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MEASURES  OP  SYNTACTIC  COMPLEXITY 

"by 

Y. Bar~Hill©l, A, Kasher and E. Shamir 

Section 0« Introduction 

The aim of this report is twofold: 1) to establish certain formal 

connections between three explioata for the concept of syntactic complexity, 

that have been discussed in rec'ent literature; degree of nesting, degree of self- 

embedding, and depth of postponed symbols, 2) to present a formal (and trivial) 

proof of what has been called elsewhere \2f  p. 13] the Anti-¥ittgensteinian Thesis: 

got everything that can be said at all can be said by using gyntaotically simple 

sentences exclusively« This thesis is shown to hold for all standard propositional 

logics, under the assumption that they contain means of expressing infinitely 

many different sentences and under all plausible conceptions of semantic equivalence; 

it is also proved true for a certain calculus of arithmetical functions» 

Section 1. Degree of nesting and depth of postponed symbols 

We shall follow, with minor modifications, the notations and terminology 

of [3]. 

V is a given set - the vocabulary. Elements of V will be called 

symbols and denoted by capital Latin letters. Finite sequences of symbols of V - 

including the empty sequence - will be called strings over V and denoted by 

small Latin letters. Sots of strings over V will be oalled languages over V 

and denoted by L with subscripts, in general. If x^ L, we say that x is a 

sentence of L, The set of all strings over V will be denoted by W . The 

length of the string x is the number of its symbol occurrences. 



By a grammar we understand a finite system of rules determining a language. 

Grammars will be denoted by Gothic capitalSo 

Definition 101 (a) A context-free grammar (CFG)* is an ordered quadruple 

(2 = (V, Pj T, S), where 

(i) V is a finite vocahularyj 

(ii) P is a finite set of productions of the form X -» z where leY, 

x ^W , x 7^ X5 

(iii) T is a subset of V (the terminal voöabulary), none of whose 

elements occur on the left side of a production of P5 

(iv) S (the initial symbol) is a distinguished element of V - T (the 

auxiliary vocabulary). 

(b) y directly generates z (y =? z), iff y = uXv, 

z = uxv and X —^ xe Po 

(0) y generates z (y =%> z), iff there exists a sequence' 

of strings z «z. ,co.,z  (r>0), such that 

V = z
0> Z

T ~ z    arid zi-i ^ z
i  (i = l|...,r). 

The sequence z ,„,„,2  will be called a generation tree of z from y» 

(d) x is a sentence generated by öl   iff x is a string 

over T, and S ^ x„ L((^) is the set of all sentences generated by CU  „ 

(e) A language is representable by a CFG , or is a 

context-free language (CFL), iff there exists a CFG   01,    auch that L - L(^). 

■*Also called a simple phrase-structure grammar (SPG), 
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Let us represent direct    generation of the form   uAv=^ viB B......B.V   by 

the following schemas 

u A v 
^/\ 

B      B. o o oB, 
oik 

Then any generation X ~l$ x may he represented graphically by a labelled 

generation-tree (alternatively: tree, phrase marker [4])<i cf» Fig 1« Such 

a tree is essentially a branching pattern, consisting of nodes each of which is 

labelled by a symbol of V « Referring to the direct generation given above, each 

node labelled B. (1$ j^k) is said to follow the node labelled A « In any 

tree there is one node, and only one, which does not follow any other; this 

node is called the root of the tree«,  A terminal node is one which has no 

followerso 

For certain purposes it is useful to introduce a special notation for the 

nodes» Denote the root by 0, and its followers, from left to right (or, 

conversely, from right to left - we shall have occasion to use this converse 

notation) by 00, 01,,«,,pkj etc In general, if a node with k+1 followers 

is denoted by a multi-index 0( , then its followers, from left to right 

[from right to left], are denoted by oco, (Xl, „<,., 6<k, 

If we order the multi-indices lexicographically, we thereby induce an 

ordering of the nodes (of. Fig» 2). It i&-clear that in order to obtain the 

string x Whose generation is represented by the tree, we must concatenate 

the symbols labelleing the terminal nodes, according to the above order. 

A path in a tree is a sequence of nodes, beginning at the root, such that 

each node (except the root) follows its predecessor in the sequence, A path 

is complete if its last node is terminal (i^e., it leads to a terminal node). 
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E     t> 

W 001    010     OH     020 021 P2! 

B 0        B       D C   ÖÖO0  ÖÖiM OiOO 0201 0110    Olli Olli 

E D B 

Figure 1 

The productions taking part are: 

S -t ABO,    A -^ BD, B -» ED, 

C -» BDC, C -•» E. 

(The string generated is BDBEDBDDEDDE) 

Figure 2 

(The same tree as in Figure 1) 

02200  OUOi 22210 

^000 

"  ooooo  oooo-/ OHH 

(a) (b) 

Figure 3 

(b) shows that the depth of left-postponed symbols may be made arbitrarily 

large, (A similar figure gives the result for P ) 



Clearly-j each [terminal] node in a tree uniquely determines a [complete] path - 

ioe„? the path leading to ito 

The two extreme (i.e., the leftmost and the rightmost) terminal nodes and 

all the nodes on the paths leading to them are called the boundary nodes of 

the tree0 All the others are called inner nodes. 

Each node N in a tree determines in a natural way a subtree rooted in Bf. 

This subtree, when considered in isolation from the nest of the original tree, 

is itself a tree; the relativization of the above concepts to the subtree 

is self-evident. 

Returning to tiie multi-index notation, the absolute value of a multi- 

index oc (and of the corresponding node) is defined to be the sum of the 

indices in (y . Omitting from a multi-index o«; all indices except the last, 

the absolute value of a node U is then the sum of all the indices of the 

nodes on the path leading to N. This last notation (i.e0, using only indices) 

was that used by Yngve [l4J. Following his lead^as elaborated by Chomsky [7], 

we define 

Definition 1^2. Let P be a tree; then the depth of left-postponed symbols 

of (  ,  ^(f)? is the maximum absolute value of its nodes. The depth of 

right-postponed symbols.  ?('"')? ^B  defined in a similar manner, using the 

converse multi-index notation (i.e., counting the nodes fro.n right to left). 

The significance of these concepts will be discussed only after the introduction 

of two other concepts, due to Chomsky [6,7^, and after the establishment of 

some of their basic properties. 

Definition 1.3. A node of a tree is nesting [self-embedding (SE)J iff 

the subtree rooted therein contains a non-terminal [similarly labelled] inner 
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node (with respect to that same subtree)» The two nodes form a nested 

[self-embedded] pair. 

Definition lo4» (a) The degree of nesting,  V (0y of a (terminal) 

tree I  is the largest integer m having the following property: 

Ttrre is a oomplete path in '  through m+l nodesj N yN.jooojN , where 

each ¥.  (l<i<m) is an inner node in the subtree rooted in N. .,. 

(b) If the nodes N, (l$i$m) are all similarly- 

labelled, the integer thus defined is called the degree of self-embedding, 

£(r)0* 

Theorem 1,1, The following inequalities hold; 

(a)   sir) ZAP) 

00   v(r) ^(r),   »ir)$}ir). 

(c) If M is the number of auxiliary symbols in the grammar, 

then 

(fxj denotes the integral part of i), 

Proof.    (a) and (b) are obvious., 

To prove (c), note that if  ^(P) ^ kM, then there are at 

least kM+1 nodes which satisfy the condition of Def» 1,4, (a), and all 

*Kote that this definition differs slightly from that given by Chomsky [6, p, ll], 

because of the inequality in (iv) of his definition. This fact may change 

slightly a number of results. 
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of them except the last are labelled by auxiliary symbols» Thusj at least k 

are similarly labelled» so that  SiP) ^ k =  [ ■^niJr ] I> 

Since (o) implies viP)  ^ M(i (P ) + 1), it may be said that, for a 

given grammar G 9      v{P)    and iiP)    are^ up to a certain multiplicative 

constant;, equivalent measureso This is not true of  >> (P)     (or ^(f)) and 

the depths  D(r) and ^(P)? for we may have  ^ (f )= 1, while both P(P) 

and  ^(P) are arbitrarily large (of, Figo 3), Clearly, the two depths 

e{P)    and Ail)    are also incomparablOo 

Nevertheless? the following result (given without proof) shows that a 

connection of sorts exists between f   [^1 and £ s 

Theorem lo2<, For every CF-grammar there exist two constants, a   and 

b   [a. and b-^ J, depending only upon the grammar, such that for every 

generation tree P of the grammar, the following inequality holds; 

j(r) >a £(r) +bf   [^(r)^ a^(r) +bj. 

(Equality may be realized in certain trees.). 

Consider now a tree \.,    one of whose terminal nodes, N , is "replaced" 

by another tree  (1  (N being relabelled by the label of the root of  P). 

Call the resulting composed tree P (of« Fig. 4)0 

Theorem 1^3. The following inequalities hold; 

(a)   jtr-U ^(q)+j>(r2);   MrK< ^(q)+MC,) 

o>)   v(r) ^ wrp +v(q) +1 

£(r) ^ £(r1) +£(r2) +1 
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Moreoverg if N is on a path ¥111011 determines the respective depth or degree' 

of  /T s then equality holds in (a.) and either equality holds in"(b) or 

y(r) - y(q)+y(r2)o 

Proof«   All the assertions are ohviouso It is only necessary to explain 

why  y(r)  (or £(P)) may he larger hy one than the sumo   This may occur 

if there are three nodes5 Mj, N and P f    on the same path in P 5 such 

that neither (M,N) nor (NjP)  is a nesting pairj hut (M,P) is (of« Fig. 5). 

lote that the additivity of the second part of uie theorem is in general 

not true for £"(r,)il since the lahels of the longest SS sequences in  C 

and fZ    may he different. 

The concepts  ? j ^ 9 £     and ^  introduced ahove as measures of the 

complexity of trees emerged in the work of Yngve [14] and Chomsky [6,7], who 

were engaged in the construction of models to explain the linguistic behavior 

of users of natural languages,, A detailed discussion and comparison of hoth 

approaches and an explanation of the way they arise appears in Chomsky [7] 

(of« also Bar-Hillel [25 Second Lecturej)» Here we shall briefly summarize 

some basic points» 

Both authors assume that the model should be presented as a strictly 

finite device gj   , which is usually called a finite automaton with output 

(or a finite transducer).  This device operates on the sertences of the language 

(as either inputs or outputs) from left to right. Moreover, it is assumed that 

the "permanent memory" of j)    contains a CF-grammar of the language« 

Now in the Yngve model (which was originally intended as a description of 

the speaker's behavior) the device jg) s    in order to generate a sentence, 



constructs generation trees from root to terminal nodes and from left to right« 

This implies that whenever a direct generation A ^B „„oB,  is reachecL 
■ok 

in which   B,    is the leftmost non-terminal,  then the terminals   B  ,.,0,B. . 
0 o        '   0-1 

are added to the output, whereas   B    .,.,.,3      are transferred to the temporary- 

memory and the ■branching of   B    .     is postponed till the suhtree rooted in    B. 
J+l 3 

is fully generated» 

Now, it is easily verified that  ^(P), the depth of right-postponed 

symbols, is the maximum number of symbols in the temporary memory during the 

generation of P » In other words, if the capacity of the temporary memory 

is fixed and equal to k , then $   can handle only trees such that o {P ) ^   ko 

If we assume that Jy   deals with trees in the opposite direction, from 

terminals to root (hut again from left to right), then the role of  e(P) 

will be played by ^(f), the depth of left-postponed symbolso 

Nöte that for  p(r) to remain hounded, only a limited number of symbols 

which are not rightmost may branch; on the other hand, rightmost symbols may 

branch arbitrarily often« Thus the tree is, of necessity^ predominantly 

right-recursive.  Similarly, trees for which  /\(P) is bounded are predominantly 

left-recursive. 

Suppose now that no restrictions are imposed upon the manner in which  <£) 

operates on trees. Then the degree of nesting emerges as a natural maasureo 

Indeed, the following assertion results from Chomsky's work [5]$ 

It is possible to construct a device ^ and a strictly monotonic function 

g1 (m), such that, if the available computing space of "^ i_s m , then ^ can 

handle those, and only those, trees  P (of a grammar G )  for which 

y(r) $ g^m). 



In view of the equivalence of the measures ^ (T )    and. ti^)s  "the same 

result (with a different functions g?(m)) holds for £,(^)? indeed, 

Chomsky's results are usually formulated for § (r1)» 

A critique of Yngve's more restrictive assumptions, which lead to  fC") 

or  A ( r) 5 is given in Chomsky Pf]« Butj even for unlahelled trees,, there 

is no reason why right or left-recursion should he singled out5 and the degree 

of nesting seems to us a more adequate measure of complexityo 

We add a few remarks explaining why the degree of nesting is in a sense 

a more natural measure than the degree of self-emheddingo 

The degree of nesting (like the two depths) depend.s only on the tree and 

not on the labellingo  This is not so in the case of the degree of SEo For 

this reasonj  V(P) compares better with  ?(/"') and. ^ (r1), which are 

themselves useful in many cases» This accounts also for the lack of additivity 

for  g(P) in Theorem lo3o This kind of additivity seemsp howeverj, to he a 

natural formal requirement for the adequacy of a proposed, measure of complexity0 

Another consequence of this dependence on labelling is that  £(/"') is 

very unstable, even for slight changes in the grammar» For instance, consider 

a tree  '  for which ziT)  = k and A is the only SE symbol» Let 

A = A.  and. add to the grammar a replica A  of A» Assuming, for the sake 

of convenience;, that k is even, replace every second occurrence of A on 

every path by A » Clearly,, 5 is decreased thereby to ^ , while v1 is 

not changed» In a similar manner, £   may be decreased m-fold, for any 

natural m , by taking m replicas of A» 

To summarize, it seems rather clear that nesting is the main phenomenon 

responsible for syntactic complexity of sentences» It is nesting which 
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ci^eates a dependence "between the parts to the left and tö the right of the 

nested element«'"' 

Seotion 2o Indispensahility of arbitrarily complex sentences in prepositional 

logics 

Our aim in this section is to.show that, in general, unbounded complexity 

of sentences is essentially indispensahle« To this purpose, we shall prove 

that certain very elementary prepositional logics contain sentences of 

arbitrarily high degrees of nesting, which are not (semantioally) equivalent 

to any sentences of lower degree» This result also holds, albeit with certain 

restrictions, for the other measures of syntactic complexity discussed in §1» 

One reason for our interest in (various) prepositional logics, apart 

from the fact that their formation rules are easily expressed as CF-grammars, 

is that some of their sentential connectives have syntactically close 

analogues in natural languages; this is not true to the same extent for the 

additional symbols of, say,' quantification logico Thus our results are of 

rather direct significance for natural languages« Indeed, the simplest way 

(though not the deepest) of exhibiting complexity and various other phenomena 

in natural languages has often been by recourse to tricks of prepositional 

logic» 

■"it is natural to assume that this d^pendenoe creates a load on memory and 

concentration» What' additional tensions, if any, are created by self-embedding, in 

addition to those ..caused by nesting, remains to be investigated» 
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All propositional calculi compared here will contain some or all of the 

following generation rulesä 

(1) S -» PS 

(2) S -f  [SGS]    or (2') S -^ GSS 

(3) S -* T 

(4) T ~» T' 

(5) T -» P 

In additions, each particular calculus will contain rules requiring that 

G [and in the case of Plj PSj also Fj he rewritten as a "binary [unary] 

connectiye0 In particulars, we consider: 

Plo  (Propositional calculus in Russell notation)5 (l) - (5)» and: 

p _.»> ^ , G -">3 s, G —^ V 5 G -•> &  (negationj implication, disjunction 

and conjunctions respectively)o 

P2„  (Equivalence calculus): (2) - (5)9 and: G —> =  (equivalence)» 

The corresponding calculi in Polish notation ares 

P3o  (1), (2,)9 (3) - (5) and: F -7> N, G --? C, G --? A, G -^ K» 

P4o  (2-), (3) - (5) and: G -* E« 

In all these calculi, rules (3) - (5) are used (following Curxy) to form 

an infinite number of propositional variables (pv): P, P', P", etc« It will 

be convenient to use informally P  instead of P,  P,  instead of P1. etoo 
0 1 

Remarks  In the usual formulations of propositional calculi, one assumes 

the availability of infinitely many propositional letters, say P , P, , P , 

In this way, the uninteresting complexity which may arise from the construction 

of P'I P", etc. is avoided» In fact, the rule T —^ T« is left-recursive, 

900  0 
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so that its repeated use increases P   9  the depth of right-postponed symbols« 

Howeverj it is possible to use instead the rule T —^ 'T, which is right- 

recursive and so increases the other depth;, A  ,    If it is desired to avoid 

hoth contingenoiesj the relevant grammars may be regarded as GF-grammars 

with an infinity of terminal symbols» The basic properties of CF-grammars 

remain unchanged thereby„ 

Note that any generation in the above grammars may he obtained by first 

using rules (1) - (2) (or (1) - (2»)) (in Plj, P3) to construct the "skeleton" 

of the sentence and then using rules (3) - (5) and the substitutions for F 

and G to differentiate between the various pv and the connectives,, It 

is the trees of the "skeleton grammar" given by rules (1) - (2) (or (l) - (2')) 

which will essentially determine the complexity,,  (Cfo the remark for the role 

of rules (3) - (5) and their effect ofl the depths»)  (Regarding P2 and P4, 

only rule (2) (or (2')) is used, in the skeleton grammar« This is to be 

understood in the sequel«) 

It is easily established that the grammars Pi ~ P4 are monotectonic, 

ioe-j every sentence has a unique derivation tree« Thus there is no 

ambiguity in simply speaking of the degree of nesting (or depth) of a sentence i 

meaning thereby the degree of nesting (or depth) of its unique derivation 

tree  /  « This would no longer be true if rule (2) were replaced by 
i 

(2")  S -» SGS 

since then SGSGS , for example, would have two generation trees (cfo Fig, 6)» 

For the connection between monotectonicity (lee», syntactic non-ambiguity) 

and syntactic complexitys see [2^ Second Lecture]« 

Consider a string x generated by rules (1) - (2)«  Denote by s(x)s g(x)? 
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f(x) the number of occurrences in x   of the symhols S, G, Fj respectively« 

Similar notations are used for a string y generated "by rules (1) - {2')* 

(in the followingj we shall adhere to the convention wherehy x is a string 

generated hy (1) - {?.)}  and y - hy (1) - (2')»)   Clearlyj s(x) = g(x) + 1, 

and  V(r') = £(( ) ~ the degrees of nesting and of self-emhedding coinoidej 

since there is only one branching symbolj, S» 

Lemma. 2<,lo If  p  is the generation tree of x , then; 

(a) y(rx) = k =^ kN<g(x)$2
k» 1 

(b) V(r) =k =^ k$g(y) 

and every value of g permitted by these inequalities may be realized effectively. 

Proof»  The proof of (a) is by induction on k» 

The case k = 1 is trivial, since the only strings x    for which 

1>(P) =1 are [SGSJ, and any other string obtained from this string by 

use of rule (l) aloney which introduces no G's» 

Assume the theorem true for a given k, and let  v* (f) = k„ Then >> may 

be increased to k+1 in a variety of waysj the two extreme cases are the 

following!  (1) Rule (2) is applied to a single S on a path determining 

the degree - if x' is the resulting string then g{xs) = g(x) + l» 

(2) Rule (2) is applied to each of the g(x) + 1 occurrences of S in xj 

each application introduces a new G, and thus g(xl) = 2g(x) + 1,$ 2(2 - 1) + 1 = 

=2   - 1  (by the induction hypothesis)« Obviously, all intermediate values 

may be obtained by appropriate variations« 

As for (b)_, note that an increase in g(y) may or may not entail an 
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increase in V o Indeedj, in S -9 GSS =£>■ GGSSS the, degree of nesting increases 

at the second stagej whereas in S -$> GSS_=3>'GSGSS there is no increase» 

(The hranching symbol is underlined in each case,,) Thus (b) is proved, by 

a trivial induction» Note that no upper bound (in terms of V ) is possible 

for g(y) - of. the tree in Figo Tj where  ^ = 1 and g may assume any 

desired value» 

Thus, for rules (1) - (2)? y{r)    is not more -than g(x) and not less 

than logp(g(x) + 1)0 No similar lower bound exists for  WP ) (rules 

(1) - (2,))j while it may assume any value ^ g(y)« 

Similar (though slightly more complicated) bounds may be obtained for 

o(P)o For e {f )}  again, only an upper bound is obtained (cfo Fig» 7. 

where  P = 2 and g(y) is not bounded)« In the computations for ^  it is 

necessary to take t(x)    into account, since the value of /I is increased by 

the application of the rule S —^ FS, 

Passing now from the skeleton grammars to. any one of Pi - P4> s(x) is 

the number of pv in the generated sentence x s    f(x) the number of unary 

and y(x) the number of binary connectives» By Theorem 1.3 (a), the depth 

is not increased by application of the rule T —^T1, and P - by application 

of T -> 'T (cfo the remark on page 11 ). 

We shall now turn to the semantics of the prepositional logics» First, 

consider the sentences of PI as truth functions^ i»e», assign to each  pv 

the "truth-value" 1 or 0 (true or false), and define the functions 

^P-ij P-, ^> P2> P^ & P2> PjV Ppj P-= P2> whose values are again 1 or 

0, in the usual manner (For instance, val(p1 o  p„) =0 if val(p1) = 1 

and val(p ) = Oj otherwise val(p. 3 p ) = 1.) Two sentences are termed 
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equivalent iff they correspond to identioal truth-functions. 

Denote "by q_     the sentence  [p ^> \p^ z>  o°° ^ (P 1 -^ P J °°°   IJo 

Theorem 2Ac      g  is not equivalent to any sentence of Pi which contains 

less than n+1 occurrences of pv „ The same is true of any sentence x 

ohtained from q  "by rebraoketing,, 

Proof«  It is easy to see that val(q ) = 0 iff val(p ) = val(p1) - .»„ 

= val(p 1) = 1  and val(p ) = O, A change in'the value of any one variable 

changes the value of the sentence and renders it true« If y is a sentence 

containing less than n+1 occurrences of pv , then one of the variables of 

q  does not occur thereinj and a change in the value of this variable alone 

cannot change val(y)o Hence q  is not equivalent to y » 

The same argument proves the assertion not only for q , but also for 

any sentence x    containing n+1  pv and having the following property: 

For any variable P in x there exists an assignment of truth-valuer to the 

remaining n variables such that a change in val(p) will change val(x) 

(the remaining n truth-values remaining fixed). 

It will now be proved, by induction on n , that any sentence x obtained 

from q  by rebracketing has this property. The assertion is trivial for n = 2, 

In generalj x has the form Jyoz]. If the chosen variable p occurs in z, 

choose an assignment of truth-values in y which renders y true« Then 

val([jy^zj) = val(z)o By induction, z    has the required property, and 

so has Xo If P occurs in y , choose an assignment which renders z false, 

and then val([yj?z]) = 1 - val(y). Again by induction, y has the required 
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propertyj an(i so kas x 0 

The Theorem is thus proved,, 

Remark.,  A oalculus is called m-valued (ra^2) when its truth-functions are 

allowed to take any integer truth-value t p where 1 $t^:m0 

For the negation-implication m-valued calculusj truth-values of formulas 

are determined as follows fl2Js (i) va.l('v'P) = DH-l"Val(P) 

(ii) val(PpQ) = max(l?l+val(Q) - val(P))o 

The results of this chapter holdy with some slight modifioationsj for these 

calculi as well» 

It is well known that two sentences x and y (in Pi) are equivalent 

iff [[xoy] & [y:>x]J is derivable from an appropriate set of axioms of the 

prepositional calculuso Similarly^ P3 (Polish notation) j, x and y are 

equivalent Iff   KCxyCyx   is derivable from an appropriate set of axioms» 

Using now Lemma 2»! and Theorem 2oli 

Theorem 2o20 For every natural number n it is possible to construct a sentence 

x in Pi  or P3 such that  V ( P ) = n   and such that no sentence y for 

which  y(P) < n is equivalent to x o The same assertion holds for "^ and ^ „ 

Proof.  For Pi 5 take x = q 0 Obviously,  vd"1 ) = n» By Theorem 2.1, 
n 

x is not equivalent to any sentence containing less than n-fl occurrences of pv 

and, as may be demonstrated by methods of the propositional calculus, it is 

not equivalent to any sentence containing more than n+1 pv » Moreover, by 

similar methods it is easy to see that x is not equivalent to any sentence 

obtained from itself by rebracketing (which may have a smaller degree of nesting)» 
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The assertion is thus proved for Pl< 

For P3 take x = r* o wheres 
n ' 

n  % ,_ *    o    1 n 
n 

(corresponding to r = L0""'L Lp ^^iJ^P?] «•"'■^PjJ ^n ^    notation)» 

The sentences a  and r , or their counterparts q* and r*  in un      n ^ -^     n      n 

Polish notations, give the required result for ^ and o   f  respectively. 

The same results regarding the degree of nesting V may be proved using 

other definitions of equivalent sentences. Indeed, the same proof, "based on 

Theorem 2.1,, gives the result for V' for the equivalence calculus, whose 

axioms were given by Lesniewski [ll, p. 16J (the grammar is now P2), and for 

the same in Polish notation (grammar P4). 

Other possibilities ares 

a) x is equivalent to y iff  f- [xsyj, where H is the intuitionistic 
H 

calculus of Heyting [9]. 

b) x is equivalent to y iff  j—. [z ^ y] > where E is the entailment 
E 

calculus of Anderson-Belnap (cf., e.g., [lj). 

c) x is equivalent to y iff (En) [ f- [x=y]|> where P  is the 
P n 

n 

n-valued logic of iukasiewicz (cf., e.g., [l2j). 

d) x is equivalent to y iff  (- D[x = y], where S is any modal 
S 

logic of Lewis or Fitch [l0| 8]. 
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In all these cases (except c) the result follows either from the fact 

that the relevant concept of equivalence is more restricted than in Pi with 

its usual axioms, or by direct recourse to the valuation result in Theorem 2,1o 

(The extension of this theorem to multivalued, logic proves the result for c.) 

Note^ howeverj the following result: 

Theorem 2o3o Every sentence x in the equivalence calculus P2 is equivalent 

to a sentence y for which  ^(f.) = lo The same is true for p 9    and for 

Polish notation (P4)" 

This result is easily derived from a theorem of iukasiewicz: 

[p= [<l = rj] = [[p=q] = r]    (cfc |l39 Pc A?  footnote 2j 11, p= 16j). 

Remarks»  (l) It is well known that in Russell's notation any sentence is 

equivalent to a sentence containing only the connectives "^»" and "&", 

or "r-" and "v"» However, as ia easily seen? this transformation does not 

reduce the degree of nesting«, 

(2)  The sentence q  is equivalent to 

FIP & fP. &<.,><.&[? ,., & P .IOOOTIDP 1  (also according to definitions b 

and d)„  There is no harm in omitting brackets and writing 

ITP & P.. &000& P . I.PP I, since the various trees yield equivalent sentences,, 
L L o   1      n-lJ  nJ 

The complexity of the sentence has no doubt been reduced; however, other 

sentences, obtained from q  by rebracketing (eogo, the sentence r , 
n n 

["„..[TP 13 P.-J.DPpJ D O O O DP J) are not so amenable to simplification« 
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Section 3o Complexity of arithmetical functions 

In this sections measures of compleiity analogous to those developed in 

the preceding sections for sentences will b© developed for certain functions 

over the natural numberso An anti-Wittgensteinian thesis will he proved for 

a certain representation of these functions» It must he emphasized that the 

concepts to he introduced are measures of complexity of functions in a certain, 

well-defined? sense only«, 

Define a CF-grammar as followss 

The vocahulary consists of 

(i) the initial symbol T; 

(ii) a finite set of auxiliary symbols x. 9    where i=l,...,k and, 

for every ij J = ls«.»,n.| 

(iii) the terminal symbols f.,»o.,f,, y? z. . (where i and j vary 
1    K    ij J 

as in (ii))9 Pj (, and ) „ 

UoB. The indices i and j above are not meant to be part of the 

relevant symbols; they are only a convenient shorthand for differentiating 

the various x's and z's» 

The productions of the grammar are the following; 

(1) (ijj)  T -^ x    (i,j as in (ii) above); 
if j 

(2) (l,d,m) I   --^f (x  ,o«o,x   )   (i,j as above, ffl=l,...,k)} 
XoJ     m  ulol      man 

(3) (ijj)   x   -?F(y,T)5 

(4) 'i,d)   x       ~?z      . 

The trees generated by the above grammar represent "function-terms" 

in the following way: 
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f,jooojf  are the initial functions^ which are fized for the grammar in 

question,,- 

Rule (2) is a substitution schemeo 

Rule (3) is a definition-hy-primitive-recursion scheme| its application 

is meant to represent the generation of a function defined by 

F(0) = ,79 

F(n') = T(nsF(n))P 

where T is a tsrm of the grammar containing only two variables from the set 

of x• sj, which has already been generated by a tree,. 

The z's represent numerical variables» 

In view of the above naive description^ the following rigorous definition 

is natural? 

Definition 3«1°  A function f (in the naive sense) is representable in the 

above grammar^ with respect to a system I I of semantic rules, iff there 

exists a term generated by the grammar whose interpretation by (T is identical 

(extensionally) with f« 

Note that the representation of a function in the above sense is not 

uniquej since it depends upon the generation tree considered. 

Theorem Solo  Ther« »list sets f.«o..jf  such that for a suitable system j/  , —    i m   

all the primitive recursive functions are representable in the grammaro 

Proofo  The assertion ia a direct consequence of a result of RoM« Robinson [18], 

which shows that in order to obtain the primitive recursive functions in the 

above manner it is sufficient to take k = 39 n. = n = 1, n^ = 20  (Cfo 

Robinson's paper for the various possible choices of initial functions») 
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Remark.  A similar results due to Jo RoMnson fl7jp hints at the possiMlity 

of obtaining all the (general) recursive functions, if the initial functions 

are supplemented hy certain transformations, in a certain sense (such as 

minimization,, inversions etCo)j ioe«, it may be possible to obtain 

representations of all the general recursive functions by means of a transformation 

grammars the representations of the primitive recursive functions serving as 

kernel« 

A generation rule P is applied on a branoh B of a tree f-' iff there 

is a node on B such that its direct successors in \       are obtained by P 

from that node« (Strictly speakings this definition should be phrased in terms 

of the symbols labelling the nodes.) 

Definition 3.2^  The degree of substitution.^ R(f), of a function-term f, 

given as a generation treej is the maximum number of applications of rules 

of type (2) (i,jsni) on a branch of the tree» 

Definition 3o3°  The degree of recurstivity. l(f), of a function-term is 

defined in a ¥ay similar to R(f)s with regard to applications of rules of 

type (3) (iri)' 

Example. The degree of substitution of the following tree is 2: 

T 

^l 

f2(x2,l,*00,I2,lO) 

f3(x3,l,,"*,Z3,7) 
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The term generated "by the above tree is 

It is evident that these degrees are measures of the complexity, in certain 

sensesj of functions, in a suitable interpretation. The degree of substitution, 

for instance, is a measure of the need to employ substitutions in order to 

define a function in the above mannero 

A furtherj more specificc, explication of the concept is given by the 

following definitions 

Definition 3o4°  L©^ f be a function (in the naive sense) which is representable 

with respect to the semantic rules /To If  '. is the set of terms 

representing f, then the degree of substitution of f is 

K(f) = minp^ pH^)» 

The degree of recursivity of a function is defined in a similar way» 

Remark» Different explications of the above concepts are obtained if in 

Definitions 3»2 and 3«3 the degree is defined as the maximum number of 

'applications of the same rule (of the appropriate type) on a branch of the tree« 

The difference between the two explications is analogous to the difference 

between degree of nesting and degree of self-embedding (cf0 section 1), and 

will be clarified in the seiuelo 

Theorem 3°2o  If the degree of nesting of the tree f    with respect to rules 

(2) 
of type (2) (ijj^m)  is denoted by  y^  (' )> and the degree of nesting with 

respect to rules of type (3) (i,j) b^  V  (D? then RiP) = y^iD 
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and l(r) = y  (r)o Moreover, if £(P) denotes the degree of self- 

embedding with  respect to the symbol T only;, then l( P) =^{P)o 

Proof. Obviouso 

Remark. For the explications mentioned in the Remark following Definition 3o4si 

the first assertion of the above theorem is true for the degree of self- 

embedding of the treeo In this case,, it is clear why the degree of nesting 

is to be preferred to the degree of self-embedding as an explication of complexity» 

The reduction of the degrees defined in Definition 3o4 to the concepts 

defined in Section 1 will be fully utilized in the proof of Theorem 3o4 below. 

Theorem 3.3.  A set of tapes generated (or; accepted) by a finite automaton 

is a primitive recursive set (via an appropriate Godel-numbering). 

Proof. The proof is obtained by means of slight alterations in the proof of 

the main theorem of Myhill [I5j Chapter 4Jj according to which every set of 

tapes accepted by a linear bounded automaton is primitive recursive. 

Since every finite automaton is a fortiori a linear bounded automaton, 

the present theorem may be proved using a theorem of Ritchie [16, p. 76J 

according to which the set of functions computed by a linear bounded automaton 

is the smallest set which contains the constant functions, the successor and 

multiplication functions^ and is closed under explicit transformations, composition 

and limited recursiono 

Theorem 30 4»  Let  IT be a system of semantic rules with respect to which 

all the primitive recursive functions are representable in the grammar. Then, 

for every n and m, there exists a primitive recursive function f    such 
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that R(f  )>m  and Iff  )>n0 

loSoo there exists a tree  |    such that R( f   ) >ni, l(P )>n  * ■ m,n v m^n        m,n 

and for every tree '  which represents the same function (extensionally) 

R(r1)^E( f J>m  and IfP )^ l( P „)> m 

Proof» . It is clearj on the hasis of a theorem of Chomsky [ßjTJj "that the set 

of ürees /  of the grammar, for which E(P)<m or l{P)^n9    may he generated 

by a finite automaton^ thuss hy Theorem 3o3s the enumerating function of the 

set of these treesj which is defined hy the automaton} is primitiv? recursive, 

and thusj the diagonal function f defined with the aid of the enumerating 

function is primitive recursivee Define g(n) = f(n)+l. Then g(n) is also 

primitive recursive and is thus, hy hypothesis, representable with respect to 77 , 

For any tree I       representing this function, it is clear that E(i )> m 

and l(P)>no   Denote by E the set of these trees«, Let E  be the set 

of trees' f in E such that Rff") = minf6 ER(f)| let E   be the set 

of trees P' in E  such that ifP') = min- _ l(r )« It is obvious that 
R ■        r«ER 

any member of ETr, may serve as the tree  /    whose existence is postulated IR m,n 

by the theorem« 
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