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Abstract
Solvability and boundedness criteria for dual linear programming
problems are given in terms of the problem data and the intersections of

the nonnegative orthant with certain complementary orthogonal subspaces,

Introduction

The duality theorem of linear programming 1/ relates two linear
extremum problems in terms of solvability, boundedness and equality
of functional valucs. The classical theory of Lagrange multipliers admits
extensions to some gpecial nonlinear cases -2-/ as well as interpretations
of duality in the context of applications, 2/

Tucker, in [16], showed duzlity--in the linsar case-- to follow from
elementary geometiric considerations of complementary orthogonality of
maniiolds corresponding to the dual problems. 4/

In this paper we follow Tucker's approach and supplement his results,
in [15], by an alternative theorem for dual programs, theorem 4 below,
and by a characterization of all duality situations in terms of the geomet-
rical configurations of certain manifolds associated with the data and the

data itsclf, theorem 6 below.

None of our results seem to be es sentially new; yet cur efforts may

be justified for pedagogical reasons.

1/ Conjectured by Von Neumann (e.g. [7], p. 23) and proved by Gale,

- Kuhn and Tucker [8]. For the extended form discussed here, see
Charnes and Cooper [3].

2/ Notably Kuhn and Tucker [11]

3/ E.g.[7], pp. 19-22.

f/ A similar approach was used in [1] to develop, in a unified manner, the
cain theorems of linear inequalities,



0, Notations

In this note we use the same notations as in [1]. Recall in particular that:

= is an arbitrary ordered field

n . . . -
E" is the n-dimensional vector space over /4

C{fl' oo .fk} is the cone spanned by the vectors fl' veerf, in ok

k
A is an mxn matrix over /T'—

N(A) is the null space of A in E?

R(AT) is the range space of A'r in E" .

—_——

In addition let A+ denote the generalized inverse of A , e.g. [14] and [2].

1. Lemma: Let L. be an arbitrary subspace of E™. Then the following
are equivalent:

(i) {X+L}ﬂE:‘ #¢ forall xeE"

(i) LNint E]  #¢

(iii) {x+L} Nint E: #6 forall xeE"

Procf:

(i) => (ii)

Suppose (ii) is false. This is possible only in two cases:
Case A: L 0lbdry E: = C{cl.....ep} 1<p<n-dimL

Case B: LN E? = {0}

We will now show (i) to be false by producing, in each case, a vector X,

such that {xo+ LN E:‘ =¢ .

Case A: Let x, be any vector in L'L N int C{-ep+1... . ,-en} , a set
which is nonempty by [1], corollary 5.

Case B: Let x, be any vector in L‘L N int{-E:} ; the latter set is
nonempty by [1], corollary 2.



(i) => (iii)

Let £€ L{lint L? . Then for all x¢E™ and scalars \ satisfying

lxil
A\ > max
x<0 £,
1 1
we have: x+ N € int E?

gx_x_x_) ==> (i) Obvious

xi

2., Corolliry: Let A be an arbitrary mxn matrix over .7:. Then the

following are equivalent:

(i) Ax=b , x 2 0 is solvable for all beR(A)

(ii) Ax =06 , x>0 is solvable
(iii) Ax=b , x>0 is solvable for all beR(A).
Proof:

The solutions of Ax = b, when solvable, form the manifold: A+b + N(A) ,

e.g.[14]. Now (i), (ii) and (iii) are the corresponding parts in lemma 1
withx = A'b and L = N(A) .
g

3. Corollary: Let A be an arbitrary mxn matrix over ;Z—. Then the

following are equivalent:

(i) ATw c is solvable for all ceE™

1AV

(i) ATw> 0 is solvable
(iii) ATw > c is solvable for all c € E™

Pro_(_:_{: In lemmal let L = R(AT) y X = =C
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4, Theorem: Let A be an arbitrary mxn matrix over F . Consider

the system of equations and inequalities:

I) Ax=b , x>0 1Y) Ax =90 , xie
m Alw 2 ) ATw > e

Then:
a) I is solvable for all be R(A) if and only if II' does not have solutions w
with nonnegative nonzero vectors ATw .

L) II is solvable for all c€E" if and only if I' does not have nonnegative

nonzero solutions,

c¢) If II' has solutions w with Alw >0 then I is solvable if and only if

Alw>e => (bw)>0.
d) If I' has solutions x with x 20 then Il is solvable if and only if

Ax =06 , x>0 => (c,x)<0.

Proof:

a) By corollary 2 it follows that 1 is solvable for all be R(A)‘ if and only
if N(A)NintE} #¢. By [1], corollary 2, the latter condition is
equivalent to R(AT) NE? = {0} .

b) By corollary 3, II is solvable for all ce E"” if and only if
R(AT) N int E‘: # ¢ . This is equivalent, by [1], corollary 2, to:
N(A) N E] = {0} .

c) This is the well-known Farkas' lemma, e.g. [15].

d) This is theorem 1 in Ky Fan [6] .
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Remarks

a) Theorem 4 is a collection of classical results in a setup which is com-
pletely analogous to '"Fredholm's Alternative" theorem for linear
equations, [5]. Solvability relations between linear inequalities and
equations were studied by Motzkin [13], Kuhn [10] and generalized by
Ky Fan to the case of complex normed linear spaces [6]. For a use

of Fredholm's theorem to prove the main theorems of linear inequalities

sce [1].
b) For beR(A), part ¢ can be rewritten as:

¢') If beR(A) and II' has solutions w with ATw 2 0 then I is solvable

if and only if

Alw > 8 => (aTw, A'b) > 0.

This follows from the fact that AA' is the perpendicular projection

on R(A), e.g. [2].

5. Let A be an arbitrary mxn matrix over /E ,» be E™ and c¢E".

Let
S={ern:Ax=b.xz o} ll=sup(c.x)
x€S
T={weE™: ATw > c) I, = inf (b, w)
weT

The duality theorem of linear programming relate. the problem of solving

for I1 » the primal problem, to that of solving for I2 » the dual problem,



The duality theorem states indeed that there are four mutually

oxelusive cases:

Case A: Sté6é, T#9S, L =1,
Case B: S=¢, T#od, I, = -
Case C: S#é, T=¢, L=
Case D: S=¢, T=¢

Conjectured by Von Neumann, e.g. [7], p- 23, and proved by Gale, Kuhn
and Tucker [ 8], this theorem was extended to some nonlirear gituations,

the most general being that of Charnes, Cooper and Kortanek [4].

We will now claborate on the four cases piven above. In terms of
the data }A,b,c}, and more specifically of the corfigurations of N(A) and

R{/\T) with rcspect to E: » we give below conditions for the attainment of

onch of the abeve cases,

6. Theorem:

Let A be an arbitrary mxn matrixover / , beR{A) in ET,
ceL™ andlets, T, I and I2 be as above . Then there are eight mutually

exclusive cases, tabulated below:



T " T
X awos 10 X ‘D) pue <X ‘9 =XV |
Ardwo . 30 <(x*2)pue @ pue | .
m auwos 103 0> . eg<cMm
3o~ (A .s.ai pue g < M,V
fydwa-uou | A3dwa 05(xD)<=9g<x‘@g=XvV INq | L
m awios Icy 0 >(qQ . V'm_V) pue g <m Yy !
+ u d
L L ¢ # m ? veeeslt DWU uﬂmCa.H.<va
i X awos X0} 0 Aﬁx.uvncmamx.oux‘\_
K3dwad " i . . 9
Q. 0<(qV M V)<= 08IM,V (VIN wip >d 51
{ ' AQO...AOWU““Q %chAféz
05(x9) <= 9<x ‘g=XV
£3dura-uou | A3dwra-uou _ S
= . A=
pue 0<(ay 3&5 <= 0<MV
= L3dwa n | X wos 105 0 < (x*o) pue g 2 X ‘g = XV | . v
. _ - (V)g» nr - acx 'p = i {6} = o3 U A.H/lm
I= £3dwa-uou e 205 03(x*9) <=06<X '9=XV €
Ajdwiao-uou —
= ALydwd M 2wWos 10§ 0 > (q V‘m_7) PU® 0 <MY 2
" + pﬁ
F39 10® 19F | (1dwa-uou P .M.H )<= @ <™ (6} = M_Q U(vIN 1
u A3dwia -uou 3 0< An+< .H< <= 6 < .H<
I S m 24q uo suoyIpuod _ Hu YItm UOTIDISIIUT o8ed

suolsniId2uo) suotrjdrunssy

'Nul
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Proof:
The cases 1,...,8 are clearly mutually exclusive. In each case
theorem 4 is used to draw the conclusions regarding the sets S and T .

Then the duality theorem of linear programming is used to obtain I1 and I2 .

e
Remarks: )

a) The above 8 cases can be visualized geometrically in a manner which
helps to clarify the concept of duality. Thus in the 2-dimensional case

where A is a 1x2 matrix, dim R(AT) = dim N(A) =1, the {first case appears

as follows: -2

The other cases are drawn in a similar manner, Furthermore, by the
“"complementary slackness' property, it is now easy to identify optimal
points. Thus x o is the optimal solution of the primal problem and

aszs ATwo- ¢ where v, is the optimal solution of the dual problem, e.g.,

Tucker [16], p. 15.

L) Theorem 6 combines well-known solvability theorems, e.g., Tucker [16]
and Charnes-Cooper [3], p. 214, and the duality theorem of linear program-

ming to characterize the duality situations in terms of the data {A,b,c} .
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