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ENERGETICS OF THE SOLAR SEMIDIURNAL TIDE

IN THE ATMOSPHERE

by

Walter L. Jones

ABSTRACT

A study is made of the energy generation, transport, and dissipation
by the solar semidiurnal tide in the earth's atmosphere. Computations
based on recent observations at Terciera, Azores show a downward transport
of available potential energy in the troposphere, reaching a maximum of
7 x 10-3 watts per square meter at or near the ground. Similar data for
Fort Worth, Texas, substantiates the assumptions used in this calculation.
This flux is generated primarily by water vapor insolational heating, though

horizontal convergence of tidal available potential energy may be significant.

Neither eddy viscosity nor an inverse correlation between convective
heating and tidal temperature fluctuation appear adequate as energy sinks
for this flux. Instead, it is proposed that the undulations of the earth's
surface interact with the main tidal motion to generate secondary internal
gravity waves; these propagate energy vertically to levels where they are

viscously damped, and thus represent a loss of energy to the tide.
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The complex form of the tidal-terrain interaction prohibits a
rigorous computation of its magnitude. Two very approximate approaches
yield energy fluxes of 0.5 x 10-3 and 30 x 10-3 watts per square meterL’
respectively; both figures are of an order-of-magnitude nature. Thus no
definite conclusions can be reached about the importance of its effect.
If the effect is not the source of the downward energy flux, the effects
of eddy viscosity or convective heating must be greater than computed,

or some unknown energy sink must exist.

Computations are made of the extent to which eddy and molecular
viscosity damp the secondary internal gravity waves; waves longer than
3000 kilometers are damped in the thermosphere, by molecular viscosity
and possible by hydromagnetic damping. Waves from 1000-3000 kilometers
in length are damped in the mesosphere, and waves of length 200-1000
kilometers are damped in the troposphere. Still shorter waves must be

treated in a fully viscous theory.

The Terciera and Fort Worth data show a northward meridional
transport of tidal energy. Both stations also show meridional transports
of zonal momentum by the semidiurnal tide. A similar transport, with a
seasonal fluctuation, is found in meteor trail observations at 92 km.
Theoretical aspects of these transports and their relation to advection

of sensible heat and potential energy are discussed.

Finally, a simplified approach to non-linear tidal theory is taken
to show that interaction between tidal and Rossby waves cannot account for

the observed energy loss.
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CHAPTER 1I. INTRODUCTION

A. Observed Atmospheric Tides

Three excellent review articles are available to the serious student
of atmospheric tides. These are the chapter, Atmospheric Tides and Oscilla-

tions, by Chapman, (1950) in the Compendium of Meteorology; the book,

Oscillations of the Earth's Atmosphere, by Wilkes, (1949); and the Chapter,

Atmospheric Tides, in Advances in Geophysics, Vol. 7, by Siebert, (1961).

The last. is especially recommended as being most recent and most complete

in its theoreyicql development. The first two offer more extensive accounts

P .
J o N

of -dbservational data: As these references are generally available, only a
limited outline of the observed tides and the history of tidal theory will

be given here.

As early as 1727, Newton noted that universal gravitation implied an
atmospheric tide. He correctly surmised that it would be a very small
effect. By the latter part of the eighteenth century, the solar semi-
diurnal tide had been observed and was known to such mathematicians as
Bernoulli and D'Alembert, (Wilkes, 1949). The first complete dynamical

theory of tides was developed by Laplace, (1799, 1825).

Laplace also initiated the search for the lunar semidiurnal tide in
the atmosphere. The major incongruity of the atmospheric tides is that
the solar semidiurnal tide is thirty or forty times as large as its lunar

¥ counterpart, while in the ocean, the lunar tide is dominant. In fact,

the lunar tide was too small for lLaplace to recover from eight years of
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ground pressure data at Paris. Several others made unsuccessful attempts

in the next two decades to find the lunar tide.

The first reliable determination of the lunar tide was made by
le Froy at St. Helena, in 1842, (Sabine, 1847). It was relatively more
simple for him to obtain tidal data, both because of the increased magni-
tude of the lunar tide at low latitudes, and because of the relative

constancy of barometric readings in the tropics.

Other observations, especially of the solar tide, and by the end
of the nineteenth century, extensive compilations of the 24-, 12-, and 8-
hour tides were available, (Hann, 1889, 1889, 1918). Praminik, (1926)
computed similar data for the 6-hour tide. As early as 1890, Schmidt
noted that the distribution of the phase of the semidiurnal tide could be
explained by assuming two modes of oscillation, one progressing in a west-
ward direction, the other zonal and oscillating with Greenwich, rather

than local time.

Simpson, (1918), extended Schmidt's idea, applying it to the data
of 214 stations. He found two twelve-hour waves, given by the empirical

formulae:

s:= 1.2s5 Cﬂ’e Qe [0‘**2’-&'5‘"] b

$2 = 0.061(3ain0~1)aimlo-t +105°] mb
1)

Here J 1is Greenwich time, @~ the tidal frequency, O the latitude,

and ¢ the longitude.

1
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Haurwitz, (1956) extended the analysis of the twelve-hour tide to
296 stations, and Kertz, (1959), anslyzed Haurwitz data in terms of spher-
ical harmonic functions. The major components of the semi-diurnal tide
are:

s2=[1.a3P;(0)~ 0.334 Rl)] ain (r2+24+168°) mb,

s2 = [7.13 B%@®) ain(02+135°)+ 6.6 2F°(6) 2om (o2 +123°)]

)
x /0= mo.

S} = r0.70 P(6) asn (X +34+88°)x 10°% mb.

The diurnal tide contrasts with the semidiurnal tide, inthat it is
quite variable, both in a random sense, and as a function of season. It
is also qQuite dependent on the height of the station above sea level. It
is generally of the same order as or smaller than the semidiurnal tide at

the surface of the earth.

The eight- and six-hour tidal components are a few tenths the size
of the semidiurnal tide, and are also quite irregular. It is the predom-
inant semidiurnal tide which has attracted the most attention, and which

will be the principal topic of this dissertation.

B. History of the Resonance Theory of Tides

As was noted, the first dynamic theory of the tides was developed
by Laplace, (1799, 1825). Although most of his studies dealt with incom-
pressible oceans of uniform depth, he showed the theory could be applied

to a compressible atmosphere, providing three assumptions are made;
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1. Vertical accelerations are negligible.
2. The atmosphere is isothermal.

3. Oscillations occur under isothermal conditions.

The first assumption continues to be used widely in tidal theory,

as well as in many other atmospheric problems. The second is an oversim-
plification that obscures effects which later researchers considered vital.
Nevertheless, it is a great convenience, when used judiciously, and can be
used to illustrate important points at least qualitatively. The third
assumption does not appear valid at all. First, external heating may be
important, and second, even in the absence of heating, tidal motions would
be more nearly adiabatic than isothermal. Chapman, (1932) has shown this

to be true for the lunar semidiurnal tide, for example.

Laplace also noted the disparity in magnitude between solar and
lunar tides. He attributed this to a heating source for the solar tide,

of much greater magnitude than the gravitational source of the lunar tide.

Kelvin, (1882), pointed out that if this were the case, one would
expect the solar diurnal tide to be substantially larger than the semi-
diurnal tide, since the diurnal heating is larger than the semidiurnal.

As a solution to this dilemma, he suggested that the atmosphere has a
natural resonance near twelve hours. The isothermal atmosphere of Laplace
possessed such a resonance, whose frequency was determined by the atmos~
pheric temperature. Kelvin's suggestion led to & half-century and more

of work on the so-called "resonance theory" of tidal motions by many

authors.
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Rayleigh, (1890), and Margules, (1892), were the first to investi-

Sy e

gate the periods of free oscillations in search for the resonance. Rayleigh

made several si;plitications, among them the critical neglecf of the earth's

rotatign. Margules included the rotation, but based his work on Laplace's
'.:theory,ﬁéhd s0 suffered from the same assumptions and their limitations.

Margules, (1890), also considered the oscillations of an atmosphere subject

to periodic heating.

Lamb, (1910, 1916), extended Laplace's theory to an atmosphere in
convective equilibrium, with an adiabatic lapse rate and adiabatic changes
of state. This model gave results very similar to th;itof Laplace. Both
behaved like an incompressible fluid with a depth equal to the scale height
at the base of the atmosphere, and so possessed a natural resonant frequency.
Lamb also showed that an atmosphere with a uniform but non-adiabatic lapse
rate has an infinite number of resonances of different frequencies. Taylor,

(1936), extended Lamb's model to a rotating sphere. The possibility of
b

multiple resonances was later to be vital to the resonance theory.

In 1924 Chapman considered eddy conduction of heat from the surface
of the earth as a tidal driving force. The phase for such a thermally
driven tide was nearly in quadrature with that of a gravitationally induced
tide; the observed phase of the semi-diurnal progressive tide lay about

midway between the two. From this observation, as well as from computed

;
i.

values of eddy heat transport, Chapman concluded that the thermal and
gravitational driving forces were nearly equal in their effectiveness.
For some tile,~it was thought that the phase of the semidiurnal tide had

been explained in this manner. It was still necessary to invoke a strong
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resonsance to explain the magnitude of the tide.

Bartels, (1927), then developed a two-layer model, with a tropos-
phere of constant lapse rate, and an isothermal stratosphere. This model
had a single free wave eigensolution, with a period of about 10.5 hours.
This was not close enough to the twelve hour tide to produce a large
amplification, however. Taylor, (1929) showed that this resonance did
agree well with the velocity of the Krakatoa pressure wave of 1883. For
a short while, this model posed a serious problem to adherents of the
resonance theory. However, Taylor himself, (1936), eliminated the diffi-

culty by pointing out the possibility of multiple resonances.

In 1937 Pekaris developed a five-layer model, having a 220 K.
isothermal stratosphere, a 190 K. isothermal top, and a region of temper-
ature maximum, around 350 K., just below 60 km. This temperature profile
was in good accord with what was then known of the upper atmosphere: The
temperature maximum had been inferred from anomalous sound propagation,
(Whipple, 1918), and the low temperature above 80 km. from the presence

of noctilucent clouds.

The Pekaris model had two resonant frequencies, one at 10.5 hours
and a second at 12,0 hours. This theory thus appeared to explain both
the Krakatoa wave speed and the resonance of the semidiurnal tide. When
combined with the explanation by Chapman of the phase, the semidiurnal

tide seemed well explained.

In the last decade, however, several criticisms of the resonance

theory have been raised. Siebert, (1957), and Kertz, (1959), have observed
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other wave types of 6- and 8- hour frequencies. While interpretation of
their analyses is difficult, it appears that these waves would need
resonances amplification comparable to that of the semidiurnal wave; no

such resonances have been proposed theoretically.

More damaging are the recently obtained temperature data for the
temperature maximum. These data, mostly from rocket soundings, show a
much lower temperatuere, less than 300 X. The ARDC 1959 model atmosphere,
for example, shows a maximum of 283 K., (Minzner, Champion, and Pond, 1959).
Jacchia and Kopal, (1952), investigated the sensitivity of the Pekaris model
to changes in the temperature profile. It is quite sensitive to changes in
the temperature maximum; a change of ten or fifteen degrees alters the semi-
diurnal resonance amplification very markedly, and a reduction to 300 K.
causes it to disappear entirely, leaving only the tropospheric mode corres-

ponding to the Bartels model.

Finally, the Pekaris model predicts a mode in the pressure wave near
30 km. Recent data by Harris, Finger, and Teweles, (1962), for the semi-
diurnal tide shows no such node up to a height of 10 mb., or 31 km. It is
possible such a node exists at a greater height, but if so, there is no

trace of it at this level.

C. Recent Contributions to Tidal Theory

Without the aid of a strong resonance amplification, gravitational
and eddy-heating generating forces are inadequate to explain the observed

tidal amplitudes. Recently, attention has been turned to insolational




heating bx water vapor, carbon dioxide, and ozone absorption.
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Sen and White, (1955), and White, (1956) developed an improved tidal
v theory, taking into account heating of any form and at any height. Inde-
pendently, Siebert, (1955), derived a similar theory; as it is somewhat

simpger and follows more directly along the main line of development of

D.'

tidal theory, Siebert's theory will be taken as the basis for the following

work.

Siebert (1961) made use of his theory to analyze insolational heating
by water vapor. He used a rather artificial atmospheric model, neither
isothermal, nor adiabatic, but representative of a troposphere with a gradual

at;ansitibn into a stratosphere. This model has one mode of oscillation,
‘close to that of Bartels. Siebert made use of the empirical Mugge - Moller,
(1932) equation for water vapor absorption. The model showed a resonance
amplification of 3.7, and developed a tide one-third the magnitude of the

observed tide.

Thus, insolational heating by water vapor appears considerably more
important than either eddy conductivity or gravitational potential as a
source of the semidiurnal tide. It is, at least according to Siebert, not
adequate to explain the observed tide. He proposes three possibilities:

1., There is a resonance of a form that has been overlooked.
2. The insolational heating coefficients are too small,

3. There are sources that have not been discovered.

As one ‘additional source, Siebert considered ozone absorption,

concluding that it is perhaps a third as effective as water vapor, but
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recognizing the approximate nature of both the model and the absorption
data. 8mall and Butler, (1961), also considered ozone heating, using a
more appropriate temperature profile, (Murgatroyd, 1957). They concluded
that ozone heating is capable of producing both the observed amplitude and
phase of the semidiurnal tide, and felt the unrealistic form of Siebert's

temperature profile led to his smaller amplitudes for ozone heating.

In recent years, some knowledge of tidal oscillations as a function
of height has been obtained. Meteor trails have been observed by radar,
and the tidal winds deduced at 80 to 100 km., (Greenhow and Neufeld, 1955,
1956, Elford, 1953). One series of 23 hourly rocket soundings has been
analyzed for tidal winds in the height range of 35 to 65 kilometers,
(Lenhard, 1963). At lower levels, Wagner, (1932), and Stapf, (1934),
observed the tides at several Alpine stations, and found a phase lag with
height. This has been confirmed by radiosonde observations reduced by
Harris, Finger, and Teweles, (1962). J. Bjerknes (1949) has qualitatively
interpreted this phase lag a8 the result of ground friction. Since
Chapman's explanation of the tidal phase was based on mechanisms requiring
resonance, it no longer is valid, and some such explanation of phase shift

is a necessity.

D. 8cope of the Present Study

This study is primarily concerned with the generation of secondary
internal gravity waves with tidal frequency, but shorter wavelength. The

primary source of these waves is a tidal-terrain intervaction, though non-

linear inte.action with the large scale atmospheric eddies is also considered.
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The secondary waves propagate energy vertically to levels where they are
damped, by eddy viscosity, molecular viscosity, or possibly magnetic
damping. As these waves extract energy from the primary tide, they
represent a loss mechanism for the latter, exerting a substantial influ-
ence on its character. In particular, the mechanism offers an explanation

of the pressure phase at the ground.

Chapter 11 discusses the traditional linearized and inviscid tidal
equations, essentially as developed by Pekaris, (1936), Weekes and Wilkes,
(1947), Wilkes, (1949), and Siebert, (1955, 1961). Non-adiabatic heating

is included, and rotating planar and spherical geometries are treated.

Chapter 111 discusses the boundary conditions that must be imposed
on the vertical wave equation. In particular, it is shown that the normal
assumption of no vertical velocity of the primary wave at the ground may
not be valid. 1If the surface is undulatory, the horizontal motions would
transfer mass through the terrain slope unless there are additional waves
to counteract this transfer. These waves are related in scale to the
terrain disturbances, and have tidal period. A Fourier analysis of the
earth's surface around a latitude circle is used with a planar model to
obtain an estimate of the vertical energy transport by the secondary waves,
and hence of the downward energy transport required in the primary tidal
wave. A very approximate analysis, in all probability an underestimate,

gives a vertical energy flux ~ 0.5 x 10-3 watts per square meter.

In Chapter 1V, observational data for the semidiurnal tide above

the Azores, (Harris, Finger, and Teweles, 1962), are considered. Under
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the logical and self-consistent, though yet unproven assumption that one
known mode of oscillation prevails throughout the troposphere and lower
stratosphere at that location, it is found that there is a downward flux

of tidal energy. This flux is at a maximum at the surface, where secondary
waves are generated; it requires the generation of 7 x 10-3 watts per
square meter of tidal energy, by a source located in the troposphere.
Insolational heating by water vapor seems to satisfy this requirement.

This flux is an order of magnitude greater than the lower limit predicted
for the tidal-terrain effect; unfortunately, an upper limit has not been

established.

As the theory of secondary waves developed in Chapter I1II depends
on the assumption that they are dissipated at some level in the atmosphere,
the effects of eddy and molecular viscosity are taken up in Chapter V.

Data on these viscosities are meager and subject to problems of interpre-
tation, but it appears that the bulk of the secondary waves are dissipated
in the troposphere. The longest waves transport 10 or 20% of the energy
to the mesosphere or even the lower ionosphere, where molecular viscosity
becomes important. Eddy viscosity does not appear to play an important
role in the primary semidiurnal tide, as it is observed in the troposphere.
It 18 concluded from theory and observation that viscous losses do not

sccount for the downward flux of tidal energy.

Another possible source of dissipation, hydromagnetic damping in
the ionosphere, is considered in Chapter VI. The assumptions are crude,

but provide an upper limit to damping, which is comparable to molecular
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viscosity for waves of interest in the E-layer.

A third possible sink for the downward flux of tidal energy can be
found in convection of heat from the ground. Just as a positive correla-
tion between temperature and insolational heating brings about a generation
of tidal energy, so a negative correlation between convective heating and
density might provide for its dissipation. This possibility is examined
in Chapter VII. From the limited knowledge of convective heating, it
appears too small, by less than an order of magnitude. It is also argued
that such an effect should produce abrupt changes in tidal pressure between

the ground and 900 mb levels that are not observed.

Chapter VIII considers other aspects of the observed tide, including
meridional transport of angular momentum and tidal energy, and the genera-
tion of tidal kinetic energy. The equations of motion are used to show how
these quantities, all zero for a single linear mode, may be non-zero in

the presence of a mixture of modes of oscillation.

Non-linear interaction between tidal and Rossby waves are treated
in Chapter IX. A wave equation analogous to the linear case is derived
for the case where the mean magnitude of all waves is constant. This equa-
tion is applied to an elementary model in order to obtain an order of
magnitude estimate of the energy transport by secondary waves so generated.
Little energy is lost in long wavelengths; it is possible, but not likely
that short waves provide a considerable loss, but most of their energy is

derived from the Rossby waves.
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CHAPTER 1I. THE LINEAR TIDAL EQUATIONS

A. Major Assumptions

The following linearized tidal theory is, in large part, that
presented by Siebert, (1961). His work in turn follows directly from
those of Pekaris, (1937), and Wilkes, (1949). Siebert's nomenclature
will be retained, except as noted. In subsequent chapters, both rotating
planar and rotating spherical geometries will be used, and the tidal

equations will be derived for both cases.

Three major assumptions, all traditional to tidal theory, will be
made at the outset. The first is the assumption of negligible vertical
accelerations, the hydrostatic approximation used in much of meteorology.
Eckart, (1960), has developed atmospheric wave equations along somewhat
different lines without this assumption. The effect of the approximation
is to change terms of the form A o to the form /V‘ . N is
the Vaisala-Brunt frequency, and 0~ the tidal frequency. As the former
corresponds to periods of a few minutes, while the latter corresponds to
periods of several hours, the error introduced by the hydrostatic approx-

imation is quite small.

The second assumption is that all terms involving the horizontal
component of the earth's angular velocity are negligible. These terms
appear as vertical accelerating forces or in conjunction with small vertical
velocities, and are also normally neglected in meteorological work. Again,

Eckart has considered this approximation in some detail. In the case of
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the rotating plane, the equations may be solved, albeit with more diffi-
culty. The error introduced by the assumption is small unless the tidal
angular frequency is nearly twice the vertical angular velocity of the

plane, crudely corresponding to the poles for the semidiurnal tide, and

a latitude of thirty degrees for the diurnal tide.

In the case of a rotating sphere, the separation of horizontal and
vertical variation of parameters is no longer possible unless this approx-
imation is made, and no solution to the tidal equations is known for this

case. Eckart accepts this approximation with reservations, therefore.

Finally, it will be assumed that the undisturbed atmosphere has only
vertical variation of such parameters as pressure or temperature, or at
least that horizontal variations contribute only terms small enough to be

dropped in the linearization of equations.

B. The Rotating Plane

In this model, the earth is 357umed to be planar and smooth, with a
vertically directed angular velocity, 623 . The gravitational acceleration,
j? is assumed to be constant and everywhere uniform. The atmosphere is

taken to be inviscid and of uniform composition. Atmospheric parameters
such as temperature, T , pressure, P , and density, ﬁ , 8re assumed

to consist of an undisturbed, time-invariant component and a tidal component.
The former will be denoted by the subscript o, , and the latter by the

subscript if they belong to a specific mode of oscillation.

e~ ’ % n
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Thus:

T=T.+T¢-=—'-I*Z-Tﬂ

n )

for example. The zero-order hydrostatic equation is:

-°-‘—P£=-;A (2)

and the equation for an ideal gas is:
R S
Po";"'ﬂT.—’f'Ho 3

where R is the universal gas constant, M the mean molecular weight of

. the air, } the vertical coordinate, and H. the atmospheric scale height.

The equation of motion is:

DVe, ;@xVes ~poptP ¥

As the tidal potential is assumed to have negligible importance for the solar
tides, it is omitted from equation (4). (It is included in Siebert's work).

I1f (4) is linearized on the assumptions that perturbations are small compared
to undisturbed quantities and that velocities are small compared to QW ,

where @A is a tidal scale distance:

Vo .37 = =L .
: %.g'.'.‘-fawx\/r— AMP‘,.'.%; .

The horizontal coordinates of the plane are taken to be j and

‘Q , and the corresponding velocities as & and V¥ . The vertical

\



-16-

velocity is W . If vertical accelerations are ignored, (5) may be

written as:

=

"
|

o~

)“"._ JCdVr

- 3 o
1 9P
2_!‘1'-1-2‘0“0" = =7, PR )

d T
2P
J 3

The equation of continuity 1is:

-—;fo 8)

D2 _
pe tSXe =0 ®

where the velocity divergence is written as:

U~ . Ve . IWs

+~——

Y1 Tor T g

x,.
The first law of thermodynamics may be written as:

§Q= C, dT "‘P’((ff) an)

sa is an infinitesimal amount of heat added per unit mass, and Cy and
CP are the specific heats of air at constant volume and pressure, respect-
ively. Both specific heats are assumed to be constant and spacially uniform.

If there is a periodic addition of heat from external sources, which may be
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described by a heating rate J-,- units of heat per unit time per unit

mass, then:

SQ > J;- d=
12)

If (12) is substituted into (11), and use is made of the relations:

R = M(C"Cv) (13)
- 14)
Y = Cp/Cv ¢
where /M 1is the mean molecular weight of the air.
Then equation (11) becomes:
R D.r'.' - P‘ D fo— -+ J— (15)
m(—=1) DX A D= -
If equation (3) is differentiated, it becomes:
AP _ AP _ AT
_‘—’— f = T (16)
This equation may be used to eliminate T~ from (15), with the result that
g-% = r, HO -g-é:. -+ (Y")" J."’ Q7)
In its linearized form:
(18)

DPr bB-+ Wo- A Po

Dx  Jz Fyn
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Similar results are obtained for the substantial derivatives of | and P .

These basic equations may now be used to develop a set of tidal

equations. It is assumed that all tidal variables have time dependence

Yo %
of the form e‘r , 80 that:

il-. - 40
)t (19)
Equations (6) and (7) may be solved for ({, and \Gr s with the aid

of (19): [ o~ )P )P
29 ¢ w
Uer = (i¥e) L P, I + % 3:

| {0 )P
Voo = (o -7 - 52 %Ef]

(20)

I

(21)

1f a differential operator [~ 1is defined by:

3

F= (r;w—l)[%J'+ 34‘] @

where @ 1is a characteristic distance, then (20), (21), and (22) may be

substituted into (10), obtaining:

O Wo- o~ (-
X, + ~‘-5——-—F(7.-)

o- );' Yeltat

(23)

The objective will be to obtain from (23) an equation in ]< , which
may be solved by the method of separation of variables. If equations (9),

(17), and (18) are combined, and use is made of (19):
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P - wedl = YpH, L X, + (Y-DR JTe

b
’ (24)
or on application of (2):
PPz Wog b+ YaH A X +(7-1)Jo Tem
(25)

If this is in turn differentiated with respect to "» :

0P = 9P IWr _ aWo /o dHe\ 4+ Y3 £ X,
.5_; 3 > o’;_n;'f_.(l-f- Y+ 72

Here use has been made of the fact that:

}’:%"T&('*ﬁ:) 20

The equation of continuity and the hydrostatic equation may be combined to

(26)

obtain:

i B _irph = Wr}g-’-' + P X

e -

/

(28)

Equations (26) and (28) may be combined to obtain:

IWe _ X, - (r-1) 9
)}' H.)} ~(r~1) X, — 375 (}33;- (29)
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If this equation and (23) are differentiated with respect to } s

(Y
)_h’o_— eliminated between them, the resulting equation is:

— i P
)" a_;:.,, _L_‘ F -7}—-3';(7;)] (30)

ax’ aHo)Xr 3 X *
= WS S T Ay i (A

’o}‘”. (l J»Ho a} (,’ J-0')

where A = Y=! . But from (25) and (29):
Y
7}.)}( =) (4536 - F 452 ) T a1

On substitution of (31) in (30) and further simplification:

[ ”0 )Xr )Tl' T
g;i+(3 -)55 —+ 4 [55-0+% )T-E

“w,a. F[(&q-)H.)x f.([-f-%%&)]-’] (32)
=0

Equation (32) may be solved by the method of separation of variables.

Let X and T be represented by expansions in the eigenfunctions

of the operator F

X o GLX(})f(J ’l) (33)
Te=2 2 T P,(3.7)
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When these coefficients are substituted into (32), with h taken as the

separation coefficient:

yac = 0
F Th + F bn A (34)

[ -xh (4
H.:“);" a(H )o( _'_(,( dy)

2

¢ A {k].+.a(5l' ) — A [Z],.l"lo):yz :].* A ;7;;] (35)
! AL TFIHS T AT

{

The value of the separation coefficient is determined by the eigen-
solutions to equation (34). If J;, and H. are known functions of }
then equation (35) can in principal be solved for x. . It is possible to
express all other tidal parameters in terms of X,

It i8 conventional to transform equation (35) into the form of a
one~dimensional wave equation by two further changes of variable. Let:

} ’
x = f _!.‘)—- (36)

R (] H.()' )
and:
:
k o/, A Jp
; e = X, = @37

b4 FHo
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When (36) and (37) are substituted into (35), the resulting equation is:

2L - ql1- (- 22)] o

- A T (38)
Y3 h,

Eigensolutions for the pressure and velocities can also be expressed in

terms of the wave function ’" , (8iebert, 1961):
- W/,
p - LhRCICT (dpa L)
"% T H,(x) x 3 (39)

waz vh €[ G (B 1) ]

(40)
P)
_vaha € (4 tr)[d -325
nT (rr—a ) (a1)

oo x2h €0 (B la) e B Y],

C. The Spherical Model

In the case of this model, the earth will be taken to be a smooth

sphere, with radius @ . Latitude will be denoted by O , and longitude
by ‘ . The northward and eastward winds will correspondingly be denoted
by V and U . (Note that Siebert uses 0 as co-latitude, & as the
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southward wind, and V¥ as the eastward wind.) The radial distance # to
a point at a height } s (r-}.-oa ) will be replaced by & if it
appears as & factor of another variable. All other quantities will remain

as they were defined in the previous section.

In spherical coordinates, the divergence equation becomes:

!
' U 4 IWe (43)
t =0 3¢ 3y

and the horizontal motion equations become:

| - )P
and
] - - aPr
TE rrwemo ke = STE ST

These two equations may be solved for “'. and V'_ , ylielding:

{ A= JdPr 2w IR
Uy = (,_a—#w‘) [aj;mo I¢ *a}’. 3_;- (46
“ and:
( [ £ IR o P
Ve-= (2-dwt) L afs 'S'b: "ff.d&"e?y’;" (47

¢
L\.
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It is also feasible to redefine the differential operator f?
1t £= % /53¢0 , then:

) con & 2
F= ZZo d6 (¥ —a~?) 29]"'

(48)

[ o (Framd) ) | )
(;-_MV)[T (F '— asn?& Y R 90‘.]

When (46), (47), and (48) are substituted into (43), the resulting

equation:
W, ; )
Xp= $55+ S5 F(E .

is identical to equation (23). The same procedure may now be followed,
arriving at equations (34) and (38). However, the eigensolutions to (34)

are now considerably more complex.

D. Eigensolutions for the Separation Coefficient '1.

In the first case, that of the planar model, the solutions to equa-
tion (34) may take on a very straightforward form. If the tidal variables

have the periodic form:

? - Cj(o-l‘* Re 5+ Ry )

(50)

then (34) becomes:
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a* (R +hy') 4e'a” @ = 0
Criqwr—1) - F M 7 ha T" (51)

or:

(-4 )
F (k,‘-o— Ry') (52)

b,

In the broadest sense of the planar model, that is in the case of a
plane that is simply infinite, the wave numbers R’ and R, , and hence
h“ , can take on all real values. ( h” will be confined to positive

or negative values, depending on whether r) 4¢d ). 1f the model is
made more earthlike by assuming the geometry to be periodic in j and M y
then the wave numbers and the eigenvalues of hn must take on discrete

values.

In the case of a rotating sphere, ?’. is no longer a simple

function. It may be described by:

Y (o.¢) = @:”(") C"“ (53)

The solutions for 9'{’. obtained from (34) and (53) were first

obtained by Hough, (1897); accordingly they are known as Hough's functions.
The subscript 0~ denotes the oscillational frequency, S the number of
wavelengths around a latitude circle, and M«§ the number of nodes in the

Hough's function, (and the pressure) between but not including the poles.
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For each eigensolution of (34) there is a specific 9: and a

”
corresponding value of |3, . Some typical values taken from Siebert,
(1961), and Eckart, (1960) for the semidiurnal tide are given in Table I.

O~  is expressed as a multiple of e, .

Table I. Semidiurnal Hough's Functions.

o, .. h, )

@;' 15.6
.., 5.70

©., 2.94

0. 7.85
a3 3.77
@1, 4.85
3y 2.11
®:. 0.96

For 0°<¢’ &and j)o , that is, for slowly westward moving waves,
a second class of Hough's functions exist. This second class has much larger
values of h,. than its counterparts in the first class. Only one mode of
the second class, 9:' may be excited by the diurnal tide, and that only
because the solar day is slightly shorter than the sidereal day. No oscil-

lation of the second class may be excited at the semidiurnal frequency.

In both geometries, hh decreases rapidly as the wavelength decreases
in either zonal or meridional direction. A more complete discussion of Hough's|

functions and their application to the tides will be found in Kertz, (1957).
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E. The Vertical Wave Equation

While equation (34) determines the horizontal character of the tides,
equation (38) specifies its vertical character: whether it more nearly
resembles internal or surface gravity waves, and whether there are resonances
or vertical energy propagation. As it is a second order differential equa-
tion, two boundary conditions for ’" must be specified. As H. may
vary in a complicated manner with height, the solution of (38) may be possible

only by the use of simplified vertical temperature profiles, or by numerical

methods.

The most drastic simplification is to assume an isothermal atmosphere,
with constant H. , and to assume the heating function, J;.. , is every-
wvhere zero. Two types of waves then exist, (c.f. Queney, 1947, Eckart, 1960,

Hines, 1961). Let two new variables be defined as:

/“n’ = ‘-;—[’ “7‘{: (= Ho — é';‘&)_] (54)

and: [}

= [ (fH—5F) 1]

(55)

1
In an isothermal atmosphere, /l‘. and Xn are constant. If /.(. >0 ,

there will be solutions of the form:

gn ~ €T e
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1 §
while if A, » O , the solutions take the form:

*J'An x
yﬂ ~ e (57)

Solutions of form (56) are surface gravity waves, and do not propa-
gate energy vertically. 8olutions of form (57) are internal gravity waves

and transmit energy vertically as well as horizontally.

Now consider a two-layer atmosphere consisting of a warm isothermal
lower layer and a cold isothermal upper layer. For a range of h" , waves
will be internal waves in the lower layer and surface waves in the upper
layer. Emnergy propagated vertically in the lower region will be reflected,
both at the earth's surface and at thg interface. 1If the period needed for
a wave to propagate from the ground to the interface and back is an integral
harmonic of the period of a tidal driving force, strong resonance amplifica-
tion can result. This, in considersble oversimplification, is the modern

tidal resonance theory.

There is an approximation associated with Wentzel, (1926), Krsmers,
(1926), and Brilouin, (1926), which has been of considerable use to modern
physics. This is commonly known as the WKB approximation. Rckart, (1960),
has shown how this approximation can be applied to gravity waves under the
appropriate circumstances. His development, applied to the problem at hand,

is outlined below.

Without loss of generality, one may write:

4o = Ya(x)e &)

(s8)

where )Y and 5,. are real, non-linear functions of X
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H-ir v €

L

] (59)

The WKB approximstion is made by assuming the second term on the
right-hand side of (59) is negligible compared to the first, and that

therefore:
————— -—— “
ol x # (60)

1f this is so, equation (38) reduces to:

o 4 (é;,’-):— A:}" = ‘:';J%: )
w To=0 : ,
F= [ 2o
= [ Ay -
7 He

The phase of ’,. is determined to an arbitrary constant specified by %
or } . TPor convenience X, or )', may be taken to be zero, with the

phase incorporated into a complex X.

In the atmosphere, this approximation becomes increasingly valid as
wavelengths become shorter and changes in A,, become small over a wave-

length in the vertical; that is, the approximation is valid when:
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M«l
ol

(63)

It is not applicable to the surface gravity waves, nor in general to the
primary tidal wave. The approximation has the effect of transforming the
vertical coordinate into a new coordinate system in which the vertical wave-
length is constant. In this new coordinate system, waves are propagated

as they are in an isothermal atmosphere.

If there are abrupt changes in Ah , 8 second approximation may
also be used; this is to assume A” uniform except at a discontinuity
surface at some height. This case has been treated by Queney, (1947), it
is quite analogous to the reflection of electromagnetic waves at the inter-

face between media of different index of refraction.

An internal gravity wave of the form:
et
n =
b4 (64)
has a downward phase propagation, but an upward energy propagation and
group velocity. Let such a wave propagate energy up to the interface from

below. Assume also a reflected wave:

}a s B e (65)

in the lower region, and a transmitted wave:

1»\: x (66)

?,scf
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in the upper region. Without loss in generality, the interface may be
taken to be at X = O . 1If discontinuities in pressure and vertical
velocity are to be avoided, both ’A and %" must be continuous

across the interface. Therefcre:

A+ C = 6 (67)
A ’
~
- £ T e B
A Xa (68)
T T T T T T T
14 4
121 -
‘1‘::\\\\\~ -

Aa

0.4} 41

i L L - i 1 1
x o 2 4 6 s 10 2 .
Rm | | 1 1 I | | | | |
0 0 20 30 40 S0 €0 70 80 90
HEIGHT

Figure 1. A.‘ As a function of height, for h,, =1 km., based on
ARDC 1959 model atmosphere.
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A
If —;:‘, = ?'. , then C-= A/, . As the energy flux is proportional
T’

to the square of the wave magnitude, only 11% of the energy is reflected.

Figure 1 shows )“ as a function of X for h. =1km.,

based on the ARDC 1959 model atmosphere, (Minzner, Champion, and Pond, 1959).

As this model has discrete jumps in the temperature gradient, and thus in
the scale height gradient, it has discontinuities in A,. . The largest
of these appears at the tropopause, where '%;f’ A _3L , and only 11% of
the energy will be reflected in an upward propagating wave. (The ratio
ih' is approximately constant for waves with length less than five
”~
or six thousand kilometers.) As the atmospheric changes are not discontin-
uous, this is a pessimistic estimate. Therefore, it seems internal gravity
waves will be transmitted with little reflection. This conclusion does not
take into account the effects of winds and wind shears, which Charney and

Drazin, (1961) showed reflect Rossby waves quite strongly. This is an

important possibility, which should be investigated in the future.




F. Transport of Tidal Energy

As the tidal motions are wave motions, they can transport energy
from one part of the atmosphere to another. Consider a specific mass of
air, in which the kinetic energy, potential energy, and internal energy
per unit volume are given by*l?llf , AP , and Ef , respect-
ively. It can be shown that the rate of change of the total energy of

this mass is, (c.f. Milne-Thomson, 1959):

D ((1p1V's PsfEdr= [PVRAS

where A T is a differential volume, AS a differential surface

-d
element, and M a unit vector directed normally inward. Equation (69)
states that the rate of change of the total energy of the mass is equal

to the rate at which work is done on its boundry.

This equation may be integrated over a tidal period, to obtain the
mean rate of change of energy, but it is necessary to use Lagrangian,
rather than EBulerian parameters in evaluating the work done on the boundary.
The excursions of the surface are quite small compared to the distances
over which tidal velocities change, and the substitution of velocities
observed at a point in space involves no significant error. The substi-
tution of Eulerian for Lagrangian pressures needs further justification,
however. Let ¢ﬁ> be the pressure measured at a given particle. Then

from equation (18),
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(70)

or.;

Y (71)

First consider the mass of air which, at rest, would lie above a
horizontal surface at some specified height. Under the influence of tides,
the surface will oscillate about this position. The time average of the

work done per unit area at any point on the surface is:
t »
- Re [ Wo Pr ] (12)

But since:

&
Rz[:/%fﬁ-]:a (13)

+t 2 [ W Pr] = 3 Re[wF P] an

While the vertical velocity causes a difference between P'. and W’ ,

it is a difference whose effect is cancelled in averaging over a period.

Next consider the mass which, at rest, would lie to the north of
a given latitude. With a tide, this surface will be displaced; however,

an area on this surface will be practically equal to its meridional
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projection. 8ince the displacement of the mass surface in the horizontal
is small compared with the scale of horizontal tidal variations, the
pressure and meridional velocity at a point on the mass surface will also
be very nearly the same as at its horizontal projection on the latitude

surface. Thus:
—i R@ [ Vr-‘yf] < %&[V: P"] @5)

a similar argument can be made for zonal transport of energy across a

meridional circle.

Lorenz, (1955), defines available potential energy as the potential
and internal energy that is available for conversion to kinetic energy
under any adiabatic redistribution of mass. Consider a given mass of fluid,
constrained by pressure forces on its surface and by potential forces such
as gravity. If the shape of the mass remains unchanged, and its center of
gravity remains at the same potential. Then the resultant of the pressure
forces acts to change the total momentum of the mass, and the integral of

PV over the surface equals the rate of change of kinetic energy of

the mass. Since the process is adiabatic, it is also the negative rate of
change of available potential energy plus kinetic energy of the rest of the
universe. As kinetic energy is not advected over the surface of the mass,

PV may be taken to be a flux of available potential energy.

If the rigid mass moves to a different potential, not all of the
pressure work will be converted to kinetic energy. However, the changes

of potential energy may be recovered as kinetic energy at a later data,
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and thus represents an increase in available potential energy. Similarly,
if the body changes shape, there will be a change in internal energy. Ome
may think o1 the pressure forces imparting kinetic energy to the surface
layer of molecules, which in turn transfer the energy to the interior
adiabatically, in part as internal and potential energy. Since the process
is adiabatic and hence reversible, kinetic energy may be recovered. The
stored energy is thus available potential energy, and PV may still be

treated as a flux of available potential energy.

It has been assumed for this chapter that the only variations of
atmospheric parameters in a horizontal plane are those of the tidal pertur-

bations, therefore, the only available potential energy is that which may

be associated with these perturbations. If one views tidal transports from

an EBulerian point of view, advection of sensible heat and potential energy

- o

may occur. Such advections, as they may be related to the mean flux of

tidal available potential energy, are discussed in Chapter VII.




CHAPTER 111. BOUNDARY CONDITIONS FOR THE LINEAR TIDAL EQUATIONS

A. The Upper Boundary Condition

Equation (II-38) is a second order differential equation for
7 n () ; it requires two boundary conditions on Y, 1in order
to obtain a complete solution. There has not been complete unanimity on
the proper choice of these conditions. The lower boundary condition has
normally been taken to be that W, = O at the surface of the earth.

This will be discussed in the second section of this chapter.

A very natural second choice is to require the total kinetic energy

in a unit column of the atmosphere to be finite. That is:
a
f f;(’)IQ"H.(”o Ax < © o))
o

It may be shown, (S8iebert, 1951), that this is equivalent to requiring

that:

Lim [$ntx)-/x] =0 @
g . -]

This boundary condition is adequate if waves behave like surface gravity

waves, in which case it specifies the solution that attenuates with height.
It is not applicable to isothermal atmospheres, or to atmospheres in which
the upper regions are isothermal or allow the WKB approximation, when wave-
lengths are short enough for the waves to behave as internal gravity waves.

Such waves do not attenuate with height. The fact that no such solutions
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ground the sum of such transports must by matched by a downward flux in

the primary tidal wave.

If it is assumed that the internal gravity waves generated by the
tidal-terrain interaction have short wavelengths, and additional approx-
imate relationship may be derived for isothermal atmospheres, or atmos-
pheres where the WKB approximation is valid. 8ince these waves propagate

energy upward:

= £ Aa Yo (35)

N
R{>

-2
For short waves, X,. « A, , and h“ o« R. . Therefore for

large R, :

W, = YH e” 4 (36)
- /2
Pr Y hada ¢ s (37)

Thus FL and Vvh are approximately in phase for each of the internal

gravity waves.

At any point on flat, oceanic portions of the surface of the earth,
the sum of the vertical velocities of the tidal and secondary waves must
be zero, and so must the total vertical energy flux. 8Since the pressures
and vertical velocities of the secondary waves are in phase, the time of

maximum vertical flux of these waves is in phase with their maximum vertical
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velocity, and thus in phase with both the maximum downward flux and down-
ward velocity of the tide. This requires that the tidal vertical velocity

be 180 degrees out of phase with the tidal pressure.

¥ith this relationship established, it is possible to examine
qualitatively the effect of introducing terrain in tidal models. The

basic tidal equation is:
»/a

o #n _[I-_(AH 1-"”')], = LI:S:—

P vy ha

(38)

The complete solution consists of a particular solution to (38), plus
general solutions to the corresponding homogeneous equation, of proper
magnitude and phase to match the boundary conditions. One may divide the
latter into a component that would be required to satisfy a flat lower

boundry, and a remainder associated with the influence of terrain.

For waves such as the o: s mode, wW lags P by 90 degrees
in the homogeneous solutions at ground level. Let P“ be the complete
solution for the pressure at the ground with a flat surface, and let w.
and P. be the vertical velocity and pressure of the additional
homogeneous solution required to match an undulation surface. If W.
lags P. by 90 degrees and P. - P. by 180 degrees the phase

relationship must be as shown in Figure 3.

The final ground pressure, P‘«f P5 , must lag the pressure
derived on the basis of flat ground. The actual atmosphere shows such a

lag, of about 25 degrees, (Siebert, 1961).
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Figure 3. Phase relationships between pressure and vertical velocity at
the ground.

C. Evaluation of the Vertical Velocities and the Total Energy Flux

Under certain circumstances, evaluation of the vertical velocities
from equation (19) could be considerably simplified. All but the very
largest secondary waves are internal gravity waves; if the ARDC 1959 Model
Atmosphere temperature profile, (Minzner, Champion, and Pond, 1959) is used,
then near the ground the ratio [(WKaf ¢ [wWal is about 100:1. It will
be shown that typical values of R" A, are a little more than 2 x 10.4,

so that the individual terms in the summation of (19) would be of the order
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of 0.02 of the term W, . If the number of such terms were limited,
and WUge and A.‘.; were known, the summation could be ignored,

and each of the equations (19) could be solved separately for the corres-
ponding Wa . 1f the number of terms for which '9'4) is substan-
tial were great, however, a large collection of coupled equations would

need to be solved.

A Fourier analysis of terrain height around latitude 35 degrees
North was made in order to estimate the magnitudes of y A, out
to wave number 240. Heights were obtained from the U.S8. Army Map Service
Series 1300 topographic maps and aeronautical maps, being taken at every
quarter of a degree. The resulting amplitudes of Rj A} show no
sign of decreasing out to wave number 240. (see Figure 4). Thus there
are at least several hundred terms of potential significance in each

summation, possibly many more.

If the phases of these terms were randomly oriented, the expected
value of the summation would increase as the square root of the number
of terms. Thus, 400 terms of order 0.02 Wj, might be expected to sum
to a value of 0.4 W, . However, A’ and &g are not unform in
magnitude, but have a substantial variance of their own; this would act
to increase the magnitude of the sum, as would the unknown further extent

of appreciable terrain height oscillation to higher wave numbers.

In the summation were to approach W) in magnitude, the latter's
size would be increased, on the average. But this would entail a further

increase in lV,. , in a progression which rapidly would become unstable.
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Figure 5. Summation of secondary wave energy flux as a function of
wave number.

The breakdown of the assumption of random phase would eventually serve as
a limiting control, at a point where the equations are thoroughly coupled.
Thus it is quite possible that a value of W,, computed by ignoring the
summation may underestimate the real values by a considerable margin, at
least on the average. Nevertheless, this is the only practical way to

obtain values of W, , and the resulting energy transport.

This has been done, using a value &g = 0.2 m/sec; the energy flux
so computed is presented in Figure 5. The vertical tidal energy flux out

to wave number 200 is about 0.25 l'/lz. This figure might be doubled, to

%
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include the effect of wave generated by V wind components. What is
not known is the extent to which the energy flux has been underestimated
for the reasons given above, and the upper limit to which the summation

should be extended.

If one assumes that the summation in equation (19) is actually
large compared to the term involving the primary tidal velocity, a second,
much more intuitive approach is available. In this case, the primary tide
loses its special identity, and may be treated with all the other waves.

Defining:

(39)

and noting that (&g A’l may be obtained from the solutions for esch
mode, with the upper boundry condition taken into account, equation (19)

may be written:

N
Wh T Z C, We (40)
Ao-00

17 A extends over s large range, there is intuitively no reason
to expect lwnl‘ to be systematically greater or less than its equiv-~
alent for neighboring wave numbers, especially if the "neighborhood” is
saall compared to distances in wave number space over which the mean or
average of I C:I varies appreciably. (This excludes the small

scale statistical variation in IC‘.[ ). It would be logical to assume
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a
that a sample of / Wnl in a neighborhood would provide an approx-

imation to the real values in that neighborhood.

Unfortunately, only a sample of one, the primary tidal oscillation,

is available. Anticipating the results of the following chapter, this is:

[ ) -8 ] L 3
’ W‘I & Px /0 m. /’£c° (41)
If this is taken as a representative value for all waves of moderate wave-

length, then from equation (34):

Sx /0 0x Exl0" 2 22007 v pm?
W, « m b " sm (42)

If this is summed over the neighborhood to £/ , omitting waves

shorter than wave number four, (which are not internal gravity waves);

~
”-N - — '
E & Yxvs0 ) 2 g
Ne =M Neq
m?3
- ’
~  aute”) n(T) w. fom. “3)

2
I1If M a 200, a flux of 15 mw/m would be expected. Because of the
logarithmic factor, the choice of a value for /® is not overly critical.

Again, one might double this figure to allow for the V¥ wind component.
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The crudity of this argument is self-evident. It is based on an
intuitive argument and a statistical sample of one. It is presented not
as a proof, but simply as an order of magnitude measurement, whose chief
value may lie in stimulating others to more rigorous analyses. There is

some self-consistency, since a typical value of A,._‘ Rq.g “t is

about 0.4 x 10-4 m/sec, compared to values of W), here assumed to be

~ 3x104 m/sec.

A
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CHAPTER 1V. VERTICAL ENERGY TRANSPORT

IN THE OBSERVED TIDE

A. The Vertical Energy Plux - Terciera

Harris, Finger, and Teweles, (1962) have analyzed radiosonde
observations at Terciera, in the Azores, obtaining the tidal components

of wind, pressure, and temperature. Under certain assumptions, it is

possible to analyze this data to compute the vertical flux of tidal

energy, and to compare it with the losses predicted for the tidal-terrain

interaction in Chapter I11. The primary assumption is that the data

represents only one mode of oscillation, with a known separation factor,

ha.

Ground level pressure observations show that one mode, the @: a
mode is an order of magnitude greater than other modes, (Siebert, 1961) at
least in moderate and low latitudes. (In high latitudes, the éa:. mode
becomes important.) For this mode h, = 7.85 ku.

In the stratosphere,

insolational heating is small, and for this mode:

sl (<M )] 20

1)
so that to a first approximation, equation (1I-38) becomes:
]
LY L x>0 )
A o




In an isothermal region, ’ %’ o l ,',.’ and therefore:

P.e"* < yn @
from equation (II-39). Table I shows the observed amplitude and phase
of Pr e’/" as a function of height in the stratosphere.

Table II. P,— e!’/a. for Terciera.

Height, mb. Amplitude, n/-2 Phase, degrees
200 31.3 25
175 31.0 21
150 28.9 30
125 31.0 18
100 28.5 16

80 31.8 20
60 28.6 18
50 31.3 26
40 30.0 22
30 28.8 25
20 28.4 16

/R
The constancy of P', e’ is in good accord with equation (2),

if it is assumed that the mode also dominates the stratosphere.

a
aa
No other single mode could produce the uniformity observed in Table I.

While it is possible that several modes combine to produce the observed
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pressure, it would be a singularly unfortunate combination that could
produce such a result. It will therefore be assumed that the

mode dominates throughout the range of heights in the Terciera data.

In this case, the observed pressure may be treated as:

- A
zhebO e o L4 ]0:,

- L0 H(»)
“)
£ S
Por convenience, @a a may be normalized to a value of unity at the
observation site, incorporating a multiplicative factor into ,‘q
Therefore:
>/
dfn 14, ] - iR(m)Hatx) €
Ax 37" (5)
Y ha R(0)

is an experimentally observed quantity, and ’5. may be determined if

a function of ’,. is known at any height.

The traditional approach is to take w,.(o) = 0 , 80 that:

AFn H ‘ J
[ dx * (h.. ) =0 )
xXvo
However, the tidal-terrain effect precludes this. Were the nature of the
effect well enough understood to relate P,. to Whp , @ boundary con-
dition might be obtained. VWhile the relative phase of these parameters

was estimated, their relative magnitude was not.
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One alternative approach is through equation (I111-2):

Lom [gatw)-v3] =0

aa00 ()]

which is derived from the condition that the kinetic energy in a unit
column be finite. In the present case, this equation is more useful in
ruling out solutions, rather than establishing an exact solution. Exam-
ination of the Terciera data, and very high level data at 80 to 100 km,
(Greenhow and Neufeld, 1955), show that (5) is a function whose amplitude

decreases continuously with height. If at any height, ’I"“ll »’ %’-’Ml

then

é& _’!?‘:;'A

ol x (8)
or:
: oy
/“ oL C
9)
from that height upward. Equation (7) then confines l* ,;.I to
values of the order of '% _*’.I . If condition (6) is applied

to the Terciera data, ’—. is exploding exponentially at the tropopause

and above.

A second possibility, in line with the comments that have been made
in this chapter, is to assume "a to be constant in the stratosphere,
say at 100 mb. With the aid of this assumption, ’. has been computed

graphically, and the vertical velocity, W), computed from equation (II-40).
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(The pressure and velocity are presented in Table 1II1.)

Table 1II. Pressure and vertical velocity

for the semidiurnal tide - Terciera.

Height Height Pressure Vertical Velocity
(x) (mb) n/l2 degrees n/sec degrees
0.0 1000 50 65 2.89 x 1004 254
0.2 830 46 59 3.19 255
0.4 690 38 55 3.41 258
0.6 555 33 44 3.48 260
0.8 450 27 40 3.50 265
1.0 365 21 37 3.55 270
1.2 305 18 29 3.62 274
1.4 250 16 28 3.65 277
1.6 205 14 25 3.90 280
1.8 170 13 21 4.33 283
2.0 135 11 20 4.88 287
The ARDC 1959 Model atmosphere was used in computing A . Pigure 6 shows
the vertical flux of tidal energy, im[w,," Ph] computed from

these values.

[
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There is a downward flux of tidal energy that reaches a maximum of

3 w/m2 at the ground. The divergence of this flux requires a trop-

7 x 10
ospheric source of energy that will be discussed in the following section.
In Chapter III it was established that the pressure and vertical velocity
of the primary tide should be approximately 180 degrees out of phase at

the ground. The observed phase difference is 189 degrees.

It is worth noting that the total pressure variation of the second-
ary waves should be small compared to the variation of the primary wave.
From equation (II1I-22), the vertical energy transport of a secondary wave

is:

- H,(x) o ll:'..(':r)'1 e [ i An t He/hn = '/“]

-w; 2 P.(x) X+ 472

,;, H:('x) o IP,.(a)I‘ (10)
b~} F; (x) An ITn

S8ince h,. varies as the square, and Xq inversely as the first power
of horizontal wavelength, short waves will require a smaller value of

to transport a given energy flux. Therefore:
a
Z I PACO)I (11)
[

summed over the secondary waves will be smaller than the square of the

magnitude of the primary pressure wave, much smaller if the bulk of the
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secondary energy is transported by waves of a few hundred kilometers

length.

But if the phases of the secondary waves are randomly oriented,
which would seem a logical assumption for a large number of waves, the
square of the total secondary pressure variation will equal the sum of
the squares of the individual waves. Thus the total secondary pressure
variation should be small compared to the primary variation, and would

not be likely to be observed in the data.

B. Generation of Available Potential Energy by the Tide -~ Terciera

The preceding section has shown that:

2 M[Wn*PRJE-:;&[W:Pr] . a2)

22
>0

in the troposphere. Unless there is a similar convergence of the flux
( V._‘ Po- ) in the horizontal, (and Chapter VII will show this is
probably small), there must be a mean generation of available potential
energy. Lorenz, (1955), has shown that available potential energy is
generated by conversion from kinetic energy, or by differential heating.
Since the mean value of tidal kinetic energy of & given mass does not
change, the latter process must be operative. The mean rate of available

potential energy generation by heating per unit mass is:

s W/
[y Re [+ 7] (13)
2 Te (T - r: )
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where:

re= 2

I - 2% a4)

4

]

are the adiabatic and actual lapse rates. Primes refer to quantities

measured at a given particle, laegrangian, rather than Eulerian parameters.

From the first law of thermodynamics, (see 11-17):

Y H Df'- — _’ DP" " ‘
L}’.’D—t = A—Dt-(Y,)T' as)

with the aid of the perfect gas law, this may be reduced to:

P. DT" = 2 D,.- T
*PLT bDx P Dz - (16)

or, since Lagrangian tidal parameters will also have a time dependence

A0~ X

e 3
P, - R
A 5T, Te 52— an

o
If equation (17) is multiplied by J; and averaged over a cycle:

.i.m[f.. T-] = AT’ kc[P b ot J as)




With the approximations used in developing the linear tidal theory:

‘. 4 DFf _ + W R
Pr = T D = Fe- i (19)

, ¢
Pr may be computed from (19) and observed data, and if J;- is known,

¢ the rate of generation of available potential energy may be computed. As
J-g- does not vary rapidly with position, it is essentially the same as

/
T.- , and may be substituted for it.

Siebert, (1955, 1961), used the empirical formula of Migge and Moller,
i (1932), for water vapor absorption to evaluate insolational heating in the
atmosphere as a source of the tides. Using a rather artificial model with

a resonance amplification of 3.7, he obtained tides one-third the amplitude

H of the observed tides.

! The In'x.zge-lsller equation was based on early experimental data by
Fowle, (1915). While Fowle did excellent work, neither theory nor equipmer
were very good at the time of his investigation. PFor example, he did not
take into account the variation of absorptivity of water vapor and carbon
dioxide with temperature and pressure. A more recent and complete study

by Howard, Burch, and Williams, (1955, 1956), has been used by Roach, (196l1),
to compute mean daily heating rates in the atmosphere for the months of

January, April, July, and October.

It is possible to derive the semi-diurnal heating component from

Roach's computations. His data fit the ﬁgze-l;ller approximation that




-67~

absorption at any given height varies as cos.o'7j , Where ’ is the
solar zenith angle. (Numerical values, of course, differ.) The heating

rate may then be expanded in a Fourier time series:

coa’’S v Tr ner

&, 2 C, corex =
& P O A7 ~/ENT, (20)
where, (Siebert, 1955, 1961):
z,
0.7
-Z, (21)

Here Xy 1is the local time of sunrise or sunset and ‘. is the solar
declination. The mean and semidiurnal coefficients of this series were
computed for latitude 38 degrees North, and the four months used. The
“[ratio of these coefficients was then used to obtain the semidiurnal heating
coefficient at varying heights from Roach's mean data. These are shown for
January, April, July, and October in Figure 7. Figure 8 shows the mean of

these values, taken as the annual mean semidiurnal heating function.

With this, the values of equation 13 were computed for Terciera as

shown in Figure 9. The values of:

P
2 [4mwdr)]
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are also shown. In view of the limitations of the data and the approx-
imations that have gone into these computations, and in view of the
possibility of horizontal divergence of the wave energy flux, the agree-

ment must be considered to be satisfactory.

C. Comparison of Tidal Pressure Fluctuation - Terciera and Fort Worth

Mssrs. Harris and Finger and Dr. Teweles, of the U. 8. Weather
Bureau, have very kindly made available a second set of tidal dats, for
Fort Worth, Texas, in advance of publication. A comparison of the pressures
at Port Worth and Terciera offers some measure of the degree to which the

:‘ mode is dominant. Because of the difference in latitudes, the

Fort Worth pressure in this mode would be 1.42 times that of the Terciera

data; the phases should be the same, when referred to local time.

Figure 10 shows the Fort Worth semidiurnal tide, divided by 1.42,
and for comparison, the Terciera counterpart. (The 1000 mb level is below
ground at Fort Worth.) Up to the 100 mb level, the agreement is quite good,
especially with regard to amplitude. The Terciera data shows a phase angle
perhaps 10 degrees larger at lower levels; this difference largely disappears

at higher levels.

Above 100 mb, the Fort Worth data shows a comparatively rapid drop
in tidal pressure, to a minimum at 50 mb. Pressure minima, or nodes, are
quite possible in tidal theory; in fact, Pekaris predicted a node at about
the 10 mb height. However, there are several features of the Fort Worth

data that are not in harmony with such a node.
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If a single mode of oscillation were dominant, as has been postu-
lated, the phase of the pressure should reverse witi height as a node is
passed. The data shows no such phase reversal. Similarly, there should
be a node and phase reversal of the tidal winds; observationally, the 50
mb northward wind drops to about half of its normal value, but all other
winds show no sign of a node, either by amplitude or phase. It is, of
course, possible that a combination of modes might lead to a pressure
minimum. It is difficult to imagine such a combination that would not
produce considerable fluctuation in amplitude and phases at lower levels,

especially considering the rather abrupt onset of the 50 mb minimum.

Disregarding modal theory, the change in pressure fluctuation between
the 60 and 50 mb levels implies a semidiurnal fluctuation of 5.5 meter ampli-
tude in the thickness of this layer, normally 850 meters thick. This fluc-
tuation of 0.65% in the thickness implies a similar fluctuation in the
mean temperature of the layer, about 1.4 degrees. The observed semidiurnal
temperature fluctuation at this height is only about 0.1 degrees, however,
and the pressure and temperature data are not consistent. From the above,

it seems more likely the pressure is in error.
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CHAPTER V. VISCOSITY AND DAMPING

A. Viscosity in the Atmosphere

As it has been developed to date, tidal theory had been based on
the assumption of an inviscid atmosphere. It is not diffi_.ult to develop
an approximate theory to include effects of viscosity; though its value
is limited by lack of knowledge of atmospheric viscosity, especially eddy
viscosity. Nevertheless, the results are of importance to both primary

and secondary tidal waves.

In the troposphere, eddy viscosity is far more important than
molecular viscosity; it is also ill-defined, quite variable, and difficult
to measure. Even when measurements are made, they may involve motions of

different scales, and thus may be applicable to different problems.

Hess, (1959) quotes a values of W =5 -2/sec, valid for the lowest
kilometer. This is based on the rotation of the wind vector with height,
as predicted by the Eckmann Spiral theory. Palmen, (1955) has analysed
momentum transport of the zonal wind and has computed a value of 22 lz/sec
at 700 mb. Data on eddy diffusivity to be published by Prof. Newell, (1963)
show mean values of eddy diffusivity of 3-30 -2/sec in the troposphere, and
values one or two orders of magnitude less in stratospheric regions. The

eddy viscosity should be comparable.

2
On the basis of these data, a value of Y = 10 m /sec vill be assumed

for the eddy viscosity, with the recognition that it may readily be in error
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by a factor of two, possibly even a factor of ten. Fortunately, the
results of the following equations depend on the square root and cube

root of viscosity, so that the final errors are considerably reduced.

B. Mathematical Development - Planar Geometry

The model atmosphere used in the following discussion is planar,
isothermal, and rotating; the equations are linearized, but a uniform
viscosity in introduced. It is also assumed that the waves studied resemble
secondary internal gravity waves in that they propagate energy upward, and
have vertical shear far greater than horizontal shear, so that only the

former will be included.

¥With these approximations the equations of horizontal motion become:

]
£ 0" U, - AW Va = -}':-’—PL‘- + v"“"

5 22" )

A O Va + a0 lUp = —;'.'E'-'- -+ V

a ..l ;’g (2)

vﬂ
N

In the inviscid solution for this geometry, the wave parameter ’,,

ixpn 3 Ho @ F I Mo

is proportional to e or to , depending on

whether the wave is of the internal or surface gravity wave type. It will
assumed that in the present case, ,. has the form QIMO ; where

f may be real, imaginary, or complex.
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As U, and V, are linear functions of Y» ond its deri-
vative with respect to } , multiplied by e%" , they are propor-

tional to:

:+ /Ho
e(t P

3)

One further assumption, that:

¢ >+ @

serves to simplify the equations; l(. and V,‘ may then be taken as pro-

portional to:

e oM o

If a new variable:

x

’ Ay §
o = ot —F (6)

H,
is introduced, equations (1) and (2) become:

. !
L0'u,- awV, = -7,-3-;2 @
£ 0 Vi +awun=‘}';?—g'-’- (8)

W
~
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The solutions to the wave problem may then proceed formally as in
the linearized inviscid solution, except that some variables that were
real are now complex. The quantity (&': Weo? ) is substituted for
( ot—N w?* ) and the separation parameter, is therefore

complex, since:

(r*-4w’) + aiorv @M - 9'1'/1"
h, = X a} )
f

The horizontal variation of the wave has been takenm to be of the

form:
Py |
e’ (10)
In an isothermal atmosphere, the vertical wave equation is:
A M, ' -
,( por "’[ "‘E‘J}ﬂ =0 au

where:

} .’.‘1’ = _t (12)
o H, He

This yields the relation:

-

_*_IJ.LL

a3)

2|~
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a ¢ . a L] - v 2
Y § alrv » _ r‘-qw‘)-d" J
Ao T\ TR T RS )} [( 72
+ (d’l_tlwl) — AH, R;; =0

(14)

The following are take:;. as representative values which would make
the model used here the closest counterpart of the real atmosphere for

waves of semidiurnal frequency:

-! 2 -
o 1510”7 TOCT V= lo m Jec )
acow Loxto See 3= 10 m gecT as)
H,* gxr0? m A = 29
Then:
24
20 2 L4 = 4.7« 10-” (""‘f&l') x/.asx 10
~ (1e)
16
. id Y _ =72 r0” "
v 6./ x40 / =/ 2a
4 M, - & Mo
1f wavelengths are limited to those less than 3000 ku, l}) 2x10"°
and:
3 -7
AH.I(’)- D> Yxse an
while:
as)

(o *- Yeo*) =0.3/« /0"
)

5 _



AR - WNB s g N

-79~

Therefore, to a good approximation, equation (14) may be written:

v _ aioV ~(a_a_qw')§_/tHaf\'f}.=

HQ H’a (19)
v

This is a sixth order equation, which may readily be reduced to a cubic

by the substitution:

s <08

(20)

When (20) and the preceding numerical values are substituted into (19),

the resulting equation is:

P, 2
§ - isvast-asias = 0.902./0 Ky =0 o

a
For sufficiently small values of /2’ , one root of this equation
approaches:
? 2
0.512

Sz

or in algebraic terms:

étz - A H,REZ

Cor>—dcot) (23)

This is simply the inviscid solution. The other roots are approximately:

S ~ sl. /0’2 I ./ -’-‘:7+ .,"/a (24)
- 2

T ~4£/69 , ~40.323
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The modes of oscillation described by (24) correspond to viscously
coupled waves of comparatively short wavelength and strong damping in the

vertical. 1In the case of no rotation, they reduce to one mode, with:

L3

__L = - (25)
H? v

This is simply the classical solution to an oscillating plate in a viscous
fluid. 1f O , rather than ¢ goes to zero, the solution is an Eckman

spiral.

Chapter 111 was based on an inviscid theory, and ignores the modes
specified by (24). There are several reasons for doubting that viscous-
coupled modes are excited to a large extent. First, eddy viscosity decreases
near the ground; qualitatively this might be expected to decouple tidal-
terrain effects from viscous waves. This is observed in the lower boundary
layer beneath Ekman spirals, (Hess, 1959). Second, eddy viscosity varies
greatly from one place to another and over times comparable to tidal times.
Since the vertical wavelength of viscous waves is dependent on eddy viscos-
ity, it will be difficult to maintain them on anything approaching a steady-
state basis. Thirdly, the viscous theory presumes all tidal velocities,
not simply the vertical go to zero at the ground, with a gubstantial
variation of velocity over a scale of one km in the vertical. This is

no: oobserved in the Terciera data.
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A somewhat better approximation to the gravity wave solution may be

obtained by setting:

S=Sata3s (26)
LY
where S, and §; are real. For small R, , 3,5, , and
S‘ <<\ . If (26) is substituted into (21) and real and imaginary

parts are separately compared:

Saz - ’Sarja - 3.?"5/!54' - 0'5,25" -a’oall',/c,gg")

2
35:5} -5‘~3+ 1925, - 1.925; - 0872a5; =0 28)

If only the largest of the terms in (27) and (28) are retained:

9 Q
5, & —O9¢isio ke (29)
X
0.5/2
S; /.92 2 (30)
0.%912

Algebraically, this is equivalent to:

§'~ -A'H.R(az [l.,,.caa"VA La0-VAZ R J @)
- )

(r*=4cot) H, (o-*-4co’

or:

i ~ "./‘*"KR’ [|+40"))A' Ri ] @2
H l-l.,”i(av-‘-—"w‘)M H (o= 2c0?)

\
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Let:
AT Re

R} =  H"™ ("""'“")” (33)
Then:

- v R

. + 4 O P 4
o

and: . o l’k 2

(35)

a
The mean upward flux of wave energy is proportional to w,’ , Or:
2
- a0 VR (36)
W, « € («r‘-wa‘lg

If the energy flux is reduced to e-1 of that at the ground level value

at 15 km, then with the assumed values of O~ and M :

-3 -t
= 0.6%5x10 " 37)

Ry
The approximations used in deriving these results break down when

3
Vv R) - O , that is, when the viscous terms in the equations

of motion are comparable to the other terms. This occurs when:

-3 -l
R) — 10 ™ (38)
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Within the range defined by (37) and (38), the waves should behave
much as inviscid gravity waves, except for the vertical damping factor in
(35). For shorter wavelengths, a complete viscous solution should be

obtained.

There is another, more physical method of deriving the damping.
This has been done in part by Hines, (1961), for the non-rotation planar
case, again subject to the assumption that the waves are not seriously
distorted by the viscosity. If horizontal shears are neglected, the rate
at which kinetic energy is dissipated is:

a >
R = VR, up-u, (39)

The total energy density associated with such waves in a non-rotating

‘system is:

E o~ .’!‘.u,,.b(:

(40)
One may associate with these a damping time:
]
T~ - E = (41)
o R 2V ’E}?
and a damping distance:
P~
lp o
L,= —= (42)

which is the product of vertical group velocity and the damping time. (For
these waves, vertical group and phase velocities are equal and opposite.)

When ® = 0, equation (33) reduces to:

-
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-}
w, < € e

(43)
The WKB approximation developed in Chapter II1 allows extension of
this work to non-isothermal atmospheres, providing the scale height and
vertical gradient of scale height vary slowly over a vertical wavelength.
AN
In this case, 4 must be replaced by (‘\’ -+ 2—,:‘) . This alters

only equation (38), the definition of fs,, , which now becomes:

]

“f/OJ)’& Vi
R), (:-'-t-%i Ry 2 (a9
,Jdnn(zr.;__¢,¢:,g)9&

In the troposphere, 6('4- %ﬂ) a 0.1 , so that R)= 100 k’
Therefore, (37) corresponds to horizontal wavelengths of 1000 km, and (38)
corresponds to horizontal wavelengths of 160 km. Waves longer than 1000
km will be transmitted through the troposphere with little attenuation;
the stratosphere with much lower eddy viscosity will offer no damping to
them, and they should reach the mesosphere. Waves shorter than 1000 km
will be damped in the troposphere, and waves of 100-200 km length may be

considerably distorted by viscosity.

C. Viscous Damping for the Primary Tide with a Smooth Earth

Jacob Bjerknes, (1949), suggested that ground friction might alter
the phase of the tide, and represent a loss of tidal energy. The simplified
analysis of the Chapter permits at least a qualitative examination of this

possibility.
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The solutions to a viscid atmosphere for the tidal equations contain
an inhomogeneous solution and six homogeneous solutions. Three of the latter
may be ruled out by the high level boundry conditions that kinetic energy of
a unit column be finite, and that no mode propagete energy downward from
great heights. The other three are required to cancel the three velocity
components of the inhomogeneous solution at the surface of the earth. As
two of these are viscous-coupled waves, even a smooth earth surface may

bring about a loss of tidal energy.

The viscous modes of oscillation for waves longer than 200 km described

previously have a vertical dependence:

yyys
= (1ed) o T4
(45)

to the first order approximation. To the same order, they have no pressure

fluctuations or vertical velocities, and also:
U= 4V (46)

The vertical energy flux in such waves may be obtained as follows;
consider the atmosphere to be divided by a level surface. The retarding

force per unit area exerted on the lower section by the upper is (Lamb, 1932):
-—
.
-pv[3E] - A EER(hoT @
& &4

The mean work per unit area done by the lower fluid on the upper is equal to

the product of the horizontal velocity and the retarding force per unit area,
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averaged over a cycle, or:
—_ 2
P o o) |V (48)
.
E N

when (6) is taken into account. Thic represents an energy flux transported

upward by the wave, which is viscously dissipated at higher levels. If

o =1.5x10% sec™), 25 - 1.0x10% sec™’, P, =1.2 kgn 3, and
Y =10 n2 sec-l, (8) is equivalent to:
-,
42.5 | Vo (49)
or:
-8 g
19 | Vel (50)

depending on the mode excited. If a number of modes of the same vertical

structure are present, their velocities may be summed vectorially, and

the resultant used in this computation; it is the total resultant force
e 3

and the total velocity that must be multiplied. If [ Vo[ can be esti-

mated, the viscous energy losses may also be obtained.

At the most, one might attribute all of the observed ground level
tidal wind motions to viscous modes. These winds are -~ 0.2 m sec“1
In the worst case, this leads to a viscous loss of 1.7 mw m—z. However,
if this were the case, one would find much more variation with height of
the wind amplitude and phase than is found at Terciera. It therefore seems
that viscous losses do not exceed 1 mw n-z, and cannot account for the

downward flux of energy in the primary tidal wave.
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D. Viscous Damping in the Upper Atmosphere

It is generally felt that eddy viscosity will be much smaller in
the stratosphere than in the troposphere. The temperature lapse rate
creates a much more stable atmosphere in which turbulence is suppressed
vertically. 1In the mesodecline, however, stability is again relatively
low, and an increased eddy viscosity might be expected. An additional
source of turbulence may be active near the mesopause; internal gravity
waves with large vertical shear are observed in this region, (Hines, 1961).
On the basis of meteor trail and sodium vapor cloud measurements, Hines,
(1963), estimates a value for )) of 100 m? sec-1 at 90 km. This is a
factor of ten larger than the value assumed for the troposphere, and

wavelengths of 2000-3000 km may be strongly damped.

Above 100-110 km, molecular viscosity becomes the dominant factor
in viscous dissipation. Table IV shows values of the molecular kinematic

viscosity as a function of height in the E-region.

Table 1V. Molecular kinematic viscosity in the
lower ionosphere.

Height Kinematic V}icosity L,
(km) (m” sec ) (km)
100 36 8
110 300 23
120 1,700 55
130 5,400 98
140 12,000 145




These figures should not be taken to have more than order-of~
magnitude significance, They are derived from Sutherland's empirical

Tae
formula; A

v = I-‘l‘J/O-‘ -ro
JA (T + 10) 1

with temperatures and densities from the ARDC 1959 model atmosphere,
(Minzner, Champion, and Pond, 1959). The latter are not known accurately,

and (51) has been extrapolated beyond the range for which it was derived.

In addition, (51) is valid only for air of normal composition; above 100 knm,

oxygen dissociation and diffusive separation change the composition. How-
ever, gases of roughly comparable molecular weight do not differ by more
than a factor of two in viscosity, so that the equation is at least valid

to order-of-magnitude.

Table IV also shows the vertical wavelength, L, , for which the
damping time constant, ( )) ’sl).' is equal to the semidiurnal tidal
period. Shorter waves would be expected to be strongly damped at the
corresponding levels. At these heights, the horizontal wavelengths are
about 300 times the vertical wavelengths, so that by a height of 130 knm,

even waves of global scale will be damped.

At these heights, wave amplitudes are large enough so that non-linear

interactions occur. These interactions may also feed energy to shorter

waves that are rapidly damped; this represents an additional energy sink for

larger waves.
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CHAPTER VI, HYDROMAGNETIC DAMPING IN THE IONOSPHERE

A. Introduction

In the ionosphere above 100 km, hydromagnetic effects play an in-
creasingly important role in atmospheric motions. A search of the liter-
ature was undertaken to attempt to find what role such forces might play

in dissipating either primary or secondary tidal waves.

This search showed considerable interest in the ionospheric inter-
actions of wind and electric current, but primarily from the standpoint
of current generation rather than wind dissipation. It is generally
assumed that the winds "shall be inexorable” (Dungey, 1959). It has been
pointed out qualitatively that electric fields generated in the Eeregion

may produce motion of the gas as well as currents in the F-region, (Baker

and Martyn, 1953).

The only paper discovered that dealt specifically with the dissipa-

tion of the winds is by V.P. Dokuchaev (1959). In this study, he makes a

number of simplifying assumptions that allow the decoupling of the kinematic

and electromagnetic equations, and thus is able to obtain a gsimple form of
the equations of horizontal motion for the air. He obtains a damping term
that arises from the transverse conductivity, and a coriolis-like term

stemming from the Hall conductivity.

One of Dokuchaev's assumptions is in direct contradiction to assump-

tions made by a number of other workers, (Baker, 1953; Baker and Martyn,

1953; Ratcliff, 1959, 1960; Dungey, 1959). He assumes that no polarization

\
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electric fields are set up by charge unbalance. On the other hand, Baker
and Martin used a conductive sheet model of the ionosphere and concluded
that polarization fields would completely inhibit the Hall current, and
greatly enhance the transverse conductivity. It appears tnat Dokuchaev's
arguments are not valid, and that polarization does play an important role.
However, the results of Baker and Martyn may also be criticized; the
authors were well aware of the appreciable limitations of the sheet model
and worked to circumvent them. It also appears that their conclusions are

valid only for an irrotational wind field.

We shall first present Dokuchaev's results, and then discuss how
they might be modified through the theories of Baker and Martyn. The
resulting equations of horizontal motion contain two dampirg terms. One,
like the comparable term by Dokuchaev, is decoupled; the second stems from
the polarization field, and is not. It can be shown that the second term
is normally of the same order as the first, and that if it is neglecting
in integrating the rate of energy dissipation over an ionospheric '"sheet”,
the result is an over-estimate. Physical arguments may also be given to
show that substitutions ol the Baker-Martyn conductivities in the Dokuchaev
equations leads to an over-estimate of damping losses, since all the errors

tend to produce excessive transverse currents.
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B. The Dokuchaev Equations

Dokuchaev begins with the equation of motion:

i 2 1_
2V (Fv)V T TFVUP g l7=H]1-7
Y )

+30—'5:V'.‘ vV‘v

= air velocity

= air density

= air pressure

= kinematic viscosity
gravitational acceleration
= angular velocity of earth
= magnetic field of earth

= electric current density

= speed of light

A TR LA R A A

(The symbols i{f , @ and )\ are used with different meanings
in this chapter than they are used elsewhere, in order to agree with the
original papers. As they are never used for their alternate meanings in

this chapter, no confusion should result).

The standard assumptions are made that the gas is incompressible,

-
that M varies only very slowly, and that (V.¥) \7 is negligible.

The generalized Ohm's Law is also used:
; s 0"5[5-.‘;':1[!: f"T[E:RE'].l;: 2)
+ o [h .E"]
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e
Here h, is a unit vector in the direction of n ,and O , 97 ,

and O, are respectively the longitudinal, transverse, and Hall conduc-
tivities. M is the electron, (and approximately the ion) density,

while € , Mg , and ve are the electron charge, mass, and frequency
of collision with neutrals, and € , m, , and ¥, are the corresponding

eH e

ion quantities. CJlg = e and aJ; T 5 are the electron
-

and ion gyrofrequencies. Also the conductivities are given by:

|
o, = wve’ [m,ve +m,-)‘,.—] (3)

4)

|
|

Vi ]
Ve [ ”'e()’, +coe) m; (Y, +ea)

a=w~e] e aTeen Rl (&H-Wz )J =)

Finally:
E"-'E"’ Z'[VxH] (6)

= ”
The electric field, E consists of an irrotational portion E N

~w
and a non-divergent portion, E . Since:

-
T« E“= -~ %—f% @

-5
h being the variable portion of # , and

Ikl << IR ®
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- Ay
Dokuchaev concludes by dimensional arguments that lE I «

Dungey, (1959), reaches the same conclusion.

The irrotational, or electrostatic field is given by:
2
VE"suam¢ (®)

where ¢ is a net charge density, Dokuchaev argues that since the relax-
ation time for charge unbalance in the ionosphere is a small fraction of
a gecond, and since the atmospheric time scale is many seconds, * must

be zero.

While it is true that charge unbalance sets up fields that produce
neutralizing currents, and that most plasmas are quasi-neutral, other
agencies may act to reinforce charge unbalance, and the resulting polari-
zation occurs as a balancing of rates. (Note that since atmospheric motions
are much slower than the times for electromagnetic adjustment, we may treat

the electrical problems as steady-state.)

We shall return to this point in a moment. However, continuing

Dokuchaev's arguments, we consider the Hartmann number:

X ,a
T o H L 10)
vrc?

-4
In the E~layer, Dokuchaev takes O, = 4.5 x 10° /sec, PP =10 gm/sec-cm,
H = 0.5 gauss, (. = 40 km, and M‘.‘: 20. While it might be argued that
vertical dimensions for L may be somewhat smaller, the effective value of

o, may also be much larger. The Hartmann number stays above unity in
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the P-region, according to Dokuchaev, since L also increases in this region.
(Again, this is questionable.) On this basis, the viscous term can be

dropped from the equation of motion.

With the above approximations the equations of motion for the « ,

(eastward) and v , (northward) wind components become:

2 _Cacoy GHHp Yy + Tl o -5 3 an
2 ( 4 pPc? rc? » )}
vV O HH o H = -L2P (2)
— A, t+ 72 [ = ——
Y +( f 4 ‘—ﬁJ,c )« +"‘""‘,ca L o

Here:

H = H;-l-‘(; 13)
and *{q and ‘ﬂf are the northward and vertical components of ;’ , and
w} the vertical component of a . &

AL
- ’cl (14)
oA HH
- 2cd 2 (15)
-t e e

then equations (11) and (12) become:

ok
ot

L _ AV +x« = -~

¥ (16)
- P
AV Lanu +AU = -7;' ‘3—;; an

L 9
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If we multiply by & and V respectively, and add, we obtain the

horizontal kinetic energy equation:

‘e v’ wie+v? oo 2P Qf
%(5—;—»)-# ar(=—)="% “J’..‘V)’l)(lB)

The second term represents a dissipation with a time constant (;A)~’.
In a tidal system, the long time average of kinetic energy is a constant.
In this simplified equation, the dissipation must be balanced, on the average,
by work done by pressure forces as represented by the right hand side of (18).
Had the nonlinear terms been left in, advection of horizontal kinetic energy
would also have been possible. The damping coefficient A is given as a
function of height in Figure 11. These data were based on conductivities

by Baker and Martyn, (1953), and densities from the 1959 ARDC Model atmos-

phere, (Minzner, Champion, and Pond, 1959). (Strictly speaking, the same
densities should have been used in computing the conductivities. However,

other parameters are even less well known).

The Hall conductivity may markedly alter the coriolis parameter, as
may also be shown from a plot of a—-é_'i:!} as a function of height,
Pc

This effect depends on the assumption of charge neutrality, however.

Now return to the original critical assumption of charge neutrality.
As a simplified model, consider an infinite flat geometry with a normal

magnetic field and no initial polarization. Then:

. - O, VH Ta &M Q9)
7 C * c
3 - TiuH oavH (20)
= -+
iﬁmﬂ ra <
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and the vertical current is zero, providing there is no vertical velocity.

Therefore:
V-;' “’:-[W(L;_%?()*q %?’*')L:)J (21)

Were the gas incompressible, and in two-dimensional flow, )a; -f)a;'-:so
but even in this case the flow must also be irrotational to avoid the crea-
tion of a polarization field. Dokuchaev's assumption requires a very strong

restriction on the nature of the velocity field, since without polarization,

in general, the current is divergent.

C. The Results of Baker and Martyn

Before embarking on a quantitative discussion, it is worth while to
gain some physical insight through an argument presented by Baker, (1953).
Consider an arbitrary infinite sheet having a transverse conductivity oy
and a Hall conductivity ﬂ: . Let an electric field be applied by means
of arbitrary electrodes. The Hall current then flows along equipotential
lines and the transverse current along field lines. 8Since the equipotential

curves are closed, the Hall current causes no polarization.

1f the sheet is now terminated by a finite boundary, some equipoten-
tial lines will be intercepted, and the Hall current will cause a charge
to build up on the boundary, with a resulting polarization field. No current
will flow between pairs of points on the boundary. If the electrodes lie on

the boundary, all of the equipotential lines are intercepted, and no Hall
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current at all will flow. The resulting polarization field will also
react through the Hall conductivity to cause a current to flow along the
original field lines. The final result is as though the Hall conductivity
were zero and the * -ansverse conductivity were:

2
o = 07 Z
3"+a7 (22)

Baker then considers an arbitrary surface, and under a set of assump-
tions, shows that the Hall current is completely cancelled, and that the
effective transverse conductivity is given by (22). The assumptions are:

1. The transverse and Hall conductivities are independent of

direction. Physically, this corresponds to a normal mag-
netic field.

2. Both conductivities are uniform over the surface.

3. The surface may be treated as infinitely thin.

4. The wind field may be represented by a scalar velocity

potential, 4’ , and lies within the sheet.

The first assumption is normally met within a factor of two, except
near the equator. The second is quite inexact, as the-conductivities vary
by almost an order of magnitude from night to day. Some, but not all of
the-proble-s of the third assumption can be avoided by using vertically
integrated conductivities. The final assumption restricts us to irrota-
tional motion. Under these assumptions, the top and bottom of the sheet

are polarized so as to oppose any vertical current.
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It appears that the fourth assumption is very restrictive, and
automatically gives rise to the cancellation of the Hall current. If

the wind field is described by a velocity potential such that:
-l
Vv * v 4 (23)

-p b
and H 1is normal to the surface, the induced e.m.f., [VA HJA: lies

along equipotentials. There are no lateral boundries on the spherical
shell to intercept these equipotentials, the form sets of closed curves

on the surface, along which the transverse current is free to flow.

The Hall current must flow along lines normal to these closed curves,
the "field lines” of ¥ , and these lines must necessarily converge to
points. If a Hall current did flow, it would be convergent, and this 1is
prohibited in the steady state. Therefore a polarization field must be
set up to oppose the Hall current at all points. This polarization field
must be such that by itself it would cause a direct, or transverse current
equal and opposite to the induced Hall current. (It cannot cancel though
its own Hall current, as this would imply the integral of grad‘ around
a closed loop was not zero.) The polarization field's Hall current will

add to the induced transverse current, as noted before.

An unbounded vector field, such as the velocity, may be uniquely
resolved into two component fields, one irrotational, and the other sole-
noidal, (c.f. Newell, 1955). The irrotational portion may be represented
by a scalar potential. If the field is two-dimensional the solenoidal

portion may be represented by a stream function, (c.f. Milne-Thompson, 1955).
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The conclusions drawn by Baker are valid only for the first portion of

the motion.

Now consider the second case, representable by a stream function

; , such that:

7 - P VI ( n normal to surface) (24)

The velocity now lies along closed curves, while the induced e.m.f. lies
along normals to these curves. The transverse current now would be con-
vergent, and must be completely cancelled by the polarization field. But
in this case, the polarization and induced fields are everywhere equal

and opposite, so that the total field is zero, and no current at all will

flow. (See section D.)

Thus the irrotational velocity field will have enhanced damping
from its own currents, while the solenoidal velocity field produces no
currents. It will interact with the other field's currents in an undefined

manner, locally producing either positive or negative damping.

One may try to obtain some physical insight as to the effects of
the other assumptions. In the irrotational case that Baker treats, a
direct current flows in closed loops. We can envision a tube of current,
along which there are both induced and polarization e.m.f.s., the polar-
ization being so distributed to keep the current constant, despite changes
along the length of the induced e.m.f., or the conductivity per unit length
of the tube. The latter will vary if the tube cross-section varies. One

can also let it vary through change in ‘; . A varying conductivity will
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thus create a different polarization field, but does not qualitatively
change the mechanisms involved. It is strongly suspected that a varying
conductivity could be incorporated in Baker's equations by replacing ;7
and ¢ by € H  and #3$  as variables. Of course, since no
current flows in the case of a solenoidal wind, the conductivity is irre-

levant.

If the magnetic field is not perpendicular to the surface, the
induced e.m.f. will have a normal component. As noted, vertical polari-
zation will cancel this component; the remainder of the induced e.m.f. is
equivalent to that which would arise from the vertical component of the

magnetic field.

If the wind field is vertically uniform, a vertical variation in
conductivity may be treated by the use of vertically integrated conduc-
tivities. Baker, and Baker and Martyn have followed this approach. We
shall not repeat their arguments, but simply notice that physically this
allows a Hall current to flow by closing a vertical loop. This reduces
the enhancement of direct conductivity. Baker and Martyn suggest that
such leakage may be cancelled by the induction of motions in the short
circuiting region. This is the dynamo theory in which the E layer dynamo
drives the F layer motor; when the motor is in motion, it produces a back

e.m.f. that reduces current flow.
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D. Currents Induced by a Solenoidal Velocity Field

We shall follow the notation used by Baker in his dynamo theory for
an arbitrary surface having two orthogonal coordinates £« and V . The
elements of length are h, of & and  h, AV . Assume a magnetic
field having at any point a normal component H~ . As noted previously,
tangential components of l:l' have their effects cancelled by vertical

-
’}')olarization. let E' be the total electric field, with components E;

and E: in the plane. The transverse conductivity 0':“ and the Hall
conductivity UT,_, will be assumed everywhere uniform and independent of
direction.

As the current system must close, a current function R exists

such that the current densities are given by:

P L r . =ldR
IM'E v Lv h, du« (25

From the generalized Ohm's Law, the equations for Iu and Iv become:

[ -4
% %! = Tuw EL + TwE, (26)

ha

<

- R
_1—2_ = —a;,E“' -‘.a;“E: (27)

h 2u
We now eliminate R

. R dhs IR _ un

»

w
Se

Js

h. h‘ JulV h. ha “

Y& oV h,

_u)E.+5g._ v (208)
P 2 h,

<
v
&

=l XR L1 dhIR - -Om )EL . omEl ™
h.h, d4dV = hih, 3vow L av T T
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Adding (28) and (29) and substituting from (26) and (27)

)ha ! o o 2!9
gy [ EDr el - i [ - R B
]
v 4 °
- Tuw IEL _ #mv JEL | oay B _ Tmu IEy - o
h, p 3y ] “ he 2V ha P
or:
O
.ﬁ:.[).(h,E )+ & (hES)]
h.hy L 2«
(31)
0'.:.,[ ( "__L/—.E°]=o
+ —.—f: « hIEV) )V( ' “)
or:
’ v-E* + 0z, UxE* =0
Oav Vx =
O uu (32)

-» .

EE' consists of solenoidal and irrotational components. The polari-
zation field is given by the gradient of a scalar potential, thus being
irrotational.

Now consider a solenoidal velocity field, given by:
V=r©¢ (33)
where ;? is a unit vector normal to the surface. The induced e.m.f. is:
-~
i Vx H, = —"tv ‘71{
. The curl of the induced field is:
(35)

LS 2L

so that in this case, the induced field is also irrotational.

Therefore,
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-t -
is irrotational, and Vx E' is zero. But from (32), V’E.
must then also be zero. Since E?; contains neither non-divergent,
(rotational) nor irrotational components, it must be zero. If that is

so, no currents will be generated.

E. An Upper Limit to Hydromagnetic Damping

If daytime values of Gf; are substituted into equation (14), in
place of 07' , the effects of polarization are taken into consideration.
However, at least three important sources of error remain. The damping
is valid only for the irrotational portion of the wind, the effects of
vertical current closure have been ignored, and the day-night variation
of conductivity has not been taken into account. From the previous dis-
cussion, it appears that all three errors act in the direction to produce
an overestimate of the viscous damping, so that a reasonable upper limit

to the magnitude of hydromagnetic damping may be obtained.

Figure 11 shows )\ as a function of height, using ﬂ; ; for com-
parison, Dokuchaev's values with 7, are also showmm. If X\ approaches
the tidal frequency, hydromagnetic damping becomes impoirtant. It is
possible, though of course not proven, that this may occur above 100 km.
As has been noted, molecular viscosity rapidly becomes a dominating factor
at these heights, and viscous damping will likely exceed hydromagnetic
damping for vertical wavelengths shorter than 30 km in the E region, and

should certainly predominate for any waves which can propagate to 150 km.
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Figure 12. Annual variation of E-layer critical frequency squared,
at midday, for Slough, England. (Mitra, 1951.)
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If hydromagnetic damping is important to the primary tide at these
high levels, long-term variations in the mean conductivity should be
reflected in the tide. The conductivity has a seasonal variation, as
shown in Figure 12, The square of the noon-day critical frequency,

(a measure of electron density) is plotted as a function of season, at
Slough, England. Values are for the E-region. Conductivity is reduced
considerably near the winter solstice. The tidal motions at 80-100 km,
(see Chapter VII) are at a maximum at this time, which might be expected
if damping losses were reduced. However, there is usually an additional

maximum in September that cannot be explained on this basis.

Figure 12 also suggests that an eleven year period be looked for
in the tides at these heights, if hydromagnetic damping is important.
The existing data at these levels covers only a four year period, and no
identification with such a period can be made; there is a small trend
toward decreasing amplitudes in corresponding months of successive years,
during a time span, (1953-1957) of increasing sunspot activity. These

observations offer tantalizing encouragement, but no proof, whatever,

There is also the possibility, which will not be taken up here,

that gravity waves may couple energy to hydromagnetic waves, and vice-

versa.
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CHAPTER VII. EFFECTS OF EDDY CONVECTION

In Chapter IV it was shown that differential heating, through a
positive correlation between the tidal temperature and water vapor absorp-

tion of solar radiation leads to a generation of tidal energy. It is

equally possible that a negative correlation of the temperature fluctua-
tion with diabatic heating from another source might lead to the destruc-

tion of tidal energy. One possible source is eddy convective heating

from the ground. If such an effect were operative it would result in an

energy sink close to the ground; it would then offer an explanation for

the downward flux of tidal energy. This mechanism thus requires further

exploration.

From the results of Chapter IV, the mean rate of generation of

tidal available potential energy per unit volume is:

r:( So ¥’
Sl w77
sy e [T 7] @

where the primes refer to Lagrangrian parameters, l‘( is the dry adia-
batic lapse rate, and f; the actual thermal lapse rate. (As has been

done in earlier chapters, T, will be taken from the ARDC 1959 Model

Atmosphere.) It has also been shown that (1) may be written approximately

as:

~ AlTals * We- P +#7]?
Sl [l mel 52 B 0
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Like the effects of eddy viscosity, the amplitude of the semidiurnal
eddy conductivity heat flow decreases rapidly with height, damping out with-
in the first few hundred meters above the ground. Over this range, Ja
and F; may be taken as approximately constant. From the observational
data, r: also changes comparatively little over such a height range and
hence also will be taken to be constant to the crude approximations made
here. These approximations simplify the evaluation of the first half of

expression (2).

If the term in \u&. is neglected, the total rate of energy genera-
tion by convective heating, (hopefully negative), between the ground and

some level }0 at which convective heating is negligible is-

4

A ’:‘.}% ‘IHIV’E!.[.Fzr.;E:!:] ¢*;}' 3>

-\A,;- pr (’:(- r;) E; o

or:

lw P, 1P| Pr *
W, o X4/, -z C )
T 2(re-r)b m[lP.-l o= ] “

Here <:0' is the upward convective heating flux at ground level. Hori-
zontal convergence of diabatic heating is small in this layer. If numerical

values are substituted equation (4) becomes:

A -4 P'- * 3 (%)
W, = asxie k‘(rﬂl C,..J W/ m

e e e S e th e e s e e v o o e+ = o s < . - .
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- 2
If this energy sink is to balance the downward flux of 7x10 3 v./m.” ,

the component of C‘, out of phase with P'. must be about 30 vl./m.2

The one set of convective heat flux data known to the author that
may be resolved into its periodic components has been compiled by Lettau,
(1949), for measurements in the Gobi Desert in June. The amplitude of
the semidiurnal component was 60 w./m.z. Desert conditions in June are
more representative of extreme rather than mean global fluxes. The flux
over oceans would be expected to be much smaller, for example. A mean
convective flux of 30 w./m% at the latitude of Terciera is not out of

the question, however.

The phase of the Gobi data is such that the semidiurnal flux reaches
a maximum at one o'clock. This is almost exactly in time quadrature with
the tidal pressure. Unless the phase of the flux at other points on the
globe is retarded by several hours from this value the convective heating

will not serve as an energy sink.

Computing the influence of the second term in expression (2) is
more difficult, since W may vary considerably. 1In fact, if the
tidal-terrain effect is dismissed, it must go to zero at the ground. An
upper limit to the magnitude of the term might reasonably be obtained by
taking W, to have a magnitude equal to the value computed in Chapter IV
and to be in phase with J;, at all heights. The contribution of this

component would then be:

(6)
W, = laxse €| w/m?
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Under these most ideal of situations a magnitude of lC,., = 60 vl./m.2 would
be required. If W,— goes to zero at the ground or has less than optimum

phase, a still greater flux would be required. In fact, if W~ maintained
the phase and amplitude computed in Chapter IV and the vertical flux at the

Gobi Desert phase, tidal energy would be generated rather than lost.

A more convincing argument against the importance of eddy convection
has already been presented in part in Chapter III. If the energy flux goes
to zero at the ground, then the component of W’_ out of phase with P.-
must go to zero also. In this case the change in W, must occur over
a short height. But this cannot be accomplished without corresponding
abrupt changes in P,, , which are not observed in the tidal data. From

equation (23) of Chapter III:

Wa X ";-(‘Ei‘:‘)}'ﬁ ')

~r 0‘ ~ {
oA ~x
in the case of the @1 mode of oscillation, while:
32 ’ °

P’. o ’.‘b - 'jl_f" (8)

o 2

If ebrupt changes in W occur over distances over which X changes by
a small fraction, (say | km,) these changes must be reflected primarily in
changes in %" . But if the changes in ‘%‘ are more pronounced
than the changes in }p. , P,, must also change. Observationally, the
change in P,., is small over these heights. It is still possible that con-
vective heating plays a role in smaller scale perturbatic .s in the tidal

amplitude and phase, however.
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CHAPTER VIII. MERIDIONAL TRANSPORT OF TIDAL ENERGY

A. Theoretical Considerations

Inspection of the results of Chapter II shows that for a single mode

of oscillation, the meridional component of the tidal wind is in time quad-

rature with the pressure. Equation (II-20) states that:

r.:a'—:.rs')[%-g‘%‘ %“—’%‘;—"J

(1)
for a planar geometry, while for a spherical geometry, (11-47) states:
40— Jb, o P
— n— 2
Vo =@ —‘Iw‘)[a)’. 00  ap el ¥ @

If only a single mode of oscillation exists, the horizontal variations of

all tidal parameters may be resolved into separate zonal and meridional

variations. Thus along any line of constant longitude, P,..

phase, and DTP% , (or %’;ﬁ , as the case may bg) has the same

has constant

phase as P,, The zonal dependence of Pn is of the form e .‘I
isé YN 28 .
(or ) s0 that =2 (or ) is proportional to 4 R .
e’ 4 a" ’ Er;' [, ]
It follows that V), is in phase quadrature with £}, , and:
I t 4 (3)
ta[vih] =0

There is no mean meridional flux of tidal wave energy

\
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There are circumstances under which there may be a mean flux in
the meridional direction, however, Two modes may combine in such a manner
as to produce a net transport. Let V, and P, be associated with one

mode of oscillation, and V; and F& with a second at some given point.

If:

1d a 1A

vl I Val )
and the waves are not in phase, then P, + P; need not be in quadrature
with \4~+ V& , and there can be a mean meridional energy transport.

If the two modes have different zonal wave numbers, simple inspec—
tion indicates that their relative phases vary through an integral number
of revolutions around a latitude circle. For every point oa this circle
where the mean meridional transport takes on a given value, there will be
a corresponding point where the relative phase is reversed and the trans-
port will be in the opposite direction. Thus there will be no energy flow

when integrated over the entire latitude circle.

On the other hand, if the two waves have the same zonal, though
different meridional dependence, their relative phase will be the same
at all points on a latitude circle, and there will be a net meridional

transport.

As this energy flux arises from cross terms:

3 2 (WP +VTR) ®
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it represents a non-linear interaction between the two modes, and an
inter-modal transfer of energy. It is not necessary to resort to a solu-
tion of the non-linear equations to gain some further insight, however.
The following analysis will be done in terms of the rotating planar model,
though the extension to the spherical case is obvious. Let the total

tidal pressure be written as:

iz R‘ 5+ :("4)’)
F;— = éQL’<“7‘I}) ¢ (6)

where ﬂ. and J are real variables. Then from equations (I11-20):

F‘— - )4‘”\ (all a > iléi}
ur‘f,(r’-qw‘)[ Rj.o- + aw )——ﬁn + ‘w)’l o

- P 4 o  Lon o 2§
Ve- = f.(o-‘—‘lfu")[ MWk e am IS T T a7
(8)
The mean zonal flux of wave energy is:
« ey _ 2w 24Fr
";‘ kl[ U, E-] = Fy ('.._.,wn)[kf o~ I m )

and the mean meridional flux is:

* - —rpo-. o4
-kﬁ.c[V.- P.-]- T 37 (10)

]
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The meridional flux is thus associated with a meridional shift in

phase of the tidal pressure.

The shifts in phase of &y and V,- relative to FPe- have an
additional effect, producing terms that enter into the kinetic energy
budget. The mean rates of conversion of zonal and meridional kinetic

energy into potential and internal energy are given by:

e ) - :wk o2& 3
tul€3F] - LR e

and:

*In]. —Frwk )
'kﬂt[v“' 'a-ﬂ]s J, (rsmveot) ')—,; 2)

respectively. Thus for _g{ <0 , corresponding to a mean northward
energy flux, there is a gain of zoral kinetic energy and a loss of meri-
dional kinetic energy. There is also a term, (Saltzman, 1955):

- p,-‘w Rg 2_{

* P, (-t —¥ev?) IN a

-}k;(afow“: %] =

representing the mean conversion from zonal to meridional kinetic eaergy

through the coriolis deflection, so that the horizontal kinetic energy

budget is balanced in parts as well as in the whole.
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The product:

- _ PRy 048
-ﬁ' m[.& “r Vr] - a.f:-(f" "“l) )’l (14)

represents a meridional transport of zonal, or angular momentum. It is in

the opposite direction to the meridional energy flux.

It is also possible to write the equivalent equations in the more
general case, when waves of different zonal wave numbers are present. 1In

this case, g_’P’ is not generally proportional to « P . There-

fore, one must write:

>
vony e [
—i' m [“r yf = f.(’.l-qwt) m[ ”n ); J (18)
o
L r[vt 2] 75mm 37 55 ae)

and:

«
[ b | 2F

» '-i-
The kinetic energy generation remains balanced, but the meridional

energy flux is not as simply related to the energy conversion terms. The
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transport of angular momentum is no longer a contribution to the mean

zonal momentum, but may represent additions to time-invariant waves.

One possible cause for a phase shift with latitude in the pressure
wave may be found in the tidal-terrain interaction discussed in Chapter III.
The amplitudes of both the heating function and the observed tidal pressure
decrease with increasing latitude. It was shown that the generation of
tidal energy depends on the correlation of these parameters, and so also

drops off rapidly at high latitudes.

-l
The horizontal winds are proportional to ("'-‘la.o“'".‘ ) , and

to the gradient of pressure, the eastward component of which increases
relative to the pressure itself at higher latitude. The secondary wave
losses, which are proportional to the square of the horizontal velocity,
will thus decrease less rapidly than the ability to generate tidal energy.
This will act to distort oscillational modes, and may "encourage” a north-

ward energy transport.

Figure 3 may be used to demonstrate this point at low levels. 1f
at higher latitudes, the horizontal winds are greater for a given pressure,
the downward flow of tidal energy must also be greater. Therefore, the
magnitude of vv; must be increased, relative to that of the total pres-
sure, P‘-O- Py . But since W} is also proportional to / , the
phase lag of the ground level pressure wave must increase at higher lati-~
tudes. This decrease in phase angle with latitude corresponds to a north-

ward transport of tidal energy. Of course, changes in terrain will also

have effects, of a less readily predicted nature.
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It is also possible that viscous or non-linear terms that have
been omitted from the equations of motion produce phase shifts and resulting
meridional transport. From the results of Chapter III, the vertical portion
of eddy viscosity should have little effect on the tide; the effect of large
scale horizontal eddies may still be an open Question. It will be shown in

Chapter X that the non-linear interaction with such waves is probably small.

B. Observed Energy Transport - Terciera

The data from Terciera, (Harris, Finger, and Teweles, 1962), provide
information on W, and V,. , as well as the pressure of the semidiurnal
tide. The meridional energy flux may thus be computed. However, the wind
data is less accurate than the pressure data, and produces rather scattered
results. (Note that Table I of that reference was inadvertantly computed
for Greenwich, rather than local time, and that therefore, corrections of
+27 degrees and +54 degrees must be added to the diurnal and semidiurnal

wind phases, respectively.)

The meridional energy fluxes obtained from this data are shown in
Figure 13. Below 500 mb, and above 200 mb, the flux is northward. 1In the
intervening region it is southward. The meridional component of the tidal
wind behaves abnormally in this middle region. At greater and lesser
heights, it is equal to or slightly greater than the zonal component, as
theory predicts. In the intervening region it drops to a third the mag-
nitude of the zonal component. The cause for this is not understood.

Presuming the effect is real, some form of reflection at the tropopause
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FPigure 13. Meridional energy flux in the semidiurnal tide - Terciera.
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semidiurnal tide - Terciera,
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or non-linear kinetic energy interaction may be responsible. Observations

at other stations are needed to see whether this is a persistent phenomenon.

If it is assumed that only zonal wave number two is present, then

from (10) and (11):

"Lk [iur0] = + R [VSP) 9)
this appears to hold true, (Figures 13 and 14) except in the 500-200 mb
region. On the assumption of a single zonal wave number two, the generation
of zonal kinetic energy has been computed, (Figure 15) and shows a gener-
ation of zonal kinetic energy of the crder of 5 x 10~ ' w./m.3 It should be
noted that this is quite likely to be balanced by an equal loss of the mer-

idional kinetic energy. Unfortunately, the latter cannot be computed without

a knowledge of the meridional pressure variation.

It is not possible, on the basis of a single station, to decide whether
the meridional enei'gy flux is representative of a latitude circle, or will
oscillate along it. If it is a representative flux, and if there are diver-
gences of the order of 1/@& of the flux itself,( & being the earth's radius)
there may be energy divergences of the order of 2 x 10-3 v./-.z of the earth's

surface. This is not inappreciable compared to the 7 x 10':‘I './I.2 downward

flux.

C. Observed Energy Transport - Fort Worth

A similar set of data for Fort Worth has been graciously provided in

advance of publication, by Mssrs. Harris and Finger, and Dr. Teweles. The

\
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Meridional energy flux in the semidiurnal tide - Port Worth.
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mean meridional energy emergy flux, is shown in Figure 16. The flow is
northward at all levels. The flux has a greater magnitude than at Terciera,
not too surprising in view of the greater magnitudes of P, and V- As
the wind data at Port Worth was originally recorded in smaller angular
increments than the Terciera data, the tidal wind components have more

accuracy, and the flux shows somewhat less scatter.

The generation of zonal kinetic energy from potential emergy is shown
in Figure 17, on the assumption of a wave of zonal number two. With the
improved accuracy of the wind data, it is also possible to compute the con-
version from zonal to meridional kinetic energy, as shown in Pigure 18.

This conversion largely balances the generation of zonal kinetic energy.

D. Meridional Transport of Momentum - Meteor Trail Observations

In the past decade, a new source of wind data for heights of 80 to
100 km has become available: radar observations of meteor trails, (Greenhow,
1959; Greenhow and Neufeld, 1955, 1956; Neufeld, 1958; Elford, 1953, 1989).
These observations have been taken at Jodrell Bank, England, and Adelaide,
Australia. They show very substantial tidal wind velocities of 10 to 50
meters per second. As the phases and amplitudes of the semidiurnal tide

are available, it is possible to compute:
! »
rﬁl (f,“,. Vo-) (20)

and hence to obtain the meridional transport of angular momentum by the

tidal component of the winds.
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Figure 19. Phase angle between « and V semidiurnal wind components
at a mean height of 92 kilometers ~ Jodrell Bank.
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At Jodrell Bank, the diurnal tide is considerably smaller than the
semidiurnal tide, and will not be considered here. Neufeld, (1958) has
presented data from 100 days of observations over a four year period from
September, 1953 to August, 1957, averaged to refer to a mean height of
92 km. The relative phase angle between W, and V,- is shown in
FPigure 19. The error flags are derived from Neufeld's estimate of the
error. The dotted curve represents a smoothed average, obtained by aver-
aging over a month, every half month. Figure 20 shows the values for (20)
computed for each observation. The dotted line is a similarly smoothed

average.

The data indicate a seasonal change in momentum transport. There is
probably a northward transport in late winter and early spring, and a clear
thought comparatively small transport in mid-summer. A southward transport
occurs during October and November, corresponding to a sudden increase in
the tidal magnitude and shift in phase. These transports are of a suffi-
ciently great magnitude to be important in the general circulation, if
they are maintained around a latitude circle, or to contribute to large

standing waves if they are not. If:
& . a2 (21)
'}M[“r \/,.]: 24 M /Sec

enough angular momentum is transported to increase the zonal wind by one

meter per second per day everywhere north of Jodrell Bank.

Unfortunately, pressure data, (Greerhow, 1859) is not sufficiently

accurate to permit computation of the meridional energy flux of the tide.
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Density fluctuations are of the order of 7% of the total density, and
adiabatic pressure variations would be of the order of 1/y of this, or

5%. From thbe ARDC 1959 Model Atmosphere, Ff, = 1.88 x 10°° kg./n>, and

Pg =9.07x 102 n./-.2 at 92 km. 1f IVg) 20 m./sec, then:

’-;x.[?.- . Pr]l $ 4520”2 @w/m? (22)

With zonal momentum transports of this order, one might expect 10-20%
of the energy flux to Be in the ‘meridional direction. As it requires a flux
of 4 x 102 w./n.2 to heat the air at this level between Jodrell Bank and
the pole by 1 degree per day, this flux is not an important part of the

mesopause energy budget.

The data for Adelaide, (Elford, 1953, 1959) shows an increased semi-
diurnal tide, and a greatly increased diurnal tide, now larger than its
higher frequency counterpart. Both show velocities of 50 m./sec. While
[V and V. often show strong time correlation for both tides, their

phases vary quite erratically, and no leuox:nl trends have been observed.
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CHAPTER IX. ADVECTION OF POTENTIAL ENERGY AND SENSIBLE HEAT

The transport of tidsl energy has been considered in a lLagrangian
frame of reference. It is also possible to consider transports by the
tide in an Rulerian frame of reference, that is, by advection, across a
surface fixed in space, (or at least fixed relative to the earth.) In
this case tidal motions may also produce a mean flux of sensible heat:

L e[ e, (AT LT VE]

)

and of potential energy:
i m[ § ) V... (2)

by advection. The significance of these energy transports can be made more

clear by the following mental experiment.

Consider a volume of the atmosphere measuring one meter in height,
one meter in zonal width, and on the average ten kilometers in meridional
extent. Let the northern end of this volume move with the tide, so that
no matter is advected across it, while the other surfaces remain fixed in
space. The excursion of the moving surface is then given by, b‘. A"" ’

of the order of one or two kilometers. For parameters comparable to the

Terciera semidiurnal tide, in the troposphere:

| € (T + A7) = 10" govle /im? @)
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and ,Vr, & 0.2 m./sec., so that the mean advection of sensible
heat through the southern end of the volume may be of the order of several

watts per square meter, producing a total contribution of energy flow into

the volume of & few watts.

The zonal advection of sensible heat per unit area is of the same

order, but since the total surface is about 10‘ a2

at most of the order of 10-7 or 10-6 of the flux itself, this contribution

and zonal gradients are

to mean acquisition of energy by the volume is negligible. Vertical advec-

tion will be discussed shortly.

The gravitational potential, I may be referred to any convenient

level; it will be most convenient to take the bottom surface as the level
at which is zero. Any other choice would produce different fluxes through
each surface, but since the mean density does not increase, the sum of the
differences would cancel. The mean advection of potential energy through

the southern surface is:

LR PeVe] S anis™ s

which is negligible. The same type of argument applies to the lateral
boundries as held for sensible heat, so that their net contribution may
be ignored. There can be no advection of potential energy through the

lower surface, where I = . There is an instantaneous advection of:

- Wo- (fo"'fo-);- “"/”", ()

A —————. S £ o
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through the upper surface. 8ince the area of this surface varies consid-
erably, a correlation of the flux and area can produce a mean acquisition

of energy:

.
iV
-4 Ze [Wo o == J 6
within the volume. This can be significant, since:
we| P, | Ve[
IWe-| Po 3 ~ 20 W .

Ao

There is also energy transport by the term *M[Po- .\;:J
representing work done on the aorthern boundary, and the advection of energy
of compression across the other, stationary surfaces. Accumulation of
energy in the volume through the horizontal components of this flux are
negligible, since gradients are small over the volume, and fluxes at oppo-

site boundries largely balance.

S8ince:

. PRT
P = M ®

the vertical transports of sensible heat and energy of compression may be

combined into a single term, with an instantaneous value of:

Cy, + R/m - Y. w,P
W | = Pe 7 % T ®
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The difference between fluxes at the two surfaces one meter apart lead to

a net accumulation of energy per unit area from this term of:

—-We X 6 ¥ w, 35

(=1 3p T r~i (10)

A mean accumulation of energy in the volume again results from the corre-

lation of flux and area, and is:

. g W
A VG»
sy Aa[we 2 RE] s

With a steady-state tidal system, there can be no mean accumulation
of energy, and the advections of sensible heat, compressive energy, and
potential energy must either balance each other, or be balanced by a non-
adiabatic source or sink within the volume. The results of Chapter V in-
dicate that, for the primary tide, viscosity is not an important energy
sink. Insolational heating can provide such a source. The tidal heating
rate per unit volume is 2 x 10-3 v./-.3 8ince the volume changes, a corre-
lation between the heating rate and the volume can produce a net energy

acquisition, of the form:

)

..'; e [-J;_ f, "—-—: ] watts 12)

Equating this to the advective terms:

. N
L 2e [T P2l ] + L mu [ LM So@ AV

(r-1) o=

1R C (AT, +2T )] =0

13)
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or again making use of (8):

4
%& e l: Fz-\G:PZI bt !E;EL?AIZQ.ITCU"TJ:;1: +FT,-) vﬁ,._]

= =l Ze {[(r-n:r +rYwep] :&.‘f.’zg} 14)

The meridional flux of tidal available potential energy is thus related to
vertical advection processes and to the insolational heating. It may simply

be the result of the phase relationships between various parameters necessary

to produce vertical energy transport.

The above arguments were based on the assumption that only motions
with frequency g™ were present. One must consider whether energy conver-
gence brought about by aperiodic motions or motions with other frequencies
should be included in the volume mean energy balance. The choice of a mean
meridional length of ten kilometers for this volume was arbitrary, and was
made to simplify the problem conceptually. This length does not enter into

the final results.

One might just as easily define the mean length as zero kilometers;
in this case the volume, lateral length, and lateral areas must be consid-
ered to be negative half the time. A positive energy flux across a negative

surface then corresponds to a negative addition of energy. If a proper

regard for signs is maintained, the same results as above are obtained.
There must be no mean sccumulation of energy in the volume, even though

its mean value is zero.
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If the mean volume is zero, however, then a mean convergence of
energy brought about by aperiodic motion or motion of other frequencies
cannot contribute to the mean energy acquisition by the volume. They may

contribute instantaneously, but their effect over time is averaged out.
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CHAPTER X. NONLINEAR INTERACTION OF THE TIDES WITH ROSSBY WAVES

A. Introduction

Non-linear terms such as (\-I.V) V have usually been neglected
in the tidal equations, as being of small order. If the only motions present
were those of the tides, this would be so, at least to the mesosphere, where
tidal fluctuations become comparatively large. However, if the major atmos-
pheric waves are considered, it is not a priori obvious that they do not

contribute to equations of tidal frequency.

PFor example, consider the term Ua where is the
» o a

-1

non-tidal wind. Gradients of winds in the atmosphere are often 10-5 sec ,

and may reach 104 gec™!. This term must be compared with « O Uy

»
and 0" & 1.5 x 10_4 sec-l. The generation of secondary waves through

interaction between tidal and Rossby waves is thus a definite possibility.

In the following discussion, a mathematical derivation of the gener-
ation of gravity waves is set up, for a rotating planar geometry. The first
case is applied, with simplifying assumptions, to a model atmosphere in
order to obtain estimates of the energy transport that might be expected.

It is assumed for tractibility that all waves have a definite frequency,

and time-invariant amplitude.

B. Mathematical Development

First consider a flat planar geometry with an angular velocity 3 )

directed normally. 1t shall be assumed that the atmosphere has a barotropic




-137-

state, denoted by the subscript , , and that superimposed on this state
are waves, whose parameters are of small order. These waves may be of
various types and frequencies, but it is assumed that they are steady-state
and that all equations may be taken as Fourier transformed in time; all
variables having the time dependence ¢~ will be denoted by the subscript
o~ . A product of two terms bracketed by { } o will denote the
Pourier transform of all products having the resulting frequency o~ ,

except for interactions involving the barotropic state.

Under these restrictions, the equations of motion become:

iy -30Ve = T 3 )P’* 717355, —{Pvud,

Here Y and "[ are the horizontal coordinates, along which the velo-

cities & and V flow, respectively. When equations (1) are solved for

“.— and V'- .

4_‘._..9_’_:‘.’.'.,. &&*ir{\’ V“}

[a—
(o- ‘lw) o ¥ e 97

+w{vvv},-é;,-r{’%§}; {4, ]
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and:

= oL E
wfv-v«},,.—%{f%-f,z,x%s-’{f%sz..l

[ur')P.- ac) J_;_o- s i VOV

3)

The velocity divergence :)(r is given by:
’ -

- IWer | Qs Ve
Xr- );' M 2% é"l @

If also:

4= (”_. e dwh) [(" + aw_)({ v-vu }f-f '{ o-)
(i 30 (7o P 3R]

)

and:

_ E a ;)i
F= (r'/:o' —1) (_3_11 * ’l‘) 0}

where a 1is a characteristic distance, then equation (4) may be written:

- SWe o
:)C:r. - )‘;f + 5%;-2;; F?( -+ /‘zo- ¢
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w
The hydrostatic approximation is made, so that %—;—'.s 174

The vertical equation of motion then becomes:

)Po- =__;f¢_ (8)

¥ 4
The equation of continuity is:
2B, 57 x,.=o0
AT fo s Wo-’) + {V-Vj’f'_ + {}’X}r*’ Jo XK=
Two more quantities are defined by:
" {V.OP},. +EL X}
= (10)
g VA
I 4
X, = X, + ¥ 1)
so that the equation of continuity may be written:
. ’ -—
xo-f;.-t-ﬂxa.-l'wo-%gf--o (12)

If J-o- is the rate of non-adiabatic heating per unit time per

unit mass, the first law of thermodynamics may be written in the form:

T o BT (PR3] R BG)

L
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If this is combined with the equation of state for an ideal gas, one finds:

Lo Pt Vo %%;? = YpH £, X + V3 5o {;F’;!-}bf

+YgH { PX}_ + Y;{H}’X},.

- {V.vp},_ .
Let g~ be defined by:
r-P T = —YaH v-or} + y;{HJ’X}o_
+rph {HX} — LV VPf
(15)

/
where » 1is the ratio of specific heats, and also let J-'. = J;-*}o—_
In the above equations, H. is the scale height of the atmosphere.

Equation (14) then becomes:

Lo P 4 Wy g%- = M P X+ ()R TS

(16)

or:

AWP@- - wa—}fo + y)’“oﬂgX’-""(Y—l )ﬁfri QA7)
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If equation (11) is substituted into (7), one obtains:

’ W : 2,
X ® 2)_)_:'+ :a:,,a F('?Z) + 8+ R as)

This is analogous to (II-25). The linear analysis may be followed almost

directly from here.

Differentiate equation (17) with respect to ;} , to obtain:

Y 3f3— - ° Wor- — l‘QF'J% oA H,
S i 5 Sl (- )

’ /
+YpSo Xe — Y2LPH, %—}x"
19)

+ (r-1) :%;'(i)% J:;:‘)

Use has been made of the fact that:

(20)

The equation of continuity and the hydrostatic equation may be combined to

obtain:
£~ dPr - . 0"}-}%~

3 ,
= Wedl 2, X,
7 37 + 2/

(21)

Equations (19) and (21) may be combined to obtain:

0 = 3% %’: t(ve1)2 5, X, - Yy LH, ;3_2,"4.6'-1)5(37,') (22)
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If this equation and equation (11) are differentiated with respect

2
to } , and A M eliminated between them, one obtains:

Y D 3>
.L Dj)crl -4 P
> 55 e FU55(R) -5 5 (22 %)
H)X JH.LJ:'_ _*;x “ a ( ~A(23)
°Tr 7 }}— f;,)) o

-~ #5m (14 %3 ) 35(77)

where 4 = Y=/ | But from (17) and (22):

i ) (P A He) T
2 (%) - (0 4 - F0EPT

(24)

zx.- (AHo ))} })}[37' (u':‘[}!: _i_':]

+-‘7%(4'+#")_4a’w‘F[(k*%ﬂ) x"', (2%)
oA Heo —_
-40+88)% ] =0

Equation (25) may be solved by separation of variables. Let the
’ ’
variables ,a'_, u’ , X;. , and J;- be represented by series expansions

in the eigenfunctions, ¥, of the operator F .
Y- =2 @) L.(1M)
¥ee = T, %) YaCE)
X, = Zn X9 Pa(3,7)
o= Y, T ¥ (5.

-n

(26)
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¥hen these are substituted into (25), with hn taken as the separation

coefficient:
Fg, + q‘;:’h " =9 @n
and:
He c_('_:_;_;; + ::;' ‘)%"" (4+ ‘7‘}&—. _{f" (28)

The va.i}ué=_,of the separation coefficient is determined by the eigen-
solutions to equation (27). It .&,. , #,. s J;.’ , and "I,. are
known functions, then equation (28) formally gives a solution for Jf,.'
and hence .X s - The other parameters of the nth mode may be solved in

terms of x. and the known parameters.

It is conventional to cast equation (28) into the form of a one~

dimensional wave equation by two further changes of variable. Let:
x & f ) (29)
-9

and:

e - adn (30)

PO/ 30 W o
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In order to handle non-linear terms introduced in this derivation, a third

quantity:

sre He o
s,e= 55 (8 k)

(31)

is also defined. When (29), (30), and (31) are substituted into (28), the

resulting equation is:

—7—",‘:,2 — o1 =5 (AHer 232 ) I3 ©»
A'J.n’
- 7;"’1n n

C. Simplification to an Isothermal Atmosphere

The following work will be devoted to isothermal model atmosphere.
It will be convenient to develop the equations for this particular case.
It He 1is independent of ;, , equation (28) becomes:
3 ’ ’ ’
d Xh - dlxﬂ -+~ A Xh
A }"’ . ) ’ hn

4

£7)- 3 L (ta s ko)

T A AJa
=?{F’nh'" Ho ol 2 +d‘}-’ (33)
/
- s
d lad an A N
HO '(}s T}, + hn
2
R T A 1P
’ ATn’
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In anticipation of subsequent results, it will be assumed that all
variables on tne right hand side of equation (34) have the vertical depend-
ence exp[(‘;'i -/“)}/Ho] , where g4 may be either real or complex. It
’ #"

and )ﬁ. are of this form. While it will not enter the following equa-

will be shown in the simple models to be used here that /“n

b

tions, Siebert indicates insolational heating may follow a similar law.

On this’ assumption, equation (34) becomes:

HoAXe | AN A . L G-I e
A ~} ha -,.T,"e (35)

where:

X e(* L #[ (—-,u) G- -‘%,ﬂ:]

14
+ A Ta

7 [Gor) - G-p)e 82 ] o,

= G-r)(a. %)

Again, a simplification f form may be had by changes of variables:

> /H. (37)

P & 2C, e (38)

/\ - ___[, QAH.] (39)

-
e Bt
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1f these are substituted in (36), it becomes:

a _—
%z:& + A:}" = Ine ~ (40)
x

D. Application to an Elementary Model

The preceding analysis has been applied to a very simple model, in
order to obtain an order of magnitude estimate of the energy losses to
secondary tidal waves through interaction with Rossby waves. Details of
the model are as follows.

1. The atmosphere is planar, rotating with angular velocity
0.5 x 10.4 sec-l, and isothermal, with a scale height of 6 km. The gravi-
tational acceleration is 9.8 m/secz. The basic wavelength in the .I
direction is 30,000 km, and all waves are uniform in the 7] direction.

The ground is taken to be smooth.

2. There is an unchanging wave of the form:

iR §
v= 308€ m/se
/Sec “l)
and a wavelength of 7500 km. The amplitude is chosen to be compatible with
a spectral analysis of large scale waves by Saltzman, (1956), and a similar
analysis by Horn and Bryson, (1963). The wave doe;'not change with height,
and the pressure field is geostrophic.

3. There is a tidal wave, whose _I velocity component is:

©, = 0.2 ea‘(o'x +R,I)€ (- pI)D/H, (42)
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e "
). The horizontal wavelength

(Therefore, _f» varies as
is 15,000 km, and the frequency ¢ = 1.5 x 1074 sec-l. It is assumed
that non-linear effects are small, and that first order values for other

parameters of this wave derive from linear tidal theory. This theory and

the given data then determines that:

/M = 0.188 (43)

In deriving the other tidal parameters, it is assumed that there is no

heating function, and no restriction on vertical motion at the surface.
In effect, the primary tide might be considered to be driven by undulations
on the surface of the earth. (While this is highly artificial, the object

is merely to get representative tidal motions in the atmosphere itself.

4. A secondary tidal wave of the form:

(rx+ (R."R:)IJ
= 4,3)0C (44)

is generated. ;l,n for this wave is computed from the equations of the
preceding sections, and the energy transmitted to great heihgts is calcu-
lated. It is assumed that the secondary, like the primary tidal wave,
does not interact strongly the other waves, to form tertiary waves.

The vertical énergy flux computed for this wave is 5 x 10-5 w./n.2

It is felt that this is a representative order of magnitude value for waves
of these dimensions. There was no large cancellation of terms, and individ-
ual terms checked for other forms of Rossby wave were of the same magnitude
as their counterparts in this model. All parameters, including S, vere

chosen to be as representative as possible.

\
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The upward flux of a single secondary wave is only of the order of
1% of the generation of tidal energy. In order to know whether non-linear
interactions are a serious loss mechanism for the tide, it is necessary to
answer to further questions, as to the energy flux when summed over all
wave numbers, and as to the relative amounts of energy contributed to this

flux by the primary tidal and Rossby waves.

For large wave numbers, equation (83) may be used to show that:

L] ”

(45)

L -b
It Ll,(b) may be expressed in terms of 'h , where b is some

empirically or theoretically determined exponent, then one may make at

least qualitative conclusions about the summation of flux over wave numbers.
1t b -2, the summation converges. For wave numbers above 6 or so,

Horn and Bryson, (1963) find b = -8/3 out to wave number 12. Ogura,

(1958) found b = -7/3 over this spectral region. If this behavior continues
to higher wave numbers, the secondary flux summation should converge reason-
ably rapidly. Unfortunately very little is known about atmospheric eddies
with dimensions from 100 to 1000 km, at least insofar as their mean kinetic

energies are concerned.

There is a second reason for believing that smaller eddies will not
contribute greatly. The preceding calculations were based on the assumption
that the Rossby waves do not change amplitude. This is not a particularly

good assumption in any case, but becomes increasingly poor for the smaller
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scales. The rate of energy transfer to a secondary wave depends among
other things on the amplitude of that wave, and under transient circum-
stances, it will take that wave several cycles to build up to magnitudes
comparable to steady-state values. It seems likely that energy transfer

will be less than computed here under such circumstances.

Finally, one may note that the non-linear generation of energy in
wave A occurs through the advection of a parameter, (say velocity) of wave
B by wave C up the gradient of a corresponding parameter, (say momentum)
of wave A. Saltzman, (1955). For example, consider the kinetic energy
exchanges involving the (L velocity components of three such waves. The

rates on energy generation are proportional to:
7 [ ha Ua Ug “e ]
Re c'i fh, Ua Ug L“J
mu [ 4 Re Ua Us U]
R.-" R;+h,=0

(46)

if & & kB , then energy exchanges occur primarily between waves B
and C. When one considers the interaction between the primary tide, Rossby
waves of short length, and secondary tides, the energy transfer will be

primarily between the latter two.

Since it appears that secondary wave fluxes are small, and extract
energy from the Rossby waves, they are not regarded as an important loss
mechanisa. It should be stressed, however, that the approximations used

in this chapter are of a rather crude nature.

\
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CHAPTER XI. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

A. Conclusions

The semidiurnal atmospheric tide has been found to transport avail-
able potential energy downward; at Terciera, in the Azores, this flux
amounts to some 7 x 10.3 watts per square meter at or near the ground.

The primary source of this energy appears to be insolational heating by
water vapor in the troposphere, though a horizontal convergence of tidal

energy may make appreciable contributions.

Three possible sinks for this energy have been considered. These are:
1. A tidal-terrain interaction.
2. Viscous damping near the ground.
3. Convective heating out of phase with the tidal temper-

ature fluctuation.

On the basis of rather simplified theory, the latter two possibilities appear
too small, and would be expected to produce effects not found in observational
data. They are of a magnitude that might account for local perturbatioh; in
the semidiurnal tide. It has not been possible to make an accurate estimate
of the tidal-terrain effect. To do so would involve treating several hundred
coupled equations involving modes of oscillation expressed in complicated
Hough's functions. A simplified analysis has led to an estimated energy flux
of 0.5 x 10-3 watts per square meter or more, with no way of telling by what
factor this is an underestimate. The tidal-terrain effect thus cannot be

ruled out, though evidence for its importance is far from conclusive.
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This effect has been obscured by the traditional approximation of
a smooth earth surface as a boundary condition. a rough boundary acts to
couple all possible modes of oscillation, so that the primary mode of
tidal oscillation cannot be excited without also exciting a large number
of secondary modes. Most of the latter are internal gravity waves, and
transport energy upward. There can be no net energy transport through
the ground, so that a corresponding downward flux of nergy must exist in

the primary, or driven tidal mode.

The secondary waves have horizontal lengths from global scale down
to the order of one hundred kilometers, and possibly smaller. Viscous
damping in the troposphere is substantial for wavelengths shorter than
roughly one thousand kilometers. lLonger waves transport tidal energy to
the upper mesosphere, where increased eddy viscosity damps them. The
largest waves reach the lower thermosphere, where molecular viscosity and
possibly hydromagnetic damping are effective. In these high regions, non-

linear interactions between the waves may be important.

The observed data for the primary semidiurnal tide above the Azores
and Fort Worth also show a meridional transport of energy and angular momem-
tum. These phenomena are not pobbible with a single linear, inviscid mode
of oscillation, but may reflect interaction between two or more modes.

More data is needed before any conclusions can be reached about these

transports.

A set of equations has been developed to treat non-linear interactions

between waves whose frequencies and amplitudes remain constant. Applied to

\
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a rather simple model these equations indicate that interactions between
tidal waves and the large scale atmospheric eddies do not represent an

important tidal energy loss in the troposphere.

B. Suggestions for Future Work

The hypotheses developed in this study have been confirmed only by
limited observational data. There is a need for further analyses of the
type carried out by Harris, Finger, and Teweles, (1962), for Terciera.
New data can serve not only to measure the vertical energy flux but to
confirm the hypothesis that the O:a, mode of oscillation is dominant
in the stratospheric as well as the ground level semidiurnal tide. Addi-
tional data is even more important in examining meridional transports,
since these measurements are made with considerably lower accuracy and
may vary with longitude as well as height and latitude. A more complex

analysis of the meridional energy flux is necessary to assess its contri-

bution to kn(V’\;:-‘ P'-)

Unfortunately, more than four daily observations are needed to
obtain data on the semidiurnal tide. The technique that has been used is
to choose a station taking four daily observations, but at different times
in different years. The number of stations filling this requirement is

quite limited.

It is possible that the amplitudes and phases of the @:, , (main
migrating semidiurnal) and 9:3 , (main standing semidiurnal) modes of

oscillation may be related through the tidal-terrain theory. Until now, it
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has been assumed the latter arises out of differences in heating over land

and sea, (Siebert, 1960).

A further expansion of meteor trail observations would add greatly
to the knowledge of high level tides, as well as providing information
about the general circulation at these levels. At present essentially
nothing is known about the horizontal structure of either in the upper

mesosphere.

The gap in information between 30 and 80 kilometers will be harder
to fill. Rocket soundings have begun to provide wind data in this region;
their number will have to be increased considerably before time harmonic
analyses can be made with any accuracy, especially since the tides show

marked seasonal changes in the upper atmosphere.

In short, the greatest need in tidal investigation is for more data

at all levels above the ground.

The greatest challenge to the theoretician is to be found in the
tides of the upper atmosphere. At the mesopause they are of a magnitude
to be a major part of the atmospheric circulation. They may play important
roles in the production, maintainance, and stability of the general circula-
tion. Linear theory is no longer valid for these waves. Techniques such
as were developed in Chapter IX may be applicable, or it may prove more
advantageous to abandon the primitive equations, as has been done in dynamic

meteorology.
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At still higher levels, the coupling of hydrodynamic and hydromag-
netic waves can be the basis of a challenging career. The analysis of
hydromagnetic damping has been done in a very crude manner, and the possi-
bility that hydromagnetic waves are generated has been completely ignored.
If tidal theory is to be extended to the upper ionosphere, these problems

must be faced.
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