<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD418453</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSIFICATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>confidential</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIMITATION CHANGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; SEP 1953. Other requests shall be referred to Naval Powder Factory, Washington, DC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 Sep 1963, per doc markings; NAVORD, per DTIC Form 55</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
THE TALIANI TEST AS A CRITERION OF PROPELLANT STABILITY

By

Carl Boyars
W. G. Gough

DDC
OCT 2 1963
TISIA 8

UNCLASSIFIED

Declassified by authority of DDC
Date Signature
17 SEP 1963

U.S. NAVAL POWDER FACTORY

RESEARCH & DEVELOPMENT DEPARTMENT

CONFIDENTIAL SEPTEMBER 1953
NavOrd Report No. 3023
Technical Report No. 54

U.S. NAVAL POWDER FACTORY
RESEARCH AND DEVELOPMENT DEPARTMENT
INDIAN HEAD, MARYLAND

THE TALIANI TEST AS A CRITERION OF PROPELLANT STABILITY
UNCLASSIFIED

By-

Carl Boyars and
W. G. Cough

Declassified by authority of
Date
Signature
17 SEP 1963

This material contains information affecting the national
defense of the United States within the meaning of the Espionage
Law, Title 18, U.S.C., Sections 793 and 794, the transmission
or the revelation of which in any manner to an unauthorized
person is prohibited by law.

Reproduction of the document in any form by other than
naval activities is not authorized except by special approval
of the Secretary of the Navy or the Chief of Naval Operations,
as appropriate.

CONFIDENTIAL
SECURITY INFORMATION
This investigation was performed under Bureau of Ordnance Task Assignment NMF-13-Re2d-02-6-52. Memorandum Reports No. 12 and 20, issued on 15 October 1951 and 15 May 1952, served as progress reports on the early phases of this work.

This report has been reviewed for technical accuracy by R. G. Parnell and W. J. Moore and was submitted for publication 9 December 1952. This work was performed while Mr. F. C. Thames was Director of Research and Development.

W. C. Cagle
Head, Chemical Physics Division

Approved by:

Sol Skolnik
Director, Research and Development

Released by:

W. H. BENSON
Captain, USNavy
Commanding Officer
ACKNOWLEDGEMENT

M. E. Baicar was responsible for preparation of deteriorated samples used. Mrs. C. J. Wright and C. V. Jansen assisted in carrying out the tests. Modified N-4 propellants were prepared by the Engineering Division of this Department.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Heading</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>111</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>ix</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Experimental Procedure</td>
<td>2</td>
</tr>
<tr>
<td>Discussion</td>
<td>4</td>
</tr>
<tr>
<td>Summary</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>13</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
</tbody>
</table>

FIGURES

1. 110°C Taliani Test Under Nitrogen on JPN Surveillance Samples Stored at 65.5°C 15
2. 110°C Taliani Test Under Oxygen on JPN Surveillance Samples Stored at 65.5°C 16
3. 110°C Taliani Test Under Air on JPN Surveillance Samples Stored at 65.5°C 17
4. 110°C Taliani Test Under Oxygen on N-4 Samples Stored at 80°C 18
5. 110°C Taliani Test Under Air on N-4 Samples Stored at 80°C 19

CONFIDENTIAL
6. 110°C Taliani Test Under Nitrogen on N-4 Samples
 Stored at 80°C 20

7. 110°C Taliani Test Under Oxygen on N-4 Samples
 Stored at 65.5°C 21

8. 110°C Taliani Test Under Air on N-4 Samples
 Stored at 65.5°C 22

9. 110°C Taliani Test Under Nitrogen on N-4 Samples
 Stored at 65.5°C 23

10. 110°C Taliani Test Under Oxygen on JPN Samples
 Stored at 80°C 24

11. 110°C Taliani Test Under Air on JPN Samples
 Stored at 80°C 25

12. 110°C Taliani Test Under Nitrogen on JPN Samples
 Stored at 80°C 26

13. 120°C Taliani Test Under Oxygen on N-4 Samples
 Stored at 80°C 27

14. 120°C Taliani Test Under Oxygen on JPN Samples
 Stored at 80°C 28

15. 110°C Taliani Test Under Oxygen on Modified N-4 Formulations
 Stored at 80°C 29

16. 110°C Taliani Test Under Air on Modified N-4 Formulations
 Stored at 80°C 30

17. 110°C Taliani Test Under Nitrogen on Modified N-4 Formulations
 Stored at 80°C 31
18. Determination of Residual Safe-Life of N-4 Stored at 80°C by 110°C Oxygen Talain Test

19. Determination of Residual Safe-Life of N-4 Stored at 80°C by 120°C Oxygen Talain Test

20. Determination of Residual Safe-Life of JP-8 Stored at 80°C by 110°C Oxygen Talain Test

21. Determination of Residual Safe-Life of JP-8 Stored at 80°C by 120°C Oxygen Talain Test
ABSTRACT

An investigation of the utility of Taliani tests for supplying information about the stability of double-base propellants has been carried out. A definite correlation between the degree of deterioration of a propellant and its behavior in a Taliani test under oxygen has been found.
INTRODUCTION

The Talliani test is essentially one in which a sample of propellant is heated in a constant volume system, starting with a fixed pressure of gas (usually one atmosphere) and measuring the rate of pressure change. The original apparatus (1,2) has been modified greatly by workers at the California Institute of Technology (3) and further improved at the Naval Powder Factory (4). In studies of the stabilization of double base powder carried out at the Allegheny Ballistics Laboratory (5), the conclusion was reached that "Talliani data obtained under nitrogen represents a good test for gas bubble formation for evaluation of rocket propellants, and the test conducted under air or oxygen gives no information other than the rate of oxygen consumption."

The problem of propellant stability in general can be divided into two parts: (1) the length of time the propellant can be stored before depletion of stabilizer and subsequent accelerated decomposition results in spontaneous ignition or deterioration of the propellant (chemical safe-life); and (2) the length of storage it can undergo before a significant change in ballistic properties occurs due to a breakdown of physical structure (physical safe-life). The term "safe-life" used subsequently in this report refers to "chemical safe-life". Spurin (6) has discussed the different types of storage failure.
in some detail, and the Naval Powder Factory has reported investigations of the problems of storage of JP and JPM bal-
listite(7).

The degree of deterioration of a stored propellant can be estimated by different methods such as chemical determi-
nation of stabilizer content (as compared to the original) or determination of the changes in viscosity of the nitro-
cellulose or changes in mechanical properties of the propell-
ant. Unfortunately, such data is often not easily obtained and is difficult to interpret in terms of residual safe-life properties of the propellant. A good stability test that would give a precise measure of degree of deterioration is desirable, and this, together with the need for more information about the phenomena of degradation of propellants, inspired this investigation.

EXPERIMENTAL PROCEDURE

In the initial phase of this investigation, 45-g JPW surveillance samples which had been stored at 65.5°C for varying periods were selected to give a wide range of residual safe-life. Subsequently, aged samples were prepared by placing 100-g samples of sheet N-4 (Lot PAP.133) in surveillance bottles in an oven at 80°C. The samples were put in at weekly intervals until the first one fumad. At this point all were...
removed, providing a series of samples of different residual safe-life. A separate series of PAE 133 aged at 80°C was prepared for Taliani tests at 110°C and 120°C, respectively. The time-to-fumes at 80°C was 93 days in one case and 105 days in the other. This difference is probably due to slight differences in oven temperature. A series of sheet JPN (Lot IXR-37) samples was prepared similarly. Other groups of sheet N-4 (Lot PAE 133) samples were placed in a 65.5°C surveillance magazine and withdrawn at 40-day intervals for testing. A series of modified N-4 (Lot IXR-47) propellants differing from each other only in the stabilizer added, was prepared and subjected to Taliani tests.

The Taliani test apparatus and procedure have been described in Technical Report No. 25, pp. 34-35(4). The propellant samples were ground in a Wiley cutting mill; portions which passed a U. S. 18 and were held on a U. S. 50 sieve were selected. The ground samples were weighed into Taliani test tubes. For the tests conducted under air, the samples were preheated in the bath for 30 minutes, after which the pressure was reduced to atmospheric and the initial reading taken. The tests under oxygen and nitrogen had samples preheated under air in the same manner, but, following the preheating period, the system was evacuated and flushed four times with the appropriate gas before the final addition of
gas which brought the internal pressure above atmospheric.
The pressure was then reduced to atmospheric by rapidly opening
and closing a stopcock.

DISCUSSION

The Taliani test data are plotted in Figures 1 through
17 in the Appendix. Duplicate readings were taken each half
hour and their averages plotted. Figures 1 and 12 show quite
clearly that 110°C Taliani tests under nitrogen are of no
value in detecting aging of JPN. Figures 6 and 9 lead to the
same conclusion for N-4. Figure 2 indicates the usefulness
of the 110°C test under oxygen for measuring degree of de-
terioration; Figures 4, 7, and 10 show even more clearly that
this test correlates well with the condition of the powder if
the time to reach a fixed positive pressure, e.g. 100 mm, is
measured. Figures 13 and 14 show that carrying out the oxygen
Taliani test at 120°C provides a more rapid measurement without
sacrificing the good correlation of the lower temperature test.
Figures 3, 5, 8 and 11 show that a Taliani test under air
reveals deterioration only during the later stages of the
powder's safe-life.

These facts can be readily explained. One of the gases
evolved in the Taliani test is NO. Under nitrogen, this gas
does not contribute further to the decomposition process
during the test period. Under air or oxygen, NO reacts to form NO₂ which then reacts with the powder. Thus, the immediate net result is a decrease in amount of gas present in the system, so long as effective quantities of stabilizer are present to pick up the NO₂. When the stabilizer becomes depleted, the NO₂ attacks the nitrate esters primarily and increases the decomposition rate of the powder.

Allowing for the volume occupied by sample, there are initially 6.7 ml of gas at 110°C and 1 atm pressure in the Taliani apparatus. This is equivalent to 2.13 x 10⁻⁴ moles. When the gas is oxygen, 4.26 x 10⁻⁴ moles of NO can be converted to NO₂. If the test is carried out in an atmosphere of air, 0.89 x 10⁻⁴ moles of NO can be oxidized. The number of moles of stabilizer in 1 g of a 1% ethyl centralite powder (JPW) is only 0.37 x 10⁻⁴. There are 0.93 x 10⁻⁴ moles of stabilizer in 1 g of a 2% 2-nitrodiphenylamine powder (N-4). The amount of NO₂ which each molecule of stabilizer can absorb before becoming ineffective has not been established. However, it is probable that, in a Taliani test under oxygen, centralite- or 2-nitrodiphenylamine-stabilized propellants containing no more than 2% stabilizer are completely converted to an unstable form through nitration of stabilizer. This would not hold true under air unless the powder had already been aged substantially.
The test under oxygen, in which the time required for a fixed pressure above atmospheric to be achieved is determined, is better able to distinguish between propellants in the early stages of deterioration because this time is dependent on the exact amount of effective stabilizer initially present. It is likely that the more rapid pressure increase shown in testing of propellants in the later stages of deterioration under air, as compared to oxygen, is due to early depletion of the oxygen by reaction with NO along with stabilizer depletion. After this occurs, all NO produced increases the total pressure. The increased pressure probably also accelerates the decomposition catalyzed by acidic products. Under oxygen, the NO produced must use up much more oxygen before it can increase the pressure directly. In the late stages of decomposition, NO₂ may be liberated from the powder itself.

Figures 15 through 17 show the Taliani behavior of a series of modified N-4 propellants. IXR-47A contains the customary 2% 2-nitrodiphenylamine. In IXR-47B, this stabilizer is replaced by the same percentage of carbazole; in IXR-47C, by diphenylamine; in IXR-47D, by ethyl centralite; and in IXR-47E, by a mixture of 1% 2-nitrodiphenylamine with 1% ethyl centralite. IXR-47F contains no stabilizer. To insure that no differences would occur in composition other than stabilizer, a single 150-lb batch of unstabilized N-4
was prepared and then divided into six parts. The appropriate stabilizer was then added by dry mixing.

As the graphs show, the test under nitrogen indicates the unstabilized propellant to be the most stable one and the propellant stabilized with the 1:1 mixture of 2-nitrodiphenylamine and centralite to be the least stable. This is, of course, contrary to all that is known about the relative safe-life of stabilized and unstabilized propellants. The test under oxygen gives results which fit the facts of safe-life much better. Here the unstabilized propellant reaches 100 mm pressure in under 6 hours. At 11 hours, the diphenylamine-stabilized propellant is the next to fail. Diphenylamine is notorious as a poor stabilizer for double-base propellants because of its alkalinity. The other four propellants all reach 100 mm pressure at about the same time, approximately 20 hours, the one stabilized with the centralite - 2-nitrodiphenylamine mixture lasting slightly longer than the others. Centralite and 2-nitrodiphenylamine, which are in three of these latter four propellants, are known to be good stabilizers for double-base propellants. According to Davis(8), carbazole is an excellent stabilizer at 110°C (the temperature of this test), but an extremely poor one at 60° and 75°C.* Naturally, "The stabilizing power of carbazole and the other stabilizers in the modified N-4 compositions is now under investigation by measuring time-to-fumes at various temperatures."
Any high temperature test is subject to errors involved in extrapolation of data and conclusions to lower temperatures at which different reactions may predominate.

Figures 8 through 21 illustrate how oxygen Taliani data can be used in the determination of residual safe-life of a propellant which has been in storage. The relationships between data obtained from the Taliani tests (the time required to achieve a pressure of +100 mm) and the percent of safe-life remaining have been plotted. The latter value has been computed from the ratio between length of storage at 80°C and time required for the sample to evolve NO₂ fumes at that temperature. Of course, estimates of the safe-life time of a new propellant formulation are best obtained by extrapolation of temperature-decomposition rate data to lower temperatures. In each case, the plot of the logarithm of the time required to reach 100 mm pressure vs percent of safe-life remaining approximates a straight line, and the least squares line is shown in each of the figures.

Some speculation on the theoretical interpretation of this data is in order here. It can reasonably be assumed that, for any propellant formulation, the time required to reach 100 mm pressure is equal to some constant value plus a factor proportional to the concentration of "active" stabilizer.

Thus: \[t_p = c + k_s \]

(1)
where \(t_p \) is the time required to reach 100 mm pressure in the oxygen Taliani test, \(c \) is a constant equal theoretically to the time required for the propellant formulation without stabilizer to reach 100 mm pressure, \(z \) is a proportionality constant, and \(s \) is the concentration of "active" stabilizer, a value which is a measure of the amount of \(N_2 \) which can be picked up before the stabilizer becomes depleted.

\[
\frac{s}{g} = \frac{t_p - c}{g}
\]

(2)

\[
\log s = \log (t_p - c) - \log g
\]

(3)

The theoretical importance of these equations is based on the fact that, if equation (1) holds true, \(c \) can be evaluated by actual determination of the time for an unstabilized propellant to reach 100 mm pressure or by extrapolation of the oxygen Taliani data obtained periodically on a propellant being aged to the end of its safe-life. The values for \(t_p \) and \(c \) could be used in determining the pseudo-order of the stabilizer depletion reaction. If the reaction were zero-order, then

\[
s = -kt + d
\]

(4)

where \(t \) is the time of storage of the propellant at a fixed temperature, and \(d \) is a constant.

\[
\frac{t_p - c}{g} = -kt + d
\]

(5)

\[
t_p - c = -gkt + gd = kt' + d'
\]

(6)
Thus, if the plot of \((t_p - c)\) versus \(t\) yielded a straight line, the reaction would be shown to be pseudo-zero-order.

Similarly, if the reaction were first-order, then

\[
\begin{align*}
-\log s &= \left(\frac{k}{2.303}\right)t + d \\
-\log(t_p - c) &= \left(\frac{k}{2.303}\right)t + c - \log s = \left(\frac{k}{2.303}\right)t + d
\end{align*}
\]

If the plot of \(\log(t_p - c)\) versus \(t\) yielded a straight line, the reaction would be pseudo-first-order and \(k\), the specific reaction rate constant, could be evaluated from the slope.

It should be pointed out that the inhomogeneity of the propellant colloid restricts the precision with which quantitative measurements of the rate of loss of safe-life can be made. Consequently, a proper evaluation of \(c\) from Taliani data on propellants being decomposed in constant temperature storage would require many oxygen Taliani tests on many propellant lots of identical formulations so that statistical treatment could smooth out individual irregularities. The precision of the oxygen Taliani test as a measure of the residual safe-life of propellants could also be increased by thus obtaining additional data. The lower temperature Taliani tests permit greater precision than the high temperature ones by lessening the effect of slight variations in preheat time which are due to the manipulations involved in flushing the system.
The utility of the oxygen Taliani test for measuring the degree of propellant deterioration during storage has been demonstrated above, and the possible utility of such a test for evaluating proposed stabilizers has been indicated. The use of the test in specifications or as a control for the manufacture of propellants should be considered. The discrepancy between test time for the N-4 sheet lot PAE 133, a regular Picatinny Arsenal production lot, and the N-4 lot IIR-47A, prepared by dry addition of stabilizer to the unstabilized sheet, may be due to the differences in processing or to possible differences in composition. With suitable adjustment of sample size or of volume of the apparatus, the test can be applied to any solventless propellant based on nitrate esters by providing sufficient oxygen for complete depletion of stabilizer. Of course if gases other than NO are evolved rapidly, an fixed positive pressure may be achieved prior to exhaustion of stabilizer.

The nitrogen Taliani test is useful for quickly comparing rates of gas evolution from different propellants, but its validity as an absolute measure of the tendency of propellants to fissure is open to question. The permeability of different propellant compositions may be expected to vary as well as their gas evolution rates. Ernsberger and Olsen(9) have concluded, on the basis of their experimental work on evolution...
and diffusion of gases in ballistite, that the pressure built up in a solid 2-inch-diameter cylinder of JPN after storage in air for an extended period at 60°C may be insufficient to cause cracking.

An investigation of the effect on the oxygen Tallani test of incorporation of varying quantities of stabilizer into the nitrocellulose-nitroglycerin system is contemplated. This would provide further information about the validity of the assumption relating test time to "active" stabilizer content. The effect of varying the nitrocellulose-nitroglycerin ratio is also to be investigated.

SUMMARY

A Tallani test under oxygen has been found to give a quantitative measure of the residual safe-life of propellants in storage. A relationship between the amount of "active" stabilizer and the test result has been proposed. The oxygen Tallani test is also useful for evaluating proposed new stabilizers.
REFERENCES

(1) M. Talliani, Gazz. chim. ital. 21, L, 184 (1921).

(9) U. S. Naval Ordnance Test Station. Physical Instability of Double-Base Propellants, Composition and Evaluation of Gases in Low Temperature Thermal Decomposition of Ballistite.

CONFIDENTIAL
F. H. Ernsberger and A. L. Olsen, Navord Report No. 1184,
Part 3, NOTS 381, p. 13, April 1951. CONFIDENTIAL
Figure 2. 100°C TAIWAN TEST UNDER OXYGEN ON JPX SURVEILLANCE SAMPLES STORED AT 65.5°C.
FIGURE 3. 110°C TALLIANI TEST UNDER AIR ON JPN SURVEILLANCE SAMPLES STORED AT 65.5°C.
FIGURE 6. 110°C TALIAN TEST UNDER NITROGEN ON N-4 SAMPLES STORED AT 80°F.
FIGURE 9. 110°C TATIANI TEST UNDER NITROGEN ON M-4 SAMPLES STORED AT 65.5°C.
FIGURE 11. 110°C TALIANI TEST UNDER AIR ON JPW SAMPLES STORED AT 80°C.
FIGURE 12. 110°C TALIANI TEST UNDER NITROGEN ON JPU SAMPLES STORED AT 80°C.
FIGURE 14. 120°C TALLIANI TEST UNDER OXYGEN ON JFM SAMPLES STORED AT 80°C.
FIGURE 16. 110°C TALIANI TEST UNDER AIR ON MODIFIED M-4 FORMULATIONS

A - 2-NITRODIPHENYLAMINE
B - CARBAZOLE
C - DIPHENYLAMINE
D - ETHYL CENTRALITE
E - 2-NITRODIPHENYLAMINE & ETHYL CENTRALITE
F - NONE
FIGURE 17. 110°C TALIANI TEST UNDER NITROGEN ON MODIFIED N-4 FORMULATIONS.
Figure 19. Determination of Residual Safe-Life of N-4 Stored at 80°C by 120°C Nitrogen Tulliani Test.
FIGURE 20. DETERMINATION OF RESIDUAL SAFE-LIFE OF JPX STORED AT 80°C BY 110°C OXYGEN TAMANI TEST.
Figure 21. Determination of overall safe-life of JP-8 stored at 80°C by 120°C oxygen tail test.
<table>
<thead>
<tr>
<th>Address</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Department of the Air Force</td>
<td>1</td>
</tr>
<tr>
<td>Eq. USAF, DCS/D</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: AFDROD-AG-3</td>
<td></td>
</tr>
<tr>
<td>Col. P. F. May</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td>2</td>
</tr>
<tr>
<td>Wright Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td></td>
</tr>
<tr>
<td>Attn: WCLPM-3</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td>3</td>
</tr>
<tr>
<td>Wright Air Development Center</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td></td>
</tr>
<tr>
<td>Ohio</td>
<td></td>
</tr>
<tr>
<td>Attn: WCDEG-2</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td>4-5</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Maryland</td>
<td></td>
</tr>
<tr>
<td>Attn: Ballistic Research Lab.</td>
<td></td>
</tr>
<tr>
<td>ORDEB-3BL</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>6-7</td>
</tr>
<tr>
<td>Badger Ordnance Works</td>
<td></td>
</tr>
<tr>
<td>Baraboo, Wisconsin</td>
<td></td>
</tr>
<tr>
<td>Attn: R. R. Buell</td>
<td></td>
</tr>
<tr>
<td>Commanding General</td>
<td>8-9</td>
</tr>
<tr>
<td>Frankford Arsenal</td>
<td></td>
</tr>
<tr>
<td>Bridge and Tacony Streets</td>
<td></td>
</tr>
<tr>
<td>Attn: Pitman-Dunn Laboratory</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td>10</td>
</tr>
<tr>
<td>Office, Chief of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: OROTA - Propellant and Primer Section</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td>11-12</td>
</tr>
<tr>
<td>Office, Chief of Ordnance</td>
<td></td>
</tr>
<tr>
<td>Washington 25, D. C.</td>
<td></td>
</tr>
<tr>
<td>Attn: OROTU</td>
<td></td>
</tr>
</tbody>
</table>
Department of the Army
Office, Chief of Ordnance
Washington 25, D. C.
Attn: O:OTX-AR

Commanding Officer-
Office of Ordnance Research
Box CM
Duke Station
Durham, North Carolina
Attn: 15-16-17

Commanding Officer
Picatinny Arsenal
Dover, New Jersey
Attn: Library

Commanding General
Redstone Arsenal
Huntsville, Alabama
Attn: Technical Library

Department of the Navy
Bureau of Aeronautics
Washington 25, D. C.
Attn: SI-5

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: Ad3, Technical Library

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: Re2a

Department of the Navy
Bureau of Ordnance
Washington 25, D. C.
Attn: Re2d

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
Attn: M. I. Division

Commander
U. S. Naval Ordnance Test Station
Inyokern, China Lake, California
Attn: Technical Library Branch

Technical Information Distribution
Library of Congress
Washington 25, D. C. 48-49

Furman University
Lafayette, Indiana
Attn: E. T. McBee 50

Rohm and Haas Company
5000 Richmond Street
Philadelphia 37, Pa.
Attn: O. H. Loeffler 51

Commander
U. S. Naval Ordnance Laboratory
White Oak
Silver Spring, Maryland
Attn: Library 52-53

Director
Naval Research Laboratory
Washington 20, D. C.
Attn: Chemistry Division,
Code 3230 54

Bureau of Mines
4800 Forbes Street
Pittsburgh 13, Pa.
Attn: Explosives and Physical
Sciences Division 55

University of Minnesota
Oak Street Laboratories
2013 University Avenue
Minneapolis, Minnesota
Attn: B. L. Crawford, Jr. 56-57

Ohio State University
Research Foundation
Columbus 10, Ohio
Attn: M. L. Wolfrom 58

Mr. C. L. Johnson
Burnside Laboratory
Dupont Company
Carney's Point, N. J. 59

Mr. W. W. Becker
Hercules Experiment Station
Wilmington, Delaware 60
Commander
U. S. Air Missile Test Center
Point Mugu, California
Attn: Technical Library

Commanding Officer
U. S. Naval Air Rocket Test Station
Lake Denmark
Dover, New Jersey
Attn: Technical Library

Aerojet Engineering Corporation
P. O. Box 296
Azusa, California
Attn: Librarian,
Mrs. Kyra T. Grenier

Atlantic Research Laboratory
312 North Fairfax Street
Alexandria, Virginia

Catholic University of America
7th St. and Michigan Ave., NE
Washington 17, D. C.
Attn: F. O. Rice

Cornell University
Department of Chemistry
Ithaca, New York
Attn: P. A. Long

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena 3, California

Arthur D. Little, Inc.
30 Memorial Drive
Cambridge 42, Mass.
Attn: W. C. Lothrop

University of Michigan
Engineering Research Institute
Ann Arbor, Michigan
Attn: J. C. Brier

National Fireworks Ordnance Corp.
West Hanover, Massachusetts
Attn: S. J. Porter

}
Ohio State University
Research Foundation
Columbus 10, Ohio
Attn: M. L. Wolfman

Phillips Petroleum Company
Bartlesville, Oklahoma
Attn: J. F. Alden

Purdue University
Department of Chemistry
Lafayette, Indiana
Attn: Henry Feuer

Rohm and Haas Company
Redstone Arsenal Research Division
Huntsville, Alabama
Attn: Technical Director

Standard Oil Company
Research Department
P. O. Box 431
Whiting, Indiana
Attn: W. H. Bahlke

Thiokol Corporation
Redstone Arsenal
Huntsville, Alabama
Attn: Technical Director

Thiokol Corporation
Elkton Laboratories
Elkton, Maryland
Attn: D. W. Kershner

U. S. Rubber Company
General Laboratories
Market and South Streets
Passaic, New Jersey
Attn: P. O. Tawney

Western Cartridge Company
East Alton, Illinois
Attn: R. L. Womer