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ABSTRACT

Title of Thesis: Scattering of the K .Meson from the Deuteron.
Anand Kumar Bhatia, Doctor of Fhilousophy, 1962,

Thesis directed bty: Associate Professor Joseph Sucher .

A simple model is constructed to study the scattering of tha
K -meson from the deuteron. This model does not treat the nucleon as
heavy and takes into account the multiple scattering, the binding energy
corrections and the ccntribution from the off-energy shel: scattering.
The scattering prohler is investigated by using tha Watson multiple
scattering expansion of the transition-operator t. Considering the
multiple scattering up to double order only, the t-matrix is written as

t=tp + tn + tc + tr

where tp and tn corresponds to the single scattering of the K .meson
from the prcton and the neutron in the deuteron. tc¢ corresponds to
the bound state contribution and t_ corresponds to the continuum state
contribution of the K -meson from the deuteron,

The interaction K*-P and the K*-N is taken as a point interaction
and is of the form
= S(%-£)
5 s(= +‘€/z)

where + and #72 are the relative co-ordinates of the K -meson and the

1}

tp
tn

- o
nucleon in the center of mass system of the K -4, tf and t: are taken
as constants and are determined by using Dalitz solutions I and II

given by Ross and Humphrey.



The potential between the nucleons in the deuteron is taken as a
separable non-local potential which is such that the Hulthen wave
function satisfies the Schrodinger equation for the bound state of the
deuteron,

The matrix elements corresponding to the bound state and the
continuum state are calculated only for forward scattering. For any
other scattering angle triple integrals are obtained and need toc much
numerical calculation,

The double scattering contribution is compared with the Brueckner
model and also the ccrrespondence between the two models is studied.

The forward differential, elastic and total cross sections are cal.
culated,

The correction to the cross sections due to the charge exchange
in the intermedizte state is calculated.

The results of this model are compared with the experimental data
of the K™.d scattering cross sections to stuly the predictions of this

model and to find the favorable Dalitz solution,



ACKNOWLEDGEMENT

I would like to express my deep gratitude to Professor J.
Sucher for suggesting the investigation carried out in this
thesis and for his continued guidance, help and encouragement

during its completion.

I wish to ackno Ledge gratefully the financial support of
the Air Force Office of Scientific Research under Contract No.

AF 49(638)-24.



Chapter

TABLE OF CONTENTS

Acknowledgements

List of Tables

IO INTRODUCTION 0000006000600 00800800000000000 000800800

II. K:D SCATTERING 00090000 0000000000cs0000s0000000Rs0CO

III. MODEL OF THE K-MESON AND DEUTERON SCATTERING....

A.

B.

c.
De

E.

r.

G.

Aﬂsumptions 00800000 0000000000000000 00080000000

Separable Potential and Ground State Wave
Function of the Deuteron. cccesccccsccseccse

Contiruum .ave Function ceecccossesccscscscas
Single sc‘tterins 0000000000000 s00000s00 0000

Double Scattering: Bound State or
Coherent State Contribution cecssccccccsce

Double Scattering: Continuum State Scattering
(1), I

H12 ~"e 00O PO ONOOO~ PR POSOESES
(2)

I
H].Z and (3)“]:_[2 iéeidéod

30 Conputltion ot (u)M£; o000 000000s00ssc0ces

1. Computation of

2, Computation of

Sulmary of the Calculations .cevcecccccsccocss

Correction to Elastic Scattering .............
Due to Charge Exchange in the
Intermediate State .ccvovcccsvrccccccscconnes

Iv. NUHERICAL EVALUATION P00 0 000000 SRRNSRPNOGORINOCOIOESIOSIOIPOODRNTS

v. BRUECKNER mDm‘ GO B 00000 ORPOONESCERNCOONOERIOPOSIEOSEIOSIOIOSDOLILNY

Vi. A.

B.

Comparison of Brueckner Model with the Model
Siven in ch‘pter III 0G0 eO OO dOOOIOOIOBIOIEOINRPIOSEOINOSOS

Correspondence Between the Brueckner Model and
the Model given in Chapter III .ccececsecsces

iii.

Page

ii

10
15
15

16
20

a3

25
30
32
41

64

65
68
71

76

79



ViI. COMPARISON OF THE MODEL GIVEN IN CHAPTER IIIX
WITH THE mPERIMENTAL DATA o8 0000 COGSOSOESIBSISIPSESE

A, Computation of the Cross Sections ....ss
B. Contribution due to Charge Exchange ....

C. Break Up Cross Sections and Comparison
with the Experimental Results ....ccce

D. ConcluBSiond ccccccecsccccccssccccsccsncoe
APPENDIX: Evaluation of an Intesral (3089) esocsscee

SELECTED BIBLIOGRAPHI 9908000000 000000000CRRGISROILOIOISIOIREC

iv.

82
82
85

88

91
94



List of Tables

Table Page
I. Values of the matrix element MC  PIREEERERREE 68
II. Values of the matrix element @2 .......... 69
III. Values of the matrix element M ............. 69
IV, Values of the matrix element M;; ........... 70
V. Values of the matrix element MT ............ 70

VI. Valugs of the do:ble scattering contributions
= (0 e 75

VII. Comparison of the double scattering contri-
bution given by Brueckner model and the
model given in Chapter III ................ 78

VIII, Values of 1, and 7, .....ccovvneenvnncninnss 83
(4

IX. Numerical values of the scattering
amplitudes .....oov.vevunnnn v eeresaueeraes 84

X. Values of the elastic and total cross
sections ....v.iicieiriiiienieenn Cerecransans 84

XI. Ratio of the charge exchange scattering to
ordinary scattering ..........ci0eeunn. e, 86

XII. The cross sections including virtual charge

exchange ..........c000n. et ietaeeaeneneaas 87
albr
XITI. Values of (0F = Tu ) vivirrr . vinvencnnanns 88

XIV. The experimental data and the theoretical
values for the total cross sections for the
reactions k'+d + K'+d and k'sd o K+Mep 8Y



CHAPTER I,
INTRODUCTION

As neutron is not available in a free state, the scattering of
the mesons from neutron has always been studied indirectly mainly
through the study of the scattering of the meson from the deuteron.

The deuteron is taken as the target because of its simple structure and
also because it is a loosely bound system i.e. the average separation
of its constituents is large compared to the range of the two-body in-
teraction and its binding energy per particle is small, It would be
expected that each of the nucleons in the deuteron would scatter the in-
cident particle in a manner not much different from the way a free
nucleon would scavter the incident particle.

The problems of nucleon-deuteron, pion.-deuteron, and kaon-
deuteron scattering are three-body problems; they have not been solved
exactly. Aside from this basic fact, many of the physical details -
spin dependence of nucleon-nucleon interaction, the presence of tensor
forces and exchange forces in the nucleon-nucleon interaction - in-
volved contribute to their complexity. Various approximations (the

(1) (2)

resonating group structure method , the Born approximation , the

1

H.S. Massey, Prog. in Nucl. Phys., 3, 235 (1953).

2

T. Y. Wu and J. Ashkin, Phys. Rev., 373, 986 (1948).

G. F. Chew, ibid., 24, 809 (1548).

F. de Hoffman, ibid., 78, 216 (1950) .

R, L. Qluckstern and H, A. Bethe, ibid,, §lﬂ 761 (1951).



high energy approximat%on(B)D the impulse approximation(u), several
variational procedures 5)) have been applied to these problems,

One of the approximations tha* has been applied to this kind of
problem is the impulse approximaticn given by Chew et al. In this
approximation, the i1ncident particle is viewed as scattering once from
elther of the two nmucleons in the deutercn: each of these scatterings is
viewed as the scattering from a free nucieon whose momentum distribution
is that of the actual bound nucleon. The only role played by the intra-
deuteron potential is the determination -f this momentum distribution.
This approximation deoe: indeed lead t< an expression (for example) for
the elastic neutror-deuteron scattering cross section and a form
factor for the deuteron ztructure, But this apprrximation neglects

"potential” effects, muliiple scatterirg zffects. 1. e. effects due to

the incident particle’'s scatte~ing more thsr once from the individual

R. J. Glauber , "High Energy Collision Theory", in lectures in Theoreti-
cal Physics, edited by Wesley F. Brittin and Lita G. Danham (Interscience
Publishers, Inc., New York, (1939), Vol. 1).

4

G. F. Chew, Phys.Rev,, 84, 1057,(1951)

S. Fernback, T. A. Green and K. M, Watson, ibid., 84, 1084 (1951).

L. Castillego and L. S. Singh, Nuovo Cimentc 11, 131 (1959).

Y. Sakamoto and T. Sasawaka, Prog. Theor. Phys. (Kyoto) 21, 879 (1959).

E. M. Ferreira, Phys.Rev., 115, 1727 (1959) .

5

E. Clementel, Nuovo Cimento 8, 185 (1951).

L. Sartori, and S. I, Rubinow, Phys. Rev. 132, 714 (1958).

B, H. Bransden and R, G. Moorehouse, Nuci. Phys. 6, 310 (1958).

L. Spruch and L, Rosenberg, ibid., 17, 30 {1960).

6

G.F. Chew, Phys.Rev. 80, 196 (19%0).

G. F. Chew and G. C. Wick, ibid., 85, 636 {1952),

G, F. Chew and M, L. Goldberger, ibid., 87, 778 (1952).



target nucleons, and the diminution in amplitude of the incident wave in
crossing the nucleus,
(7
The multiple scattering can be taken into account by Brueckner
model, It is supposed in this model that the scattering taking piace is
S-wave scattering from the two point potentials. The wave function out.

side the potentials is written as the sum of the incident plane wave, a

wave scattered from potential one, and a wave scattered from potential

two i, e.
i9. N - CY - R
Wiy - X%, A YERL g Y (1.2)
I.’:'gul "'_' R_l.’

The outgoing amplitude A is given in terms of the total ampli-

tude at R, , by
. ‘3R Ys :
A = ')' [C + B éT- J , Where ( = ‘E.\ - _a.\ - Q.2)

" My is the K -P scattering amplitude (in the deuteron).
Similarly

. - LR, c4f
B = “ﬂnl_e' Lt + A €_._f_,_ J (1.3)

M, 1is the K -N scattering amplitude (in the deuteron).
Solving for A and B from Eqs. (1.2) and (1.3) and substituting
these values in Eq., (1.1), we get an expression for the scattering

smiuds e savye, sl
F;e(l')‘l) = 6“ e Im Q.:,.%() l: Mo © + Mp¢

v

r 90/ UEh-Th) L@R-TIR)Y
A e (e -l_,,e_"" 'J)lj

\

(1.4)

?7
K.A. Brueckner, Phys.Rev., 89, 834 (1953); 90, 715 (1953).



The first two terms in the numerator of Eq. (1.4) are the
single scattering (or impulse approximation) terms. The next two terms
are the double scattering terms. The denominator represents all higher-
order multiple scatterings, The propagator in the intermediate state
is e;i% which is very large for the region 9¢<1 .

In this approximation, the nucleons are supposed to be infinitely
heavy compared to the incident particle, Therefore, the recoil of the
nucleons is neglected. This method has been used to study the pion-
deuteron as well as the kaon-deuteron scattering. The validity of this
method is questionabla’for plons and even more for heavy particles.

Drell and Verletke) consider the multiple-scattering corrections
to the impulse approximation in the calculation of the scattering of
v mesons by deuterons.

They calculated the scattering amplitude for the meson-
deuteron scattering problem by using t-matrix formalism., In this
treatment the binding energy, motion of the sources and the absorp-
tion of the mesons are neglected, Three models are given:

(1) Brueckner model of point scatterer with propagator Ct 1}( N
This model has the difficulties mentioned above.

(2) We consider the scatterers to be of finite extent and

(9)
scattering from a separable potential of the type given by Yamaguchi .

8
S. D, Drell and L. Verlet, Phy:.Rev., 99, 849 (1955)

9
S. Yamaguchi, Phys,Rev., 95, 1628 (1954)



In this model, we approximate the Schridinger equation describing the
scattering of a particle by a potential, by replacing the wave func-
tion which appears in the interaction term by its average over the
potential.

(3) The third model of momentum variation of the scattering
amplitude considers only scattering on the energy shell in the inter-
mediate state. In this approximation the intermediate wave propagates
as &Sipckf . This is smooth for 4(<| . Therefore it does not matter
whetherq’ the sources are assumed to be of zero or of finite extent.

Using these mod~ls, it is found that the double scattering
correction to the elastic cross section ‘W‘+'D'* D+ Ti is of the
order of 10 percent or less and is model dependent. For the total
cross sections (elastic, inelastic and absorption) as deduced from the
imaginary part of the scattering amplitude in the forward direction,
the correction is of the order of 10 percent or less and is quite model
dependent.

(20)

Fulton and Schwed have applied the Born and impulse approxi-
mations to calculate the nucleon-deuteron differential elastic cross
sections. In order to carry out the impulse approximation calculation
in complete detail, including, in particular, contributions from off-
energy shell two particle matrix elements, the assumption is made that
the two particle scattering is completely described by effective range

theory. The results of the Born and impulse approximation differ

10
Thomas Fulton and Philip Schwed, Phys. Rev., 115, 973 (1959).



considerably. Their analysis shows that the experimental results are

described better by the impulse approximation, including off-energy
shell effects,
(11)

The Brueckner model has been used by Day, Snow and Sucher
to calculate the K -D elastic and total cross sections. The calcula-
tions show that the impulse approximation does not give sensible re-
sults, and, therefore, the mvltiple scattering contribution is
important.

Cne of the purposes of this thesis is to construct a simple model
to study the scatterin; of the K -meson from the deuteron, which does
not treat the nucleon as heavy. This model takes into account the
multiple scattering, the binding energy corrections and the contribu-
tion from the off-energy shell scattering. The scattering problem is
investigated by using Whtson(lz)multiple scattering expansion of the

transition-operator t. The expansion is given by

t =tp+t“+tp‘%t“ + thﬁ‘hP‘#tP%tnst'-b.... (1.5)

where

4 - (E-h-U )

ke = Y= b+ h(e-4-v +t.e5|‘tl : (1.6)

11
lT,B.Day, G.A.Snow and J.Sucher, Nuovo Cimento, 14, 637 (1959).
2

K. M, Watson, Phys. Rév., 89, 575 (1953)



and

~!
trn = tl = \/1. + V'L QE - e\ - U fke) ‘Lz (107)

where U is the potential between the nucleons in the deuteron.
The other symbols are obvious.

In our calculation, we shall ignore the effects of the binding
energy corrections on t‘ and t 2 due to the potential U.

The interaction between K -meson and the nucleon is taken as a

point interaction i. e,
b, o= % S -Fh) (1.8)

t, = €550 =~ 1) (1.9)
where % is the meson position vector and ( = 'CJ-"CJ .

The t? and L‘: are taken as constants. No further approximations will
be made in the calculations,

The magnitude of the t! and t? are determined with certain

(13)
modifications by using the Dalitz solutions of scattering lengths
at low energies, defined by
{
yetSy = /hg (1.10)

vwhere I = isotopic spin
For K -P system I=0,andl

For K -N system I=1

13
R. H. Dalitz and S. F, Tuan, Annals of Physics, 8, 100 (1959).



The scattering lengths are determined by the experimental data

of the scattering of the K -meson from the free nucleons. These solu-
(14) (15)
tions are given by Ross and Humphrey .

The interaction between the nucleons in the deuteron is supposed
to be given by a separable(16) non-local potential, which is such that
in the case of the bound state of the deuteron, the Schrodinger equa-
tion 1s satisfied by the Hulthen wave function

o) = n( < Py

(1.11)
where

|
N . ——

N = p(/ 2T . 6 [s) (,

Using the potential deduced, the wave function for the continuum state
is obtained by solving the Schrodinger equation.

The double scattering of the K -meson is shown in the Feynmann

diagram (Fig.l). r__ &

L e e

Figure 1.

14

K. Ross, "Elastic and Charge-Exchange Scattering of K~ Mesons Incident
on Hydrogen", Lawrence Radlation Lab. Rep.,, UCRL - 9749, June, 1961.
15

W. E. Humphrey, "Hyperon Production by K~ Meson Incident on Hydrogen",
Lawrence Radiation Lab. Rep., UCRL - 9752, June, 1961.

16

See ref. 9.



The matrix elements corresponding to the bound state and the
continuum state are calculated up to second order only for forward
scattering and put in a suitable furm for numerizal calculations,
For any other angle the matrix elements can be expressed in terms of
triple integrals which are not very easy tc handle rumerically. The
forward differential, elastic and total cross sections are evaluated
at three energies. The total cross section is calculated using the
optical thecrenm,

T = h}qv Tw $(07)

T (1.12)

The cor:ection to the elastic scattering due to charge exchange
in the intermecdiate state 1s also cslculated. The Feynmann diagram

for this is shown in Fig. 2.

R,

n —

%
N/‘/\/f/\
@’ //4%5~/ "
;/// P
/ e e T Nt

Figure 2.

The results of this model are compared with Brueckner model
of S-wave scattering from twe point potentials and also with the ex-
perimental data of the K .D scattering cross sections to study the pre-
dictions of this model and to find the favorable Dalitz's solution at

low energies.



CHAPTER II

K -D SCATTERING

- [
Let K be indicated by index 0 , proton and neutron
. ) [
by 1 and 2 .
The initial and final wave functions for the K .D system can be

written as
“Yl_ = £ 4 q; t R A% ) (Zel)
N 1 rs LN

N
T e T AR TR
= ¢ (242)

where q and q' are the initial and firal momenta of the K-meson;
K and ¥ that of the deuteron,

o o'y *r_l are the co-ordinates of the K-meson, proton and neutron, and

E = _‘i("'(_l P '[_,,‘-,)
Introduce,
-g = ‘.t_l - ";Z
R = )T;-: - &
_ sk (2.3)
S= - Me'go + OB ™My = M™Mp + M
Mg +  ™mg
where m, and 7, are the masses of the K-meson and the deuteron
S = U= k. + E
Mg+ M4
or R = & - .. %
T * T (2 o)

10



The T matrix for the K -D scattering problem is given by

-1
T = V+Vv(BE-n+re).V
whereV=V1+V2

Vl is the potential between the K -meson and the proton.

V2 is the potential between the K -meson and the neutron.

The Hamiltonian for the system is given by

H= Ao+ A +H s UV
where U is the potential between the proton and the neutron.
The matrix element for the scattering of the K -meson from the

() e+ kB

deuteron is

(2.5)

(2.6)

M= <HITIWY =Jé"@'yﬂ§'g)iP’(f)T F(€) e ™ Tue. dyan,

Now dide= df dR
= .fe.u(qz'.ﬂ!).‘r:,. é“‘i'f)'g‘ )T PLE) oo Ly Ak

Using Egs. (2.3) and (2.4), we get
g akg= % (2 +R) &+ &R

= %o o+ (LrX)R

.9 o+ () (8 - 'ﬁ"/?f%;*&)

= (1_ ™My q!+|_g)).>:_ + (L+K) s
. Mk + M4

= moli—'”\lzs .
( e —— ) v+ (LK)

vhere 9 = . 1% -mek -9 - wp (3 +E)
° ™MK+ ™4 N ok +Md
and dredR = de A4S

(2.7)

(2.8)

1l



12

In the C. M. System of the K -meson and the deuteron, the

T matrix becomes

-1
t =V + V[qé v+ €g - R R4 -U-V+Le_]-V(2.9)

vhere e
kS

’A'z_ = f\relative = - V"/ZM.;
2

‘&d. = 'eldeuteron = = V‘l/ py =Y

binding energy of the deuteron .

€

P = % M4 45 the reduced mass of the K -meson and the
Mk+ Mol deateron,

PJ = —M"‘_ is the reduced mass of the deuteron,
Mp +1n

Using Egs. (2.7), (2.8) and (2,9), the matrix element becomes
m= Séi'("u_._’-q_w)-’& ) Q'-"'C"./‘ K+*y-%) S CP»(() £ CP(E) O(.fdgd’k

@50 -k +9/-9) - fe'(q'é-?'-‘)"g " (e)t @lt)dx dp
N (.1“)35(&/_,54,1/_1). {uw.?ltlo, 9, >

q /
&) S~k +§ ‘1) gives the conservation of momenta .

Matrix element in the center of mass is given by

M= (Y. P|E|9.9) (2.10)
We can write
t = v+v6v (2.11)
where,
-
= q? - fn - U -V L
and ‘? [ Ihtee v - 4d -+ GJ

From the above equations the multiple expansion of t may be

easily obtained in the form



'L —
b= 2to+ ThGy ot 2RGE Ghe o+ - -
- ) “ty (2,12)
Ire
where t_ 1s defined by
‘ti, = \/.‘_ + QN 't, (2.13)
and G is given by 2 -
g - - - o€
(17) G = [l o - %r d-U+ J (2,18)

We now separate t*intc a "coherent" part tc corresponding to the

process in which the deuteron is always i1n 1ts ground state while the
K -meson 1is scattered from one ruclecn to the other and a remaining
part which will be call :d "_nccherent®. Thus we introduce P = |&#7 (9

the projection opera i on the deuteron ground state and write

G= G + &ii-p)
= GaP e & (2.15)
where
G = LW fp el
¢ A - (2.26)
and
7‘;\11 o))
(Farijy = Ca P (2.17)
Cn substituting Eq. (2.3} in Eq. (2.12) we get
't = {‘_ 4 ‘El -+ tC - ‘t:
where
tf. = 2 E\-C‘,Pt) (2018)-
~*J
and
= S L ‘
+"‘T - 4 J'~|_, ‘a 4;" . (2-19)
.4

< ——? -

“In the multinls expi-s.in 0 =, we shall :onfine curselves up to the
doukle scattering. Thersfare 7 = %2 4+ 710 4 <9 where t& represents the
rorm contratating o b e An X e scattering only.
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In this thesis we restrict our attention to the effecte of single

and double scattering only. In the next chapter we consider a model

which allows us to compute the matrix elements of coherent part

{"tC\oP t, + taG.P t,
and incoherent or continuum part,

£,6' kL + ta Gk,
in the form which allows numerical evaluation.

Using Egs.(2.12), (2,15) in Eq. (2.10), we get

Moo= Vo M4 MG s MY

where
M o= 4nPlt @, % 1=1,2
W, = (U AIG6PE|P, %> + (1602)

M

(1;,4’ 146t | 9,%) + (1e22)

(2.20)

(2.21)

(2.22)

(2.23)
(2.24)

(2.25)



CHAPTER III
MODEL COF THE K~ MESON AND DEUTERON SCATTERING

A, Assumptions. 1. We shall suppose that the interaction be-

tween the K -meson and the nucleon is a point interaction and there-
(18)

fore we can write

"

<
i}
e
]

£ S = £7,)

s + {71)

(3.1)

Pam
-y
!
(an
W
o+
.~

(3.2)

where t: and t;’ are constants. (For the physical K -meson scatter-
ing problem, t.” and t° will be determined by the Dalitz solutions
for the scattering lengths for zero effective range approximation for
K™ scattered by free nucleon - See Chapter VII),

2. We shall suppose that the potential between the proton and
the neutron in the deuteron is a separable non-local potential U
which is such that the solution of the Schrodinger equation for bound

state is the Hulthen wave function.

18

This approximation corresponds to a K -nucleon force range Jo short
compared to the separation { of the nucleon in the deuteron and to the
neglect of the binding interactions while the K -meson interacts re-
peatedly with the same nucleon, This approximation should not be too
bad for Tow g and f’ 54 o

15
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B, Separable Potential and Ground State Wave Function of the
Deuteron. We introduce a separable non-local potential U which is

such that the solution of Schrodinger equation

(F/zpi. + U)‘P((’) = €, 9(P) (3.3)
the N
for/deutercn in the ground state is the Hulthen wave function

o= éd\ef' 0 (3.4)

2
her ] = 4 = & .o .
where o -—ey = oL (3.5)
and g = (2A (3.6)

€. = -4 is the binding energy of the

&
2pa

deuteron

Sch. equation becomes

(L= ) 9) = - V(g (3.7)
~ 1‘,‘& /
Assume
V@)= -we) JM(") P7-df" (3.8)
Now

Vi) = ’/(z'alf(e‘%) @)
2900 - N(ﬁg” ] o(é_df+@2—_(.3_q
5 =F= e T
BRI S g
%U‘%W«) N P A T R A A
E

spfopp e

Vo) = n (el geff)
f
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Eq. (3.,7) becomes

v (L PM) -y (et 028 < (i) i
2pa ¢ ~hd P ‘

T '@( / /
Assume
- Bf
wi) = A e
J"_F& ¢ (3.10)
2 B -ﬁf’/ fl 8P gy
R. H. S = N At e ERT (&1L RNy L 4w iy
: f -[ ¢ P’ Fee

- a6 T )P _app’
= .;‘IP“LAQ?_.QW\‘[(Q_ f’_e'lPI’)dr,

- £#¢' QWAlg%F( '(-xlp - ;F )L

NoaTAt B0 &

Zpa 1p($+p) f

Eq. (3.9) becomes

(Fx-*l) Q—_E(o = A g'_p_f C 2T (B-o

Ai

"
E
P
+

rl

(3.11)



Therefore
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ulee) = -5{:& ﬁf—ﬁr é—gﬁ
. /
= - Blx+p) -e_:_ﬁ( . i() (3.12)
il €
wip) = [Beerd” . &F (3.13)
N4 pd e

Eq. (3.12) gives the potential in the deuteron in the co-ordinate

space, we shall express the same potential in the momentum space by

taking the Fourier transform of Eq. (3.13) .

Therefore, we get

W(py = A J w(p) & Fag

(211-)"‘/; (3.14)

(*+g)*  am w»r -t -
\@ (am)A f(e _(' H) eﬁr

RN
=[BT L{_.? _ __:_]
4T hd (am” g PeP B+op

B(+tB) a2
G d QU ()

(3.15)
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In the momentum space we shall define

UG . F) = = w(p) W(p)

(3.16)
From Eq. (3.15), we get

Upsp) -%fz)_‘._._ A

am Pt P

e

1\

1 ‘ ,
. B(ctPR) S S S

T" * zrd P’-Tﬁ.— l P'L+ P]—

o
61

| S

' 2,00 , o T (3-17)
2y b3 P *+B
where

= (3.18)
-
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C. Gontinuum Wave Function. Now we find the continuum solutions

of the Schrodinger equation,

(e = @gle) + Co U Hlp) (3.19)
where ‘
Dop) = e (3.20)
and 2m/> n
Go = LE - He+ve (3.21)

Eq. (3.19) is equivalent to
(E -rdor .y H12) = ) i)
Substituting Eq. (3.16) in the above equation in momentum space, we get

b N L) !y 0
(“L— e E R €) ¥l - u..-\p))u‘wug(_f A .. e22)
Using Eq. (3.17) in Eq. {3.22) and multiplying by ( 24 } throughout,
we get
- FPrO ey = -_B}_S 1A Ge2)
. P-“rﬁ* P +P
we shall suppose that
2 T+ {
Gip) = Sle-&) - -K—-z}ﬁ  (x) o (K“-F‘”‘) (3.24)

Substituting Eq. (3.24) in Eq. (3.23) and solving for f(n). we

find that

fik) = —— - e
!KL‘tﬂl?zf | ik . ElEL (3025)
g* ar? zp
In co-ordinate space
wie) = o j Pip) o b F
(1\") 7; d# (3 026)



Substituting Eq. (3.24) in Eq. (3.26), we get

W = e 5F L omepr  p0 :f e kF
T

(2 Y. > (‘m) Y.

u&mf
= £ - k4p> (v . T
(‘111‘) 28 (2 nY>
where
(P-
I = j I '_g_i— d_F

Plfpl K‘-P‘«-Le
o

_ \‘.P{’- - pe Ly
= avi e \ e ‘1 _ I: 1}3 -
‘pt T epred

= 2v fl‘l’f. [ __pdP
u(’ L 0 b4 F» (k"-_ P** ('g)
- 1_!'_ . AWL x (sum of residues)

L
The poles are at Pa LP)and F = K 4+Le

A | B0 g &
esidue at P:»F is .—L’;# ‘(K"*Fl) = 3(<%+ 6

Residue at P = K+L€ is -Q'“'K,f K _ _ex
(k*+ gY 2K 2(k*+ p)

I = aw ‘e-ﬂﬁ a
B

K- prale

o

(3.27)

(3.28)
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Substitute Eq, (3.28) in Eq. (3.27), we get (See ref. 9)

LR -8 L
ko . ¢*F - f(x) kb, amt AP
an ¥ @p% 2T Kept P
. f p  _pe
= [e AR )J (3.29)

Eq. (3.29) is the required continuum wave function in the presence of
the separable roten’i 1 U,
In the next sections, we shall compute the single and double

scattering of the K -meson from the deuteron.
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D. Single Scattering. For single scattering, the matrix

element is

M = (I e @) %) Y, =1 dropping the

index .

Using Eq, (3.4), we get

M, = N‘ﬁé‘i"*&. e (70, ‘” PO) dp an

Using Eq. (3.1), vwe get

. ’E _ i a
M = N‘ge ST sl -4n) -(e"fes‘a) dp de
fl

N‘t°j (-v) %

( 'if () al,(

10“ "'O X - 1 - k8
= N’t.jJQ f ('Q “\p—epf)-lvdedx.

=1

t,ng’t;l S?Q(’ (e BT e

where o = l?‘z‘ ’ .




Using

[

o
e

=
1]

we get

4

M =

Q ) Vs

24

(3.30)

-

wu%."j .4 [e'%hh e af ..:.J%MJ

1,90 -1 -l -
= L@t‘ﬁ{w’%i ++M'<21_F - 14‘,%{} (3.31)

where "J = Q(’

Similarly, we get

Mz-
Q

From Egs. (3.31) and (3.32), we get

Ve

Q

- ~\
HTNES [Jm"g v
1A

R

*P

-2 J-J'/o%’] (3.32)

M+ M, = _LﬂT_N‘gt:’+3°}[4;'}g; + +4'|%| -u&'lﬁp/‘] (3.33)

8 = Y sw(94,) for

M+ M\_ = (t?‘#- t:)

for

Y =1

(3.34)

6=0" or Y=o (3.35)
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E. Double Scattering: Bound State or Coherent Scattering
Contribution. Using Eq. (2.20), coherent scattering contribution

is given by

= {&. 20t (Y1 %uce)"Ptzlqow'))z) + (o2

(3.36)
Introducing 1454l = j 1(! A)
S A (L0
and P = ta(e)){H()]
in Eq, (3.36), we get in an cbvious notation
-
My = [de Ky wolt]ee), ) (Y- Bt L)«
by J @).'qu! ‘(‘l.l (/z,f"xd. L )
(L0 |t lo), Y]+ (e2) (3.37)
Now
(4,90t @ie) 1) =ﬂ' =k ‘cp (C)’{:. d'g J_f
Using Eq, (3.1), we get
. { L (R - /)"9 v _ -
(g atnle o032y = [[e& T w0y as 4
] ‘ S Q"%l "6
=£,J e (L) < letel™ de
BT YN £ 1 -d’
j B(’) dp.avdx

= 4N tJS' ]gf.‘?!)F/l (_L‘r- -M’) d'()



Let

IL-1ip, = + y

Sy
i
vf!
=
a
\ﬂ

L Pl ), ) = t;—

PRCYIRIRE - S TR
4 ‘3 s—é’,y_%_r e.’t--‘ﬂ -9%e K=g!| ?l

Using Eq. (3.30), we get

ot N . / —\ /
oot @r, 8 = Tt in,, N =T PRI A
U l! - Pbd up 2k,
Let Tl = 4a Jh- R
& S L A 3,38)
2] nw Wﬂ/’ (3.38]
£l N oo §TNY L0 1-3
<ﬂ,,(ﬂ(\p)l ‘ Cp( ) ﬁ-! - gJ‘L'q(_I'-'E,I T( _...) (3039)
Similarly
PRt @re), 4) = gTate] T(r-3 (3.50)

Loy

Substitute Eq. (3.39) and Eq. (3.40) in Eq. (3.37), we get

MS, = gt 4ot >4l . Té VT (1l 2)
WO G ©

- g Lwewj Jey) L Ty
" &7 (253 !2 i @’“-/ +1e) u-9 )
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/
For any arblitrary angle between 9 and % » the above integral

reduces to a triple integral which is not very convenient for numeri-

cal evaluation, Therefore, we shall evaluate it for the forward

scattering only i.e. we shall take 3;‘—' q_,_’ o Subatituting ‘!«_ = f
in Eq. (3.41), we get
2 o 00! 5
ME = BTN E tiipa L | ar £l dx [ T(.L'i))
@“)3 ’}aj Orz-lz-mé) \ Ly

hY

(] l
= (GL& N“t\otz rm)jfdej dr — \ . {T(@'E} \L
o gt} (‘i-l;‘+~,e) | K_-ﬂ/’

\
Let

- g

i
A WM

or  L'.gqr-2dq %= *
Therefore
ML = (eun'edts ,»“fﬂ‘dtj‘{;‘_ ! f (T@))z
) $

CEIR B

~
= Uy thno kS ¥ e_d__t ( d _(_T(E”z . _._L,,-,_A -
¢ Mjo 3 )Hj e (¥-+)
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Let
Y =
%I'Htl( -
()
MG = (eunees W)j %qu T{ s
-y
L+ 5
S _ I
= (GunTElES {-&f‘fi‘f( L_ﬁg e
ity
Now
! = P_'__ —LW{(I-&L)
I —ytece -y
= P _ 80-1)+ 50+
Sy 21y
We get
U=g ]
My, = éuN €2 tlpu[J-V&’Jdﬁ au)t s 3"
- 1 . ¢u|+” .‘
} “"f 7"7/# q)” 5+ Gy

1

U=y
. {iluif
= (GunN™’ty K ]ija,a;ij dg (T(g‘)l

2 2 1y]

A



Therefore,

G ’ (3.42)

0=y ° J

» from Eq. (3.41), we get

Mg = (ew t e &\ "J&J;“*gu& Kl S

For

Y =0=9

r _— s\ L
Moo= - (Bme)’eles .&u\ ae . (TW)"
rar)?

\ ( P i—:?j

- (BTN LS Ypg 4T J ar (e €30
(20 A 3

% T
Slzanteee fxu)jdﬂ G (3.43)
. 4
G

where

S— (3 um)
4p WUktp)
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F. Double Scattering: Continuum State Scattering
Contribution. The double scattering in case of the continuum state

is given by '
M.lz = <-q-"'¢lt5($}zkkd.+€3 - {‘L -hd + U +b€> b
, \
e,k + (o) (3.45)
We shall use Eq. (3.29) for the continuum state of the deuteron

in the intermediate state. Since the Eq. (3.29) includes the effects ¢f

the potential U of the nucleon ir. the deuteron, we have

(3.46)

kNM

Liwg) Chowel + 21,91 =
L

|
t

and <wgl0"P) = <L'Pt| 5 <CP|("'P) =0 (3.47)

We get, on introducing

Tiydd! = (ot T (ru)
4 J am?3
and £ )] - Fas 1wy (s

4

in Eq. (3.45),

‘r

W = ([dhdy <ahelett ) (Fhu, s S8CEnd
J am3
Kolltge, )t (02 ue
where
Ee= L/aknd (3.49)
and Ee = thu (3.50)



)8

we can write Eq. (3.29) as

%) = E9) + Xelt) (3.51)
(Q'ﬂ) 2< > 3 51
where L,t(, 8
Xele) = 40 (e _-¢ f) (3.52)
r
and
TGP — ~
T (e*gz)i vt 4 ?:.IE.‘- (2.53)
zﬁ(‘Tﬁ)z 2R

Substituting Eq, (3._., in Eq. (3.48), we get

R R R

where

Ly (Ll L) G oLt JULNDY

M., ‘ﬂ e (Y2l L0 (Fpus - b gAY
an

( I ' R _ ) . o \
M. =ﬂd@§%§<wlt.|g,t.>(:%hfs BBt () X Lt [0 (3056)

“ha - [Jetas ct 7l 1L R Grrb-ttr S LIMILY G

(:ns)



(l
quma.gnp.t:_m.

element OM.,,_ first,

We shall compute the matrix

O
Ma = Hdi de <<1,q7[+.,|2 B/ Lé)(*— Al Y (5.9

(rme
The Fourler transform of Eq, (3.4) is
*(e) = ﬂjef"% Lo ) (3.58)
_ P1+°L'; F,}P.‘) )
where N = N/,l“_ (3.58)
Now
, ) g O N
<1,<P|t,u,.;>=“dfohs Y@, o M
L-9)n ‘g
T AR

e (t ++-%)),
-t [dp e (e o)

Using Eq. (3.58), we get
-t L c + "3:
\FM 3y
(b4t +M‘l))f
Jj#’d:e (.- -
frea

e
Ntﬁk X S(.ptu(l, ))Ll+w i P‘+P)

- Nt e’ ( _ (3.59)
e P

where

¥ o=t +1l&3)

(3.59)
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Similarly

Ll 19,4y = @ueed (2 _ | (3.60)
Pras pepy,
h
where P o=t - ‘/1(4'1) (3,6d)
Using Eqs. (3.59) and (3.60) in Eq. (3.54), we get

k')M :";

(m’t:e:ﬂctotskr‘;&_ 1\(» -

P \P P‘*@‘) ‘
-1
« (37 +€ -E-E+LC~J
(1/2?‘&& ® * ¢ )

(ﬁ)qtft;’J aLde 1 1 l _ )
R A VAEES

(-2 }u)é - t*ﬁgi‘-i) +d -L9_] (3.61)
since €B = - J}Zh&
(18)
We shall put
) = I T I I
)M»z = M. (N*) + Mn'z. (‘3{3) - Mn(*ﬁ) - M, (ad) (3.62)
where

WES) = WHE ) J atdg [(poer) (o) -

=)
(& e (- L) +4= “)_] (3.63)
xd
18

This separation is only for computational convenience and introduces
spurious divergences which are cancelled at the end.



34

We combine denominators in order to make the denominator

t
a function of t‘ and /{ only, by using the Feynmann formula
|

)
skt

(30&)
22 l-_ﬁ.Q“*)-\' Luva EL.L(J-v-):P
Let
a’ - ta—M(Ql‘l,.L)"’J\L—ie
_ Pxd
RS S R (A
2

¢ =

ey« (kd)en
we can write

B0-w+ Ly + CUL-W) = £ +E) + >

where

—r'
"

2[EDuv - EYuo-v))
3= &N - &3 uo-v)Jz+ (O (e2)+ ) uv
+ (t&i_'i)ﬂ E;L) w(-v) -(ta (O(,‘-L") +L6>Q-UL) + - w)

or

D= e lf+v L4+

"

2 "
(k- tag + 1ol (3.65)



where

Qo= -(4) Ly - YRG-v) . a 11, wWr(i-w)
4 4

4
GRS IR T ST
4 4 Ped

2, - e (-
+ dC-w) - Lelmw) (3.66)

L= () 430 - e . Q%'q!’)%‘%)“ (3.67)

C = W(wr-v- )+ %-Q- I'Wm)+ Pt (3.68)

Mn(ﬁ\ﬁ) = N t {:1(-2[‘4‘} dL d.g_j lud.u dn-

A 0 (t +F J
Making the transformation .-, ¢ - F . We get

e ans [ 4t a%ﬁ 2w d dor

2y 3
- &+ 2y
hr N
Substituting for D from Eq, (3.65), we get

T 1,1
Ma (AB) = R e1(-2 JIZMK dv” dt dt
1 H) L) ({L + C(L"‘-/zc.)z? oL 53_)3

2
o

qu_ (Ab) =

4C
Next, make the transformation

Jf(g.—lt/'zc) - 4 .

We get
.1(AB) = Nt uu‘ji&&_@ d& d1 (3.69)
s Y (t‘u‘ + 4ac -4’

T
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We introduce the six dimensional space given by

R* = ¢+ 47 (3.70)
so that ¢
dtdl = R
= RSAR 4N
(3.71)

We can show that in 6-dimensions

( 3
jan = o (3.72)

Let
n

A= 4ac -6
e (3.73)

Using Eqs. (3.70), (3.71), {3.72) and (3.73) in Eq. (3.69), we get

MoAB) = T LS (qw)” u—dudv—( R’dR do

©’y C_/‘L (g )
or
Mn(AB) = Rielt) va‘)ﬂ‘*‘“dv R4 (3.74)
¢ ) (RM4RY)3
Now
RS 4 - R . Q_RA,L LA’_"_
(R*+rY)> ekt R+ AY? ®+AK)3
=R, é[_Ll ST
RP+N2 go (R +A? v (R*+r)?
] oq
Jpsdk - [RdR -y ReN* )0
TRYD I R
A
_ b o - 1, doq |p'* \?
B

= bb\/ R - 3/" - l/-‘_l'?»‘An{

W —DL\JR e L‘i‘ [z)
here Qg 3‘2>
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Since O)Mn 1s given by Eq. (3.62), the factor DivR - 3’4 =

Y
Le (}6.101’2 ) - 3/"' occurs twice with positive and negative
Row 1
signs., Therefore it does not contribute.

2 2 :
We shall prove for lZo.A‘ <@ and Im N0

o

Jkdl . La;)A"l + LTy + DivR
) @+ N
Let

N = - (N+ Le(l—u)/\

J” RAR - J R dR
R (A +ie(-u) (R-A —L_gg-u,))(m;\ +REQ -ug)

o >

u + j

o

= .Ljoodk[ J
z R- A -48(-u) R+A+t-_z§(l-u)

[

= '-z[é ta((e-a)u AGLE IR “;;-(TA;)

+}/1Lll(ﬁfﬁ~)1.r g’/q(\l-u\)zl —L#.j__ﬁ_f_ﬁ_

= 4l - g

RET)

= %JZK jﬁ-h*’ﬁ’l&"*) + R*"':ﬁ/;("“)
L (R-ﬁ) g (\-u.)? (R+P9+(-_:

(,..

9

+

|

o0

o

37
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L o N N T }
+ (W/z 5/;(““)) L(z %('_u))

-

al

1/ 1 -1 .]
(00 - sl s |

1)

3 [L:M(IL?}‘) _ "Q“JJ B+ :L.xz] , € o

- 4 LllAzj + LT+ Dw R

= ep bW sy

Cmitting Lt Qi&?f) as 1t will cancel with other terms as discussed
L)

above,

We can write

[ stg = ; /A’z, - L.“_e(_A/l)*}_ -} ( 7)
L (R )3 2 [27} ’ ? 375
o
where
OCx) = | 1f x<®
(3.76)
= 0 if *x 720 J

From Eqs. (3.74) and (3.75), we get

[
08 = (. 2par) | | wdude LR crocaye ]

o S

-



Using Eq. (3.62), we get

ME L ML) + Mo (88) - M (i - ME (8

pod

: (Nztf (:: .2y~d1r3> JJ wdu dv l: '&Jg

C72

K d) A (k) }
(4B N7 (BY

— v O-R e - L TO(-A(EB)

L LT O-A(up) # LT 9(—#‘(3#}?

39

(3.,77)
where
,\,2 = Lot - »&k
4.¢
= X 4+ YCos (%9) (3.78)
where

X = [—@#(21}-w+\)+%—kﬁ-(n-u) ‘7,1' +[‘f{(&‘°/z)z
Kd

¢ ammr e W - v e ) 420

{_v/z(uz- %) - -v(v-x)( “%’)}Jf/qc *

(W + BC-2)w + LO-w), (3.79)



Y

-
-

Y rG-v) 9 - B (viius) (4 -y v e0t) -

Q z
o= ]« Yue (3.20)
- uJ’ur-‘/L)" + W, -éf_‘;ﬁt) + H/P-Mf (3.81)

| ol
T = JJ bdu dy [ Loy | () K* BB | — L ©(-Kws)

°% K [K2(4p) - > gy

~ LT O(=K(R) + LT OC-N(@h) + LT 9(-'*"(/39‘)):) (3.82)
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2, Computation of LM.i and @Nu .

Having calculated

I
Q)M'i, we shall calculate (")M‘rl from Eq. (3.55)

Using Eq. (3.52), we get

‘ -Li:"‘z * e
4,016 4 xe) = H_{m_ag e ke

Using Eq. (3.1), we get

< al

/ _LQ.'
Q, @t | ¢, >) = .q",sdge “@te) £ s(

t:’j&g VR o) £

Substituting for ?‘[F) » we have

(1) 5
WPl € r) - (e m)farjaﬁ e

E-F(t P
F

n-gn) e S pw e

(t) e.Ltf. g'pf
(
/1< -f ™) fe) «

X (\e"tf__ éﬂf)

= (e an\de (etuimz il Uf?z)( . ’W)

(R -

f{) £,
g (TP



L2

Introduce ”E y(’ = %
Jely - %

We get ’
e N T CRE G4
Lele | LX) = (nedam) 3 -
Aol L ) = (e J:l; [ L

DI CRPTIE T A A

(204 TSt , N, g
+ e Cpev)t + | /.1.< terms with Wl "“‘1)' el

L % ’ -
= g;_z,‘%wl«l a; [@w; RGP ELD) '<T‘*77L(t"‘!%2—’>
- (gt id)) ¢ Bryeele i)

- N
@by g)) - (oprr 1))

.l _ ) ! -|*‘ X
+ QP%‘"}-LIL;T?_.D _(zp%a-»tlgilf)‘{.‘;()

= (Nt“.-u-f(t)J:; [««aatﬁ @;}')’).' -
) -]
(ﬁo-} -k 4+ ([__'?1’))-' - Qﬁ/}**j) + (1:?)1)

"'@”wﬁ * G’;}/)l)_ } (3.83)



We have already proved that

<L,tltle,q)

(an) A& pr» P‘Tp) (3.60)

P = t - %@.’1}

Forward Scattering, ;_=}"
Using Eqs. (3.839 (3.60) in qu (3.55)9 we get

(3.60)

3 T _ ~ 00 o) ‘AQ At ;’_00 \', ~ 1\_!
M. = wng.nt;{ 2pd J‘ = -Ji -4 &y, -
S ) L\_

~I
(sl £9) + 42206 - +‘(t)}

Note: L€ has — sign before it.

Using

= P(){L) + LT 5(a)

L=t

we can write

SRS Vg SV

by



where

®,T

%0
Re M, = 4TNRE%, (-2pa) ”u a.t_[ a_a {[&ij-ut)’q. @__.3)1)"-

(am?
-

(@ + - Lt)z-k (Z_;}_,)") <(o(+p + ﬂ; (l ‘1) > +

<G3+})1+<f:_§)> ”@t u)hr) - (e - ,g_)ﬂa‘j

X -]
o)

2) T [
9-«\(*"\.7_ = LT\'. ﬂﬂﬁ t:t:('zﬁ)f

L jag e J v {[@7 Sy (1-_‘_})1)-‘

-1
et wp) o (e uwd)

MCECYN (S DS

(Ce- g—%})z*‘f’l)J"c (410 S P,_f&z‘—q‘) ' ’(9} (3.85)



From Eq. (3.56), we have

(bhi = Re_(yMTq_ + 977\ @“li
< 1.-'
Ra(’ﬁi = 4TNNE! t:(—aw)ﬂaut.ga? [&Hv»ut)l-r@%)) -
(2m)°

(o @_—zzy)"i (a9 + Q'“—ET)-'J’

|G ae) - (]
(t’ﬂuw/ﬁg‘—ﬂ})ﬂt d")-‘ # ﬁ&) L
]

Comparing it with Eq. (".84), we see that

@) iy @ T * ‘
&H’—TQ— - Q_L_fo?:, ) (3.84)
Also ‘ "%1
=l
Sm(‘DMfL = Lt. 4“Nﬁt? ti',\",'? (d{ d.t_ lrd} (@+'}+Lt)2+ ié;_a‘)j -
(2m)3 } )‘ h *

<([3+} + Lt)l\* (1-:{1-)1)-, E @;pw)‘} (L__—zjg)z)-‘ +
3 1 * L-' + 2 :‘

* 3

FE) » 60t pep(L0-97) +dl)j
Comparing it with Eq. (3.85), we find that
nr

Sathy () (3.85)
L) ‘et "



It is obvious from Eq. {3.84) that if we make the iransformation

£ > 4+q

{3,86)

we shall have the angular dependence in the integrand only in one of

the denominatecrs, and there is no angular integration with respect *o t

Eq. (3.84) becomes

o0
®

@amn?

ReMn AML&M)JJM dtjra? st -

~ 3 » <L J
by 53+ oansT= 8]+ (097 5]

e ) - (e |

-
(t*+ %gw,-@w) x «Ci*)}

Further, we can simplify the integration over t by the following

formation

8, = v(/t ) $, = fb/t , &= @*M’t

Eq. (3.87) becomes

(xm)?

ReMy = wmnEelts UMH jat?’{t((& fSely) -
l

(3.87)

trane-

(3.88)
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. ks L 7! ol
- (GG - (G L) - (AN
x E (1 + L - %, +51) - (+ 14 - L’Lﬁg,_‘)-'J x

<
Q+ S'a + N/W(,(“ + QQI% “LID N

T
In the evaluation of Ra(z iy o ¥e need the following results

J My_ - L 1,,(1 (I+Q;)Z+SL T(5,¢)
b 6<u-u'+ 4 U (1=t )% st .59
where
-1 -1
TEL) = kom /:4'5’9’ - tom /5@%)’ , Adg .50

= T -%:]!%2-1)’ - don {%M/J o A3 (3.90m)

A

ol - -
[ = 1lx =)
dn - 3)-, Lo |0 ;)1+ Ql{
AR Oe (-%a)> £ (3.92)



L8

dn = M by e (Ll (A
l+ 5 A 2Q<%_7¢ ) b el 146} +\-u/m(:£’-21‘%) (3.93)

See Appendix (1) for Eq. (3.89)

ey /
To evaluate Ke M, » first perform the integration over "J )

using Eqs. (3.89) and (3.91), we ..t

@I

ReMy = smni tftit-w)f ata [a,‘? Ctm>s) + Toh
'\« )3 2,( [ Q_L’/z)"*_g\"a. ,e
N X Z3 K 1 I (Y7 z_(%_m_sf)
T e v o “
-
vy (n - %)J[ (+ Y- x5y -
o , -1
_ Q‘* ‘(}q A% + g:) Jlé‘* gf+rfj/r&£'1+zl%/{:x¢)ﬂ((t)}
Let

TG, 65,60 = TEL = T+ 1 -*;'}‘Q (3.5%)
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We got

2 [
RME - wnnieeds Co) (400 dr | o b
(am)d : 2 O

JO

Q*‘ ll/;)z"’ 5‘," . Q"’;")i “F‘IJ
CGF 457 (g5t |

i s .‘"
+ T(gl)gljgljgu)e)J,fdnt[Q-"%_l/xt*'[.) -

/2 ’ PR d~n~(
Gt _uugl)'H YT
(" 1+, ﬂd/%(f +U ‘L/t"e)

-

Using Eqs. (3.92) and (3.93), we get

* og N
RM, = 4mNReE ﬁﬁ"“’Jz’df'Jf*t [ Ly G+ cﬁ)m@-w@J
2

(@ “(Q'%)7+ &‘)(QH/’Q%J;

+ T8, 5,5,0) -E%(&l@‘w‘_ AT \,
CO6-%) g () 8

1+ 6+ Pd/hg{“ + U J] ., $k)
|+ S"""_ kd/h‘(eli _ 71111/5(

x  Tokd. t
b gy {?C
Simplifying and using Eq. ( 3.58'), we get

RL(“M'I‘ :(_t;tiﬁngjtott{iﬂ_:[ _L_LU Qf%l/,)#{,l (-4 )+4"
™ A ) I 1 de é_%)z”.‘\ Q*l/'l)2+§:




~

+ T8, 6, , g-}}g“' )‘e’)] L’g‘\(l.g.l}i)".‘.g:" ('-!I/i)l"' $
AT AR

——
"~

L. ‘”3 1+ 554 pa/hﬂi"+ W) | « £&) .
TR ey (-2l
Define
L = | e gfeer (C)+st (3.95)
| 0=4) 8 (+4) e
) = @71_(0) J_ ests Bo (€2 09) (3.96)
el 1467y P,«L(E "~ -u'y, 7t)
£¢) = d.&:‘T(f.,fug.a,ﬁ’)(fﬂg}) .127 WY U Ye) | (3.97)
¢ 1 TR (')
Hra
QD = by 3w + R() (3.98)
Using Eqs. (3.95), (3.96), (3.97) and (3.98), we get
NE: °°
Re®Mp < -t rfht(au t6l) £() (3.99)
L

From Eq. (3.85), we have

Re%; = - t'4 '\';’1:,4{ de .t Gwdw (3.99)
2



From Eq. (3.53), we have

{(t) = !
At“ s at*s (e =L
where
A = | .
Watrp) >
a = B 4+
() 2p
3
L = (’/2_ - %(di'ﬁ)z
We have,
$6) - $0 = 2 it 7
(At 4 ok g) et
(3.100)
£le) + ‘fﬁ) = (A aki-4)
At +ar>-£) + > |

Adding up Egs. (3.99) and (3.991) and using Eq. (3.10'0’). we get

Qe(@)ﬁﬁ +°’MT.,) = - t?tf-:%hjott [ - £ 3t)

Qv ear-a)+tt

+

(=3

2t (At 4 at'-4) ALY
(At + auc"-l.)2 + tt

(3.100)
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We shall find now Lt Re ON + M3 )
1

Using th L»? Q+x) = ¢ for "<l
0

,» we get
+ .1 12+ t'qt
Lt"o ){} (3 l| +€ :P.A/mcz ”n : I/t) I? Hrapd/t* /t('*ﬂ"“"l-%
94 S5+ by (07 20 ) Mea
- bg [1- WU —"'— fad __4_’___ 0101
de ' 9] t(*“"’?')D b TOvety M(‘) (3.101)
From Eqs. (3.96) and (3.101), we have
% /
ge) = jil' Log L) ypa . L
A L/ ka,_ ) “P * \+S+P‘/’A£/1)
- . L L) !
- 4}:MJ€ Sd' <¢ )(4-{‘4-,;4 'l)
= pd L. (t) ,
Pm L g,
where
|
= M leg)) )
Wb = j ( 7 ) (2 o € ) (3.102)

From Eqs. (3.97) and (3.101), we have

w !
Ale) =j4£' TG, 6 6 8 Lealct) cype L4
v 183, 8y, @7: ) P tw
o Pu’

|
il+&,"+ WP{")
o

= L’F_ L d( T(Sllgl M; *w/ L L(Q)
Pra tj ’ e,

1]
N ang
14
s~
-
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where

4, ) = jdl T 6, 6 sg,z)(l.yu« )_'_ (3.103)
(+8'+ Pog 27)

For 9 =0 , substituting Eqg, (3.102) and (3.103) for Eq. (3,100)

Rz M3 ) = -WNT T pa .Jou [ -t 9 (t) + 2l al’ ‘)“*)}
(At'+ ox™4)"+ >

]

= -42 11 (3.104)

where 2 = Ny £4, p (3.105)
T b a2 (A s ) A (8)

and I = ju t 3(:21t a:“‘-:)"+ - S (3.106)

o, F
Imaginary part of GLHI \4,1)

Referring to Eq. (3.84)

s(e+ p%u'_ q;)»,eu) - 8(: - lﬂ%‘t’— U}—i‘) + S(t + s (e -1Y)-d)
|2 [T |

only t= j N/f'*& -1 - 4" contributes

Since t cannot be negative, maximum £ is given by

ﬁ(‘f—”’)-&‘: ) or L= '11"!";%,(4& = 1,
Mxd



Therefore, { varies from 0 to ‘LI
Let

L o= Ay
s

We get from Eq. (3.85)

[

T 1.“'
Yo My = (L) 4T N E0E (- 2h) Hu,at.jd;{[(@*v-*) 1) -

(am)?

J

ol N
- eyt '_ ((-L+f+“d)1+ ) +(ep+9) +‘-)J '

)
| -1 ‘ N ., 13
‘[(&:L‘f ) - gy ) }'F(tl'S(tJrPﬁg-a)—v‘)]

Using Eq. (3°5é) and the limits of Z , we have

o Ma ol A EE] sz an, J J {[(@*v R )
(31)3 ) J )

- - a =l
Sy ) - (prerrne) « (eewer) }

[@t L)+e() ((t-L)+p)] f(¢) tj

t= PA
pu

) ~
In the above expression t = IP‘J/ A Ty
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Using Eq. (3.92), we have

& I 7 o -
Yoo My = it apa b2t | AR (oy - &)+ L‘)I
T T e ” i [ ’ i

-} -]

-

- ) N -
(og-0%2) = (pewr)' + @pen )

-

Tt . ;(t)}

S A | £+ L E-UT g™
SN [EESSTREYS

t

%

- S potpo '1 " - .
- L.g_;)_tf*d bt JXJIJC{-Q(JJ}{[@+)—M:)+ &) -

° °

N -l - .\
QB+3~L\:) + L") - ((o\ﬂl-#’»)l-f Li)l -+ @-Pf;) + L) ’J x

x

N L? I (t+L)1+oL\l'&-L)1+FL ,{(t)}
Lol ] -0+ ar (t+0) B>

Now b gl
4

| - | _ '.
i [ JHd-(kaL) $re-iey
We get of
o ] . -1
. SR W P STAL | ISRVY (/A A
b 4+ L1 % 'G} ) ’ o ( & lﬁL)

and
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L]

d - v A 1-+ oY N /v -
R R YA
Therefore

[‘@éﬁt@% il
- LJE_LL (17 - A 1 Ll)]

3+ (% +L)? 1 % -4 ; d ?)
‘E+L

Gra)*+ (£-0)2

9 _
= Y CW) efeoL) TiEL) (3,107)
Q+o&"+ (t+1)? e
wWhere
_Hw\‘,L = (T4 = o [ * - t-L / -+‘, o )
)= (A= By - & (- %) (3.108)

Using Egs. (3.107) ard (3.91), we get by integrating over y

I M, = iy Mitf Jdmt[%

- ’°(/L

4 -l" +t+)?

(m)

9

- (Mt efe]+ 1) = (- )

+ (k*—L)‘* L

+ M ("/q -fam Péﬂ)] L L

R A +E « £(¢)
t-v)e > (t *L) *P
t:(w/,‘(q_’.@)-op
xd



7
= - A AN ' T
B )+ T

O Y ISUREE]
t

eyl

where
Moz fdls (2™ | poe (b-u™ (3309
A (02 e (erg®
Let
Tz T =T + 2 (4 B0 - ay) (3.110)

Using Eq. (3.110), we get

3m(1)}1;i = -LN® CRa gy L‘j}"\dﬂjdqz [_L‘_,(Aam + T -] «pa H) ,.((1/‘1
(1“)‘ . | ? ' ] i (] /
Comparing Eqs. (3.85) and 3.85), we find i Pj‘f}"‘y"b
3-",(3%45 = LN Pnl o~ 1&( d_([t ( M+ (‘n H (t)
(" J I Latgh 7 [ 1)

’ b= JTV/,,g\-z)-ot’
We get the imaginary part from the last two expressions, ‘

9'"\ (( “ ) - -k_u, F‘d‘t ° l/ildl Jd;ﬂt irtb’ﬂH"'l(At“*&t'L)TJ

(he" + qt‘-l,.) +
(“a ) — e

where, we have used the results of Eq, (3.10 )

(3.111)
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(AN S Ww T
3. Computation of _Ul'h.z_ We shall calculate (Mu now for
(L= qL o Referring to Eq. (3.57), we have
T ,
-Q‘)Mm. = JJ dede ., |t L, Xe DXt L ea| 9,9
@y
=)
Y * '*' e - E -E
(Vap o= Ee-Eurie) (3.57)
Using Eq. (3.83), we get

"My = (—zw)(t.nu)"vt‘ dtdd [dy | @+y-w)® JRTON
: (2m)b 4” -J ‘}'[@ 4 +(‘-‘—)>

-l

Lt @) e iy - G ]
; J% [ @\q;f‘w)ﬂ @%1)15" QF‘*}L“*)‘* (5—:3’)")-

ot - ”
(@pw s &2r) + (eprny+ &) M(t‘ﬁ;.”—%?me)

) I W, I
P Q(" n’ + "M’z

where,

ReOME = -smanes ijn_&tj 23. [(@w, i)+ @_—})‘)_' -

(amt
- SV, 2 =l
(eraeiereddy)’ - (Grear 631 +(¢6+4) +@;,1)‘).]
o[ - Erew @) -

-3 £ {&)
(@ﬂw& k) ) (eprad +&3) ](t2+% T (3.112)




and

M = WE(-Fp N‘tftf)([at ALJ [&w L) *(U‘) -
(amH

| SN

(-7 ¢ ) S(p ) (Li)) (gl Qli)
X Jooda {QA+31+LHL+ (E,_})z)' -«B+‘al+it)l+(4_-})">-, -

(Qr(“’?h + Q‘ ) (@P*’yx) + (_;) )J {’_({.)_(;(e} "y

xS+ (-9 ) +49) (3.113)

4, T
We shall compute. now P\e“"‘.l

@ T
As for IZL)N,1 , make the transformation {+4+1  in Eq. (3.112) and

let
L8t =t ;9 o=ut

§ = e‘/(—_ ; Suzbre s Sao= ('(*p)/t i &u = "-p/t

in Eq. (3.112)
0 . ol
RoUM, = - Eng‘tijag'JtatJa [(@,w;-u)uz)' ~(Gey-0’s ) -
@am*
[ o0 -
((93 "’"1’:\ + )" + (sta ) +l/u-:| J‘?' [@5,.,’};-“'.) + ) -

+

dn
f+ \L) L + 5\4 + ") + L/ ) ‘F(t)f(*')x :
(s ) 4G o




Using Eqs. (3089)9 (3091) and (3093)0 we get

RLMMVL = -EP‘Nii,ot: d-Q ; + Tﬁ;_,_i_l,/
(2m* I ( 4/1 N 2
-1
- ( %) +J; 4 'r(s, ) - oafn -t s
+ (W - b 2&‘)"!, i_-L & (05" . Te
QI e/ ' (, %) “’ ‘(./
= L
R | LGS o IO VT DR Y AT |
?.Q J‘ ( e,) +{L/ 'y ;f,( : (')
- - N 1
+ ¥ (v, A 2§y x wg lu 8%+ PA L +20 Yt \!'
C(l C‘)‘! f"‘il ; |+f‘+}u{ /‘L -.li/
N
x$14) £1¢)
Using Eq. (3.94), we get
T At R
W o , !
Q._( ™, = _ u‘t;ttjtatjd_g{ tz(&J‘L(U) + TS, ghﬁ/(ﬁ’”i "
T ! L

[‘%@“9}“" + T“'f&ffz,&)e’)J x

1 1“’9 l|+ g,"f‘ NM([:. + Ql’iftl/ » _F(t) AC"Z&’)}
1 l+§|11, Fd/“(f'l—zl/?//c)

- v fFafi [yl 05sin)]

« L4 J Lis £ B+ U Ye) o 4
T Triesry R 270 I (L GO ALR S
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Using Eq. (3.96), we get

Py
T °
R'-(QMH. = -MJ&.E [¢ 9(c) + K(t).‘ _ﬁ." L
" * 4 (AU rarr o) e (3.114)

o

where

o
K(t) = (_1’ (TG g6 ) L LJU%%%}%((lu‘ %) ,
4 ‘l+§|1f k%‘)&[z_ 21'6%_)

(3.115)

., T
We shall compute now Y Lot

3T
For Eq. (3.113) using the calculations given in 3':"LM1 , we get

2m3

T P ti”d&.d& H‘%LL;M - 1)

~

" ] T y 2 l-_‘. '(l
!l ﬁ.l?m + ;LJ £le)fl) $Cx +%&&1)+ )}

where M and T and defined by Eqs. (3. 109) and (3.110)

i.e. we have used the result

) 1 -l < ~i N -1
L a3 s« eyoaioe - @ney

2 "'
(Eorve ) J = AT T



]

Using the properties of 8-function, we get

4 I
qm I

W z

= -vpd N4, [’Jagezgg [ L@Jm)1+ T L s e
em? J) ¢ Lo -
S - g T)d] + S(e R T 4] )
RERASEIE
weel [dn, : o
- oSl L - e
LR - I+ %g‘tw-;_;
N )&_J(d_' [1gm= T 4wTery
raw) 2 >~ L 4 B
v te | 9 (90 -4t
{ varies from 0 to 9, = “rzlf-_?%;‘_ , a5 before

1,

9w M,,‘. = -lpd N"t? ‘5_; J v ( dfe "1_-!-(0“3 ")14’ Tzwl )
' |

)N

t (3.116)

x ———a——
(At v o) e tr
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@ T
We shall find now [t Ke Mq .

97
Using Bq. (3.101) 4in Eq. (3.115), we find

)
K(t) = '( d{’ (T(FHS"»:;/Q». ll))L* “&-’E
o { Y $ K
% by L
= bid . L | Kk(k)
M t
where
o LS
Ki(t) = g . (Tkg" 2,8 ’S“/e)) (3.117)
/ P
> £ (+5>+ kg, 2™)
Using Eqs. (3.102) and (3.117), we get for 4, =0
(9 E UL N &0 &) ) L Kle)_ & (3.118)
Re Mah = -k %zt‘t dt (q e+ )(A{V+M“_A)Q+t1



G. Summary of the Calculations.
M?z is given by Eq. (3.42)
Forg=0 Mcn_ is given by Eq. (3.43)

er-z. = (‘)Mli + (lNl:':l + wa'x "Wi + Q"’z)

ONR
M. 1is given by Eq. (3.77)
Re (M2 +™Mi) 15 given by Eq. (3.100)
S‘MGJMni +°‘4§ is given by Eq. (3.111)

M, is given by Eq. (3.114)
Yvn Q‘Nﬁ_ is given by Eq. (3.116)
For { =0
W T
RQCNN: +( ) is given by Eq. (3.104)
W. T
Re My, is given by Eq. (3.118)

The matrix element for the scattering of the K -meson from the

from the deuteron is given by

c
Moo= M+ M+ M+ Mo (2.22)
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H, Correction to Elastic Scattering Due to Charge Exchange
in the Intermedigte State. We shall calculate now the contribution

due to charge exchange

T K+P=> K°+n
2, K+#M> K +P

We shall suppose that
o ox
t =t stu-{4) for the process 1. (3.119)

£y = £%0(x +f/)  for the process 2. (3.120)
where {'i ¢ and {»_oz'u are constants and will be determined in
Chapter VII. There is no direct charge exchange of the K -meson with

the neutron.

The Feynmann diagram for the charge exchange in the intermediate
state is shown in Fig. 3.

B = 1+%-%

Figure 3.

The matrix element for this process is given by

ex x
My = {¥elta G Wy (3.121)
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-l e
= (Ul (e - Kg - Rp - &p, = Vna+i€) e,’/%] (3.122)

Unn is the separable non-loqal«ﬁétential between the two neutrons in the
intermediate state.

¥ and Y¢ are defined in Egs. (2.1) and (2.2).

Introducing

143y = (4 [Hbep (4w
3, amn?

pREZNC A jd!' N, ) < o, L)
%

and similarly for Uﬁ' in Eq. (3.122), we get
e . o
mm = lUf <"V$|C,l ‘i\ )wl{,k}‘),'\f’p_(\)> (E - E"g - E!' - E?} + LG.) &

<
« € Ye (%) Lh’.('!:') ’ Qb,(t, “ Lh) 4_‘1' df .4,
- (am?
In writing the above expression, we do not have to consider the
Pauli exclusion principle, since the additional terms obtained there-
by, are already included as part of the single scattering., Fig, &

represents such a diagram,
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This actually represents impulse approximation contribution.
There is no double scattering taking place at all as the K -meson
is being scattered from only one particle.

Using Eqs. (2.3) and (2.4), we can write Eq. (3.121) in the
center of mass system, The matrix element in the center of mass

system is given by

‘33

/ <4 1
Mo = <1)¢'t:.r Gm'h’lCP,q_> (3.123)
vhere t and q_’ are defined in center of mass system,

In the plane wave approximation, we have
Gnn =G 1| with- U =0

Proceeding exactly as in Chapter II, we can write

N:; = Q?Nf’z)n

(3.124)
Comparing this expression with Eq..(2.25), we can.
write
(3} Lr o en
Mo = b (D o) (3.125)
THN *

The factor of 4 appears in the above expression because in Fig. 3,
we can not exchange the proton and the neutron while the expressions
for ((‘4‘: + (e 'l)) ) includes the exchange of the proton and the neutron
as shown in Eq. (2.25).
We can define the total contribution by
M7= M+ Mg (3.126)
The treatment for charge exchange is not exact, but does give an order

of magnitude of the correction to the elastic scattering cross sections.



CHAPTER IV

NUMERICAL EVALUATION

Single Scattering. For any q  and O =0
M\ -+ M‘. = t: + t; (3025)

Doyble Scattering. The calculations have been done at

three energies 4 = 0 M% > 105 Me,‘,/C and 94 My

Bound State. The results for the bound state forward

scattering are given in Table I.

TABLE I c
Values of the matrix element My

'L (Mey )| Y (') M.cz/%

0 0 C L2704 -1 0
105 M2 - 16,4 -112,9
194 .78 -10,1 -113.9

where 2= Ky HtE]

(3.105)



Contipuum Stgte. The results for the continuum state

forward scattering are given in Table II.

TAELE II H{
Values of the matrix element M12

) My | GGV | UM

0 -5.0 10 18,2 - 10 -6.1 -1 0

i - ——-

|
|
|
|
|
105 - 5.9 <1 1.7 211 - 1 1,8 | -5.9 -1.34 :}18.6 S13.4
1

- 51 11,1 146 -19.5
194 -3.8-12.7 16,2 -110 (=21 111;

N R S

Now

The results for M are given in Table III.

TABLE III
Values of the matrix element M

‘LL\M% M

0 )4ty - Z (133 -10)

- Z (2.2 -116,3) |
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Charze Exchange. In the plane wave approximation, the total

contribution due tc charge exchange scattering is given in Table IV,

TABLE IV

Values of the matrix element Mf’zc .

9, (M) Miz/2
o ! -(50 +1i 0) :
105 - (20 +1 1)
S L - (3.8 +i 2.7) |
|
I o
o &y
where ? = hT‘;Lz R

Now total ma'trix element is
M7 = M+ Nﬁi
which is given in Table V obtained from Tables III and IV.
Table V

Values of the matrix element MT.

T
T (M) M

_——— s e e - PO

0 0413 - 2(13.3-10) - (5.0 +10)

{

0 o ~ y o~
105 o+ t] o+ 2(2,2-116.3) - 2(5.9+ i1.7)

96 1+ 1) e 2(4412303) - 2(3.8% 12.7) ]
i




CHAPTER V
BRUECKNER MODEL

We have shown in Chapter I, that the scattering ampli-

tude for the K -meson is given by

| / 209f -1 R, (q-1). &
1) = (mm%)-[’q ¢ p e v,

4f7 +(AR- ‘”d L (3R - 1R,)
v’p") / ( 2

(T.4)

where

We can write

R = f/q, and Ra ="'€/7.. .

We get

(1 2)fh -ia-t).
Fe(vd = -:‘B[me + ¢ #x*

u; 3+ 9) -,,(q,g)
M e f( f/z ﬁ)] (5.1)

71
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(19)
where

wgp v

D= ('-ﬂem Q/fx.) (5.2)
Since the scattering of the K -meson from the deuteron can

take place whatever the separation f and the direction of f may

be, we have to average over f and the direction of f .

Anticipating the spherically symmetrical wave function for the deuteron,

we can average over the angles betwesn the .f and ?( , and f and

‘l/ , we get

F0.0) = Ny (5.3)

where
N o= () S=bla 4+ 277 et_afszﬂ’ (5.4)
I e e
b= 2955 v P Gy (5.5)

H 1is the angle of scattering of the meson in the K -d center
of mass system.

Here, 4 1s the final K~ momentum in the K -d center of mass
system. In the above equations, Y|, and "]v\ are the K -P and K -n

scattering amplitudes (in the deuteron) and are related to the free

19
See ref. 11
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K -mucleon amplitudes ( f/p and f, ) by

’Y)P = HK%._P :{p ] ’v)n = Efé .f'h (506)

P

Where P’S are appropriate reduced masses, fp and {h are given

in terms of the scattering lengths A, and Ay by

o2 oM + - ha
Fr o= o
z '"uloA\ 1=, A,
*’Y\ = A
LA
J (5.7)
9, is the K -momentum in the K - nucleon center of mass
system.
an = LMo ‘i'_
Mk Ty (5.8)

where 1L is the K -momentum in the laboratory system
The scattering amplitude from a deuteron is given by averaging

over all f. Therefore, the scattering amplitude is

$l8) = < £lo,0) = jlo‘z(,e/!z?(w)#’ (5.9)
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We consider the contributions up to double scattering only,

Double scattering approximation.

= 2 (el s
£(9) = -)(WP(S) + T)PY)M <e/( S‘%’f/\

- ) £ “¢(8

jfw,,{,ua T - 3(8) (5.10)
where
fhpﬁ)} = ( { Sw ‘P%E )> (5.11)
9(8) = o)+ v Gm (s)
W 30) =g e e e

¢ o Psq Ao (wo'+ +9))
77} i J ‘)“%%(sz)(wﬁ (P+3))

+ similar terms with ¢ - -‘L} (5.12)

|



Y _g Ao q£++wﬁ‘+ <L¢)uaP .
Im §(6)= P(I-do.)[ 2 'h—lév(_v-?)‘ W= hd- P

¢ (2, p,q,).v/z> * P<%'4a;' qj:-tziwpl + G(w,q,,p)%)

+ similar terms with d9p -2( similar terms with o= %P)J

(5.13)

In Eq. (5.13)

Y
- L0

E(Q.)L,C) = | J

ar- L+ &0

= o p)
(5.14)

The values of 3(0° ) are given in Table VI,

TABLE VI
Values of the doubls scattering contribution g(0)

O A

0 | .57 +10

105 | .38 + 1 .24

194 | .21 + 1 .27




CHAPTER VI
A. COMPARISCN CF BRUECKNER MODEL. WITH THE MODEL GIVEN IN CHAPTER III

To compare the two models we should express t, and f: in terms

of 7, and 7, .

Consider the scattering of the K _meson from protor. The scatter-

ing amplitude is given by
foo= - ke K1Y

! -
where ¢ and {4 are the momenta of the K .mesor. in the center of mass

system of K .P systenm.,
t, = ‘t\og(l“f/n) = t;’ S( "o "EI) (Using qu(2e3))

Therefore,

fo oz —Mep k2 (9] SR -%)19)
in

- -k g
e (6.1)

If the proton is bound in the deuteron, then the effective ampli-

tude of scattering is

'ﬂ? = F‘K%AKP 1[' (5-6)
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since the amplitude J} is proportioned to the reduced mass of

the scattering particles, we get

Tp = - Mxp g
T
. tﬁ - - L o~
or t -P—RP p (o.c)
Similarly
o2 s
e (6.3)
Substituting Eqs. (6.2) and (6.3) in Eq. (3.105), we get
2 - Hd/nLMl tT t:
2pa N (2 ,) (6.4)

fakd fm

The scattering amplitude of the K .d scattering is defined by

fed = - pxdow (6.5)

Considering only the double scattering without charge exchange in the

intermediate state, the scattering amplitude is given by

;Cd 4 (™S . MY
rdo= - kel (M ") (6.6)
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Making use of the results for M& ard Migiven in Tuvles I
and II in Egs. (6.4) and (6.6), we can find the values of

ac;ia /1.V)‘,T,M at various energies. These values are given in
Table VII along with the values of 3 (O) (from Table VI) which
represents the corresponding expression in the Brueckner model.
Neglecting the continuum state contribution, we calculate the
scattering amplitude ;;;gqfﬁh for double scattering due to
the bound state of the deuteron. These values are also given in

Table VII,

TABLE VII.

Comparison of the double scattering contribution given
by Brueckner model and the model given in Chapter III,

1 j
Y o . d i
) . ] )
7 (M) A L tedf ‘ (0
’L K '(‘-?:',) JK}/L /l’ '{}'h Ar’fﬁy ‘ ?\ }
%
0 93 + 4L 0 M5 + 200 i .57 + 1 0
105 .56+ ik -07 + 1.55 | .38 + 1.24
|
194 36 + L.47 -5 + 1.79 D21 4+ 1,27
l
| !
We cconclude, on comparing the 3rd and 4th columns, that the Brueckner

mcdel is quite unreliable for 9 7 IOOPﬂgg , especially for what would
be the real part of fi; if 2,and O“were real. Comparison with the 2nd
column shows that in some sense the Brueckner model approximates the
effect of tre ccntinuum states very tadly, agreeing much better with
just tke tcund state contrituticn. This result seems reasonatle from a

prvsical peint cf view



B,

We can deduce the Brueckner model from the model given in Chapler II.

The K .d scattering amplitude is given by

}kd. = —}A_E% <<?/,0ft‘+t‘+ L\‘gt.“f‘t;‘%t. + ----\C?,@> (6.7)
Using Eq. (3.1), we ge*
() e o
<il'cpltl\¢pl°_!;> = j e kete)) 40 Sle-£,) de 4
s o v4-f
= (gt @) (6.8)
where 1is defined in Eq. (3.34).
Similarly
’ ° —"Q'p:
V. 71619,1) = (Fltje T 0} (6.9)
Now (20)
<V, Pt {e 9ol ,4) = )(J“{,f;f (L. 00 L.g) =
-1
Q}l“l& +(:B - EL- Ee + \-6) <*'£’4 ‘ €. | Q,C}> (6.10)

where Ey and E are defined by Eqs, (3.4% and (3.50).

Let us suppose that Ey is replaced by some average value Et and

N - - 2
Vipea 1S Fe = Yipwa (6.11)

20
Taking U = ¢

N

CORRESFONDENCE BETWEEN THE BRUECKNER MODEL AND THE MODEL GIVEN IN CHAFTER



Using Eq. (6.,11) in Eq, (6,10), we get

<1’acplt\‘%tm|¢’i’)

S AT PR

A& %3 C?ltll‘)\q/ I Ee +u€) =

J Bn)
s8-2) » (Lt i®.9)
Using
( o “ SALERY
= VAN 1 d e :
Q) ;RAP“-EL*LQ 2w e -2
we get
I,-"} %

(L.9ltgcizy) = i'f”d’& dgdn 1( Top tiNin -4

—_——
L
-
Py
I
o=
to
+o
o —
n

25

/ ‘3'
Laslnrf,) 9(f) e 'Jr
"(i“i’)'f)z L4 -
- Jag e <-ugt7c:gff) leee)l”
2T f

<¢((l e it ,, <d bt Liﬁ) l <'P(€)> (6.12)
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Similarly

<GPl |9.9) = @|a“°!‘*’”’e/z(_t:% £t i_’“" NG (6.13)

Substituting Eqs. (6.8), (6.9), (6.12) and (6.13) in Eq. (6.7),

we get
o "Qf o -"g'f ui(’
= « Pud °,a
ht st Ol TG E e O (6.18)
L(°._+Q_:)-,f & “.
(e ZWias 2a ¥ 0,)14,)
Using Egs. (6.1) and (5:6), we get
6,1
! (6,15)
and
- Ped £
tﬁr t. =, (6.16)
Substituting Eqs, (6.15) and (6.16) in Eq. (6.14), we get
ap a8 3f
$rd =<P(f)|*]pe. £+*)ne F{. Pq”e?, x
(@) (1)
(z(‘t*’_) €/2 + e - ? 02)|¢(P)) (6.17)

It is obvious that Eq. (6.17) is identical to the scattering ampli-

tude obtained by using the Brueckner model except J is replaced by i .

If §t= EB' we get § =9 and two models give the same scattering ampli-

tudes, It seems likely that some choice of é » such that i@#l y might

give better agreement with the results of our model calculation (See

Table VII, Columns 3rd and 4th)., This would be interesting to pursue a

further investigation,



CHAPTER VII

COMPARISON OF THE MODEL GIVEN IN CHAPTER III

WITH THE EXPERIMENTAL DATA.

A. Computation of Cross Sectjons. In this chapter, we shall
try to compute the differential, elastic and total cross sections.
As mentioned before in Chapter III, the matrix elements for any angle
between § and i' red se to the triple integrals which are hard te
evaluate, the differential cross section is available only for the for-

ward scattering. Consequently a rough estimation of the elastic cross

section 1s obtained by using the relaticn

Tor ~ @70 e. 0" J (dT/an) AN

@ /i)y . o

(7.1)

where 4&5%» is the differential cross section in the impulse

approximation.

The total cross section is calculated by using the optical

theorem

07 = 4T I f(0) (7.2)
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The scattering lengths fp and 4, defined by Eq. (5.7) are calcu-
lated by using the Dalitz(gg.utions for the scattering lengths in the
zero range approximation., The scatiering lengths are:

Sol. I Ay = .02 + 4,38 $

A, = <22 + 4 2. 7%

o]

Sols II Ay = 1.20 +1 .56

A == «55 + 1,96 f

The values of 7, and ") defined by Eq. (5.6) are given in
"
Table VIII,
TABLE VIII.

Values of 7, and 7, .

A : R
T M) sor. Z 1o 4) nlf)
105 I - «03 +1 1.05 0241 .1
II 26 +1 91 .90 + 1 .88 I
194 I - 0141 ,78 02 +1 .37
II JAd7+1 .81 .59 +1 .83 ;
|

21
See refs. 14 and 15.
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O
Using the definitions of t; and tg given in Eqs. (6.2) and (6.3)
and the results giver in Tables III and VIII, we can find the scatter-

ing amplitudes 4, . The results are given in Table IX.

TAELE IX,

Numerical values of the scattering amplitudes.

)
M) sor. faa (£) |
105 1 .05 + 1 1,29
I 33 411,38
s T 1 0841 .93
I ] a2+ .89
1
‘ t
L |

(22)
The differential, elastic and total cross sections are given in

Table X, The elastic cross section is calculated by using Eq. (7.1).
TABLE X.

Values of the elastic and total cross sections.

| i i

9, Mer) ' sor. | %‘I;(O") Ter 7 Tr '

; e e e

03 ‘ 1

o5 | I 16.7 110 383 |

x

; oo | o200 ) 132 410 ‘
| |

| 9% I g7 | 35 150 |
i b

Lo 8.0 31 142 1

22
As the coulomb interaction is significant at low energies, the

cross sections are not calculated at o ch .
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B. Contribution Due to Charge Exchange. The scattering ampli-

tude for the process

is given by

< A A,
s [T-—dﬁ.,—m T :T‘i{h;]

It is obvious that for the inverse process
K° +m > K +P

we have
&

f’ﬁ = ‘)(-PU

The corresponding expressions for ﬂ? , 4£* are given by Eq.(5.6) with
fr and 4, replaced by ﬁal and i@u .

The order of magnitude of the contribution due to charge exchange
in the intermediate state can be estimated easily. We can write the

elastic cross section as

od a2
Tetl  ~ 'ML"F + Mg o+ Md.'

= Moy MI“[‘ rake/ MW +J (7.3)
(MLMP*‘ MIA

oed c T
where M,;L = ™M i+ M, 2
ex x

and Nb, = Ml'],



86
Using plane wave approximation in the evaluations of Iqx the
MGJ[ 2

g 0
valnes of 2 Re nimp +@a‘ at O = 0 are calculated by using the

Tables III and IV. The results are given in Table XI.

TABLE XI.

Ratio of the charge exchange scattering to ordinary scattering.

v ; i‘!x
7o !3‘ Sol. | 2 Re Mimp + M3TQ

105 I = 024
II 025
194 I - 17
II .18

It is obvious from Table XI, that the contribution due to charge
exchange in the intermediate state is small compared to the ordinary
scattering contribution. However, if anything approaching say 20%
accuracy in computing cross sections is desired, these effects would
have to be included.

If we take the plane wave approximation in the charge exchange
contribution, we can calculate the cross sections using the Table V.
The results are given in Table XII.



TABLE XII.

The cross sections including virtual charge exchange.

WMg) | osal. | Ful \, der () Ter ‘, T
| dn e
l ! L ™oL
| N
105 I 1 -28411.15 14,0 \ 92 342
i {
| 1 82+ ilk 27,5 | 180 428
: i |
94 I -0l+1 36 7.0 | 25 138
B S 2l+i 26 9.7 38 . 184



88

C. Break up Cross Segtions and Comparisor with the Experimental
Reguits. A crude estimation of the abisorption cross section of the

K”"-nucleon is made and the results are given in Tabies XIII, We shall

take ale al ode
Ta ~ O"P + 0Ty
als totad el
where % = T -0y
ol Lotad ed
and m = Tn -0

ak
Using the Table XII, the results for (U7 - 0a ) are &iso glven in

Table XIII,
TABLE XIII,

b
Values of {0 =04 ),

- - ‘ ‘
. i ak PUA A : alt. ’
%LO%Oi Sol. T 7, s S
wi mb ™ A
105 I 181 106 287 55 |
|
11 155 125 280 148
194 I 67 be 115 22
!
1 11 66 4l 110 L,
We have
0T = O'IL(k-+aL->K_+oL) + U—(K—+i—)k-+w+}1) + gk +d 4;"#7‘*"1)
+ 0 { Hyporon produchon )
- - - - ak
= 0‘<L('¢+¢-§K+d> + (< +d4 9 ‘4+m+p) + Ja
Theraofore

ad - - ’
T - O_A_ = G‘u_ (K +d ‘TK—+A> + 0 (x+d = K+Y‘4;) \'7.1&)
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The experimental dam(z3 ) for the total cross sections for the
reacticns K+d = K+ d
and Ked o K+ vy
is given in Table XIV.
TABLE XIV.

The experimental data and the theoretical values for the total

cross sections for the reactions K+d - k+d and K+d 9 K= n+P
[N
g, (Mev) Texp. Or - o
t e Sol. I Sol. II
i nds ™,
105 55 148
125 145 + 35
175 55 + 15
194 23 44
210 95 + 25
23

L. Alvarez, Proceedings of the Ninth International Annual Conference
on High Energy Physics (Academy of Sciences, U.S.3.R., 1960) p. 471



90

D. Coneclusicus. A study cf ti. Table XIV shows that the Dalitz
Solution I! is mere favorable compared to the Soluticn T,

It should be emphasized that some of the estimates made to get tle
compariscn with the data have been extremely crude. They have been made
only for illustration purposes. A mere serious test and application of
the model in question would require the computations for other angles
than 0° of the elastic amplitude including a more careful estimate of
the. virtual charge exchange - and this could certainly be done bty machine
calculation - as well as a d4irec*t computaticn of the break-up cross section

T (K+d=K+m+p)  within tre framewcrk of this model. Again, this
seems feasible and the results obtained in this thesis would seem to justify
further work along this line Our conclusion that Solution II is favored
by the deuterium data is the same as that reached recently by Chand(24)
and Dalitz whc have studied the same problem by an entirely different
method which is, however, closely related to the Brueckner mcdel, tinding
and recoil corrections being neglected. Our results (Table VII) for the
double scattering part of the amplitude in a model in wh%;?)such correcticns
have been included do not support the conjecture of Ch%pé fhat corrections

of this kind are unlikely to be important.

24
Private communication.

25

R. Chatnd: Thesis on K -Deuterium Interactions - University of Chicago.
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APPENDIX

Evaluation of the integral (3.89)

We shall evaluate the integral

o0

'
1= L F+5-0" + 4

Since

1 /
g+s-9% 1, (Y+6-9%- Ch)*

v - =)
LL §1S-L0+8y) Y+5-10-4,)

Therefore, we get

o0 od

J v - J gese LOx 42
) ‘;4-6’—'&.(!1-'7/1) ] (,,4_ S')l + Q*l/i)z
- [yz Lelk‘?w) A N (T A ’V“ ]
(75
= [J’z’(“‘(‘).’('}+f)*u* ’J %.

LT l/zi> : (A1)
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For L< 2 , We get

N - iaw)wo-w
L(’WD—LQ—’A) ‘[(?*'8)2*'('-&/1)1 d?'

= [y Ao (e s -7+ (=)
S =

x ac' (‘Hf |]
"l/z 0
= [ bajly+0)” (I-Q/’, +L(‘W—+a;llg [>
P;;l(‘} 9 +(-%) Y A41) . (A.2)

From Eqs. (A.l) and (A.2), we get for L <2

" 4y 1+4,) +
J00+s)‘+% [ ?%T’/l)—'f1 N LQ '*90

+ T(N)
}(( b,)” +SJ ! (3.89)
For 172', we get

| J”m:)-hwz—')
» (910 ) s ()

Egl:ﬂ(‘p{) + W) »L_@_D_ b ,_‘2__‘:]
[’KL&I(‘M)# (&«1-!)‘0:”_ L(w/m-w I};,'D C3)




From Eqs. (A.1) and (A.3), we get for 4 72

. = | + 4’;.1+SL i L{r- +°v:' £ |
J (ﬂ;n-% + Iy - '41{'1 “’}/%_—;}TSJ + L(‘W ,H»;;_
-5

2R(-4)" +c L

where T (§,4 ) is defined in Eqs. (3.90a) and (3.90b)
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