NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Technical Note N° 11

EIGHTFOLD WAY AND WEAK INTERACTIONS*.

Michel COURDIN
Laboratoire de Physique Théorique - Orsay.

* The research reported in this document has been sponsored in part by the OFFICE OF SCIENTIFIC RESEARCH OAR through the European Office, Aerospace Research, United States Air Force.

+ Postal address: Laboratoire de Physique Théorique et Hautes Energies, B.P.12, ORSAY (Seine-et-Oise), France.
Le modèle de l'octet de Ne'eman et Coll-Mann est généralisé de manière à permettre de définir des courants conservés \(\Delta S = 1, \Delta I = \frac{3}{2} \) observés expérimentalement. On montre que la solution nominale de ce problème est une symétrie orthogonale basée sur le groupe \(SO(8) \), les baryons étant à nouveau dans une représentation irréductible de dimension huit.

Le couplage de Yukawa méson-baryon et les courants baryoniques et mésoniques sont étudiés et classés.
INTRODUCTION

The problem of a possible existence of high symmetries in the strong interactions has been extensively studied the last few years. All the various approaches can be characterized, from a mathematical point of view, in a common way: one assumes the existence of a semi-simple Lie algebra, g, containing, of course, the isospin rotations, the hypercharge and the baryonic number gauge transformations and one constructs a composite model of strong interacting elementary particles from a particular representation of this algebra associated with the spin $\frac{1}{2}$ baryons. Let us call G this group realization of g. In general, the space time properties are assumed to be independent of these new internal symmetries and the complete symmetry group turns out to be the direct product of the inhomogeneous Lorentz group P by the symmetry group G [1].

The general problem of global symmetries has been investigated by Speiser and Tarski [2] for a large class of simple and semi-simple Lie algebras. The most successful models, from a physical point of view are:

a) The octet model [3][4]

b) The Sakata model [5][6]

c) The G_2 model [7][9].

The octet and the triplet models are the only two physically possible group realizations of the same 9-parameters semi-simple Lie algebra (see the next section). Nevertheless, the properties and the predictions of these models are very different.
The experimental spectrum of masses in a supermultiplet is generally explained by a breakdown of the global symmetry due to the presence in the Lagrangian of interaction, for instance, of a term invariant only in a weaker symmetry \[9\][10][11].

First order calculations give, in the octet model, surprisingly good results. The electromagnetic interactions are introduced in an analogous way and correspond to another weaker symmetry of the same type of the preceding ones \[9\][10][11][12][15].

The inclusion of the weak interactions is a more complicated problem. The main difficulty is the experimental evidence of both \(|\Delta S| = 1\), \(|\Delta T| = \frac{1}{2}\) and \(|\Delta T| = \frac{3}{2}\) currents \[14\] and at least for the models previously quoted, it is not possible to associate the weak interactions with a subgroup of the group of strong interactions if one requires the existence of conserved currents \[15\][16].

Another way is to postulate the existence of a larger group H such that the strong interaction group G is a subgroup of H and which permits to construct the weak currents experimentally observed.

As pointed out by Behrends and Sirlings\[7\] a possible solution of such a problem for the \(G_2\) model is the orthogonal group in seven-dimensional space SO(7). A mathematical treatment of the inclusion of \(G_2\) in SO(7) is given in reference \[7\] and also in \[17\].

This paper is devoted to a generalization of the octet model in a way permitting to include the weak interactions. It turns out that the more simple solution - but not the only one of course - is an eight-fold way based on the orthogonal group in an eight-dimensional space SO(8) \[18\].

Some years ago, Gürcşy\[19\] used this group for weak interactions. The main difference is due to a different non-equivalent place \[20\] of the isospin and hypercharge operators in the \(D_4\) simple Lie algebra. In both cases, one can construct a unitary group SU(3) as subgroup of SO(8) but, in Gürcşy's version, the inclusion admits \(G_2\) and SO(7) as intermediate steps and, really, the Gürcşy model appears as a generalization of the \(G_2\) model instead of the octet model. An interesting point of Gürcşy's work is the
introduction of space-time properties in the symmetry space; more precisely, the two component baryon spinors of given helicity, are associated with the two spinor representations of the \(D_4 \) algebra and the octet of the vector representation describes seven pseudo-scalar and one scalar meson. It follows that, for strong interactions, one cannot find an octet model as a subgroup.

In the first section, the mathematical structure of the inclusion between the algebra of the unitary group and the algebra of the orthogonal group is studied. The reduction under unitary transformation of the irreducible representations of the orthogonal group is examined and it can be shown that the orthogonal SO(8) group can generalize the octet model but not the triplet model. Moreover, the adjoint representation contains the weak currents and one can try to extend the octet model in this way.

In the second section, one constructs explicitly the model and gives a systematic classification of the weak currents with respect to the quantum numbers of the strong interactions.
II. MATHEMATICAL TREATMENT.

10) The octet model [3] [4] and the triplet model [6] are constructed on the same Lie algebra \(A_0 \oplus A_2 \) [21] but are two distinct group realizations. In the eight-fold way the basic group is a direct product:

\[
\begin{array}{c}
\text{U(1) } \\
\otimes \\
\text{SU(3)} \\
\frac{Z_3}{Z_3}
\end{array}
\]

where \(Z_3 \) is the center of SU(3) [22] and it is well-known that the factor group \(\frac{SU(3)}{Z_3} \) can be entirely generated by the tensorial powers of the eight-dimensional adjoint representation only. Generally, two non-negative numbers, \(\lambda_1 \) and \(\lambda_2 \), characterize the representations of SU(3) and the only possible representations of \(\frac{SU(3)}{Z_3} \) are restricted by the condition:

\[
\lambda_1 + 2\lambda_2 = 0 \quad (3)
\]

20) We are now interested in the 8-dimensional adjoint representation of the \(A_2 \) Lie algebra. It is well-known that, in associated vector space, one can find a bilinear symmetric form \(C \), conserved under the transformations contained in \(A_2 \) [23]. In an equivalent way, one can define a 8 x 8 symmetric matrix \(C \) such that:

\[
C \ X_\sigma \ C^{-1} = -X_\sigma^T
\]

where the \(X_\sigma \)'s are the adjoint representation of the infinitesimal generators of \(A_2 \).
If now we use the notations as indicated in Fig. 1, for the basis of the adjoint representation [11]:

\[\{ -1 \} \alpha_{23} \quad \alpha_{13} \quad \{ +2 \} \]

\[\{ 1+3 \} \quad \{ 1 \} \quad \{ 0 \} \quad \{ -3 \} \]

\[\{ -2 \} \quad \{ +1 \} \]

Fig. 1: Root and Weight Diagram for the adjoint representation.

The vectors \(|j\rangle \) where \(j = \pm 1, \pm 2, \pm 3 \) are orthonormalized and associated with the non-zero roots of \(A_2 \). Because of the degenerescence of the root zero, there exists one degree of freedom in the definition of the corresponding eigenvectors and we use \(|\varphi\rangle \) and \(|\sigma\rangle \) as two arbitrary orthonormalized weights.

In this basis, the matrix \(C \) has the simple form

\[
C = \sum_{j = \pm 1, \pm 2, \pm 3} |j\rangle \langle -j| + |\varphi\rangle \langle \varphi| + |\sigma\rangle \langle \sigma|
\]

and satisfies evidently:

\[
C^T = C, \quad C C^T = I.
\]
3°) The linear transformations leaving the bilinear form C of the previous section invariant can be generally represented by the set of all 8×8 orthogonal matrices which satisfy

$$O^T C O = C$$

The orthogonal $O(8)$ and special orthogonal $SO(8)$ groups are naturally introduced in this way and we are now interested by the properties of the simple Lie algebra D_4 of those orthogonal groups.

The 8-dimensional space is the vector representation space of the D_4 algebra and it is convenient, as usual, to define the following basis for the 8×8 matrices $[24]$:

$$\left[\xi_{\alpha\beta} \right]_{\gamma\delta} = c_{\gamma\alpha}^\gamma c_{\beta\delta}$$

A simple non normalized form of the vector representation of the D_4 algebra is then given, as for orthogonal groups, by

$$Z_{\alpha\beta} = \xi_{\alpha/\beta} - \xi_{/\beta\alpha}$$

The unimodular unitary transformations associated with A_2 appear, in this way, as a particular subset of the orthogonal transformations of D_4. We then have the inclusion relation for the Lie algebra:

$$A_2 \subset D_4$$
and our aim is now to give the precise position of A_2 in D_4 by writing the infinitesimal generators of A_2 as linear combinations of those of D_4. We use for this the explicit 8-dimensional representation of the Lie algebras on the basis previously introduced. The result is given in Table 1:

\[
\begin{align*}
\sqrt{6} E_{12} &= z_{21} + \sqrt{2} z_{-3} \\
\sqrt{6} E_{21} &= z_{-1} - \sqrt{2} z_{-3} \\
\sqrt{6} E_{13} &= z_{23} - \frac{1}{\sqrt{2}} \left[z_{-1} + \sqrt{3} z_{-1} \right] \\
\sqrt{6} E_{23} &= z_{-2} + \frac{1}{\sqrt{2}} \left[z_{1} + \sqrt{3} z_{1} \right] \\
\sqrt{6} E_{31} &= z_{13} - \frac{1}{\sqrt{2}} \left[z_{-2} - \sqrt{3} z_{-2} \right] \\
\sqrt{6} E_{32} &= z_{21} + \frac{1}{\sqrt{2}} \left[z_{2} - \sqrt{3} z_{2} \right] \\
\sqrt{6} H_1 &= z_{2} - z_{3} \\
\sqrt{6} H_2 &= z_{3} - z_{1} \\
\sqrt{6} H_3 &= z_{1} - z_{2}
\end{align*}
\]

Table 1.

The state vectors $|r\rangle$ and $|s\rangle$ correspond to a particular definition of $|\varphi\rangle$ and $|\sigma\rangle$ on the basis of a physical choice explained in the next section.

One can immediately verify on the previous expressions that the set of eight linearly independent generators E_{ij}, H_k, generates a sub-algebra of D_4 of type A_2 by using the commutation rules of the D_4 algebra deduced for instance, from the matrix representation of the $Z_{\alpha\beta}$.

The irreducible representations of the D_4 algebra are defined by four non-negative integers $\mu_1, \mu_2, \mu_3, \mu_4$ from the four fundamental representations [25] which can be classified in the following way:

- a) $D(1,0,0,0)$ 8-dimensional spinor representation 8_{sp}
- b) $D(0,1,0,0)$ 8-dimensional spinor representation $8_{sp'}$
- c) $D(0,0,1,0)$ 8-dimensional vector representation 8_v
- d) $D(0,0,0,1)$ 28-dimensional adjoint representation 28_R

The three 8-dimensional representations are inequivalent, of course, if one considers all orthogonal transformations. If now, we restrict ourselves to the transformations contained in the A_2 sub-algebra, they are irreducible and equivalent. At the same time, the adjoint representation is reducible according to:

$$28_R \rightarrow 8 \oplus 10 \oplus 10 \oplus 1$$

Such a result can easily be obtained by looking at the projection of the four-dimensional weight diagrams of D_4 on a convenient plane. The study of the characters gives an algebraic method of demonstration - see appendix.

Let us call as D_4^+ the universal covering group of the Lie algebra D_4.

The center of D_4^+ possesses a very simple structure as shown in Table 2:

<table>
<thead>
<tr>
<th></th>
<th>8_{sp}</th>
<th>$8_{sp'}$</th>
<th>8_v</th>
<th>28_R</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R_1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>R_2</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>R_3</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: Center of D_4^+ and the fundamental representations.
One immediately verifies that this concern is isomorphic to a direct product \(\mathbb{Z}_2 \oplus \mathbb{Z}_2[2C] \) and the connected groups associated to the \(D_4 \) algebra can be easily classified in the following way:

\[
\begin{align*}
a) \quad & D^*_4 \quad \text{where } \mu_1, \mu_2, \mu_3, \mu_4 \text{ are independent;} \\
b) \quad & \Delta_4 \quad \frac{D^*_4}{\mathbb{Z}_2} \quad \text{one can realize three isomorphic groups of this type by considering the tensorial powers of one of the 8-dimensional representations:} \\
\begin{align*}
& \alpha) \quad \Delta_{4sp} \text{ from } \mathfrak{sp} \text{ with } \mu_2 + \mu_3 \equiv 0 \quad (2) \\
& \beta) \quad \Delta_{4sp}^1 \text{ from } \mathfrak{sp} \text{ with } \mu_1 + \mu_3 \equiv 0 \quad (2) \\
& \gamma) \quad \Delta_{4v} \text{ SO(8) from } \mathfrak{v} \text{ with } \mu_1^+ + \mu_2^+ \equiv 0 \quad (2) \\
\end{align*}
\end{align*}
\]

e) \quad \frac{D^*_4}{\mathbb{Z}_2 \oplus \mathbb{Z}_2} \quad \text{generated by the tensorial powers of the adjoint representation and characterized by } \mu_1, \mu_2, \mu_3 \text{ of the same parity e.g. the representations entering in all } \Delta_4 \text{ groups.}

We are now in a position to give the possible inclusion of the connected groups of the Lie algebra \(A_2 \) with respect to the connected groups of the Lie algebra \(D_4 \), in our scheme and the main results are the following:

\[
\begin{align*}
a) \quad & \frac{\text{SU}(3)}{\mathbb{Z}_3} \text{ is a subgroup of } \Delta_4 \\
b) \quad & \text{SU}(3) \text{ cannot be a subgroup in any case.}
\end{align*}
\]

It follows that our approach cannot generalize any symmetry group constructed from \(\text{SU}(3) \) or from \(\text{U}(3) \) as the Sakata model.
III. EIGHT-FOLD WAY.

10) Let us go back to physics. In such a scheme, it is natural to associate the hyperon with the weights of the vector representation in the usual way:

\[
\begin{align*}
|1\rangle &= |\Xi^0\rangle \\
|2\rangle &= |\Lambda\rangle \\
|3\rangle &= |\Xi^-\rangle \\
|4\rangle &= |\Lambda^-\rangle \\
|5\rangle &= |\Xi^0\rangle \\
|6\rangle &= |\Lambda^0\rangle \\
|7\rangle &= |\Xi^+\rangle \\
|8\rangle &= |\Lambda^+\rangle
\end{align*}
\]

Table 3.

The isospin operators are then given by:

\[
\begin{align*}
I^+ &= z_{21} + \sqrt{2} \cdot z_{22} \\
I^- &= z_{-12} - \sqrt{2} \cdot z_{33} \\
I_0 &= \frac{1}{2}(z_{11} + z_{22}) - z_{33}
\end{align*}
\]

and the hypercharge and charge operators by

\[
\begin{align*}
Y &= z_{22} - z_{11} \\
Q &= z_{22} - z_{33}
\end{align*}
\]
20) The product of representations in D_4 can be written as $[27]$:

\[
\begin{array}{c}
\delta \otimes \delta = 1 \otimes 28 \otimes 35_a
\end{array}
\]

If one uses a coupling of the Yukawa type between baryons and mesons, the more simple place for the mesons is the adjoint representation. One predicts two 28-dimensional multiplets with $J = 0$ and $J = 1$ $[28]$.

We now consider the baryon-meson resonances. From the product of representations in D_4:

\[
\begin{array}{c}
\delta \otimes 28 = 8_c \otimes 56_c \otimes 160_c
\end{array}
\]

we have essentially the possibility of 8-dimensional and 56-dimensional multiplets. The $J = \frac{1}{2}^+$ octet can be repeated into a $J = \frac{5}{2}^+$ octet. Because of the isospin $\frac{3}{2}$ of the first π-nuclon resonance, one predicts a 56-dimensional $J = \frac{3}{2}$ multiplet and perhaps another 56-dimensional $J = \frac{7}{2}$ $[29]$.

30) With baryons and antibaryons in the 8_v representation and the mesons in the 28_R representation, the meson baryon coupling can be written as:

\[
\left[z_{\kappa \ell} \right]_{\alpha \beta} \langle \bar{\Psi}^\mu \gamma_5 \Psi^\rho \rangle_{\mu \kappa \ell}
\]

From the point of view of strong interactions, it is convenient to classify the weights $n_{\kappa \ell}$ of the adjoint representation according to:

\[
\left\{
\begin{array}{c}
a) \text{the values of isospin and hypercharge} \\
b) \text{the irreducible representations in the reduction by} \Lambda_2
\end{array}
\right.
\]

The various calculations are, of course, identical to those of the decomposition of the antisymmetric part of the product of two adjoint representations of Λ_2. The results are given in Tables 4, 5 and 6.
<table>
<thead>
<tr>
<th>Y</th>
<th>I</th>
<th>(I_3)</th>
<th>(D^5(1,1)) representation of (A_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>(\frac{1}{\sqrt{3}} \left[M^{-3-1} + \frac{1}{\sqrt{2}} (M^{2r} - \sqrt{3} M^{2s}) \right])</td>
<td>(K^+)</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>(-\frac{1}{\sqrt{3}} \left[M^{32} - \frac{1}{\sqrt{2}} (M^{-1r} + \sqrt{3} M^{-1s}) \right])</td>
<td>(K^0)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(\frac{1}{\sqrt{3}} \left[M^{21} + \sqrt{2} M^{3r} \right])</td>
<td>(\tau^+)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(\frac{1}{\sqrt{6}} \left[M^{1-1} + M^{2r} - 2 M^{3-3} \right])</td>
<td>(\tau^0)</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>(-\frac{1}{\sqrt{3}} \left[M^{-1-2} - \sqrt{2} M^{3r} \right])</td>
<td>(\tau^-)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>(\frac{1}{\sqrt{2}} \left[M^{1-1} - M^{2-2} \right])</td>
<td>(\eta)</td>
</tr>
<tr>
<td>-1</td>
<td>1/2</td>
<td>(\frac{1}{\sqrt{3}} \left[M^{-2-3} + \frac{1}{\sqrt{2}} (M^{1r} + \sqrt{3} M^{1s}) \right])</td>
<td>(K^0)</td>
</tr>
<tr>
<td>-1</td>
<td>1/2</td>
<td>(-\frac{1}{\sqrt{3}} \left[M^{13} - \frac{1}{\sqrt{2}} (M^{-2r} - \sqrt{3} M^{-2s}) \right])</td>
<td>(K^-)</td>
</tr>
</tbody>
</table>

Table 4.
<table>
<thead>
<tr>
<th>Y</th>
<th>I</th>
<th>I_3</th>
<th>$D_{10}^0 (3,0)$ representation of A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>ν^{2-3}</td>
</tr>
<tr>
<td></td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{3-1} - \sqrt{2} \nu^{3x} \right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{32} + \sqrt{2} \nu^{-1x} \right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{3}{2}$</td>
<td>$-\frac{3}{2}$</td>
<td>ν^{3-1}</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{21} - \frac{1}{\sqrt{2}} (\nu^{3x} + \sqrt{3} \nu^{-3a}) \right]$</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{\sqrt{6}} \left[\nu^{1-1} + \nu^{2-2} - \nu^{3-3} - \sqrt{3} \nu^{ra} \right]$</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>-1</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{12} + \frac{1}{\sqrt{2}} (\nu^{3x} - \sqrt{3} \nu^{3a}) \right]$</td>
</tr>
<tr>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{2-3} + \frac{1}{\sqrt{2}} (\nu^{1x} - \sqrt{3} \nu^{1a}) \right]$</td>
</tr>
<tr>
<td></td>
<td>$-\frac{1}{2}$</td>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[\nu^{13} - \frac{1}{\sqrt{2}} (\nu^{2x} + \sqrt{3} \nu^{2a}) \right]$</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>ν^{-21}</td>
</tr>
</tbody>
</table>

Table 5.
<table>
<thead>
<tr>
<th>Y</th>
<th>I</th>
<th>I_3</th>
<th>$D^{10}(0,3)$ representation of A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>M_{-12}^1</td>
</tr>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{3}} \left[M^{-3-1} + \frac{1}{\sqrt{2}} (M^{2r} + \sqrt{3} M^{3s}) \right]$</td>
</tr>
<tr>
<td>1</td>
<td>$-\frac{1}{2}$</td>
<td>1</td>
<td>$\frac{1}{\sqrt{3}} \left[M^{-2} - \frac{1}{\sqrt{2}} (M^{-3} - \sqrt{3} M^{-2s}) \right]$</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>$\frac{1}{\sqrt{6}} \left[M^{1-1} + M^{2-2} + M^{-3-3} + \sqrt{3} M^{3a} \right]$</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>$\frac{1}{\sqrt{3}} \left[M^{-1-2} + \frac{1}{\sqrt{2}} (M^{3r} + \sqrt{3} M^{3s}) \right]$</td>
</tr>
<tr>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>M^{-1-3}</td>
</tr>
<tr>
<td>-1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[M^{2-3} - \sqrt{2} M^{1r} \right]$</td>
</tr>
<tr>
<td>$-\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{1}{\sqrt{3}} \left[M^{13} + \sqrt{2} M^{-2r} \right]$</td>
</tr>
<tr>
<td>$-\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>1</td>
<td>M^{3-2}</td>
</tr>
</tbody>
</table>

Table 6.
4°) In our scheme, the "conserved" currents belong to the 28-dimensional adjoint representations. For instance, the baryonic part of the vector currents can be written as:

\[J^B_\mu [k, l] = [\gamma_{kl}]_\alpha\beta (\bar{\psi}^\alpha \gamma_\mu \psi^\beta) \]

For the mesonic part, one uses the adjoint representation of the \(D_4 \) algebra - e.g. the structure constants - following:

\[J^M_\mu [k, l] = c \{ [k, l] [m, n] [p, q] \} M^{[m, n]} \partial_\mu M^{[p, q]} \]

It is useful, for practical applications, to classify the various currents in the same way as the weights of the adjoint representation. The results are obtained from Tables 4, 5 and 6, by the simple substitution \(H^{k, l} \rightarrow J^{k, l} \).

5°) If now we assume the existence of terms of the structure current \(\times \) current, responsible of the non-leptonic interactions, the weak lagrangian has a variance, under \(D_4 \), given by the product of representations:

\[
D^{28}(0001) \otimes D^{28}(0001) = D^1(0000) \oplus D^{28}(0001) \oplus D^{35}(2000) \oplus D^{35}(0200) \oplus D^{35}(0020) \\
\oplus D^{300}(0002) \oplus D^{350}(1110)
\]

The more natural assumption seems to associate the weak lagrangian with the 28 place. It follows then the two interesting properties:

a) As required by \(K_{L,3} \) decay experiments [14] one obtains both \(|\Delta S| = 1, |\Delta I| = \frac{1}{2} \) and \(\frac{3}{2} \) terms in the lagrangian,

b) the \(|\Delta S| = 2 \) currents are associated with \(|\Delta I| = 0 \) and not excluded by experiments, whereas the \(|\Delta S| = 2, |\Delta I| = 1 \) transitions are forbidden at first by the \(K^0_L K^0_{S} \) mass difference result.
CONCLUSIONS

In this first paper, we have studied, from a mathematical point of view, a possible generalization of the octet model which permits to include the weak interactions in a natural way. The orthogonal $SO(8)$ symmetry is not, of course, the unique solution of such a problem but it is the more economical one satisfying the two minimal requirements:

\[
\begin{align*}
\text{a)} & \quad \frac{SU(3)}{Z_2} \text{ is a subgroup,} \\
\text{b)} & \quad \text{both } |A S| = 1, |A I| = \frac{1}{2} \text{ and } \frac{3}{2} \text{ currents appear in the adjoint representations.}
\end{align*}
\]

It is clear, from the result of Section II, that Λ_{4sp}, $\Lambda_{4sp'}$ and Λ_{4v} are three isomorphic but non equivalent solutions. The equivalence however holds for the strong interactions. More precisely, the 8-dimensional representations of the infinitesimal generators are not equivalent for the total D_4 algebra but only for the A_2 sub-algebra. For instance, the coupling between mesons and baryons is identical in the three cases for the $J = 0^-$ pseudoscalar mesons associated with the 2^- part of the reduction of the 26^R adjoint representation of D_4 by the A_2 subalgebra (Table 4). It follows equally that the weak currents associated with Table 4 are the same in the three situations whereas a difference must appear for the $|A I| = \frac{3}{2}$ currents.

The possibility to include the leptons and the vector bosons has not been considered in this paper. It seems that such a tentative is very difficult and actually at the present time, unsuccessful in any model. Nevertheless, it is a necessary problem to solve in a general scheme in order to know the variance of the complete weak lagrangian with respect to the group operations - if such a group exists, of course.

An other way to generalize the strong interactions unitary models is to find a large group G where the previous condition a) is replaced by the more general one:

\[
a') \quad SU(3) \text{ is a subgroup of } G.
\]
In mathematical terms, the unitary rotations associated with the center Z_3 of SU(3) must be represented in a non-trivial way in G. The simple Lie group of lower rank solution of such a problem is the unimodular unitary group SU(6). The 35-dimensional adjoint representation of A_5 reduces, under the A_2 subalgebra, into $8 \oplus 27$. It follows that condition b) is satisfied but at the same time one obtains $|\Delta S| = 2, |\Lambda I| = 1$ weak currents and this feature is certainly unfavourable.

We acknowledge the help of Professor Michel and of Dr. Lascoux for illuminating discussions on the group theoretical aspect of this problem.
APPENDIX

Characters for SU(3) and SO(8).

The characters for an irreducible representation can be calculated from the knowledge of the weights \(\mathbf{m} \) of multiplicity \(\chi_m \). The formula given by Weyl, is the following [25]:

\[
\chi(\Phi) = \sum_m \gamma_m \exp i (\mathbf{m}, \Phi)
\]

where the scalar product, in the exponential, is performed in the weight space.

10) Characters for SU(3). In order to preserve the symmetry of the algebra, exhibited on the root diagram (see Fig. 1.), it is convenient to use triangular coordinates of sum zero in the 2-dimensional weight space [25][11]. We then obtain, for the fundamental representation:

\[
\chi_3(\Phi) = \exp \frac{i}{2} (2 \phi_1 - \phi_2 - \phi_3) + \exp (\phi_1 + \phi_2 - \phi_3) + \exp \frac{i}{2} (-\phi_1 + \phi_2 + 2\phi_3)
\]

After a change of variables:

\[
\phi_2 - \phi_1 = \phi_3 \quad \phi_1 - \phi_3 = \phi_2 \quad \phi_3 - \phi_2 = \phi_1
\]
one can use also for the Φ vector triangular coordinates:

$$\phi_1 + \phi_2 + \phi_3 = 0$$

and the character formula becomes:

$$\chi_3(\Phi) = \exp \frac{i}{3}(\phi_2 - \phi_3) + \exp \frac{i}{3}(\phi_3 - \phi_1) + \exp \frac{i}{3}(\phi_1 - \phi_2)$$

One easily deduces for the 8, 10, 16 and 27 representations of $\frac{\text{SU}(3)}{Z_3}$, the following expressions:

$$\chi_8(\Phi) = 2 \left[1 + \cos \phi_1 + \cos \phi_2 + \cos \phi_3 \right]$$

$$\chi_{10}(\Phi) = 1 + 2 \left[\cos \phi_1 + \cos \phi_2 + \cos \phi_3 \right] + \exp i(\phi_2 - \phi_3) + \exp i(\phi_3 - \phi_1) + \exp i(\phi_1 - \phi_2)$$

$$\chi_{16}(\Phi) = 1 + 2 \left[\cos \phi_1 + \cos \phi_2 + \cos \phi_3 \right] + \exp i(\phi_2 - \phi_3) + \exp i(\phi_3 - \phi_1) + \exp i(\phi_1 - \phi_2)$$

$$\chi_{27}(\Phi) = 3 + 2 \left[\cos 2 \phi_1 + \cos 2 \phi_2 + \cos 2 \phi_3 \right] + 2 \left[\cos \phi_1 + \cos \phi_2 + \cos \phi_3 \right] +$$

$$+ 4 \left[\cos \phi_1 \cos \phi_2 + \cos \phi_2 \cos \phi_3 + \cos \phi_3 \cos \phi_1 \right]$$

2°) Characters for D_4°. All weights of the fundamental representations are simple and deducible from the highest weight by the operations of the Weyl group. The weight space is four-dimensional, with basis e_j^i, $j = 1, 2, 3, 4$. We immediately know the
characters for the fundamental representations:

a) $\mathbf{8}_p$: Highest weight \(\frac{1}{2} (a_1 + a_2 + a_3 + a_4) \):

\[
\chi_{\mathbf{8}_p}(\phi) = 2 \left[\cos \left(\frac{\phi_1 + \phi_2 + \phi_3 + \phi_4}{2} \right) + \cos \left(\frac{\phi_1 - \phi_2 - \phi_3 - \phi_4}{2} \right) + \cos \frac{\phi_1 - \phi_2 + \phi_3 - \phi_4}{2} + \cos \frac{\phi_1 + \phi_2 - \phi_3 + \phi_4}{2} \right]
\]

b) $\mathbf{8}_s$: Highest weight \(\frac{1}{2} (a_1 + a_2 + a_3 - a_4) \):

\[
\chi_{\mathbf{8}_s}(\phi) = 2 \left[\cos \left(\frac{\phi_1 + \phi_2 + \phi_3 - \phi_4}{2} \right) + \cos \left(\frac{\phi_1 - \phi_2 - \phi_3 + \phi_4}{2} \right) + \cos \frac{\phi_1 + \phi_2 + \phi_3 + \phi_4}{2} \right]
\]

c) $\mathbf{8}_v$: Highest weight ϕ_1:

\[
\chi_{\mathbf{8}_v}(\phi) = 2 \left[\cos \phi_1 + \cos \phi_2 + \cos \phi_3 + \cos \phi_4 \right]
\]

d) $\mathbf{23}_R$: Highest weight $a_1 + a_2$

\[
\chi_{\mathbf{23}_R}(\phi) = 4 \left[1 + \cos \phi_1 \cos \phi_2 + \cos \phi_1 \cos \phi_3 + \cos \phi_1 \cos \phi_4 + \cos \phi_2 \cos \phi_3 + \cos \phi_2 \cos \phi_4 + \cos \phi_3 \cos \phi_4 + \cos \phi_4 \right]
\]
For completeness, we also give the characters for the 35_v and 56_v representations:

\[
\chi_{35_v}(\phi) = 3 + 4 \sum_{i<j} \cos \phi_i \cos \phi_j + 2 \sum_i \cos 2\phi_i
\]

\[
\chi_{56_v}(\phi) = 6 \sum_i \cos \phi_i + \sum_i \cos (\phi_i + \phi_j + \phi_k)
\]

where \((i j k l)\) is a permutation \((1,2,3,4)\).

3o Proposition. The inclusion $A_2 \subseteq D_4$ one considers, is realized by the projection of the four-dimensional weight diagrams on the two-dimensional plane defined by:

\[
\phi_4 = 0
\]

\[
\phi_1 + \phi_2 + \phi_3 = 0
\]

The first equation assures the equivalence of the two spinor representations and, consequently, of all N_{sp} and $N_{sp'}$ representations. From the second equation, one deduces the equivalence between the three 8-dimensional representations of D_4^4 and their irreductibility. The following results are then straightforward:

\[
8_{sp} \Rightarrow 8 \quad 8_{sp'} \Rightarrow 8 \quad 8_v \Rightarrow 8
\]

\[
\left\{
\begin{array}{c}
28_R \Rightarrow 8 \oplus 10 \oplus \overline{10} \\
35_{\alpha} \Rightarrow 8 \oplus 27 \\
56_{\alpha} \Rightarrow 1 \oplus 8 \oplus 10 \oplus \overline{10} \oplus 27
\end{array}
\right.
\]
For the problem of the extensions of the Poincaré group, see for instance, L. Michel, notes of lectures given at the Istanbul Summer School, July 1962.

Recently, the inclusion has been noted by Y. Ne'eman, Phys. Lett. 4, 81 (1963).

We call "inequivalent places" positions one cannot relate by means of an inner automorphism.

In Cartan's notation, the simple Lie algebra \(A(n > 1) \) is realized, for instance, by its universal covering group, the unimodular unitary group \(SU(n+1) \). One extends the notation for \(n = 0 \), to the one-dimensional Lie algebra, for which the more interesting physical realization is the one-dimensional unitary group \(U(1) \) commonly called the gauge group of the first kind.

In a general way, \(Z_n \) is a finite abelian cyclic group isomorphic to the set of the algebraic \(n \)th roots of the unity. It follows naturally that \(Z_n \) is a subgroup of \(U(1) \).

This form is associated with the one-dimensional representation figuring in the direct product of two adjoint representations:

\[
8 \otimes 8 = 1 \oplus 8 \oplus 8 \oplus 10 \oplus 10
\]

P.M. Cohn, Lie groups. Cambridge 1957.

The index \(\alpha \) distinguishes three inequivalent representations of \(D_4 \), entering in only one of the \(\Delta_4 \) groups.

In general, an irreducible representation of \(\Delta_4 \) is reducible under the strong interaction transformations and one can mix the parities into a \(\Delta_4 \) multiplet but not into the subrepresentations irreducible in \(A_2 \).

For instance, we know that:

\[
28_{R} \Rightarrow 8 \oplus 10 \oplus 70
\]

and the well-known \(J = 0^- \) and \(J = 1^- \) octets can take place in the \(8 \) part of the \(28 \) representation. For the \(10 \) and \(70 \) part, it is possible to put \(J = 0^+ \) and \(J = 1^+ \) mesons.

The \(56_{cl} \) representation reduces, under \(A_2 \), according to:

\[
56 \Rightarrow 1 \oplus 8 + 10 \oplus 10 \oplus 27
\]

The \(J = \frac{3}{2}^+ \) multiplet can take place in the \(10 \) part and the \(J = \frac{3}{2}^- \) octet (?) in the \(8 \) part.