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Abstract

Solvability and boundedness criteria for dual linear programming

problems are given in terms of the problem data and the intersections of

the nonnegative orthant with certain complementary orthogonal subspaces.

Introduction

The duality theorem of linear programming !/ relates two linear

extremum problens in terms of solvability, boundedness and equality

of functional values. The classical theory of Lagrange multipliers admits

extensions to some special nonlinear cases -/ as well as interpretations

of duality in the context of applications. 3/

Tucker, in [16], showed duality--in the linear case-- to follow from

elementary geometric considerations of complementary orthogonality of

manifolds corresponding to the dual problems. 4/

In this paper we follow Tucker's approach and supplement his results,

in [16], by an alternative theorem for dual programs, theorem 4 below,

and by a characterization of all duality situations in terms of the geomet-

rical coifigurations of certain manifolds associated with the data and the

data itself, theorem 6 below.

None of our results seem to be essentially new; yet our efforts may

be justified for pedagogical reasons.

1/ Conjectured by VonNeumann (e. g. [71, p. 23) and proved by Gale,
Kuhn and Tucker [ 81. For the extended form discussed here, see
Charnes and Cooper [3].

2/ Notably Kuhn and Tucker [11]
3/ E.g. [71, pp. 19-Z.

4/ A similar approach was used in [I to develop, in a unified manner, the
main theorems oi linear inequalities.
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0. Notations

In this note we use the same notations as in [1]. Recall in particular that:

is an arbitrary ordered field

En is the n-dimensional vector space over 7-

C{f 1P ... ofk ) is the cone spanned by the vectors fl' V "fk in En

A is an m xn matrix over F

N(A) is the null space of A in E n

R(A T ) is the range space of AT in E n

In addition let A+ denote the generalized inverse of A , e.g. [14l and [2].

1. Lemma: Let L be an arbitrary subspace of E n  Then the following

are equivalent:

(i) {x L fl E n Ac for all xc E n

(ii) L fl int En A )

(iii) {x+L} flint E' i for all xc En

Proof:

Mi r--> (ii)

Suppose (ii) is false. This is possible only in two cases:

Case A: Lflbdry E+ C{C1 e...lep <pfn-dimL

Case B: L fl E {}

We will now show (i) to be false by producing, in each case, a vector x
n

such that {x O + L nE+

Case A: Let x. be any vector in L- n int C{-ep+ , ... v -en} , a set

which is nonempty by (1] , corollary 5.

Case B: Let x be any vector in L " n int{-E+} ; the latter set is
0 bnonempty by [ 11, corollary 2.
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n nLet I E Lnint E+ Then for all x( E and scalars X satisfying

IX.I1
X > max

x.< 0 1.1 1

we have: x + U c intE+n

(iii) ==> (i) Obvious

f *1

Z. Coroll-ry: Let A be an arbitrary m xn matrix over .-. Then the

following are equivalent:

(i) Ax = b , x> 0 is solvable for all bER(A)

(ii) Ax = , x> 0 is solvable

(iii) Ax = b , x> e is solvable for all b cR(A)

Proof:

The solutions of Ax = b , when solvable, form the manifold: A+ b + N(A)

e. g. [ 141 . Now (i), (ii) and (iii) are the corresponding parts in lemma 1

with x =A+b and L=N(A).

3. Corollary: Let A be an arbitrary mxn matrix over Then the

following are equivalent:

(i) A Tw > c is solvable for all c *En

(i) AT w > 0 is solvable

T n
(iii) A w > c is solvable for all c E E

Proof: In lemmal let L = R(A) , x = -c
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4. Theorem: Let A be an arbitrary mxn matrix overF Consider

the system of equations and inequalities:

I) Ax=b , x> If) Ax=0 , x>9

T > c T
II) A w II') A w > 0

Then:

a) I is solvable for all b F R(A) if and only if III does not have solutions v;

with nonnegative nonzero vectors ATw 

b) II is solvable for all c e En if and only if 1' does not have nonnegative

nonzero solutions.

c) If III ha3 solutions w with A Tw > 0 then I is solvable if and only if

T
A w 1- 0 => (b,w) > 0.

d) If I' has solutions x with x . 0 then H is solvable if and only if

Ax=0 , x>0 -> (c,x)<.0

Proof:

a) By corollary 2 it follows that I is solvable for all b E R(A) if and only

if N(A) nint En A By [Il 1 corollary 2, the latter condition is

equivalent to R(AT) C E+ = M

b) By corollary 3, II is solvable for all c E n if and only if

R(A ) n intE+ This is equivalent, by [lb, corollary z, to:

N(A) nl En = {01

c) This is the well-known Farkas' lenma, e. g. [15] .

d) This is theorem I in Ky Fan [6].
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Remarks

a) Theorem 4 is a collection of classical results in a setup which is com-

pletely analogous to "Fredholm's Alternative" theorem for linear

equations, [ 5]. Solvability relations between linear inequalities and

equations were studied by Motzkin [13], Kuhn [10] and generalized by

Ky Fan to the case of complex normed linear spaces [61 . For a use

of Fredholm's theorem to prove the main theorems of linear inequalities

see [1] .

b) For b C R(A), part c can be rewritten as:

c') If be R(A) and II' has solutions w with A Tw > 0 then I is solvable

if and only if

Aw _ 0 => (ATw, A+b) _ o.

This follows from the fact that AA* is the perpendicular projection

on R(A), e.g. [2].

5. Let A be an arbitrary mxn matrix over , b cEm and cG En.

Let

S{x n : Ax =b, x> 01 I=sup(c,x)
XES

T= {wE Em: ATw > c) I inf (b w)
wET

The duality theorem of linear programming relate the problem of solving

for Il the primal problem, to that of solving for I. , the dual problem.
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The duality theorem states indeed that there are four mutually

xr-l's ive cases:

Case A: S/4), T ), Ik I Z

Case B: S =), T/4), I?=_o

Case C: S14), T , i1=00

Case D: S=, T=

Conjectured by Von Neumann, e. g. [ 7], p. 23, and proved by Gale, Kuhn

and Tucker [ 8], this theorem was extended to some nonlinear situations,

the most general being that of Charnes, Cooper and Kortanek [4).

We will now elaborate on the four cases civen above. In terms of

the data )A, b, c) , and more specifically of the cerfigurations of N(A) and

.IA T ) v.,th respect to E , we give below conditions for the attainment of

e-arh of the above cases.

6. Theorem:

mLet A be an arbitrary mxn matrix over /, bE P (A) in E

c E n and letS, T, I1 and I z be as above . Then there are eight mutually

exclusive cases, tabulated below:



N N R

41
-4-

41 4.1

0 0.
44-

00

~1 X

0 0) 0o J

A X~

0 0D 0D Q 0DX
0e ft. 

0f0t.

14 "4

0 0 0 0 0 0 0* o
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Proof:

The cases 1,... ,8 are clearly mutually exclusive. In each case

theorem 4 is used to draw the conclusions regarding the sets S and T

Then the duality theorem of linear programming is used to obtain I1 and 12

Remarks:

a) The above 8 cases can be visualized geometricaUy in a manner which

helps to clarify the concept of duality. Thus in the 2-dimensional case

where A is a Ix2 matrix, dim R(A T) = dim N(A) 1, the first case appears

as follows:

N'

The other cases are drawn in a similar manner. Furthermore, by the

"complementary slackness" property, it is now easy to identify optimal

points. Thus x is the optimal solution of the primal problem and

a = AT w - c where w is the optimal solution of the dual problem, e. g.,
0 0

Tucker [16], p. 15.

b) Theorem 6 combines well-known solvability theorems, e. g. , Tucker [16]

and Charnes-Cooper [ 31, p. 214. and the duality theorem of linear program-

ming to characterize the duality situations in terms of the data (A, b, c) .
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