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MEASURES OF SYNTACTIC COMPLEXITY
by

Y. Bar-Hillel, A. Kasher and E, Shamir

Section O, Introductiop

The aim of this report is twofold: 1) +to establish certain formal
connections between three explicaté for the concept of syntactic complexity,
that have been discussed in recent literature: degree of nesting, degree of self-
embedding, and depth of postponed symbols. 2) to present a formal (and trivial)
proof of what has been called elsewhere [?, Do 13] the Anti-Wittgensteinian Thegis:

Not everything that can be said at all can be said by using syntactically simple

sentences exclusively, This thesis is shown to hold for all standard propositional

logics, under the assumption that they contain means of expressing infinitely
many different sentences and under all plausible conceptions of semantic equivalence;

it is also proved true for a certain calculus of arithmetical functions.

Section 1. Degree of nesting and depth of ppstponed symbols

We shall follow, with minor modifications, the notationg and terminology
of [310

V 1is a given set ;lthe vocabulary. Elements of V will be called
symbols and denoted by capital Latin letters. Finiée sequences of symbols of V -
including the empty sequence - will be called strings over V and denoted by

smell Latin letters. Sets of sirings over V wili be ocalled languages over V

and denoted oy L with subscripts, in general. If x¢ L, we say that x is a

gentence of L. The set of all strings over V will be denoted by Wv . The

length of the string x 1is the number of its symbol occurrences.




By a grammar we understand a finite system of rules determining a language,
Grammars will be denoted by Gothic capitals,

Definition 1.1 (a) A context-free grammar (CFG)* is an ordered quadruple

@= (V, Py Ty S), where

(1) Vv is a finite vocabulary;

(ii) P is a finite set of productions of the form X -» x where Xe7V,
xeW 5 x # X3

(iii) T is a subset of V (the terminal vocabulary), none of whose
elements occur on the left side of a production of Pj

(iv) S (the initial symbol) is a distinguished element of V - T (the

auxiliary vocabulary).

(v) ¥y directly generates z (y =2 ), iff y = ufv,
z=uxv and X -» xe P,
(¢) y generates z (y =£> z), iff there exists a sequence’

Of Strings 2 sz se0.,Z, (r»0), such that

y:Zog Zr=Z and Zl_lﬁ Zi (j.:l,ooogr)o

The segquence zo,“,,zr will be called a generation tree of z from y.
(1) x is a sentence generated by % iff x is a string
over T, and S =% x, L(%) is the set of all sentences generated by 9} 2

(e) A language is representable by a CFG , or is a

context-free language (CFL), iff there exists a CFG q, such that L = L(%),

*Also called a gimple phrase-structure grammar (SPG).




Let us represent direct generatibn of the form uwAv=) uBoBloooBkv by

the following schema:

Then any generation X ;29 x may be represented graphically by a labelled

generation-tree (alternatively: tree, phrase marker [4]), efo Fig 1, Such

a tree is essentially a branching pattern, consisting of nodes each of which is
labelled by a symbol of V . Referring to the direct generation given above, each
node labelled Bj (1€j<k) is said to follow the node labelled A . In any
tree there is one node, and only one, whioh does not follow any other; this
node is called the root of the tree. A terminal node is one which has no
followers,

For certain purposes it is useful to introduce a special notation for the
nodes. Denote the root by 0, and its followers, from left to right (or,
conversely, from right to left - we shall have occasion to use this converse
nctation) by 00, 91,,,“,Qk, etc, In general, if a node with k+1 followers
is denoted by a multi-index ¢« , then its followersy, from left to right
[from right to left],, are denoted by &0, X1l,..., &k

If we order the multi-indices lexicographically, we thereby induce an
ordering of the nodes (cf. Fig. 2). It is clear that in order to obtain the
string =x Whose generation is represented by the tree, we must concatenate
the symbols labelleing the terminal nodes, according to the above order,

A path in a tree is a sequence of nodes, beginning at the root, such that
each node (except the root) follows its predecessor in the sequence. A path

is complete if its last node is terminal (i.e., it leads to a terminal node).,
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The productions taking part are: (The same tree as in Figure 1)
S -y ABC;, A -» BDy B -» ED,
C -» BDCy; C -» E.
(The string generated is EDDEDEDDEDDE)
0

0000

A
00000 00001 04111

04140

| (2) (v)
Figure 3

(b) shows that the depth of left-postponed symbols may be made arbitrarily
large. (A similar figure gives the result for ! )




Clearly, each [terminai] node in a tree uniquely determines a [bomplete1 path -
i.e.y the path leading to it,
The two extreme (i.e., the leftmost and the rightmost) terminal necdes and

all the nodes on the peths leading to them are called the boundary nodes of

the tree, All the others are called inner nodes.

Bach node ¥ in a tree determines in a natural way a subtree rooted in N,
This subtree, when considered in isolation from the nest of the original tree,
is itself a tree; the relativization of the above concepts to the subtree

is self-evident.

Returning to the multi-index notation, the absolute value of a multi-

index o (and of the corresponding node) is definéd to be the sum of the
indices in & ., Omiiting from a multi-~index o¢ all indices except the last,
the absolute value of a node N is then the sum of all the indices of the
nodes on the path leading to N, This last notation (i.e., using only indices)
was that used by Yngve [i4]. Following his lead,as elaborated by Chomsky [7],
we define '

Definition 1.2. Let I be a tree; then the depth of left-postponed symbols

of [, 2A("), is the maximum absolute value of its nodes, The depth of

right-postponed symbols, ¢ (M), is defined in a similar manner, using the

converse multi-index notation (i.e., counting the nodes from right to left),
The significance of these conceptswill be discussed only after the introduction
of two other concepts, due to Chomsky [5,7], and‘after the establishment of
gome of their basioc properties,

Definition 1.3. A node of a tree is nesting [gelf—embedding (SE)T iff

the subtree rooted therein contains a non-terminal [similarly labelled] inner




node (with respect to that same subtree). The two nodes form a nested

[self-embedded] pair,

Definition 1.4, (a) The degree of nesting, v (/7), of a (terminal)

tree I is the largest integer m having the following property:
Th~re is a complete path in fﬂ through m+l nodesy Nogﬂi,ooo,Nm, where
each N, (lgigm) is an inner node in the subtree rooted in N, 4

(b) If the nodes N, (1gi<m) are all similarly

i
labelled; the integer thus defined is called the degree of self-embedding,

g(r).*
Theorem 1,1, The following inequalities hold:
(a) &(r) ()
(®) v(r) <g(r), »(r)s A(r)s

(¢) If M is the number of auxiliary symbols in the grammar,

then

(M) p (U]

([x] denotes the integral part of x),

Proof. (a) and (b) are obvious.
To prove (c), note that if ¥ ([7) 2 kM, then there are at

least kM+l nodes which satisfy the condition of Def, 1.4. (a), and all

*Note that this definition differs slightly from that given by Chomsky [6, p. 11],
because of the inequality in (iv) of his definition. This fact nay change

glightly a number of results.




of them except the last are labelled by auxiliary symbols. Thus, at least k
are similarly labelled, so that &([M) 2 k = [-‘f-(-'—l;)- ]

Since (¢) implies y (M) s M(:(r) +1), it may be said that, for a
given grammar G , v{(") and g£() are, up to a certain multiplicative
constant, equivalent measures. This is not true of » (") (or &(/M)) and
the depths 3(!“) and A(l)s for we may have V(") =1, while both ¢ (r)
and A([) are arbitrarily large (of. Fig. 3). Clearly, the two depths
S:(F) and (") are also incomparable.

Nevertheless, the following result (given without proof) shows that a

connection of sorts exists between f [}] and g :

Theorem 1.2, For every CF-grammar there exist two constants, %f and

b§ [é> and b) ], depending only upon the grammar, such that for every

generation tree [ of the grammar, the following inequality holds:

j(i");asg(f‘)+bf [)(f");a;g(P)+bA].

(Equality may be realized in certain trees.).

Consider now a tree Fl, one of whose terminal nodes;, N , is '"replaced"
by another tree f; (N being relabelled by the label of the root of r;),

Call the resulting composed tree [ (cfo Fig. 4)0

Theorem 1,3. The following inequalities hold:

(8) (M) ¢ ¢ +p(T)s 2(M) € XM} + (7

(®) »(r) g »(I)) +9(1) +1

£(M) ¢ g(R) +5(I) +1
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Morsover, if N is on a path which determines the respective depth or degree’

of Fi' g then equality holds in (a) and either equality holds in(b) or

v (M) = (7)) + ().

Proof, All the assertions are obvious, It is only necessary to explain
why y(I") (or £(r)) may be larger by one than the sum. This may occur
if there are three nodes; M; N and-iP s on the same path in I g such .
that neither (M,;N) mnor (N,P) is a nesting pair, but (M,P) is (cf. Fig. 5).

Note that the additivity of the second part of whe theorem is in general
not true for g(l“), since the iabels of the longest SE sequences in rz
and r; may be different.,

The concepts ‘g 9§ 9 & and ¥ introduced above as measures of the
complexity of tress emerged in the work of Yngve E14] and Chomsky [6,]]9 who
were engaged in the construciion of models to explain the linguistic behavior
of users of natural languages. A detailed discussion and comparison of both
approaches and an explanation of the way they arise appears in Chomsky [7]

(¢f, also Bar-Hillel [29 Second Lecture])o Here we shall briefly summarize
gome basic points,

Both authors assume that the model should be presented as a strictly

finite device g9 g which is usually called a finite autcmaton with output

(or a finite transducer). This device operates on the sertences of the language

(as either inputs or outputs) from left to right. Moreovery it is asgsumed that
the "permaneni memory" of 39 contains a CF-grammar of the language.
Now in the Yngve model (which was originally intended as a description of

the speaker's behavior) the devioce D s in order to generate a sentence,

AN



constructs generation trees from root to terminal nodes and from left to right.
This implies that whenever a direct generation 4 =%»BoaooBk is reached,

in which Bj is the leftmost non-terminal, then the terminals Bo’°°°’Bj-1
are added to the output,; whereas Bj+1"°°’Bk are transferred to the temporary
memory and the branching of Bj+1 is postponed till the subtree rooted in Bj

is fully generated,

Now, it is easily verified that § (), the depth of right-postponed
symbols, is the maximum number of symbols in the temporary memory during the
generation of [ ; In otherlwords, if the capacity of the temporary memory
is Pixed and equal to k , then & can handle only trees such that $ (Mg k.

If we assume that j@ deals with trees in the opposit; direction, from
terminals to root (but again from left to right), then the role of 9 ()
will be played by A(["), the depth of left-postponed symbols.

Note that for g(f") to remain bounded, only a limited number of symbols
which are not rightmost may branch; on the other hand, rightmost symbols may
branch arbitrarily often. Thus the tree is, of necessity, predominantly

right-recursive, Similarly, trees for which (") 4is bounded are predominantly

left-recursive.

Suppose now that no restrictions are imposed upon the manner in which ﬁ?
operates on trees. Then the degree of nesting emerges as a natural msasure,
Indeed, the following assertion results from Chomsky's work [5]:

It is possible to comstruct a device VYV oand a strictly monotonic function

m such that, if the available computing space of ¥ is m then Y can
gl ’ =2 3 = el LS

handle those, and only those, trees [~ (of a grammar G ) for which

v(M) < g (n).




\ |

In view of the equivalence of the measures V() and &(I), the same
result (with a different function, gz(m)) holds for g&(MM); indeed,
Chomsky's results are usually formulated fof & (r.

A oritique of Yngve's more restrictive assumptions, which lead to .f(r")
or A(I), is given in Chomsky [710 But, even for unlabelled trees, there
is no reason why right or left-recursion should be singled out, and the degree
of nesting seems to us a more adequate measure of complexity,

We add a few remarks explaining why the degree of nesting is in a sense
a more natural measure +than the degree of self-embedding.

The degree of nesting (like the two depths) depends only on the tree and
not on the labelling. This is not so in the case of the degree of SE. TFor
this reason, vy (f;) compares better with $ (r') and A (), which are
themselves useful in many cases. This accounts also for the lack of additivity
for g(I) in Theorem 1.3, This kind of additivity seems, however, to be a
natural formal requirement for the adequacy of a proposed measure of complexity,

Another consequence of this dependence on labelling is that g (M) is
very unstable; even for slight changes in the grammar, For instance, consider
a tree [ for which g(I") =k and A is the only SE symbol. Let
A= Al and add to the grammar a replica A2 of A, Assuming, for the sake
of convenience, that k 1is even, replace every second occurrence of A on

avery path by Azo Clearly, & 1is decreased thereby to % s while ¥ is

not changed. In a similar manner, § may be decreased m-fold, for any
natural m , by taking m replicas of A,
To summarize, it seems rather clear that nesting is the main phenomenon

responsible for syntactic cemplexity of sentences., It is nesting which
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creates a dependence between the parts to the left and to the right of the

nested element,

Section 2, Indispensability of arbitrarily complex sentences in propositional

logics

OQur aim in this section is to.show that, in general, unbounded complexity
of sentences is essentially indispensable. To this purpose, we shall prove
that certain very elementary propositional logics contain sentences of
arbitrarily high degrees of nesting, which are not (semantically) equivalent
to any sentences of lower degree. This result also holds, albeit with certain
restrictions, for the other measures of syntactic complexity discussed in §i.

One reason for our interest in (various) propositional logics, apart
from the fact that their formation rules are easily expresced as C(F-grammars,
is that some of their sentential connectives have syntactically close
analogues in natural languages; +this is not true to the same extent for the
additional symbols of, sayy quantification logic. Thus our results are of
rather direct significance for natural languages. Indeed, the simpleat way

(though not the despest) of exhibiting complexity and various other phenomena

in natural languages has often been by recourse to tricks of propositional

logic,

#T¢ ig natural to assume that this dependence creates a load on memory and
ooncentration., Whati additional tensions, if any, are created by self-embedding, in

addition to those caused by nesting, remains to be investigated.
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All propositional calculi compared here will contain some or all of the

following generation rules:

(1) 8 =-» FS
(2) s -» [565] or (2') S -3 GSS
(3) S«»T
(4) T3
(5) T—P

In addition, each particular calculus will contain rules requiring that
G [and in the case of Pl, P3, also F] be rewritten as a binary [unary]
connective, In particulary we consider:
Pl. (Propositional calculus in Russell notation): (1) -~ (5), and:
F->r~y G=>D 3 G->V , G-»& (negation, implication, disjunction

and conjunction, respectively).

P2. (Equivalence calculus): (2) - (5), and: G —» = (equivalence),
The corresponding calculi in Polish notation arse:
P3. (1), (2')y (3) - (5) and: F -3 N, G->»C, G-24, G -»K,

P4, (2')y (3) = (5) and: G -» E.

In all these calculi, rules (3) - (5) are used (following Curry) to form

an infinite number of propositional variables (pv): P, P', P", etc. It will

be convenient to use infcrmally Po instead of P, P1 instead of P'y etc.
Remark: In the usual formulations of propositional calculi, one assumes
the availability of infinitely many propositional letters, say P°9 P1, Pz,o.a .

In this way, the uninteresting complexity which may arise from the construction

of P'y, P", etc, is avoided. In fact, the rule T -» T' is left-recursive,




AP

so that its repeated use increases _f s the depth of right—postponed symbols.
Howevery, it is possible to use instead the rule T -3 'Ty, which is right-
recursive and so increases the other depth, A . If it is desired to avoid
both contingencies, the relevant grammars may be regarded as CF-grammars
with an infinity of terminal symbols. The basic properties of C(F-grammars
remain unchanged thereby,

Note that any generation in the azbove grammars may be obtained by first
using rules (1) = (2) (or (1) = (27)) (in P1, P3) to construct the "skeleton"
of the sentence and then using rules (3) - (5) and the substitutions for F
and G to differentiate between the various pv and the connectives. It
is the trees of the “skeleton grammar" given by rules (1) = (2) (or (1) - (21))
which will essentially determine the complexity., (Cf. the remark for the role
of rules (3) - (5) and their effoct on the depths.) (Regarding P2 and P4,
only rule (2) (or (2')) is used in the skeleton grammar. This is to be
understood in the sequel.)

It is easily established that the grammars Pl - P4 are monotectonic,
i.®.y every sentence has a unique derivation tree. Thus there is no
ambiguity in simply speaking of the degree of nesting (or depth) of a sentence x ’
meaning thereby the degree of nesting (or depth) of its unique derivation
tree f; o This would no longer be true if rule (2) were replaced by

(2") S -» SGS
since then SGSGS , for example, would have two generation trees (cf. Fig. 6).

For the connection between monotectonicity (i.e., syntactic non-ambiguity)
and syntactic complexity, see [29 Second. Lecture]o

Consider a string x generated by rules (1) - (2). Denote by s(x), g(x),




- 1lgy =

f(x) the number of ocourrences in x of the symbols S, G, Fy respectively.,

Simllar notations are used for a string y generated by rules (1) - (2').
(In the followingy; we shall adhere to the convention whereby x is a string

generated by (1) - (2), and y - by (1) = (2%).) Clearly, s(x) =g(x) +1,

and )(f;) = 5([;) - the degrees of nesting and of self-embedding coincide,

since there is only one branching symbol, S.

Lemma 2,1, If [ is the generation tree of x , then:
DM oo ol x 258

(a) »(I)

1

k = ksg(x)sZk -1

]

() v([) =k = ksgly)

and every value of g permitted by these inequalities may be realized effectively.

Proof. The proof of (a) is by induction on ko
The case k =1 is trivial, since the only strings x for which
V(T;) =1 are [SGS}, and any other striﬁg obtained from this string by
use of rule (1) alone, which introduces no G's.

Asgume the theorem true for a given k,; and let )1(F;) = k. Then ¥ may
be increased to k+l in a variety of ways; the two extreme cases are the
following: (1) Rﬁle (2) is applied to a single S on a path determining
the degree - if x' is the resultiné string then g(x*) = g(x) + 1.

(2) Rule (2) is applied to each of the g(x) + 1 occurrences of S in x;
each application introduces a new G, and thus g(x') = 2g(x) + 1< 2(2k -1) +1 =
= 2k+1 -1 (by the induction hypothesis). Obviously, all intermediate values

may be obtained by appropriate variations.

As for (b), note that an increase in g(y) may or may not entail an
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increase in V . Indeed; in S - GSS =% GGSSS the degree of nesting increases
at the second stage, whereas in S -» G@;=%>GSGSS there is no increase,

(The branching symbol is underlinéd in each case.) Thus (b) is proved, by

a trivial induction. Note that no upper bound (in terms of ¥ ) is possible
for g(y) - of. the tree in Fig. 7, where » =1 &ud g may assume any
desired value, |

Thus, for rules (1) - (2), )'(FJ'C) is not more than g(x) and not less
than logz(g(x) +1). No similar lower bound exists for y(r'y) (rules
(1) - (2')), while it may assume any value < g(y).

Similar (though slightly more complicated) bounds may be obtained for
g(f;)o For g(ry), again, only an upper bound is obtained (cf. Fig. 7,
where k= 2 and g(y) is not bounded). In the computations for A it is
" necessary to take f(x) into account, since the value of ) is increased by
the application of the rule S - FS.

Passing now from the skeleton grammars to any one of Pl - P4, s(x) is
the number of pv in the generated sentence x f(x) the number of unary
and y(x) the number of binary comnectives. By Theorem 1.3 (a), the depth
is not increased by application of the rule T -» T'; and.f - by application
of T -»'T (cf, the remark on page {1 ).

We shall now turn to the semantics of the propositional logics. First,
consider the sentences of Pl as truth functions; 1i.e., assign to each. v

the "truth-value" 1 or O (true or false), and define the functions

~P19 P1 > PQ, pl & Pos P1V p29 p1_=_.-' p2, whose values are again 1 or
0, in the usual manner (For instance, va.l(p1 > p2) =0 if val(pl) =1

and val(p2) = 03 otherwise val(pl;:o p2) =1.) Two sentences are termcd
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equivalent iff they correspond to identical truth~functions,

Denote by 4, the sentence [pop [plp 0o :[pn_lp pn] 000 ]]

Theorem 2.1, 9, ig not equivalent to any sentence of Pl which contains

less than n+l occurrences of pv . The same is true of any sentence x

obtained from q, by rebracketing.

Proof, It is easy to see that val(qn) S0 iFE val(po) = val(pl) &l oun o
= val(ani) =1 and val(pn) = 0., A change in‘the value of any one variable

changes the value of the sentence and renders it true., If y 1is a sentence
containing less than n+4l occurrences of pv , then one of the variables of
4, does not occur therein, and a change in the value of this variable alone

cannot change val(y). Hence qn is not equivalent to y .

The same argument proves the assertion not only for 4 but also for
any sentence x confaining n+l pv and having the foliowing property:
For any variable P in x +there exists an assignment of truth-valuesto the
remaining n variables such that a change in val(p) will change val(x)
(the remaining n truth-values }emaining fixed).

It will now be proved, by induction on n ; that any sentence x obtained
from a, by rebracketing has this property. The assertion is trivial for n = 2.
In general, x has the form [&:>z], If the chosen variable P occurs in gz,
choose an assignment of truth-values in y which renders y true. Then
val(Ey;Jz]) = val(z). By induction, 2 has the required propef;y, and
so has x. If P occurs in y , choose an assignment which renders =z false,

and then val(E&;;z]) =1 ~ val(y). Again by induction, y has the required




.

property, and so has X o

The Theorem is thus proved.

Remark., A calculus is called m-valued (m22) when its truth-functions are
allowed %o take any integer truth-value +t , where 1 <Stgm,
For the negation~implication m~-valued calculus, truth-values of formulas
are determined as follows [}é]s (1) val(~P) = mH-val(P)
(ii) val(P>Q) = max(l,1+val(Q) = val(P)).

The results of this chapter hold, with some slight modifications; for these

calculi as well,

It is well known that two sentences x and y (in P1) are equivalent
iff [[x oy] & [y: x.:]] is derivable from an appropriate set of axioms of the
propositional calculus, Similarly, P3 (Polish notation), x and y are
equivalent iff KCxyCyx ig derivable from an appropriate set of axioms.

Using now Lemma 2,1 and Theorem 2,1:

Theorem 2.2, For every natural number n it is possible to construct a sentence

x in Pl or P3 such that v(r"x) =n  and such that no sentence y fov

which y(f’;) < n is equivalent to x . The same assertion holds for ) and f o

Proof. For Pl , take x = Qo Obviously, y(r‘q ) = n. B8y Theorem 2.1,
n

x is not equivalent to any sentence containing less than n+l occurrences of pv
and, as may be demonstrated by methods of the propositional calculus, it is
not equivalent to any sentence containing more than n+l pv . Moreover, by
similar methods it is easy to see that x 1is not equivalent to any sentence

obtained from itself by rebracketing (which may have a smaller degree of nesting).




S

The assertion is thus proved for Pl.

For P3 teke x = r:: 9 Where:

r*=C,,, CP P
n 0

0060 P
n

(corresponding to rn [o oo [[pog pl:l :>p2] coo0 .Dpnj in P1 notation).

or their counterparts q;: and ¥ in

The sentences 9, and 1 o

n 9
Polish notationy; give the required result for A and .Y s respectively.

The same results regarding the degree of nesting 1y may be proved using
other definitions of equivalent sentences. Indeed, the same proof, based on
Theorem 2.1, gives the result for ¥ for the equivalence calculus, whose
axioms were given by Lefniewski [11, Pe 16] (the grammar is now P2), and for

the same in Polish notation (grammar P4).

Other possibilities are:

a) x is equivalent to y iff }— [xs y], where H is the intuitionistic
H

calculus of Heyting [9]

b) x is equivalent to y iff |—- [x=y], where E 1is the entailment
5

calculus of Anderson-Belnap (cf., €.8., [1])°
¢) x is equivalent to y iff (En)“— [xs y]l, where Pn is the
Py
n-valued logic of kukasiewicz (cfe, .8, [12]).

d) x is equivalent to y iff |- D[xsy:[, whers S is any modal
S

logic of Lewis or Fitch [10* 8].
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In all these cases (except ¢) the result follows either from the fact
that the relevant concept of equivalence is more restricted than in P1 with
its usual axioms, or by direct recourse to the valuation result in Theorem 2.1.

(The extension of this theorem to multivalued logic proves the result for c.)

Notey; however, the following result: l

Theorem 2.3. Every gentence x in the equivalence calculus P2 is equivalent

to a sentence y for which )(f;) =1, The same is true for (2 and for

Polish notation (P4).

This result is easily derived from a theorem of fukasiewicaz:

[p; [q;rﬂ = [[p-_: q]-_‘:r] (cfo @.39 po 4, footnote 23 11, p. 16:[)°

Remarks. (1) It is well known that in Russell's notation any sentence is
equivalent to a sentence containing only the connectives ".," and "&",
or "~." and "y'"., However, as ia easily seen; this transformation does not
reduce the degree of nesting,

(2) The sentence q_ is equivalent to

n
[Ip & [B &..&[p , &P ,]...]]2P ] (also according to definitions b

and d). There is no harm in omitting brackets and writing

[[Po & Pl &oook Pn 1].9 Pn]9 since the various trees yield equivalent sentences.

The complexity of the sentence has no doubt been reduced; however, other

sentences, obtained from qn by rebracketing (e.g., the sentence T

[., 85 [[POD P1]3 P2] 53 410 DPnl) are not so amenable to simplification.
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Section 3, Complexity of arithmetical functions

In this section, measures of complexity analogous to those developed in
the preceding sections for sentences will be developed for certain functions
over the natural numbers., An anti-Wittgensteinian thesis will bs proved for
a certain representation of these functions, It must be emphasized that the

concepts to be introduced are measures of complexity of functions in a certain,

" well-defined, sense only.

Define a CPF-grammar as follows:

The vocabulary consis{s of

(i) the initial symbél Ts

(ii) a finite set of auxiliary symbols Xy 5 where i=l,...,k and,
for every i, j = lgoou,nig

(iii) the terminal symbols fl,oongfkg Vs Zigj (where i and j vary
as in (ii)), Py (;, and ) .

N.B. The indices i and Jj above are not meant to be part of the

relevant symbolsy they are only a convenient shorthand for differentiating

the various x's and 2z's,

The productions of the grammar are the following:

(1) (i,3) T ->» T (iyj as in (ii) above);
H
(2) (is3,m) % 4 fm(xm,1’°°°’xm,nm) (i,j as above, m = l,...,k);

(3)  (i53) x, . ->F(y,7);

1)
'i .. 4 Q0
(4) y3) xl,.‘) -2 Zl,J

The trees generated by the above grammar represent "function-terms"

in the following way:
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flgoooyfm are the initial functions, which are fixed for the grammar in
questioney
Rule (2) is a substitution scheme,
Rule (3) is a definition-by-primitive-recursion scheme; its application
is meant to represent the generation of a function defined by
F(0) =y,
F(n*) = T(n,F(n)),
where T iéha term of the grammar containing only two variables from the set

of x's, which has already been generated by a tree.

The z's represent numerical variables,
In view of the above naive description, the following rigorous definition

is natural:

Definition 3.1. A function f (in the naive sense) is representable in the

above grammar, with respect to a system rT of semantic rules, iff there
exists a term generated by the grammar whose intsrpretation by TT is identical
(extensionally) with f,

Note that the representation of a function in the above sense is not

unique, since it depends upon the generation tree considered.

Theorem 3.1, There oxist sets fl,o..gfm such that for a suitable system TT

all the primitive recursive functions are representable in the grammar,

Proof, The assertion is a direct consequence of a result of R.M. Robinson [}8],
which shows that in order to obtain the primitive recursive functions in the
above manner it is sufficient to take k = 3, n, =1, = 1, ny = 2w (Cf.

Robingon's paper for the various possible choices of initial functions.)
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Remark. A similar resulty; due to J. Robinson [?7]9 hints at the possibility

of obtaining all the (general) recursive functions, if the initial functions

are supplemented by certain transformations, in a_certain senge (such as
minimization, inversion, etc.); i.e., it may be possible to obtain

representations of all the general recursive functions by means of a transformation
érammar, the representations of the primitive recursive functions serving as

kernel,

4 generation rule P is applied on a branch B of a tree [ iff there
is a node on B such thai its direct successors in [ are obtained by P
from that node. (Strictly speaking, this definition should be phrased in terms

of the symbols labelling the nodes.)

Definition 3.2, The degree of substitution, R(f), of a function-term f,

given as a generation treey; is the maximum number of applications of rules

of type (2) (iy,jym) on a branch of the tree.

Definition 3,3. The degree of recursivity, I(f), of a function-term is

defined in a way similar to R(f), with regard to applications of rules of
type (3) (iy3).

Example. The degree of substitution of the following tree is 2:

i
|
’?,1
e N
f2(x2,1’°°"’12,10)
l
T

f3(x3’1,°0.,x3’7)




2ot

The term generated by the abhove tree is

f

)

7 /
(f3\x3919000 9x397)9x.292900 . 9x2?10)o

i~

It is evident that these degrees are measures of the complexity, in certain
senses; of functions, in a suitable interpretation. The degree of substitutioh,
for instance, is a measure of the need to employ subspitutions in order to

define a function in the above manner,

A further, more specific, explication of the concept is given by the

following definitions

Definition 3.4. Let f be a function (in the naive sense) which is representable

with respect to the semantic rules TF o If f; is the set of terms

representing fy then the degree of substitution of f 1is

r

R(F) = minrﬂe r}R(rj)o

The degree of recursivity of a function is defined in a similar way.

Remark., Different explications of the above concepts are obtained if in
Definitions 3.2 and 3.3 the degree is defined as the maximum number of
‘applications of the same rule (of the appropriate type) on a branch of the tree.
The difference between the two explications is analogous to the difference
between degree of nesting and degree of self-embedding (c¢f., section 1), and

will be clarified in the sejuel.

Theorem 3.2, 1f the degree of nesting of the tree rﬁ with respect to rules

of type (2) (iy,j,m) is denoted by y(2)(r“), and the degree of nesting with

respect to rules of type (3) (i,j) by y(3)(r“), then R(I") = y(z)([“2




=

and I(IM) = y(')’)(f")o Moreover, if & ([7) denotes the degree of self-

embedding with respect to the symbol T only. then I(I7) =g([').

Proof. Obvious,

Remark. For the explications mentioned in the Remark following Definition 3.4,

tha first assertion of the above theorem is true for the degree of self-

embedding of the tree., In this case, it is clear why the degree of nesting

is to be preferred to the degree of self-embedding as a& explication of complexity.
The reduction of the degrees defined in Definition 3.4 to the concepts

defined in Section 1 will be fully utilized in the proof of Theorem 3.4 below.

Theorem 3.3. A set of tapes generated (or: accepted) by a finite automaton

is a primitive recursive set (via an appropriate Godel-numbering).

Proof, The proof is obtained by means of slight alterations in the proof of
the main theorem of Myhill E159 Chapter 4], according to which every set of
tapes accepted by a linear bounded automaton is primitive recursive,

Since every finite automaton is a fortiori a linear bounded automaton,
the present theorem may be proved using a theorem'of Ritchie [@6, Do 76]
accordiﬁg to which the set of functions computed by a linear bounded automaton
is the smallest set which contains the constant functions, the successor and

multiplication functions, and is closed under explicit transformations, composition

and limited recursion,

Theorem 3.4. Let 'TT be a system of semantic rules with respect to which

all the primitive recursive functions are representable in the grammar. Then,

for every n and m, there exists a primitive recursive function fm n such
b
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that R(f n)}m and I(fmgn)>nc

my

I.e., there exists a tree r;gn such that R( Fm,n) > m I<r|m9n)>n

and for every tree " which represents the same function (extensionally)}

rR(M)zr(

myti

)>m  and I(F’)gl(r;nn)>no

Proof. . It is cleary, on the basis of a theorem of Chomsky [697J9 that the set

of trees. [" of the grammar, for which R([")<m or I(")=n, may be generated
by a finite automatony thus, by Theorem 3.3, the enumerating function of the

set of these trees, which is defimed by the automaton, is primitive recursive,
and thus, the diagonal function f' defined with the aid of the enumerating
function is primitive recursive, Define g(n) = f(n)+l. Then g(n) is also

primitive recursive and is thus, by hypothesis, representable with respect to TT .

For any tree l'-‘ representing this functiony it is clear that R(r)> m

and I(M)> no Denote by E the set of these trees. Let E, be the set
of trees- [ in E such that R([™) = minreER(!"); let E_, be the set
of trees [' in E, such that (r) = min. o I(" ). It is obvious that
R
any member of EIR may serve as the tree l—'m n whose existence is postulated
H

by the theorem.
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