet, are
equal at their point of contact, Thus, the eccentricity of the stiffeners relative to the sheet is taken
into account, The analysis permits the sheet and the stiffeners to be of different materials.

The middle surface of the shell (without stiffeners) is taken as the surface of reference. The stress-
strain relations in this surface are assumed as in an unstiffened shell.

It is assumed that for general instability a stiffened conical shell buckles in a mode similar to that
of an unstiffened conical shell, Hence, the displacements which were used for unstiffened conical shells
(Ref. 1) could be applied to the problem of buckling of a stiffened conical shell, These displacements
satisfy some of the assumed boundary conditions of simple supports only approximately, and imply fic-
titions elastic restraints. The effect of these restraints was, however, shown to be negligible (Ref. 2).

Here, another method is proposed to estimate the effect of the partial fulfilment only of these boundary

conditions upon the value of the critical load. The method is based on consideration of the “boundary-

work” — the work done by the internal forces and moments at the boundaries.

* |



The method of virtual displacements, used for solution of the present problem, stems from the

principle of virtual work, It only requires that the displacements fulfil geometrical boun dary conditions.
The displacements used here fulfil rigorously the boundary conditions of zero radial displacement, while
fulfilling only approximately the boundary condition of zero displacement in the circumferential direction,
A method of satisfying this boundary condition in general, although not for every term of the displacement
series, is then proposed,

For unstiffened conical shells the displacements solve the first two stability equations exactly,
In the case of stiffened conical shells, however, these equations are not solved exactly by them, This
occurs on account of the additional terms introduced by the frames and stringers, But the same displace-

ments may be used in the following manner. In the first two stability equations, the terms which do not

lend themselves to solution, are replaced by terms which do. The latter are multiplied by coefficients
called “correcting coefficients”. Thus, “corrected” stability equations, which can be solved exactly by
the displacements, are obtained. The original terms, removed from the first stability equations, and the

“correcting” terms, which replace them there, with opposite sign, are added. These sums are called

“error-loads”, The “correcting coefficients” are calculated by equating the virtual work done by the
“error-load” to zero.

In the analysis the “effective sheet length” is considered as a reduction in the moduli of elasticity
of the stiffeners.

A simpler approximate method of calculation is obtained by neglecting the eccentricity of the stif-
feners. Then, “correcting coefficients” are not-needed, and the calculations become easier.

A simple approximate formula for calculation of the critic-1 pressure of a frame-stiffened conical
shell, by consideration of an equivalent cylindrical shell, is proposed, This formula is based on a simi-
lar one for unstiffened conical shells,

Some typical cases are calculated by the above methods. It is shown that the effect of the “boun -
dary work” upon the value of the critical load is small. Frames (rings) increase the resistance of the
shell against buckling, under hydrostatic pressure, considerably. It is shown that the placing of the

frames is of importance. Frames on the inside of the shell yield higher general instability loads than

frames on the outside. Stringers are much less effective in stiffening of shells under hydrostatic pressure,




and the effect of their eccentricity is opposite; outside stringers yield higher critical loads than inside
stringers,

2. PREBUCKLING EQUILIBRIUM

The strain-displacement relations at the middle surface of a deformed conical shell used in the
derivation are those given by Love (Ref. 3).

€ = v'¢/x sina + u/x — wcota/x n
Yagp=V,x = v/ + u’¢/x sin g
The curvatures are defined as
Kx = w,xx
K¢ = w’x/x + W'¢¢/x2 sin2 a (2)

. 2 .
= W X —
Kedh ’x¢/ sin a w'¢/x sin a

These are the curvature displacement relations obtained by Seide (Ref. 4) by omitting the terms involving
the circumferential displacement v from Love’s definition, on account of their negligible effect in cylin-

drical shells and vanishing in the case of circular plates.

The analysis is written in non-dimensional form, and the non-dimensional distances, displacements
and curvatures are defined by the equations

X = x"‘/a

™
z = z*%/a Ky = &K,
u = u¥/e Ky = "‘;S
v = v¥/a Keh = ax:qs

w = w*/a

)




Virtual displacements are applied to a segment of the shell, which is in equilibrium, Hence, by

the principle of virtual work (the virtual work done by the stresses must be equal to the virtual work

done by the external forces and moments),

¢, X
0=50, =4{2 PN, 8, + Nygg 8egy + Nygg 87, = Myg8(x/a) = My 8 (g /2)
1 %1

+Mx¢0 5(K1¢/&) - quxo 5(K1¢/a) - (q adu
+ q¢a8v +q, adw)] a?xsing dxd ¢

e _ _ - -
_¢f2 {xa [Nx0 5(au) + Nx¢0 S(av) — M, 8(w’x)+Mx¢0 8(w’¢)/x sin a
1

+ 610 5 (aw)] l_ 2sin ad ¢

1

_ ’:f':’[ﬁqb0 5 (av) + N¢x0 5 (au) —M¢0 8(w’¢)/x sin “'M:ﬁxo 8(w’x)

+ Q¢0 Saw)] ?adx 4)

where the index zero indicates the state of the shell before buckling, and the barred quantities are the

external forces and moments acting on the boundaries,

It is assumed that Nx<;b is carried only by the sheet (i.e. the stiffeners do not transmit sheer).
|

Hence, it is assumed as in Ref, 4 that

Nxd) = Nd)x

The work done by the intemal forces Q_  and Q is neglected in the expression of the virtual

work, as the theory developed is a Donnell type theory.

_Substitution of Egs. (1) and (2) into Eq. {4), and integration by parts yields;

0-8U0=_ fz f2 ‘[(xNxo)_x/ax - N¢0/ax + Nx¢0'¢/ax sin @ + qx]Su
1 %1




+[N¢o'¢/axsina + (x2 Nx¢o).x /ax?+ q¢]8v

+[(x Mxo),n/azx—-M(ﬁo'x/azx + M¢o'¢¢/a2x2 sin? g
—(x Mx¢o)’x¢/a2xzsina + (x Mquo),qu/az x2 sin q
+Ngocota/ax + q 18wl ax sing dxdg

+ 1 Laxl(N g 7 Nyg) aBu + (N, gy = N, gg)abv - (M, - M) 5w )]
2

+ [(x Mxo).x - quo - Mx¢o'¢/sin a+ M¢xo'¢/sin a— ax 6:0
+ quSo.qS/si“ al a8w:]::j singdg
+ 7!(N¢o ~ Nyo) adv + (Ny, - Ny, odasu—(My, - Myo)8(w 4)/x sin a
1

+ [M¢o'¢/xa sin g — (x Mx¢o),x /ax + (x M¢x0),x /ax — GqSo

- P=p,
—M¢xo'x/a]a8wl adx

b=,
M M) 8wx=|x2 |= 2 M M, )abw ‘T"z I— 2
+ x¢ - x¢ a - ¢XO - ¢XO a

Eq. (6) yields the following equilibrium equations and boundary conditions :
In the shell

(xNxo)’x/ax - N¢o/ax + Nx¢o'¢/ax sing + q_= 0

N¢o'¢/axsina + (szquo).x/axz + qy = 0

(M) /8% = Mg /a%x + My /a2 2 sin? @

- (x Mx¢o),x¢/a2 x2 sin g + (x M¢x0),x¢/a2 x? sinq + N¢o cota/ax+q, =0

Along the circles x = x; and x= X,

©)

Q)

(8)

9




Neo = Nxo Nego = ﬁu;s.o Mo = My (10)
(M)~ My, = Mo g/sina+My o /sina=axQu,~M 4, 4 /sina (11)
Along the generators ¢ =¢, and ¢ =,
Ngo = ﬁq&o Ngyo = Njyo My, = l\_4¢0 (12)
Myo,g/asina = M, 00)  /ax + (xMy o) /fax = Quq + My o /a (13)
and at the comers of the segment
-M (14)

qufm = Mx¢0 qu)xo

The geometrical boundary conditions are not discussed here, as it has been assumed in the derivation

that the forces acting on the boundaries obey any given geometrical boundary conditions.

3. EQUILIBRIUM DURING BUCKLING

The equilibrium at buckling is obtained by consideration of the additional virtual work during buck-
ling. The displacements are now the additional displacements caused by buckling, and the prebuckling
displacements are assumed to be small so that also the additional displacements can be related to the

undeformed geometry of the shell.

The stretching of the middle surface introduces the following nonlinear terms, which have to be

added to the strains of Eqs. (1),
e = (w _)2/2

€ = (w'¢)2/2 x2 8in2 ¢ (15)

Yegp = ¥, w’¢/x sin a




The connection between forces and moments prior and during buckling is

N =N + N

) (16)
M

[
=
+
=

Where N’ and M’ are the total forces and moments during buckling, N, and M, are those
prior to buckling, and N and M are the additional forces and moments caused by buckling.

Now, if to the shell is given virtual displacements, the virtual work U done during buckling
must also vanish, since the shell is in a state of equilibrium. The internal forces and moments N,
and M, in Egs. (4) must be replaced by N and M from Egs. (16), and the nonlinear virtual work

done by the membrane forces prior to buckling Noo» N¢0

and NX¢0 ,

b, x
ASU= [ [ (N5 + Ny ey + Ny 8 yig) xa?sinadxdg (17)
¢ *1
must be added.

After Eqs. (7) to (14) are also taken into account, the expression for the virtual work during buck-

ling becomes :

b, x
0=56U=- f2 fzi[("Nx)x/ax - N¢/ax +Nx¢’¢/ax sin ¢] Su +[N¢’¢/axsina,
¢ x ’
+ (x2Nx¢)’x/ax2]8v + [(x Mx)’xx/a2x - M¢,x/a2 x (18)

+ M¢’¢¢/a2 x2 sin? g — (x Mx¢),x¢/a2 x2 sin a + (x M¢x)’x¢/a2 x? sin a
+ N¢ cota/ax + (xN_, W) /ax + (N(/{>0 w’¢)’¢/ax2 sin2 ¢
+ (ngb0 w’x)’¢/ax sin a + (qubo w’¢)’x /ax sin alSw}a® sinadxd¢

¢
+ f2{ax [N, adu+ N,gpadv -Msw )1+xM) ~Myg =M,y 4/ sin
b, e

+M¢x’¢/sina + Ny, axw o+ Nx¢0 aw’qs/sin aladw }_ 2sinad¢

xX=x 1




+?IN adv + Ny adu-~-M, 8w )/xsina+[M;  /axsina
< ¢ ¢ R br¢

- (x Mx¢)'x/ax + (x M¢x)’x/ax + N¢0 w’¢/x sin a + Nx¢0 w’x]aaw } 2adx

=0
x=x, ¢=¢, x=x, ¢=by '
+Mx¢a8w | | - M¢xa8w | |
X=X, ¢=¢1 x=xy ¢=¢1
Hence, the following stability equations and boundary conditions are obtained :
(xNx),x/ax - N¢/ax + Nx¢’¢/axsina =0 (19)
N¢’¢/ax sin a + (x2 Nms)’(;s/ax2 =0 (20)

(x Mx)'“/azx - M¢’x/a2x + M¢’¢¢/a2 x2 sin2 g - (x Mx¢)’x¢/a2x2 sin a
+ (x M¢x),x¢/32x2 sin a + N¢ cota/ax + (x NxO w'x)’x/ax 21

+ (NqSo w'¢)’¢/ax2 sin? a + (Nx¢0 w'x)’¢/ax sinag + (quSo w’¢)’x/ax sing =0

Along x=x, and X=x,

N =0 or u=0 (22)

Nx¢=0 or v=20 (23)

(x Mx)’x - M¢— Mx¢’¢/sin a+ M¢x,¢/sin a+ N_ xa w’x+aNx¢0w’¢/sin a=0 (24)
or w =20

M, =0 o w, =0 (29)

Along ¢ = ¢, and ¢ = ¢,

i
o

(26)

N¢=0 or v




N¢x =0 o u=0 27

M¢,¢/ax sin @ ~(x Mx¢),x/ax +(x M¢x )’x /ax + N¢o w'¢/x sin a + Nx¢o W= 0

or w=20 (28)
M¢ =0 or L 0 (29
and at the corners of the segment
M, =0
x¢
oo w=20 (30)
M¢x =0

4. FORCES AND MOMENTS IN STIFFENED CONICAL SHELLS

In the cross- section of the shell the strain is assumed to vary linearly as in Ref. 5,
e (2% = ¢ — 2%« /a
e (2%) = ¢y - 2*xy/a (31
Yagp (2%) =¥ — 22K,y /2
where z* is the physical coordinate.
" The stress-strain relations are:
0, (z) = [E/(1 =*)1[e (2) + v c¢(z)]

o4 (2) = [E/(1 —-vz)][c¢ (2) + ve (2)] (32)

rx¢(z) =[E/2(1+v)] Yxh (2)




if the stresses perpendicular to the surface of the shell are neglected.
For the stiffeners the following assumptions are made:
1. 'The stiffeners are ,,distributed’’ over the whole surface of the shell,
2. The normal strains ¢_(z) and € (z) vary linearly also in the stiffener according to

equations (31). The normal strains in the stiffener and in the sheet are equal at their point of

contact,

3. The stiffeners do not transmit shear., The shear membrane force N_ é is carried entirely by

the sheet.

4. The torsional rigidity of the stiffener cross-section is added to that of the sheet. (The actual
increase in torsional rigidity is larger than that assumed.)
Substitution of Eqs. (31) into (32), and taking into account the above assumption, yields the follow-
ing expressions for the normal stresses:

in the sheet

o,(2) = [E/(1 = v®)N e ~2*k /a + v(c¢ ~ 2%y /a)]

o4 (2) = [E/(1 - v2)] [c¢ - 2¥ky/a+ vie, ~ 2%« /a)] (33)
and in the stiffeners

0(z) =E ¢ (2) = E| (¢, ~ 2%« /a)

04(2) = Eye4(2) = E; (g~ 2% x4y /2) (34)

where E, and E, are the “effective” moduli of elasticity of stringers and frames, respectively, defined

in Section 17.
The membrane force N_ per unit length is:

+h/2
N =fo,dz* = [ o dz*+ (1/byx) [o,dA,
—h/2 Al

+h/2
=f [E/(1 =v»)1le, ~2*k, /2) +v (t’¢ - z* x¢/a)] + (1/bgx) [E (¢, ~ 2* &, /a)dA|
A

~h/2 1




= [Eh/(1-,2)] (sx + V‘qﬁ) + El A1 € /box - E1°1 A1 K, /byxa (35)

All the forces and the moments about the line of reference (the middle surface of the sheet) are

obtained similarly:

N, =[Eb/(1-v)] [e, Qg /x) + veg = X k, /x]

Ng = [Eh/(1-v%)] leg Mtp) + ve, ~ x, xgp]

Nx¢=N¢x = Eh yx¢/2(l+ V)

M, = CD/a)A + 5, /X)x, + vy =, €, /]

My = (-D/a)[(1 + n,,) Kp + VK, = Gy 4]
M g =&D/a)[QA =) + 9, /x] Kb

Mg, = (=D/a)[(1 =) + n,, I,

(37)
Where y,/x and p, are the increases in effective cross-sectional area of the shell due to
stringers and frames respectively, defined by
= Q=vHE A /Ebh
Hp=Q-2HE, A /Eah (38)

x,/% and y, arethe changes in extensional stiffness caused by the eccentricities of stringers and

frames respectively, defined by
x; =1~ v E Ale /E boh a

Xy =1 -1 E,Aje, /Eajha (39)
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N9, /%y Ngys M, /% and n,, are the increases in bending and twisting stiffness of the shell due to

stringers and frames respectively, defined by

101 = Eyloy /boD
M2 = Eylgy /2,0

%y = Gyl /beD

my = Gyl /a,D (40)
and {,/x and {, are the changes in bending stiffness caused by the eccentricities of stringers and

frames respectively, defined by
¢, =E Alea/bD
§2=I§2A2 eza/aoD (41)

Nothing has yet been said about the manner of distribution of the stiffeners and their magnitude.
The distance between the frames can be some function of x, and the magnitude of the stiffeners can be
a function of x and ¢. The changes in the stiffnesses in Eqs. (36) and (37) are then functions of x
and ¢. This woes not cause fundamental difficulties if these functions are known from the beginning.

In the following analysis, the frames are equal and equally spaced, and the stringers are equal.
The distances between the stringers are linear functions of x (b=Db_x), but this has already been taken

into account in £qs.(36) and (37). Hence, all the values in Eqs.(38) to (41) are constant.

5. INTERNAL FORCES AND MOMENTS AS FUNCTIONS OF DISPLACEMENTS

Substitution of Eqs. (1) and (2) into Eqs.(36) and (37) yields the additional internal forces and

moments acting during buckling as functions of the additional displacements:

N, = [Eh/(1 = oDI[Q + p;/x)u  + v(v,¢/x sin a + u/x — weota/x) - x, w _ /x]

e —————




Ny =[Eb/(1 - 2] [(1 + yz)(v,¢/x sina + u/x — wcot a/x) + vu - xp(w  /x

+ w,¢¢/x2 sin? gq)]

qus = [Eh/2(1 + v)] [v,x —-Vv/Xx + u,qs/x sin q] (42)

M_ =[-D/a}[(1 + 9,/ X) Wt v(w,x/x + w’q,m&/x2 sin2g) — Clu,, /x]

M¢ =[-D/a} {(1 + N55) (w,x/x + w,¢¢/x2 8in2 q) + v w

—42(V,¢/x sin @ + u/x — wcot a/x)]
Mx¢ = [+D/a} [ =) + g, /x] (w’x¢/x sin a — w’¢/x2 sin a)

M¢x = [-D/a} [(1 =) + Mg ] (w’x¢ /x sin a@ — w,¢/x2 sin a) (43)

6. TRUNCATED CONICAL SHELL UNDER HYDROSTATIC PRESSURE.

A “simply supported” circular truncated conical shell is considered, closed at the ends by bulk-

heads which offer no restraint against displacement or rotation of the generators of the shell while being

rigid perpendicular to them,

The load is uniform hydrostatic pressure acting on the shell and the bulkheads. It is assumed that

the stress state prior to buckling is represented satisfactorily by the membrane stresses

N, o, = «p/2)ax tan q

N¢0 = —paxtana

N, 4o=0 (44)




In the complete truncated conical shell the boundary conditions along the lines ¢, =0 and

¢, = 2w (which are the same line) are satisfied automatically, and the shell has no corners, For the
case of hydrostatic pressure, Eq, (18) becomes then

2w x

8U =~ [ [ {[(xNx)'x/ax —N¢/ax+Nx¢,x/ax sin gl Su+ [N¢’¢/ax sin a
0 1

+ (x? Nx¢),x/ax2] 8v+[(xM)  /a®x - M¢'x/a2x + M¢’¢¢/ax2 sin? q
- ("qus),xgb/az x? sin a + (x Mqu),qu/az x% sin a + Ny cot a/ax

-ptana(xw _/2+w -+ W, b/ sin? @)1 5w} a3 x sin adxdg

27

+ [ lax[N_adu+ quS a’o‘v-—Mxﬁ(w,x)] +[(xMx),x - M¢ -M
0

¢’¢/8in a

+ Mqu ¢/sin a-(p/2)a%x®tan a w,x] adwl “di adg =0 (45)

x=]

The critical pressure is obtained from the above condition that the virtual work must vanish.
After substitution of Fqs. (42) and (43), Eq. (45) becomes a function of the displacements only. Thus,

the problem reduces to finding displacements u, v, and w which satisfy Eq. (45).

7. DISPLACEMENTS.

The admissible displacements used in the solution of Eq. (45) are assumed as in Refs. 1, 6 and

7 in the form

u = J%¥m

N
b3

N
v =3m X B x®*costg
n=1

l A, x®sintg




15

N
w=3Um X C x®sintg (46)

n=]
Where Jm indicates the imaginary part of the expressions, A and B are complex coefficients

and C_ and t arereal. (t is the number of circumferential waves of the buckling deformation), s is

the complex number

8 = y+inf 47

y and B are real, and are calculated from the boundary conditions, n is a real integer, and
i=y(-1.

The displacements of Eqs. (46) solve the first two stability equations of an unstiffened conical
shell exactly, and the third stability -equation is solved in Ref. 1 by the Galerkin method.

In the case of a stiffened conical shell these displacements do not solve the first two stability
equations exactly, Nevertheless, since it is assumed that the form of buckling in general instability of
a stiffened conical shell does not differ much from that of an unstiffened conical shell, the displacements

of Egs. (46) are used also here.

8. EVALUATION OF B AND y BY COMPLIANCE WITH BOUNDARY CONDITIONS

The shell is assumed to be simply supported. At the end planes (x =1, x,), the radial displace-
ment w and the longitudinal moment M_ must vanish.

A typical term of the displacement series (46) is

w, = ImC_ x*sint¢g = JImC, xyHnB sin t¢
(48)
= Jm C x’ [cos (nBIn x) + i sin (nBln x)] sin t¢
Hence, its imaginary part is
(49}

w, = C_ x sin (nBln x) sin te
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Since In 1 =0, w vanishes identically at the small end plane (x = 1) of the cone. In order

that w should also vanish at the large end plane (x =x,), B must be defined as
B = n/ln x, (50)
From Eqgs. (43) the longitudinal moment
M, = -(D/a)[(1+ N1 /X)W oo + ¥V (w'x/x + w,¢¢/x2 sin? @) - ¢ u_ /x ] (51)

At the boundaries considered, w b is zero and u _ is very small and may therefore be

neglected. Hence, at x =1, x, ,
(1+19,,/x) WoxtV w'x/x =0 (52)

Substitution of Eq. (49) into Eq. (52) yields for the typical displacement term

x % sin @Blnx){[y(y-1)-n? ﬂzl (1+n,,/x)+vyl

53
v cos@BInx)n B2y~ 1) (1 +795,/x) +v] = 0 e
and after substitution of the boundary conditions
Qy=-Dd+ny,/x)+v =0 (54)
Simultaneous fulfilment of condition (54) at both boundaries is impossible. It can be fulfilled
only in one of the boundaries, say at x = 1, where Eq, (54) becomes
Qy-D({+9,)+v =0 (55)

Hence

y = (1/2) 11 = w/(1+ )] (56)




Equation (56) fulfils the boundary condition M_ =0 only approximately for stiffened shells. In
shells stiffened by stringers, small internal longitudinal moments act at the boundaries. However, in
shells stiffened only by frames, the equilibrium boundary conditions of zero longitudinal moments is

satisfied rigorously. Since in the absence of stringers

o1
4
and Eq, (51) yields, therefore,
Wox TVW /x =0
By substitution of Eq. (49) into Eq. (58) one obtains then for both x =1 and x =x,
@2y-D+v =0

and hence

y = (1-)/2 (60)

The same result could be obtained by substitution of N9y = 0 into equation (56). The value of y for

conical shells stiffened by frames only, is the same as that for unstiffened conical shells (Ref. 1), be-
cause the frames do not appear in the expression of the longitudinal moment, Hence Eq. (60) fulfils
the equilibrium boundary condition of zero longitudinal moments for unstiffened and frame-stiffened

conical shells,
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9. MODIFICATION OF THE FIRST TWO STABILITY EQUATIONS

At the boundaries w and 8w vanish. Hence also the boundary term multiplied by 8w in
Eq. (45) is zero. Substitution of Egs. (42) and (43) into the first two stability equations of Eq. (45)
yields:

27 x
8U = ~f fz{[Eh/a (1-v9] iu'"(lﬂul/x) + u'x/x—u(l+p2)/x2+(l—v) u,¢¢/2x2 sin? q
01
+(1+v) v'x¢/2x sin @~ [(3-1)/2+p,] v,¢>/1(2 sin a-x, w’lx"/x
+ Xy w'x/x2 + Xq w,¢¢/x3 sin? a~veota w /% +(l+p,) cot a w/x2} Su
+[Eh/a (1-v3)1{(1 + ) u'x¢/2x sin a + [(3-)/2 + y2] u,qs/x2 sin a
+[(l - 1/)/2]v"“r +(1-1) v, /2x+ (1+p,) v,¢¢/x2 sin? a
(1= v/2x®-x, w,¢¢¢/x3 sin® a - x, w'”f)/x2 sin a
- (1+ ) cot a w,¢/x2 sin a} 8v + [(xMx)'“/a2 x
- M(f)'x/a2 X+ M¢,¢¢/a’2 x2 gin? ¢ - (XMx¢),x¢/a2 x2 sin q
+ (XM¢X),1¢/a2 x2 sin a + cot a N¢/ax -ptana(xw, /2+wW

+ w,¢¢/x sin? @) ] ‘o‘w} a3 x sin a dx d¢

n x=x
+flax[Nxa‘o‘u+Nx¢a‘o‘v--M!8(wx)]l 2s'mad¢)=0 (61)
0 x=1

The displacements of Eqs. (46) do not solve the first two stability equations exactly. In order

to “correct” this, a set of terms, whose sum is zero, is added to Eq. (61). Then

27 x
8U = —f f2 {[Eh/a (l—yz)]l(1+pl/x)u.xx+u.x/x -(l+p2)u/x2+(l—v)u’¢¢/2x2 sin? ¢
0 1




+(1+v) V. /2% sin a- (B-1)/2+p,] v,qs/x2 sina-x, W, /X+X, w'x/x2

+ Xy w,(/)¢/x3 sin? g — v cot a w'x/x +(1+p,)cota w/x2} Su

2 2
+[Eb/a (1-v)1lg, UK ek =X X Wy Ky F X XV 07Ky
+ Xy W x/"ka‘xz w /X k3 +X, w’('b('b/k4 sin? ¢ xz--x2 w,¢¢/k4 sin? gx?] Su
+[Eh/a(1-)11(1+) u x¢/2x sina+[(3—1/)/.2+;12]u’¢)/x2 sina+(1-v) v'"/Z
+(1-v)v  /2x+(1 -+y2)v’¢¢/x2 sin2a—(1-4) v/2x%~x, w",¢¢¢/x3 sin® q
- Xy, W x¢/x2 sin @ — (1 + p,) cot a w’(/)/x2 sina}dv

& . 2 . 3

+[Eh/a (1-12)] -x, w,(,b(,b(/)/ks xzsm3a+,\/2 w’¢¢¢/k5x sin® a
~X, W x(,b/ks xsina+y, w x¢/k6 x sin a] 8v
+ [(x?vix)'xx/azx—M(X).x/a2 x+M(/)’¢)(./)/::x2 x? sin? a—(x ng{))'x(’é/.&xzx2 sin a
+ (XM¢x),x¢/32 x2 sin g +cot aN¢/a):~ptan a(xw'“/Z W
+w,¢¢/x sin? a)] 6w ; a% x sin a dx d¢

27 =%

+f tax[N a5u+N¢a8v—M 5 (w )1} 2sinaqu =0 (62)
x x x L |
0

The expressions multiplied by the seccond Su and 8v are these new terms, After rearrangement of

the terms of Eq. (62) one obtains :

27 x

U =~f fz{[Eh/a(1——;;2)]l(1+,,11/kl)u'”+u'x/x--(1+;12)u/x2+(1—-u)u’¢,¢/2x2 sin? a
01

2
+ (1+v)v.x¢/2x sin a—{(3 —»u)/2+;12]v,(l_b/x2 sina-x, xw /K, +x, W /kyx

+ Xg w,¢¢/k4 x?sin? gy cotaw /x+(1+p,)cot aw/x?} 8u




20

+ [Eb/a(1-vH)] [y Uyee/ X8y U e /Ky =X W /R4 xw,xxx/k:

+Xg W, /3 = Xy W [kgx + Xy W 4 /3P sin? a=x, W sk, x? sin?albu

+ [Eh/a(1—v) U +v)u /25 sina+[(3-1)/2+p,]u y/x2sina+r(1-vIv , /2
+(I=-v)v /2x + (1 +y.‘,)v'¢qs/x2 sin?a~(1-p)v/2x2 "sz,ququ/ksxz sin®a
=Xy W/ kg xsina ~ (1+ p)cotaw ,/x? sin alsv

+[Eb/a (1-1)][~x, w'¢¢¢/x3 sina + x, W s/ ks x% sin® o

~ X2 Weg/X8ina+ x, W _/kexsinal by

+ [(x Mx)'"/a“'x - M¢'x/a2x + M¢'¢¢/a2 x2sin2q ~ (1&Mx¢)'ms/a31:2 sin a

+ (quSx),qu/.a2 x2 sin g + cot a Nqs/ax — ptan a(xw’“/z W

+ w.quS/x sin? @) ] 8w} adx sin adxd¢

2n x=x
+ A[Iax[Nxa8u+Nx¢ a8v-—Mx8(w,x)] } 2sin adg =0 (63)
0 x=]

Now, in Eq. (63) the expression multiplied by the first Su is the first “corrected stability
equation“ and the expression multiplied by the second Su is the “error-load” of the first stability
equation. In the same way, the expression multiplied by the first 5v is the second “corrected stabi-
lity equation” and the expression multiplied by the second &v is its “error-load”, k) kg kg k, ke and
k, are the “correcting coefficients®, which will be calculated by equating the virtual work done by the
“error-loads” to zero,

As a matter of fact, for calculation of the “correcting coefficients” it is usually enough to con-

sider only the first term of the displacements series.
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10. SOLUTION OF THE FIRST TWO “CORRECTED” STABILITY EQUATIONS

The following notation is introduced for brevity:

m k= py,

Xl/k: = X2 X2/ kg = Xag

X2/ kg = Xa3 X2/ks = Xz6

Xo/ky = Xy (64)

Since the displacements of Eqs. (46) solve the first two “corrected” stability equations of Eq.(63)

exactly, they may now be written for these displacements as
(1'+#11)“,u ru /x — (L+py)u/x? + (1 -—v)u,¢¢/2 x2gin%a + (1+1)v , 4/ 2x8ina
-3~ y)/2+;12]v'¢,/x2 sin a~-x,, XW oextXog W /X Xgy w'¢¢/x2 sinZq

-veotaw /x + (1+p)cotaw/x2 =0
’X 2

(1 +) u,x¢/2xsin a + [(3—v)/2+u2]u,¢/x23in a+(l——v)v,“/2+(l- v)v,x/2x
+(1+ 412)v,q5¢)/x2 sin? a ~ (1-4) v/2 x2 — w,¢¢¢/x2 sin? o

= Xag W xgp/ X s)ina—(l+;12)cotaw'¢)/x2 sin g = 0 (65)

and af ter substitution of the displacements of Eqs. (46) into them one obtains

N
3 x*~2 sin t ¢{An [(Q4py) s (s=1) + 8 = (1- 1)t /2 sin? g

n={
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+B_ {-(l+ts/2sina + [(3-1)/2+p,1t/sin al
+ C, [=xy, S(5=1)(5=2)+ Xpy 8 = Xz t?/sin" @

~vscota+ (l+p,)cot a]}=0

M=z

x*—2 costcf:{An f(Q+)st/2sina + [3-)/2 + p,1t/sinal

-]
Il
et

+B_ [(1-1) s(s-1)/2 +(1~-1) 8/2 - (1+p )t2/sin? a = (1-v) /2]
+C, [xpg t3/sin% a -y, ts/sin a— (L+p,)t cot a/sin a]} =0 {66)
For Eqs. (66) to be satisfied, every term of their series must be zero. After division by the
factors x*—2sintg and x"—2coste, which multiply every term of the series in the first or the

second equation, respectively, algebraic equations are obtained. The solution of these algebraic

equations yields the coefficients A_and B, as functions of C_
An = (Arn + iAin)Cn

Bn = (Brn + iBin)Cn (67)

where A, A, ,B_,B, and C, are real coefficients defined by: -

3>
it

m

2 2
(M0 M, + N, Nl)/(M0 + No)

2 2
A, = (Mg N, = N M)/ (Mg +Np)

in

v e]
I

M, M, + Ny N/ + N2

ro

2 2
B, = (M N, - Ny M,)/(Mj + Np)

in

(68)




where

M, (n)
Ny (n)
M, (n)
N, ()
M, (n)

Mol (n)
M02 (n)

Moy (n)

I

[}

i

I

- ind
= d01/sm a

(1/sin? &) [n2 B2(_d02) + 7'2 doz + )’doa+ d04]

n 2
nt B dyg + 0% BT6y d -3y dyg —dgp) + b dgy vyt dy

+ y? d07 +ydgg + doo)

N,, (0) = @B /sin’ @) 2y d , +dy,)

3
Ny, () =038 (=4yd  —d )+nB @Ay d +3y2d+ 2ydy, +dg,)

M, () = (I/sin* o) (yd}; + d},)

) 2
M, (n) =(1/sin? @ [n2 8" (-3 yd , ~d N+ GAd  +y2d), rydg+d ]

4 2
My, (1) =n* B° G yd ,+d ) +n2B (=103 dy, ~ 62d, ~ 3yd g —d}) )

+(Sd), +yhd, +y d g+ y2d grydyyy 4 dyyy)
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(69

(70)

(71)

(72)




= ngBd,, /sin*a

N,, (n) = (1/sin? @) [n® B3(-d;3) +n B3 y? d,+2 ydy +dpl

it

5 3
Nig( =0%87d;, +0°8 (-10%d,, —4yd,, - d,,)

+n B(5y4d,, +4,y° d ,+ 352 dig+2yd o+d,,) (79
M,, (n) = d,, /sin® a
2
M,, (n) = (1/sin% q) [n2 B (=dy) + (Y2 dy, + ydyy + d, N
7 4 2 ;
My, (n) = (1/sin &) [n* B dy + n2 B (-6 y? dy - Jydy - d,,)

+ O dpg 4 ¥ dyg + P dy, 4y dyg + dyy)] (74)

N“ (n) = (n B/sin3 qa) (2yd22 +d,,)
Ny (@) = (1/sina) [n% B° (4 y dy = dpe) +n B (43 dyy + 352 d,

+ 2yd,, + dp)l (75)

d = (- Q+p)

dgy = 2v =200+ 1) L4 ;)
deg = 2py, M+ )
dgy = ~201=1) (L4 )

dg = Q=) (Lap)

d ="(1-V)#11l
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dyp = Q=) )y + g, + 2

dyg = (l—v)pu

d09 = (1~V)(1+ﬂ2)

dy = =@+) x,
d,, = —(1+;42)2)<24 +(B-p+ 2;42))(%
dg = =20 +p,) x

diy = 6L+ p)x, + M-y, + (1 + V) xy,
dig=-4+p,)x, + 20+ o) Xpg = B =+ 2u,) xp + (1-0) (1 +py)cot a
dig = -y, - Q-1+ #y) cot a

dy = A=y,

dlB = ‘3(1“’)X12

dg = A=) x,, (=) xy + v =3)cot a
die =30 - W) x, ~Q-) A+ n,) cot a

A= =2 =)y, + (1= V) Xy — vl =) cota
dip = A=) A+ p)cota

dyy = A= wxy

dpg==2( 4 ) xy

(76)

(77)




dyg = 24 X9 - A+ )y, - (1 - )y

dyy = =842y, )x,, + 2(1+ Hy )Xo » (1-3) (14 p,) cot a

dpg = - +v) ),

dyg = 2C2v— ) x5 + 2 x5 {1 + )

dy, = =24, Xy + (T-5v+6u)x),, + (1+1) X3
+ [2Q+ ) A+ py) = (1 +1)) cot a

dpg==2u;, (1 +pcota - 2B -v+2p) x, + B-v + 2p,) X 5
= 214 ) xps + A=) (M~ v + p,)cot a

dyy = (1-1) (1 4+ p,) cota (78)

Now, since

x* = x¥*1B _ x¥[cos (nBlnx) + i sin (nBlnx)] (79

the displacements become, after substitution of Eqs. (67) into Egs. (46)

N
u=23m3 C (A, +A,)xY[cos (nBlnx) + isin (nBlnx)]sinte
n=]

N
ve=mZX C (B, +IB, )x¥[cos (nBlnx) + i sin(nBlnx)]cost
n=I

W= Jm
)5

C,x¥ [cos (nBInx) + isin (nBlnx)] sint g (80)

iMz

The imaginary part of these equations is
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N
u=sintg X xV[A sin(@mBlux)+ A cos (nBlnx)]C_
n=]
N
v=costp £ x¥[B_ sin(nfBlnx) + B, cos (nBln x)1C_
n=}
N
w=sintg X x¥{[sin(nBlnx)]C, (81)
n=]

where all the values are real.

The three displacements are thus expressed as functions of one set of real arbitrary coefficients

C,. Hence the variations of the displacements are

N
sintgp = xV [Am sin (n Blnx) + A,

Su = n 08 (nB1n x)] 8C
n=}
N
8v =costp X x¥[B, sin(nBlnx) + B, cos(nBlnx)] 5C,
n=}
N
Sw = sintg E x¥[sin(nB1nx)]6C, (82)
n=]

1. CORRECTING COEFFICIENTS

In Section 9 “correcting coefficients” were introduced which then, in Section 10, permitted the
expression of the u and v displacements as functions of the radial one, w. These “correcting coef-
ficients” will now be evaluated by equating the virtual work done by the error-loads of the first two sta-
bility equations of Eq, (63), to zero.

2

2
0 == f fUPh/s oDl b /x = w Sy = Xy W /% g X /K
Sl

+ Xg w’,‘/x2 “ Xy W /Ky X+ sz,quS/xa sinza-xzw'qsqs/k‘ x?sina] 8u
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+[Eh/a (1-23)] [-x, w'¢¢¢/x3 sin3 a + XaW s ks x2sind ¢

- X, w,ws/x2 sin a + x, w’x¢/k6x sin aldv}iadxsinadxdg (83)

If all corresponding pairs are equal to zero, the entire Eq. (83) vanishes too. The “correcting

coefficients” may be calculated in this manner. For example, for k, one obtains:-

27 x

- f fz[Eh/a(l—vz)] [u’" #1/""’”,11 pu,/k, Juad xsinadxdg =0 (84)
01
27712
[ fu,, uxdxde
o1 '
k, - (85)
211:2
[ fu, ,udxde
o1 '

Similarly the remaining “correcting coefficients” are obtained: -

[

‘ﬂx2 ,
[ [w,  ux*dxdd
l‘2=0 1
27 x,
[fw
1

’,xxx
0

udxdg

27 x

f szxudxd¢
o1’
k, =

2 1,
[ [ (w, /x)udxd¢
o1
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2ﬂx
f s F (v gg/x)udxdg
k = P

4
21'x

f f(w¢¢/x2)dxd¢

2ﬂx

f f(w¢¢¢/x)vdxd¢

k5=

2ﬂx

f f (w ¢¢¢,/12)V dxd ¢

21'x

fr cp v dxd
; W¢VX¢

ko=

277x

I [(wxqs/x)vdxdqs

0

Substitution of the displacements, Eqgs. (81), into Eqs. (85) and (86) yields:

M=z
M=z

2y—1 1
1 Cn Cm [Il (n’m) Acn Arm + I:y_ (m’n) Acn Aim + I: (n m)A
m

k. = Ee—— o e W e . S

dn e

-]
Il
—

Mz
M=z

2y—-2 2y—-2 .
Cn Cmul (n’m) Acn Arm + Izy_ (m'n) Acn Aim + I:y‘—z(n’m)A A +I

1 dn’rm

]
U
—

M=z
M=z

im
=1

»s
]
I
—
2

2y~1 2y~1 -1
CoColly (am)ag, A+ 1 (mma, A+ 1Y (a,m)b, A+ 12 (a,mb

(86)

(n m)A

dn iln

e (1)

(n'm)AdnAim]

3n im

M=z

Im=1

n

N
2 29~3 — e
2 C,C 07 (aymay, A+ 1, (ma)a, A + L (amyby A N

-(88)
(n,,m)b'\3n B
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N N
2y~1 1
T 2CC, [I!y— (n,m)yA, + I:y—_ (m,n)yA, + I:y—l (nm)nBA_ + I:Y—1 @,m)n BA, ]
n=1m=1
k o=
3
s 22 22 2y--2 2y~2
2 2C,C. 07 "(amyA +L" (mn)yA+L" (amnBA _+17 (a,mnBA ]
n=1lm=1
N N
2y—1
25 CC 0 amA, + 1 (mn)A,,]
K n=1m=1
4 =3
3 E 2y~2 2¥2 (m,n)A, . ]
2 2 CC IO "(mA +], N m
n=1m=l
N N
$ % CC, (1Y '(mm)B,, + 1 (mn)B,] -t
n=1m=1
k, = =
5
N N 2y-2 2y-2 2y-2
=z CC, (1) (amB_ +1" (mn) B,.1 Ky
n=1m=1
; N 2y-1 2y~1 2y~1 2y~1 2y-1
5 CCI,° (mmyB +I," (moyB +1," (amnBB _+I" (@mpnBB, K¢
n=1lm=]
k = =
‘ g N 2y-2 2y~2 [2r-2 e B 2y
2C,C " (amlyB +I, (mu)yB, +1,"  (a,mpBB_ +I (n,mn@B, Ksy—
n=1m=1

(89)

(90)

1)

(92)

It is possible to combine several correcting coefficients in order to reduce the number of coef-

ficients, For example, the coefficient k, was found, during the calculations, to be very small.

Hence, it was combined with k. and redefined as

From Eq. (83), one obtains then

(93)
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k, = (%4)

and finally

(€ /sin? @) k[~ K2

keo = (95)
(t2/sin? @) ki o k2T

The various terms which appear in Eqs. (86) to (94) are defined as follows:-

Ao = Iyly-1 - n28%1A - nBQ2y-DA,
A = [yy-1 - n? leAu. +08Q2y~DA_ (96)
a'2n = y()"'l) - n? B2

b2n = ﬂﬁ(2y-—1)
8, = yly-1D(y-2) -2 8% (3y-3)
b, =nBBy%2 »6y + 2 - n2 G2 97

I (8, m) = <k sin @ B Inx) sin (m 8 lnx)dx
1

1 1

= (/2 (k+ D) [1 -5yt

[(n+m)2 Br+(k+ DT T (n—m)? BT+ (x+ 1)2]
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I: (n,m) = }2 xX cos(n Blnx) sin (m Blnx)dx
1

n+m n+m m-—n

= (/2B -x (D . ]

(n+m)? B2 +(k+1)2 (m-n)2B2+(k+1)?

I: (n,m) = J}zx" cos (n B Inx) cos (m B Inx)dx
1

K+1 n+m 1. 1
=(1/2) (x+ 1) [x, (1) -1]( + 1(98)
(n+m)2 B2 + (xk+ D2 (n-m)2 B2 +(xk+1)?

The physical interpretation of the “correcting coefficients” is that they introduce artificial ties
between the displacements u, v and w, which reduce the degrees of freedom of the shell. The shell
is thus artificially stiffened and the critical load obtained is higher than the actual one. For calcula-
tion of the correcting coefficients, the first term of the displacement series, which represents the domi-
nant component of the buckling mode under hydrostatic pressure, is usually sufficient. If the first ap-
proximation yields the required accuracy, the correcting coefficients have no effect on the critical load.
Since addition of the second, third and higher terms of the displacement series only improves the one-
term solution, the increase of the critical load due to the correcting coefficients must be negligible.
B_,and B_ which appear in the right

It should be pointed out that the coefficients A_, A, ,

side of Eqs. (87) to (92) are themselves functions of the correcting coefficients. Hence an iteration
procedure is required. One first assumes values for the correcting coefficients, and after calculation
of the critical load checks if they were assumed properly. If large differences are obtained, the critical
load has to be recalculated with the new correcting coefficients. Since the requirement of zero virtual
work done by the error-loads of the two stability equations is not a mandatory requirement, but is only
a means for improvement of the accuracy of the solution, the correcting coefficients need not be deter-
mined very accurately, The correcting coefficients can, therefore, be calculated with the coefficients
A A, B, and B, obtained from the approximate solution given in Section 15, where the latter
coefficients are not functions of the former,

Although the use of the correcting coefficients introduces artificial ties between the displacements

-



u, v and w, these ties are not far from the actual ones, In Ref. 13, the authors have shown that the
rigorous solution of the Donnell type stability equations for an unstiffened cylindrical shell under
hydrostatic pressure is valid also for those of a stiffened cylindrical shell failing by general instability,
since the behaviour of a stiffened cylindrical shell is similar to that of an unstiffened one, It is reason-
able to assume that the same will occur for conical shells. Hence one may expect that the buckling dis-

placements of unstiffened conical shells will be suitable for the case of general instability of stiffened

conical shells, However, though these displacements solved the first two stability equations

exactly in the case of unstiffened conical shells, they do so in the case of stiffened conical shells only

after the first two stability equations have been “corrected” slightly by the correcting coefficients.

12 BOUNDARY CONDITIONS

The buckling displacements have to satisfy the following boundary conditions :

a, Geometrical boundary conditions

W= 0
at x=1 and x = x, (99
v=20
b. Equilibrium boundary conditions
N, =0
at x = 1 and x= x, (100)
M = 0

x

The displacements of Eqs. (46) do not fulfil all the boundary conditions. In Section 8 the values
of y and B were determined from the compliance with the boundary condition of zero radial displace-
ment, and also of zero longitudinal moment, when the shell is stiffened by rings only. The displacements
do not fulfil the boundary conditions of zero circumferential displacement and of zero longitudinal normal

force. In case of stiffening by stringers, the longitudinal moment in the boundaries is also not zero.
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Hence in spite of the requirements of Eqs. (99) and (100), the displacements yield

v£°0

[
]

Nx;éO at x =1 and x 5 (101)

M_£0 !

In order to evaluate the effect of this non-compliance with boundary conditions upon the critical

load, modified boundary conditions were proposed in Ref. 1. The ends of the shell were assumed to be

elastically restrained. For a stiffened conical shell, with such modified boundary conditions, the for-
ces and the moments appearing in the elastic supports are equal to the internal forces and moments

acting at the boundaries. The restraining forces are obtained from Eqs. (43). At x =1 and x = x

2
Nx = [Eh/(1-H)]1{Q + ul/x)u,,K + v (V,qb/x sin qa + u/x — w cot a/x) — X1 w,“/x] (102)
N,y =[Eh/2(1+W] v, ~ v/x + u y/x sin o] (103)
M, =~D/a) [+ ng /)W + vlw /x4 W 4g/x? sin? a) - {u /x] (104)
The spring constants of the elastic supports are defined as
k, = N, /hau (psiper inch)
k, = Nx¢/hav (psi per inch) at x=1and x=x, (105)
k = 6M /b3 w , (psi per inch)

Hence for x = 1, and x = X,

N
Z C ocos(mBmx)lyA, +nBA (l+p,/x)-v(tB, /sin a~A, )-x,x%08(2y-1)]
k 1 n=1

u

E  (1-12)ax

N
2 C cos(nBlnx)B,
n=]
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N
X C ocos(nBlax)[B, (y~-D)+nB8 B, +tA /sinadl
o =]

K, 1
E N
20+ vhax %1 C, cos (nBInx)B,
N
21 C, cos (n Blnx)[n B (2y-D(+ny /x)+vn B¢ (A, +n B A )]
k 1 ==
E 2(1-1)ax

B
Il =

C,cos(nBln x)np
1

(106)

In order to compare the magnitude of the spring constants for stiffened shells with those for un-

stiffened ones the following cases are considered:

a = 30° a = 57.59” h =01 x, = 1.5

Shell Type A/bh | e /b 121, /b h3 A,/a h e /b |121,,/a, h3
a, unstiffened - - - - - -
b. stiffened by intemal frames - - - 0.1471 |+ 1.653 0.7819
¢, stiffened by external frames - - - 0.1471 | — 1.653 0.7819
¢ ::cf:,:i,l:; ,f,;agr?::téz;th el | _ - - 0.1471 |+ 1.653 | 0.7819
e. stiffened by internal stringers | 0.1471 |4 1.653 0.7819 - = _
f. stiffened by exteral stringers | 0.1471 [-1.653 0.7819 - — -

Taking v =0.3 and n = 1, one obtains at x = 1 (where the largest values occur);
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TABLE IL
Shell a b c d € f
K, Z/E - 0.0059 | —0.0056 | -0.0071 | —0.0061 | —0.0056 | — 0.0048
K, /E —- 1.43 - 2.16 - 113 - 157 -1.42 - L71
K./E - -~ - - - 0.0052 | +0.0027

The comparison shows that the magnitudes of the spring constants of unstiffened and stiffened
conical shells are of the same order. Since the values of k, are very large, the solution approaches
the realistic boundary condition of zero circumferential displacement (v = 0). The influence of k, upon
the critical load was shown in Ref. 2 to be negligible.

Another method for evaluation of the effect of the non-compliance with the boundary conditions and
the resulting reduction of the critical load is proposed here.

In the expression of the virtual work during buckling, Eq. (61), the following integral appears.

an
+ Of tax[N_adu + Nx¢a8v - MxS(w'x)]

T2 sinadg (107)
x=1

This is the virtual work done by the internal forces and moments appearing at the boundaries, or
the “boundary work”. Since the internal forces and moments at the boundaries are equal to the forces
and moments acting upon the assumed boundary springs, the “boundary work” is equal to the work done
by these fictious springs. Now by calculation of the critical load with or without the virtual work done
by the “springs”, the effect of every “spring” separately, or of all the “springs” together, can be
evaluated, For typical shells, stiffened by stringers, the effect of M, (k,) was found to be less than

0.2%. This is not surprising since as a result of the definition of y, given in Eq. (56), the longitudinal

moment M, at the boundaries is nearly zero. The effect of N, (k,) upon the critical pressure p_, is

’-#.—
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the most pronounced, being 1% of p., for short shells, and 3% — 4% for long ones. It is interesting
to note that the effect of N (k) isindeed small, as was assumed in Ref. 1, being less than 1% for
both short and long shells.

It has been shown in Ref. 14 that by the method of virtual displacements the equilibrium boundary
conditions are fulfilled for the complete displacements, although every term of the infinite displacement
series does not fulfil them. Hence, the magnitude of M, and N_ at the boundaries, for every term, can
only affect the rate of convergence, and not the solution itself, if their “boundary work” is taken into
account,

The method of virtual displacements requires that the displacements fulfil the geometrical boundary
conditions, The non-compliance of the condition of zero circumferential displacement at the supported
ends has therefore to be looked into. It should be noted that although v does not vanish at the bounda-
ries, it is nearly zero there. In order to show this, the circumferential displacement of a typical shell,
shell (b), has been computed. Minimum p_  appears when the number of circumferential waves t, is

10. Then
v, = cos (10 ¢) x0:35 [_0,0818744 sin (3 Inx) + 0.00065850 cos (B1Inx)]C,

v, =cos(10 ) x2:35 [ ~0.07556033 sin (2B 1n x) + 0.00010874 cos (281n x)] C2 (108)

From the above equations it can be seen that V..ax 3t the boundaries is only about 1/100 of
Voax 2Ppearing in the shell. Nevertheless, the exact effect of the displacement v at the boundaries
upon the critical load can be estimated only by consideration of the “boundary work” of N_. Such an
analy sis shows that the effect is less than 1%,

It may be concluded, therefore, that the boundary conditions applied here for circular conical

shells stiffened in two directions, differ only slightly from the usual simple support conditions, and

Egs. (99) and (100) are satisfied with sufficient accuracy.




13. COMPLIANCE WITH BOUNDARY CONDITION OF ZERO CIRCUMFERENTIAL DISPLACEMENT

The effect of approximate compliance only with the boundary condition v =0 on the critical
pressure is very small. However, if required (for example for some other type of load), it is possible to
fulfil this boundary condition for the complete displacement although not for every term of its series.

Then, though

vn+0 at x =1 and x=x

2

one can prescribe

N
v=2%v =0 at x=1 and x =x, (110)
n=]
From Eqs, (81) the displacement v, at the boundaries is:
Va =costg x¥B, cos(mBInx)C, at x=1 and x=1x, (111)
If
¥ B, cos@gBlnl) = B,
in in
Y
X, Bin cos (n 8 In x2) = Bjn (112)
one obtains
v, =cost ¢ B, C at x =1
V, =costg B, Cat x =x, (113)

and the boundary condition, Eq, (110) becomes
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3B C =0 (114)

Egs. (114) represent the necessary connections between the coefficients Cn for the compliance
with the boundary condition of zero circumferential displacement., Hence, now not all the coefficients

C, are arbitrary. It may be assumed that the last two coefficients C and Cy are functions of

N-1
the other N -2 arbitary ones. The solution of Eqs. (114) yields then

N-2
CN—I = nE-—-l in Cn where Ein

gin (Bin ’ B]n)

and

N-
Cy = 3
o

2

. 8jn C, where 8in = Bjn B, » Bjn) (115)

and the radial displacement can be written as

N-2 N-2 N-2
w = sint g {E x sin (nBlnx)C + x sin [(N~ l)Blnx] Z  Bin C, +x sm(NBlnx)Z gan ]

Since one can also obtain u and v in a similar manner, the displacements become

smtng x{[A sin (n B1nx) + A, cos(nflnx)l

u =
+ B LAy sin [N-1,Bln x) + A, |, cos[(N-1)81n x1]
+ g, [Aysin(NBlnx)+ Ay cos (NG In x)]} c
N-2
v =

costg = xy{[ B, sin(nBlnx)+ B, cos(nglnx)
n=1 '

+ 8 [Byn_py sin [(N-1) B la x] + Byn_p) cos [(N-1)8 In x]}

+ g, [Byy sin (N 81Inx) + B,y cos(NgIn x)]}C




N-2
w=sintg 3 x” {sin (nBlnx)+ g, sin[(N-1)BInx]+g, sin(NBInx)]C (116)
n=]

Where all the N-2 coefficients C, are arbitrary.

The displacements given by Egs. (116) fulfil all the geometrical boundary conditions of simple
supports. Every term of the displacements fulfils the boundary condition of zero displacement in the
radial direction (w = 0), and although not every term fulfils the boundary condition of zero circumferen-
tial displacement (v = 0) the whole series does.

By substitution of Eqs. (43) and (116) into Eq. (63), and integration (with the “boundary work”
included) one obtains, since the first N—2 coefficients C, are arbitrary,

N-2
_5.1 C,[T@m)+g TEN-1,m)+ g, T(N, m)

+ gimT(n, N-1) + g, 8n TON-1,N=-1) + &in &im TN,N-1)

* Eim T(n, N) + 8in 8jm T(N-1,N) + 8in 8jm T(N,N)]1=0

(m=1to N-2) (117)

where T(n,m) is the virtual work, multiplied by some known coefficient, n denotes the stress state
and m the state of deformation. The lowest eigenvalue of the determinant of the coefficients of C,
of Eqs. (117) yields the critical pressure for the case when also the v =0 boundary condition is ful-
filled.

The above solution can be expressed in a more general form with the aid of Lagrangian multi -

pliers,

Since now not all the coefficients C, are arbitrary, substitution of Eqgs. (43), (81) and (82) into

Eq. (63) yields

N
2 C, T(nm8C, =0 (118)

I1m=1

I M2
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To fulfil the boundary condition v = 0, the coefficients C, and their variations must be related

according to Eqs, (114), or

5C =0
N
¥ B,_sC =0 (119)

Multiplication of Eqs. (119) by Lagrangian multipliers and addition to Eq, (118) yields

N N N N
nEl mE=l G T masC, + Aim2=l BindCu+y m2=l B, 5C, =0 (120)
and then
N N
mil 5C_ [n§1 T@m)C, + 3B, + 5B _1=0 (121)

By proper choice of the Lagrangian multipliers A and ) the coefficients of 8§ Cy_, and
8 Cy will vanish, Since the remaining variations & C,, are independent, their coefficients must also
vanish, Thus, one may consider all the variations & C, in Eq. (121) arbitrary. Hence, Eqs. (121)
and (114) yield

N

n2=1 CaTem + 5B, + AB, =0
N

nil B, C =0

N

I B,C=0

(m=1 to N) ‘ (122)

These are N + 2 linear algebraic equations with n + 2 unknowns: C,(n=1toN) A and A

P
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Again, the lowest ecigenvalue of the determinant of the coefficients of C.. A, and A’, of Egs. (122)

yields the critical pressure, for a shell which fulfils also the boundary condition of zero circumferential

displacement.

4. S OL UT I ON

By substitution of Eqs. (43) into Eq. (63) and taking into account that the first two “corrected”

stability equations are satisfied by the displacements Fgs. (81), one obtains

2ﬂx2
MR (1o VYRS PR S N

~XoW, /K X + ¥, w,¢¢/x3 sin? @ ~ x, W s/ K, x? sin? q]5u
+[Eh/a(1-,3)]{-y, w,¢¢¢/xasin?q_tl(2 LPPRVEN x? Siﬂaa;--)(2 w,x¢/x2sin atx, W, 4/ kgxsinaldv
-—(D/aa)[w,"“+2w,"x/x - w’xx/x2 + w’x/x3 -2 w,x¢¢/x3 sin® g + 2w’"¢¢/x2 sin? g
+4 w,¢¢/x‘ sin? g + W’Wx‘ sint @) + cot g 12(a2/h%)(-y u,/x —u/x? - V,¢/x2 sin g
+cota w/x%) + p, cot a12(a?/h?) (~u/x? ~ v,¢'/x2 sin a + cot a w/x?)
01 ¥ e/ + & (-—u,x“/x) + g, (w,¢¢¢¢/x‘ sin® g + 2 w’¢¢/x‘ sin? ¢
W /X8 - w,"/xz) +4, (u,x/xz ~ u/ixd u’¢¢/x3 sin? ¢ + V,¢x/x2 sin g
- v’¢'/x"l sin g — V,qs¢¢/xs sinda + cot a w/x? + 2cot o w,¢¢/x3 sin%q) + r;“(w,"¢¢/x3 sin? g
-2 w,x¢‘¢/x‘ sin2q4 + 2 w,¢¢/x5 sin?q) + Mg (w,“¢¢/x" sin? g - w’msqi‘/x“l sin? g
+ w,w/x"' sin? @) + (p a? tan a/D) (x Woa/2+ w,

+ w,w/x sin? @)} Swlad xsin g dxd ¢

——— e




2
+ fﬂl [Eh/(1--3®)]ax [(1 + /x)u'x + v(v'¢/x sin @ + u/x - cot a W/x) — X, w'"/x]a8u
0

+[Eh/2(1 +)] ax [v,x —V/X + u'¢/x singladv

=x

+Dx[(1 + "ol/x)w,xx + v(w’x/x +v w’¢¢/x2 sin? @) - £, U,,/X] (5W),, _! :

sin a d¢ (123)

Equations (81) and (82) are then substituted into Eq. (123) . Since all 8C_ are arbitrary, one

can take all 8C_ to be zero except one, 8C,. Then, after integration and division by a constant,

mDsina, one obtains

N
§1 C, 1 lZ(a./h)2 [R(l)(n,m) + R(z)(n, m) + R(s) (n, m)]

+ g, R™ 0, m) « ¢, RS (@, m) + e R @, m) + ¢, R ay m)

+ 1y, ant (n, m) + Ronoz(n’ m) + lZ(a./h)2 cota thz(n, m) + )\p R’ (n,m)]
+112¢a/m)" R (0, m) + 6 (1—)(a/m) R %, m) + R™ (m, m)1] = 0
(m =1t N)
where all the terms are non-dimensional,
= p a% tan o/D
Eh’/12 (1 - 42) (125)
The first part of Eq. (124) represents the virtual work done by the “error-loads” of the first two

stability equations. The expression included in the second square brackets represents the virtual work

of the third stability equation, and the expression in third square brackets — the “boundary work”, The
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N
superscripts of the R's indicate which part of the virtual work they represent. For example, R ‘(n,m)
represents the virtual work done by the longitudinal force N_  at the boundaries.

If in Eq, (124) the expression included in the curled brackets is denoted T(n,m), the equation

may be written as

!
o

CLT(Y) + C,T@N + o . v v v o+ Co_y T(N-LD) +Cy TN, 1) =

1
(=]

C,T(L2) + C,T(22) + . « « « « .+ Cy [ T(N=1,2) + Cy T(N,2) =

C, T(AN-1)+ C, TN 4. . . . . . + Cy_, T(N=-LN=-D+ CyT(N,N-1)-0

C,TAN) + C, TN +. .« v o v v + Cy TN-L,N) + Cy T(N,N) = 0 (126)

The lowest eigenvalue of the determinant of the coefficients of C_ yields again the critical

pressure for general instability
[T, m)] =0 (127)

The integral value of t (the number of circumferential waves) which makes p_, a minimum must

be used in calculations,

The R functions of Eqs. (124) are defined as follows:

RV @m,m) = 17 Gmy A, F, @) + B, Fi° @)+ 157 ', m[A,_FL @)+ B, F) )]

2y—1 L 1B
1L e AL Py LB P @1+ Y my (A, Fy ()t Bin P2 @]




e
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R(Z)(n,m) = Ify_z(n,m)[Am FfA(n) + B, F (n)] +I (n,m)[A"n g (n) +B, F (n)]

“im,m) (A, Fr @) + By Fo@)] + LY Xa,m)lA, JFo @) + B, F2 )]

2y-3 3A 2y--8 3A
@m) = " @mA_ F @+ 1, (amA_F, (@)

2y

« 17 mn) A F3A@m) + 17 @,m) A Fo () (128)

01 2y—4 01 2y—4 no1
Pla,m = D7 0,m FY @) + L7 Yn,m) Fr (@)

{1 {1 14

@m) = L7 @ m) Fy @) + L' (a,m) F, )

R 2

t1 2y—4 tl 2y—4 m1
R” (n, m) = Ily (n, m) F:’ (n) + Ilzy (n,m) F, (n)

Ra(n,m) = Ify_z(n,m) Ffz(n) + Izy—z(n,m) Ffz (n)

Rmz(n, m) = Ify_a(n,m) F:’w (n) + I:y*a(n,m) lez(n)

R 0102 0702

(mm) = I @,m) F)"0w) + L @,m) Fy 7 Xn)

hu?2 2y-—1 hpu2 2y—-1 hu2
Pa,m = 17 0,m F 0 + 57 (,m) B (n)

R*(@,m) = [.'(m,m) Fo@) + L. (n,m) F’ (n) (129)

m+n 2y Nx

R"@,m) = A_ [(~1) F, (@) — F) (0]

m-+n 2y

*a,m) = B,_[(-1)"" <27 - 1 F*?

(n)

m+n 2y2

R @,m) = mg (-D"

Fy (@) - Fy (@) (130)
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1A .
Fl (n) = #llAcn = X12 330 * X23¥Y T Xa24 t2/31n2 Q
1B ) .
F, (n) = x,4 t*/sina - x, yt/sina
1A
Fop () =pyy Ayy — X122 Pgn + X230 8

1B .
F, (n) == x,4nBt/sina

2A .
Fis=-pu A, —x,7 + x, t?/sin%a

co
2B : .

F"() =~ x, t*/sin®a + x, yt/sina
2A

Fo)=-u Ay - xp08

2B

F, (n) =+ x,nBt/sina
3A

Fl (n) = X1 %34
34

Fo (@) = x by,

F?Ol(ﬂ) = y(y-D (y-2) (y-3) + n? 32 [n2 B2 - 11 + 6y (8-9y)]

FZOI(“) = 2n8 [n? Bz (8-2y) + 2% ~ 992 + 11y - 3]

FG) - —A_a_ +A_b

]

{1
F, (@) =~A_ b, ~ A a

[

(131)

(132)

(133)

(134)

(135)

-
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F:’tl(n) = (t%/sin? a) (-y% + 3y — 2 + n? Bz)

F;’tl(ﬂ) = (t%/sin? @) (3 - 2))n g

¢

Flz(n) = A (y+t*/sin?a-D+ A _(-np) + B [(t/sin a) (1-y) - t3/sind q]

+ B, nB (t/sina) + cota (1 - 2t%/sin? a)

Ffz(ﬂ) = A nB+ A (t%sin2a+y-1+B_ 0B (~t/sina)

+ B, [-t3/sin%a + (t/sin a) (1-y)]

F?tz(n) = (t¥/sin? @) (~y% + 2y —1 + n? Bz)
Fi'%n) = (t%/sin%a) (2 - 2y)a 8

ono2

F,' (n) = (th/sin* ) (1 + N9y) + (2t2/8in? @) (a? ,82 ~ Mg, =2+ 2y—y3) +nt }3‘

2
+ 0287 (g, —4 + 12y = 6y%) + 5, 2y ~y?) + 4y2 - 4yd 4+ 44

onoz

F,” () = 408 [(t?/sin? q) (1-y) + n? ﬁz(l-—y) +(ngy/2) (1=y)+ 2y = By2 + »8]

F:‘W @ = A [-vy -Q+p)l+ A _vaB+ B, (t/sina) (L+p,) + cota(l + p,)

FRAm) = A, (cvnpB) + A [-vy - (e )]+ B, (t/sin @) (1 + p,)
Fh (@) =— t%hin? a - (1/2) @2 8% - y -»?)

Fo(@) = (1/2)n8(1 +2y)

(136)

(137)

(138)

(139)

(140)

(141)
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F:‘x(n) =, y+ A _npB1+y)—v[B, (t/sing) —A 1+x, n8(1-2y)

Nx
F, (n) = (A y+ A 0B Q +yu/x) ~vIB, (t/sina) -A 1+ x, 08 (1-—2)/)/’!:

FNX¢(n) =-B, (1-9)+B, _np + A_(t/sina)

1

F () =0B8lQy-D+n,)+ul =& Apy + Agnp

F:lx () = nBICYy-D Q+ny,/x,) + vl = (A 7+ A, npB) (142)

It

15. APPROXIMATE SOLUTION BY NEGLECT OF ECCENTRICITY OF THE STIFFENERS

For conical shells, stiffened by equal and equally spaced frames, a simple approximate method
for calculation of the critical pressure can be derived. Calculations of the critical pressure for ring-stif-
fened conical and cylindrical shells (see Ref. 13), have shown, that when the eccentricity of the stif-
feners is neglected, p_, is between that for internal rings and that for external ones. Hence, for the
purpose of an approximation, the following assumptions may be made for a ring stiffened shell: the
extentional stiffness of the shell is increased by that of the rings, and the total bending stiffness in
the circumferential direction is taken to be the stiffness of the combined cross-section. The torsional
stiffness of the ring is assumed to be small and hence negligible. With these assumptions, the inter-

nal forces and moments given in Eqs, (36) and (37) become :
N_ = [Eh/(1 =), + v¢¢]
Ny = [Eb/(1 - VA + ) ey + ve, ]

Nyg= Ny, = [Eh/2(1+0)] v, (143)
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M, = —~(D/a) (x, + vr<¢)
M¢ = —(D/a) [(1 + &, my ) ky + vkl

M, g = -My, = (D/a) 1=V, g (144)

If one denotes

8y Moy = My (145)

and equates the circumferential bending stiffness given in Egs. (144) with that of the combined cross-

section, one obtains

D(1+,) = (Vag) [Ty, + Fy Ay (e, = 2)° + aGD + Eagh 2,/(1-v] (146)
and hence
n, = 12(1 = v2) (E,/E) 11,,/a  h® + (A, /ab) (e, ~ 2,Vh1 ) + 12 (2,/h)° (147)

With the simplified force and moment expressions of Eqs. (143) and (144) no “correcting coeffi-
cients” are needed. In all the formulae, the terms introduced by the stiffeners, except p, and 7.,.

vanish; and of the two exceptions 7, isreplaced by 7, from Eq. (147).

A further simplification is possible if one neglects p,. Bodner (Ref.9) showed on mathematical
grounds that neglecting of p,, introduces an error of less than 1 percent in p_ . Calculations for ty-
pical cylindrical and conical shells carried out in connection with the present work verified that the
error is much smaller than 1 present in both types of shells. Furthermore, the calculations showed, -
that the approximation involved by neglecting p, is of much smaller magnitude than the neglect of the
effect of eccentricity of stiffeners inherent in the approach of this section.

Hence, in the approximate solution proposed here for ring-stiffened conical shells under hydro-

static pressure, the following substitutions must be made in all formulae:




Ky
X2
&

My (148)

With Eqs. (148) the calculation of p_, becomes much easier, since all the terms involving
“correcting coefficients” are multiplied by u,, x, or x, which are assumed to be zero.

The final results of the above approximate solution were also obtained (at the same time), inde-
pendently, in Ref. 10, by another approach. The method applied there, was substitution of the stiffened
conical shell by an equivalent orthotropic one. One very small difference shouid, however, be noted :
in Ref. 10 the increase of the shell cross-section due to the rings (when it is taken into account) is not
multiplied by (1 — v?) whereas here p,, which stems directly from Egs. (38),contains this multiplica-
tion already.

Although the same final results are obtained by the equivalent orthotropic shell approach and by
that of this section, the two approaches differ considerably. The orthotropic approach requires ortho-

gonal shell properties, which imply equal and equally spaced rings and stringers (if any) which vary
according to the cone radius; whereas in the approximate method of this section, as well as in the
preceeding more accurate method, no similar restrictions are implied.

Here again, the additional stiffnesses due to the stiffeners can be some functions of x (the
stiffeners have to be symmetrical with respect to the cone axis).

If y, and p, andthe eccentricity of the stiffeners are neglected, the internal forces and

moments become

N [Eh/(1 — D] (e, + v €

x

N¢ [Fh/(1 — )] (c¢ + Ve )
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Nyg = Ny, = [Fh/2(1+ 0y g4 (149)
M, = (=D/a)lx, [1+ n, (x)] + vig]
M¢= (—D/a){qull + 7y () + vk
Mg ==My, = 0/a) (1 - )k, (150)

It should be noted that 7, is a function of x even when the cross section of the stringers does

not vary. For constant area stringers, one obtains

2
DI1+7, ()] = (1/bgx) [E, I, + E, A, (e, - Z,) +EbyxhZ /[1-4) + b, xD] (151)
and then
7, () = (I/b, Dx)[E, I, + B, A (e, - 7,)" + Eb, xhz. /(1 - 2] (152)

From Egs. (36) one obtains directly

7,(x) = 8 ng/x = n/x (153)

Two similar, but not equal, functions for 7, are obtained. The expression in the square brac-
kets of Eq. (152) varies only slightly with x. For example, for A /b h = 0.1471, e,/h = 1.653,
I,,/boh® = 0.7819 and E, = E this value is 7% larger than that at x = 1 when x =6, or 11%
larger when X » o, %, (x) defined in Eq. (153) is the more accurate function, since it stems directly
from Eqs. (36). Eqgs. (152) and Eq. (153) can be exactly equal only at a particular value of x, say at

the midheight of the conical shell, where
X = (1 + x2)/2 (154)

then 75 , becomes




= 12(1 =) (E,/E) {1, ,/b,h® + (A,/boh) (e, - 2,)/h]"} + 12(2, /)’ % (155)

For a conical shell stiffened by stringers only, all the terms due to the stiffeners vanish, except
7o, Which must be replaced by n, from Eq. (155).
Since the effect of stringers on p_, is rather small, and the effect of their eccentricity is of the
same magnitude, the calculation of p_, without consideration of the eccentricity has little value.

Hence Eq. (155) will be of limited use for stringer-stiffened conical shells under hydrostatic pressure,

It may however be usefull in other loading cases,

16, EFFECTIVE LENGTH OF SHEET

In the previous sections it has been assumed that the stiffeners are closely spaced and therefore
the entire shell is active. If the distance between the stiffeners is larger than a certain magnitude,
only part of the sheet between the stiffeners is active. The resulting decrease in the total stiffness
of the shell usually expressed as “effective length of the sheet” can also be expressed as a decrease

in the modulus of elasticity of the stiffeners.
If the circumferential stiffness of the combined cross-section for a wholly active sheet but “ef-

fective moduli” of stiffeners is compared with that for an “effective length® — a_ - one obtains,
2 2 ’ 2
E, [0, +A,(e,~2) + E[aoh3/12(l —v?) 4 aghz, /(1 ~12)} = E [,y + Ay(e, — %) 1+
+ Ela,h®/12(1-33) + a h2/(1 - 1?)] (156)

and then

’ | » 2 2 2
£ /5. 12(1-12) (Ez/E)llzz/aOh3 + (A, /8 ) (e, -22)’h] j+a,/a —1+12(z,/h) (ae/ao)— 12(z,/h) (157)

12(1 — ) {1, /2 h® +(A, /aghy (e, — 2 )h 1"}
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In the longitudinal direction it is assumed that the “effective length” varies lineary in the same
manner as the actual distance between the stringers. The respective cross-sections are equated at
the midheight of the conical shell.

Then

12(1 =) (/BT /byh® + (A, /boh) (e, ~2)/h 11kl /by - 1+ 12(2,/0)" (b, /bp)-12(2,/b)

E,/E =
12(1=12)1L,, /bh® + (A, /boh) (e, ~2)/h T} (158)

In Eqgs. (156) to (158), a_ and b, are “effective lengths”, E, and E, are “effective”

()
moduli of elasticity of the stiffeners, E’l and E"2 are actual moduli of elasticity of stiffeners, %,

and z, are the distances of the overall centroid of the stiffener-shell combination from the middle

1

, are the distances of the

surface when the sheet length is a; or b % respectively, and 2| and 2
overall centroid of the stiffener-shell combination from the middle surface, when the sheet length is

a, or b X respectively.

17. APPROXIMATE FORMULAE FOR RING STIFFENED SHELLS.

In Ref. 10 it is shown that the ratio between the critical pressure p_, of an orthotropic conical

shell and that of its equivalent cylindrical shell, p__ may be approximated by the same ratio for iso-

cr

tropic shells,

pcr/pcr = g(¢)
'/’ = 1_(R1/R2) = 1'—(l/xz) (159)

The function g (y) is given in Ref. 1 and Ref. 11. It is reproduced here in a tabular form (Table 3),
the values having been read off the curve in Ref. 11, It was pointed out in Ref. 10 that the accuracy

of g(y) diminishes slightly when a is greater than 45%.
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TABLE 3

g 1.00 {1,005 | 1.01 1.02 1.04 |1.075 | 1.13 1.19 1.22 | 1.21 1.175

The equivalent cylindrical shell is taken as one having a length equal to the slant length of the
cone, £ , aradius equal to its average radius of curvature p_, and the same thickness and ring-

stiffeners, Based on the results of Niordson (Ref, 12) and Bodner (Ref. 9), the critical pressure for an

equivalent cylindrical shell may be written
2 2.2
b /E = I + 0.5 <] (h/p, Mea/h + e + 18/12(1-1) pp, 1 +€0)" + 1, 81 (160)

where

t, = t/cosa

p,, = (atana/2) 1+x)= R + R,)/2 cos a

¢l
}

= np“/'e = (mtan a/2)[(x2 + 1\’6‘2 - vl

N
!

= a(x, - 1) = (R, -R,)/sina (161)

In general ¢ is much smaller than t; and then Eq. (160) may be written in a more convenient

form by changing the first denominator from (tf) + 0.5 cf,) to (tz + ci)
B /E~ T/ + eoth/p, N ea/y + DT+ [h'/12(1-12) g3 Mg + €)' + n,to1} (162)

This change reduces the critical pressure slightly. Its physical interpretation is the conservative

assumption that twice the actual hydrostatic pressure acts upon the rigid bulkheads closing the equivalent




cylindrical shell. Since, however, in case of hydrostatic pressure, the effect of the pressure acting in

the longitudinal direction is small compared to that acting radially, Eq. (162) may be expected to yield

a good approximation,

One can calculate the minimum value of p,, from Eq. (162), by assuming p_, to be a continuous

. 2 2 o . . . . .
function of (t; + c;). Only very slight conservative errors are involved in this assumption. Hence,

with the notation

One obtains for a ring-stiffened conical shell

D, /E = [03/p0 12(1= v A + 1) S = 2n, ¢+, cn/S + (o, /) 12(1 =) (eg/S) g () (164)

P, i8 a minimum when

2 2,0.5 0.5

S= 0+ co=cy lnyco + [ngey + 14411 Uan) o /M) TP 2014 91777 (169)

Since ¢ is usually much smaller than t,, one could alternatively approximate Eq. (160) by

. 2, . . 2
neglecting ¢, in comparison with t;

0

Po/E ~ (1/t) hca/p,, to + Bt (14 9,)/p0, 12(1 — v2)] g () (166)

If p_ is again assumed to be a continuous function of t;, itis a minimum when
cr

0.25

0.25 - (- l‘/2)0.25 n\/—t-’)'(p”/?,)(p”/h)o's(l+ 172)— . (167)

tz e, \/El(pav/h)o's(l—vz)o'” (1+172)—

and this minimum value is

P/ = [W6r/00 D" 1, /1) /p, )P )" " g )
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It should be noted that whereas Eq, {164) yields a low value for p__, a high value is obtained
from Eq. (168), since there the effect of the frames is slightly exaggerated.

Further simplification of Eq. (164) is possible by neglect of the small term, 5, c;/S. This
raises p,, Slightly. The increase is however partly compensated by a replacement in Eq. (164) of
S, from Eq. (165) by its approximation tz from Eq. (167). The simplified formula obtained in this
manner and that of Eq. (168) are averaged, and finally a simple formula for the critical external hydro-
static pressure of a ring-stiffened conical shell (equal rings, equally spaced) failing by general insta-

bility is obtained:

. E .75 0.25 0.5
b, /E = [VEm/9(—2) 1o, ) h/p, ¥ Lan,) " —[VEm/8(1-22) Np, A)0/p) 0, 1e ()
(169)
If 5, = 0 is substituted in Eq, (169), Seide’s approximate formula for unstiffened conical

shells (Ref. 11, Eq. 23) is obtained.

With » = 0.3, 67/8(1-0.31"7% = 0.99~1, and Eq. (169) becomes

b /E = 0.92(p, /0)/p, )P w1 = (o, AV 0/p, ) 0 8 W) (170)

If p, is the critical pressure for an unstiffened conical shell, which was calculated with
0.25
7, =0, Egs. (169) and (170) may be rewritten in a simpler form, where \/t?n/8(1— v2) is assuracd

to be approximately unity for all likely values of v,
0.75 0.5
P., = Py [(1 + n,) (/D /p, ) n,] a7y

In this section, as elsewhere in this report, the work of the shear forces Q is not taken into
account, The theory is a Donnell type theory, and is valid only when t ( the aumber of circumferen-
tial waves) is greater than two (Ref. 9). Hence, the approximate formulae of this section are appliable
when the i, obtained from Eqs. (165) or (167), is more than two. In the above approximate derivation
it was also assumed that the semi-empirical function for t of an unstiffened conical shell, when

) > 0.04 (Fig. 8 of Ref, 11) holds also for a ring-stiffened shell.
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It may be pointed out that all the above approximate formulae apply also to the limiting case of
a ring-stiffened cylindrical shell. For the cylindrical shell, P,, Of the above formulae is the radius

of the shell, E, its length, and cosa and g(i) are unity.

18. NUMERICAL RESULTS AND DISCUSSION

The critical pressures for general instability are computed for typical cases (Table 4). The
torsional resistance of the stiffeners is neglected and the whole distance between the stiffeners is
taken as the “effective length” of the sheet. The moduli of elasticity of sheet and stiffeners are equal.

Two cases are computed by all the methods proposed in this report. The results obtained are
compared with those for unstiffened conical shells given in Ref. 1. Two other cases are computed
only by the methods of Section 15 (34, » n,) and Section 17 (Eq. 169), and compared with the results
obtained by Seide’s approximate formula (Ref. 11) for unstiffened conical shells.

The rate of convergence of the solution is similar to that for unstiffened conical shells, For
short shells a two term, or even a one term solution is sufficient. For long shells, additional terms
must be considered.

The “boundary work” reduces the critical pressure slightly, Its influence upon the critical
pressure is less than 1% for short shells (shells Nos. 2 to 7) but it is 3% to 4% for long ones (shells
Nos. 9 to 12).

Table 4 demonstrates clearly that, as for stiffened cylindrical shells, frames are very effective
in stiffening conical shells against hydrostatic pressure, For short shells (shells Nos, 2 to §) ad-
dition of only 15% of material increases the critical pressure more than 3 times that for the similar
unstiffened shell. For long shells (shells Nos. 9 to 12), this increase is larger, and for the same
addition of 15% of material it is more than 3.5 times, Addition of the same material uniformly to the
thickness of the shell would increase the critical pressure only 1.4 times, Addition of 22.5% of material
(shells Nos. 14 and 15) increases the critical pressure more than 6 times, whereas addition of the same

material to the thickness would increase the critical pressure only 1.66 times, The increase with length




in the ratio of the critical pressure for ring-stiffened conical shells to that for corresponding unstif-

fened ones, indicated also by the approximate formula, is due to a larger part of the hydrostatic pressure
being transmitted in the circumferential direction for longer shells.

Stringers are much less effective as stiffeners against hydrostatic pressure,

The number of circumferential waves, t, for which a minimum of the critical pressure is obtained
decreases with increase in the stiffening of the shell. The order of magnitude of this decrease given
by Eq. (167) and verified by the results of Table 4, is (1 + n,) " °° It should be noted, that when
% > 0.64, the number of waves obtained from Eq. (167) is multiplied by a coefficient taken from Figure
8 of Ref, 11,

The effect of the eccentricity of the frames on the critical pressure may be summarized as follows.
Internal frames yield higher general instability pressures than external frames. In a typical case, inter-
nal frames (shell No. 2) yield a critical pressure 7% greater than that obtained by external frames (shell
No. 3). For long shells, the effect of the eccentricity of the frames is much more pronounced. For a
typical long shell with internal frames (shell No, 9) the critical pressure is 12% higher than for the same
shell with external frames (shell No. 10). This effect should be taken into account especially in the
analysis of experimental results, Internal frames yield a higher critical pressure due to their smaller
radius which makes them stiffer. The critical pressure obtained by the method of Section 15 (nga*ny)
is found to be somewhere between the critical pressures for internal and external frames.

For longitudinal stiffeners (stringers), the effect of eccentricity is opposite to that in frames.
External stringers yield higher critical pressures than internal ones. In Table 4, external stringers of
the same magnitude as that of the frames (shell No. 7) yield a critical pressure only 12% higher than
that for the corresponding unstiffened shell, whereas for internal stringers (shell No. 8) the increase
is only 2%. Note that the inc.ease in critical pressure due to stringers is considerably less than that
obtained by uniform thickening of the shell with the same amount of material. Hence, stringers, and
especially internal stringers are very inefficient stiffeners for conical and cylindrical shells under
hydrostatic pressure (see also Ref. 13). However, if stringers are taken into account one should not
ignore their eccentricity, The above shown inefficiency of stringers applies only to the case of external

pressure loading, For other loads, stringers are much more effective and should be subject to further

investigation.
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