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ABSTRACT

Title of Thesis: Scattering of theK-Meson from the Deuteron.o

Anand Kumar Bhatia, Doctor of Philosophy. 1962.

Thesis directed by: Associate Professor Joseph Sucher.

A simple model is constructed to study the scattering of the

K--meson from the deuteron. This model does not treat the nucleon as

heavy and takes into account the multiple scattering, the binding energy

corrections and the ccntribution from the off-energy shelI scattering.

The scattering prohi r is investigated by using the Watson multiple

scattering expansion of the transitiornoperator t. Considering the

multiple scattering up to double order only, the t-matrix is written as

t= tp + tn + tc + tr

where tp and tn corresponds to the single scattering of the K--meson

from the proton and the neutron in the deuteron. te corresponds to

the bound state contribution and t. corresponds to the continuum state

contribution of the K -meson from the deuteron.

The interaction K-_P and the K--N is taken as a point interaction

and is of the form

tp = "

tn =

where ' and f/2 are the relative co-ordinates of the K--meson and the

nucleon in the center of mass system of the K--d. to and , are taken

as constants and are determined by using Dalitz solutions I and II

given by Ross and Humphrey.



The potential between the nucleons in the deuteron is taken as a

separable non-local potential which is such that the Hulthen wave

function satisfies the Schrodinger equation for the bound state of the

deuteron.

The matrix elements corresponding to the bound state and the

continuum state are calculated only for forward scattering. For any

other scattering angle triple integrals are obtained and need too much

numerical calculation.

The double scattering contribution is compared with the Brueckner

model and also the cc'respondence between the two models is studied.

The forward differential, elastic and total cross sections are cal-

culated.

The correction to the cross sections due to the charge exchange

in the intermediate state is calculated.

The results of this model are compared with the experirental data

of the K--d scattering cross sections to stuiy the predictions of this

model ;nd to find the favorable Dalitz solition.
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CHAPTER I.

INTRODUCTION

As neutron is not available in a free state, the scattering 'f

the mesons from neutron has always been studied indirectly mainly

through the study of the scattering of the meson from the deuteron.

The deuteron is taken as the target because of its simple structure and

also because it is a loosely bound system ioe. the average separation

of its constituents is large compared to the range of the two-body in-

teraction and it3 binding energy per particle is small. It would be

expected that each of the nucleons in the deuteron would scatter the in-

cident particle in a manner not much different from the way a free

nucleon would scatter the incident particle.

The problems of nucleon-deuteron, pion-deuteron, and kaon-

deuteron scattering are three-body problems- they have not been solved

exactly. Aside from this basic fact, many of the physical details -

spin dependence of nucleon-nucleon interaction, the presence of tensor

forces and exchange forces in the nucleon-nucleon interaction - in-

volved contribute to their complexity. Various approximations (the
(1) (2)

resonating group structure method * the Born approximation , the

1

H.S. Massey, Frog. in Nuel. Phys., 2, 235 (1953).
2
T. Yo Wu and J. Ashkin, Phys. Rev., 373, 986 (1948).
0. F. Chew, ibid., 7_4, 809 (19148).
F. de Hoffman, ibid., 78, 216 (1950).
R. L. Mluckstern and H. A. Bethe, ibid., 81, 761 (1951).

1
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(3) (4)
high energy approximation the impulse approximation several

(5)
variational procedures ) have been applied to these problems.

One of the approximations that has been applied to this kind of
(6)

problem is the impulse approximation given by Chew et al. In this

approximation, the incdent particle is viewed as scattering once from

either of the two nucleons in the deuteron- each of these scatterings is

viewed as the scattering from a free nucleon whose momentum distribution

is that of the actual bound nucleon. The only role played by the intra-

deuteron potential is the determination of this momentum dtstributiono

This approximation doe- indeed lead ti an expression (for example) for

the elastic neutro-deuteron scattering cross section and a form

factor for the deuteron rtructu(reo Bat this appro'ximation neglects

"potential" effects, multiple sratterirg Tffext9 i e. effects due to

the incident particle s s att-'rng more than once from the individual

3
R. J. Glauber , "High Energy Collision Theory", in lectures in Theoreti-
cal Physics, edited by Wesley F. Brittin and L.ta G, Danham (Interscience
Publishers, Inc., New York, (1959), Vol. 1).
4
G. F. Chew, Phys.Rev., 84, 1057,(1951)
S. Fernback, T. A. Green and K. M. Watson, ibid., 84, 1084 (1951).
L. Castillego and L. S. Singh, Nuovo Cimento 11, 131 (1959).
Y. Sakamoto and T. Sasawaka, Prog. Theor. Phyk. (Kyoto) 21, 879 (1959).
E. M. Ferreira, Phys. Rev., 111, 1727 (1959).

5
E. Clementel, Nuovo Cimento 8, 185 (1951),
L. Sartori, and S. I. Rubino;, Physo Rev. i,, 714 (1958)o

B. H. Bransden and R. G. Moorehouse, Nuclo Phys. 6. 310 (1958).
L. Spruch and L. Rosenberg, ibid., 17, 30 1960)o
6
G.F° Chew, Phys.Rev. W, 196 (1950).
G. F. Chew and G. C. Wick, ibid., a, 6 6 I.1952).

G. F. Chew and M. L. Goldberger, ibld., 87, 776 (1952).
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target nucleons. and the diminution in amplitude of the incident wave in

crossing the nucleus.
(7)

The multiple scattering can be taken into account by Brueckner

model. It is supposed in this model that the scattering taking place is

S-wave scattering from the two point potentials. The wave function out-

side the potentials is written as the sum of the incident plane wave, a

wave scattered from potential one, and a wave scattered from potential

two i. e.

- A." -' .,.BR (lol)
I -_R,) ?,-- R,.

The outgoing amplitude A is given in terms of the total ampli-

tude at R , by
. n 1, K,(1.2)

A +L~ Jwhere (12

is the K-P scattering amplitude (in the deuteron).

Similarly

P PA e.+ - I(1.3)

is the K'-N scattering amplitude (in the deuteron).

Solving for A and B from Eqs. (1.2) and (1.3) and substituting

these values in Eq. (1.1), we get an expression for the scattering

amplitude C -1 ( - , (%- - '

A e e19 ; 9 5 ((1.43)

KA. Brueckner, Phys.Rev., 8348 (1953); 90, 715 (1953).
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The first two terms in the numerator of Eq. (1.4) are the

single scattering (or impulse approximation) terms. The next two terms

are the double scattering terms. The denominator represents all higher-

order multiple scatterings. The propagator in the intermediate state

is e which is very large for the region if <I

In this approximation, the nucleons are supposed to be infinitely

heavy compared to the incident particle. Therefore, the recoil of the

nucleons is neglected. This method has been used to study the pion-

deuteron as well as the kaon-deuteron scattering. The validity of this

method is questionabl for pions and even more for heavy particles.(e)
Drell and Verlet consider the multiple-scattering corrections

to the impulse approximation in the calculation of the scattering of

it mesons by deuterons,

They calculated the scattering amplitude for the meson-

deuteron scattering problem by using t-matrix formalism. In this

treatment the binding energy, motion of the sources and the absorp-

tion of the mesons are neglected. Three models are given:

(1) Brueckner model of point scatterer with propagator .

This model has the difficulties mentioned above.

(2) We consider the scatterers to be of finite extent and

(9)
scattering from a separable potential of the type given by Yamaguchi G

8
S. D. Drell and L. Verlet, Phyf.Rev., 99, 849 (1955)

9
S. Yamaguchi, Phy,.Rev., 2. , 1628 (1954)
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In this model, we approximate the Schrbdinger equation describing the

scattering of a particle by a potential, by replacing the wave func-

tion which appears in the interaction term by its average over the

potential.

(3) The third model of momentum variation of the scattering

amplitude considers only scattering on the energy shell in the inter-

mediate state. In this approximation the intermediate wave propagates

as . This is smooth for I(< o Therefore it does not matter

whether the sources are assumed to be of zero or of finite extent.

Using these mod-1s, it is found that the double scattering

correction to the elastic cross section Ir - + T is of the

order of 10 percent or less and is model dependent. For the total

cross sections (elastic, inelastic and abeorption) as deduced from the

imaginary part of the scattering amplitude in the forward direction,

the correction is of the order of 10 percent or less and is quite model

dependent.
(10)

Fulton and Schwed have applied the Born and impulse approxi-

mations to calculate the nucleon-deuteron differential elastic cross

sections. In order to carry out the impulse approximation calculation

in complete detail, including, in particular, contributions from off-

energy shell two particle matrix elements, the assumption is made that

the two particle scattering is completely described by effective range

theory. The results of the Born and impulse approximation differ

10
Thomas Fulton and Philip Schwed, Phys Rev. 1. 973 (1959).



considerably. Their analysis shows that the experimental results are

described better by the impulse approximation, including off-energy

shell effects.
(11)

The Brueckner model has been used by Day, Snow and Sucher

to calculate the K--D elastic and total cross sections. The calcula-

tions show that the impulse approximation does not give sensible re-

sults. and, therefore, the multiple scattering contribution is

important.

One of the purposes of this thesis is to construct a simple model

to study the scattering of the K--meson from the deuteron, which does

not treat the nucleon as heavy. This model takes into account the

multiple scattering, the binding energy corrections and the contribu-

tion from the off-energy shell scattering. The scattering problem is
(12)

investigated by using Watson multiple scattering expansion of the

transition-operator t. The expansion is given by

t ttP + t~ + 4_, j (1.+5)l , t

where

-j

t - I (1.6)

ToB.Day, G.A.Snow and J.Sucher, Nuovo Cimento, 14, 637 (1959).
12
K. M. Watson, Phys. Rev., DI, 575 (1953)



and

ad , = K- + Q - - U - (1.7)

where U is the potential between the nucleons in the deuteron.

The other symbols are obvious.

In our calculation, we shall ignore the effects of the binding

energy corrections on t, and t_ due to the potential U.

The interaction between K -meson and the nucleon is taken as a

point interaction i. e.

where Pt is the meson position vector and = -

The and t are taken as constants. No further approximations will

be made in the calculations.

The magnitude of the t o and tf are determined with certain
(13)

modifications by using the Dalitz solutions of scattering lengths

at low energies, defined by

ST. (1.10)

where I = isotopic spin

For K--P system I = 0, and 1

For K--N system I =1

13
R. H. Dalitz and S. F. Tuan, Annals of Physics, D. 100 (1959).
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The scattering lengths are determined by the experimental data

of the scattering of the K -meson from the free nucleons. These solu-
(14i) (15)

tions are given by Ross and Humphrey

The interaction between the nucleons in the deuteron is supposed
(16)

to be given by a separable non-local potential, which is such that

in the case of the bound state of the deuteron, the Schrtdinger equa-

tion is satisfied by the Hulthen wave function

where

N

Using the potential deduced, the wave function for the continuum state

is obtained by solving the Schr6dinger equation.

The double scattering of the K--meson is shown in the Feynmann

diagram (Fig.l).

Figure 1.

14
K. Ross, "Elastic and Charge-Exchange Scattering of X- Mesons Incident

on Hydrogen". Lawrence Radiation Lab. Rep.. UCRL - 9749, June, 1961.
1.5
W. E. Humphrey, "Hyperon Production by K- Meson Incident on Hydrogen",
Lawrence Radiation Lab. Rep., UCR - 9752, June, 1961.
16
See ref. 9.



The matrix elements corresponding to the bound state and the

continuum state are calculated up to second order only for forward

scattering and put in a suitable form for numeri-al calculations.

For any other angle the matrix elements can be expressed in terms of

triple integrals which are not very easy to handle numerically. The

forward differential, elastic and total cross sections are evaluated

at three energies. The total cross section is c.alculated using the

optical theor ;M.
: v IT 4(oj

V(1.12)

The corzection to the elastic scattering due to charge exchange

in the intermediate state is also calculated. The Feynmann diagram

for this is shown in Fig. 2

- 7

Figure 2.

The results of this model are compared with Brueckner model

of S-wave scattering from two point potentials and also with the ex-

perimental data of the K -D scattering cross sections to study the pre-

dictions of this model and to find the favorable Dalitz's solution at

low energies.



CHAPTER II

K -D SCATTERING

Let K be indicated by index 0 , proton and neutron

by I and i

The initial and final wave functions for the K--D system can be

written as

4 (2.1)

,F4 = - - (2.2)

where cj and q' are the iritial Pnd finr. momenta of the K-meson;

K and F that of the deuteron.

Sh are the co-ordinates of the K-meson, proton and neutron, and

Introduce,

(2.3)

where tm, and mY are the masses of the K-meson and the deuteron

C:~

or R= -

, (2.4)

10
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The T matrix for the K -D scattering problem is given by

7 % V+ VCE(2.5)

where V = V1 + V2

V1 is the potential between the K--meson and the proton.

V2 is the potential between the K-meson and the neutron.

The Hamiltonian for the system is given by

H K -,,+ fk+ U+ V (2.6)

where U is the potential between the proton and the neutron.

The matrix element for the scattering of the K -meson from the

deuteron iso .

'M= K';1YTH4'L) =j Z, L" +_PTc
Now lt~alz {ct

Using Eqs. (2.3) and (2.4), we get

, + CR -- + _ ,, L_

- C + 
+

Mx + 714a -- k -i K)+Yd.

where . = _ - _ __ , - _ (2.7)

and ou oo _= d - '- (2.8)
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In the C. M. system of the K--meson and the deuteron, the

T matrix becomes

t = V + v. +o- + -V + -u] V (2.9)

where

4. frelative -

,. = fdeuteron = -

= binding energy of the deuteron

is the reduced mass of the K--meson and the
lot deateron .

= 01P " is the reduced mass of the deuteron.
Inp +"ff)

Using Eqs. (2.7), (2.8) and (2.9), the matrix element becomes

= ): ( - - - .3 K + ( C4

' 9'- E + i) gives the conservation of momenta

Matrix element in the center of mass is given by

X <t , tl , ) (2.10)

We can write
t = v+v. v (2.nz)

where, t(

V = V1  V

and [' I -' - "- - -- i-

From the above equations the multiple expansion of t may be

easily obtained in the form
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(2.12)

where is defined by

= + V(tL(2 -13)

and G is given by
(2.14)

We now separate t intc a "coherent" part tc corresponding to the

process in which the deuteron is always in its ground state while the

K -meson is scattered from on, nucleon to the other and a remaining

part which will be cal? A ": ncherent"o Thus we introduce P = (cP?

the projectin opeza-: *o- tht deuteron ground state and write

_. c. ? "(2.15)

where

and

On substituting Eq. (2.13) in Eq. (2.12) we get

where

and

<4.

In the nulDP p -,. :, ", w: sha-l ,confane curselves up to the
, e sratleringo T:er:-fo-. t-1 + -2 + Id where .d represents the

• Gnr ~~ K ratter".ng only.
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In this thesis we restrict our attention to the effects of single

and double scattering only. In the next chapter we consider a model

which allows us to compute the matrix elements of coherent part

t' e P t.' + " (2.20)

and incoherent or continuum part,

i, i (2.21)

in the form which allows numerical evaluation.

Using Eqs.(2.12), (2.15) in Eq. (2.10), we get

M = ., M .-i Mf. , ti (2.22)

where

i ('Cfl Ic 9) i =1,2 (2.23)

= < 9I C -P .,. : + (1."2) (2.24)

)2= ( ,A'. I , ( -.) (2.25)



CHAPTER III

MODEL OF THE K MESON AND DEUTERON SCATTERING

A. Assumptions. 1. We shall suppose that the interaction be-

tween the K--meson and the nucleon is a point interaction and there-
(18)

fore we can write

=~~~( -~S~~~ 1)

U ~~+ A)(3.2)

where < and o are constants. (For the physical K--meson scatter-

ing problem, t, and t will be determined by the Dalitz solutions

for the scattering lengths for zero effective range approximation for

K- scattered by free nucleon - See Chapter VII).

2. We shall suppose that the potential between the proton and

the neutron in the deuteron is a separable non-local potential U

which is such that the solution of the Schr~dinger equation for bound

state is the Hulthen wave function.

18
This approximation corresponds to a K--nucleon force range Vo short

compared to the separation e of the nucleon in the deuteron and to the
neglect of the binding interactions while the KC-meson interacts re-
peatedly with the same nucleon. This approximation should not be too
bad for and 4V S j

15
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B. Separable Potential and Ground State Wave Function of t

Deuteron. We introduce a separable non-local potential U which is

such that the solution of Schrodinger equation

the
for/deuteron in the ground state is the Hulthen wave function

(3.4)

where ' =- (3,5)

and = (3.6)

- _ is the binding energy of the

deuttron

Sch. equation becomes

Assume

U ow (3.8)

Now

_ (34(f)

j Cp{w~ WCe
/f
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Eq. (3.7) becomes

N ij ,e: _ (') - _ .(AIe-C 'C -) = 4 LL.--C(L') L C

Assume

LA () -- ' (3.10)

R. H. s. A -A2
__( (1.' 4w r"e'

- N ,"-A € I ,)l"

Eq. (3.9) becomes

A--
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Therefore

Eq. (3.12) gives the potential in the deuteron in the co-ordinate

space, we shall express the same potential in the momentum space by

taking the Fourier transform of Eq. (3-13)

Therefore, we get

- p(F.t(-yL e (3.14)

2r
Therefor

- ___(3.13

taf

- p~(. 't~) ____

Li (y2 (3.15
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In the momentum space we shall define

U( I )=- LL L((3.16)

From Eq. (3.15). we get

U (( +9 --1- .-
r2Sr

4r .t 2. T

- ~ 2.(3.17)

where

t - 0)(3.,18)
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C. Continuum Wae Function. Now we find the continuum solutions

of the Schr6dinger equation.

where '_
where(3.20)

and (3.21)

Eq. (3.19) is equivalent to

Substitating Eq. (3.16) in the above equation in momentum space, we get

Using Eq. (3.17) in E . t3.22) and multiplying by (p ) throughout,

we get

(K- r, t t) 41*) + '(')4' (3.23)

we shall suppose that

IT)- _____ (3.24)

Substituting Eq. (3.24) in Eq. (3.23) and solving for f(K), we

find that

f(K) (3.25)

In co-ordinate space

(i ) / J (3.26)
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Substituting Eq. (3.24) in Eq. (3.26), we get

K.f

40 K'+_ (K)____

/. - -J fs (3.27)

where

-1 ei L- r____

= - x (sum of residues)

The poles are at P- L(3)and f~ K +CC~

Residue at is

Residue at K-tL6 is ,fKie

( K +) 2K 2(K.2 +F)

I -13f 41'K

2 (3.28)
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Substitute Eq. (3.28) in Eq. (3.27), we get (See ref. 9)

rL~.Of ,f4 )

= =- ;c - A e-- e=

Eq. (3.29) is the required continuum wave function in the presence of

the separable poteni.i i U.

In the next sections, we shall compute the single and double

scattering of the K--meson from the deuteron.
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D. Single Scattering. For single scattering, the matrix

element is

M,= 'h ='Cp I II v dropping the

index .

Using Eq. (3.4), we get

Using Eq. (3.1), we get

-~~~~ eL-%(~C C 2  d x

4 Tr ~00 e e7 y

--
where . j'1-.') /
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Using

00

____ -~. 4aj)f(3030)

we get

- 4w1r~ N t 14 +0 (3.31)

where I =

Similarly, we get

L ~~ 4ol" + (3.32)

From Eqs. (3.31) and (3.32), we get

M T T N "' = _ _ _ _ _I II_ + ( 3 3 3

S- - (+ 9) for (.34)

+for 600 or (3-5



2,5

E. Double Scatterin-g Bound jj Coherent tering

Contribution. Using Eq. (2.20), coherent scattering contribution

is given by

C n 1 --- (1) (iJ

,- (A Z-z (3.36)

Introducing ae Wt)

and P c~l

in Eq. (3.36), we get in an obvious notation

Now k(% E c' 5'M

Using Eq. (3.1), we ge.

<jo '(P t! e Io =J .-Vt)'o L 4 /

-~ ~~c. &tj1P ) i~~d f/
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Let

Using Eq. (3.30). we get

.' - ') . 1 .fl
Let T 1~~ ) = - -

i _si (3°38)

Similarly

Substitute Eq. (3 39) and Eq. (3.40) in Eq. (3.3?) we get

4- + 2)

1T N- k- 4T k~(
NJ (34



2?

For any arbitrary angle between ' and , the above integral

reduces to a triple integral which is not very convenient for numeri-

cal evaluation. Therefore, we shall evaluate it for the forward

scattering only i.e. we shall take S= ' ubtItuting

in Eq. (3.41). we get

C

m - - - (i' I zx

Let

Therefore

N, ea (T+o
J- U)
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Let

1 '-1

Now

-_ , _ t .. ... .. < ,2, . _ t, - I + -

We get

C-I

-N LT j <d 1J4) cy.) CQ)

L.

2, 2 '- I
7 Jll!l
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Therefore,

L_ 1,t,) (3.42)

For = O q/ from Eq. (3.41), we get

- - L7 LZ". (3-4'3)

where G

T'fft- 
(344)
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1. D lea Coninm State S

C r uio The double scattering in case of the continuum state

is given by -1

Kci~~It\ 4. 2-i* - )

We shall use Eq. (3,29) for the continuum state of the deuteron

in the intermediate state. Since the Eq. (3.29) includes the effects of

the potential U of the nucleon in the deuteron, we have

+ 7- (3.46)

and < L ,- P) = 0 ; < 1(1-P) o (3.47)

We get, on introducing

and I4) tj
t JI

in Eq. (3.45),

.. <L t - (3.48)

where

a Fi =(3.49)

and E= /3 A(3.50)
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we can write Eq. (3.29) as

4~(f j.± X~})(3-51)

where

4(i)(frQ(3.52)

and

t 4 - .5IL

Substituting Eq. (3.-, in Eq. (3.48), we get

M~ + 4 ~*~Th t2

where

(IE - L-I

=~ ~ Et_ (',pI 1  A) (3-55)

.~Jja ")
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1. C mo . We shall compute the matrix

element (' first.

(} i / -

{fc~~: i~q't1 & )( tE~*L~)<t. It~j~J (3-54)

The Fourier transform of Eq. (3.4) is

If(?) 19- _ (3.58)
where N 3.54

Now

Using Eq. (3.58). we get

wN (359)

where

t +3s~
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Similarly

> 2~~ (3.60)

where ( 6d)

Using Eqs. (3.59) and (3.60) in Eq. (3.54), we get

(N- +.OO OLt

2 
(7 1- T  

+

since

(18)We shall put

CI) M: = . )-M (+,- (3.62)

where

- - - (3,63)

18
This separation is only for computational convenience and introduces
spurious divergences which are cancelled at the end.
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We combine denominators in order to make the denominator

a function of + and only, by using the Feynmann formula

LE -,-L ux L,,, -3(3-64)
- L

Let

we can write

where

-- - R-1)u -)]j -

or

S(.+ 65

k + 4 oL -e(365
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where

44

4 4

(3.66)

+ . +LL +v % U- (3.67)

C + (3.68)

-- _z u. cL,-

Making the transformation t - r we get

Substituting for I from Eq. (3.65), we get

0

Next, make the transformation

We get

N~t~ 20S) Va. d f ----- 1 (3.69)
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We introduce the six dimensional space given by

+ = Z* (3.70)

so that

(3-71)

We can show that in 6-dimensions

afo" (3.72)

Let

4 .(3073)

Using Eqs. (3o70), (3o?1)Q (3,72) and (3.73) in Eqo (3. 6 9) we get

M 3 -14 Jj R A ")d a

or

to M______ R - (3-?4)

Now

2R A _. _A2.-t ,) 3 , ,-( - + +,- ( A!,,) 3
P_ + "r1

-___ _ _ o_

: RWA"!I Y4

* I . -

(Lt 
L 3/A2

- - ~ .. L JA' 2 1
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Since is given by Eq. (3.62). the factor 3Xvg- -

Lt )jIR) -/L occurs twice with positive and negative

signs. Therefore it does not contribute.

We shall prove for (,O and -

Rap- LA"~ + Z

Let

^' : - C + ~e,-LL)

________ .+A- i-u.)

Ij. l(RA)+ CL (_U) 2 1 + L PO1 -A

4 I- L.. +

o

--a'L,-blb ,uh. ,- I"IA 1̂4 C'- ') f
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+ -A -"/,._

E/...U),,2

We can write

- _ -- ['!' - - '  ;!<°

A'2)y 2

where

- 0 if x (3 76)

From Eqs. (3.74) and (3.75), we get

IIM, , ' (A 7' , o') -. 7 -+
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Using Eq. (3.62), we get

I 
z

IS~ mil(4c1) + M,,~ 1. ~ Mill(~

c - A (0)

._ 0(.- A'aCe(O)) -717 L J1Ir

(3,7?)
where

4. C

= x y C (T%')(3.78)

where

(A .). + ,- )) u- W (I- L) , (3 79)
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-L - ( (3.80)

C, + L5 44&) fie (3.81)

and

r- X ( P -A")

+ AL T(3.82

_Lir. 4(-'(> Lw -n- {- (s ,). LT r (A'(/)j (3.82)
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2. Co tation 2 and (. Having calculated

we shall calculate OL)mr from Eq. (3-55)

Using Eq. (3.52), we get

Using Eq. (3o1), we get

-v
Substituting for *we have

(14 )
L(.x e

(N (t Z 41L
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Introduce . =

We get

-. +,1t.,) - (, 4 )+ '-t t .1

+ + .')

+ terms with 4! -

= ~)~ ~+-~ -Q~-LtjUI(

+ +

4 -I 4 I)

ILI

.,~w.+<,f 7 ru. ,-+ -

~-+ . + __ ,

2 (3-83



43

We have already proved that

: -- --i(3.60)

Forward Scattering, .

Using Eqs. (3.83, (3.60) in Eq. (3.55), we get

(2 T( )

M2 = w46t C(-kk it K'

((P +1- 2  t +

-I 1

Note: . has -sign before it.

U sing

we can write

+~)
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where

0

22-

-A

~KcL J(3-84)

+ . . -

-+ -)+ ab-)1'5' - Lj+cL7+ cJ-I
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From Eq. (3.56), we have

(3+ T s-r' '

+ 4~~

S( + y+o-+ - (" +5] 

Comparing it with Eq. (-o84), we see that J

.l t (384)

Also

(2 IT)~ 3

Comparing it with Eq. (3-85), we find that

9g'I - ( ,M)
,LL~ -to 3t5'
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It is obvious from Eq. (3.34) that if we make the -transformation

t- + 1 3.86)

we shall have the angular dependence in the integrind only in one of

the denominators, and there is no angular integration with respect t

Eq. (3.84) becomes

LIL r -

+1~~' -WLt) 4- +4+) )~~~

Further, we can simplify the integration over t, by the following tran,-

formation

Eq- (3.87) becomes

~iC-1 s
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ct j (i -%c 5.) (1 4

In he valatin o 1Z~~t~ ,we need the following results

fL4~~ S9~ (~> + T (6,)
Jo~~L) - j 44aQg)il.(3.89)

where

T(9) \c! -(.9a

IT 2-~ (3.90b)

J +9 *&+g2 -, gI 1 (3.92)
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2t~ft 2C. (3093)

See Appendix (1) for Eq. (3.89)

To evaluate c first perform the integration over

using Eqs. (3.89) and (3.91), we ID

(s ) I + -. + "L T G

+ (l /- - 4 -

- - ++ Hy

Let

TC~,) - ~ 4~~~) (3-94)
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We get

( I: - N I fe

Using Eqs: (3°92) and (3o93), we get

+ l i t

, 2 i C /, , , t + '. + r, y (-V 4-(t)

Si plifying ard using E_qo (3o58), we get

4 .i . -

K . Ir [, !.L vta4 I-).
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++ +<"" J h~c ,-/- + .
(I -rA1l-d 0 +K f"+)

. j 1+ , .1 .i..Cei-_C C t)

Define

L 1 (3,95)

+ I (3.96)

~~ T(6& 1 '~c2 q)1 (3097)

Using Eqs. (3.95), (3.96), (3.97) and (3.98), we get

From Eq. (3.84), we have

1"3M I
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From Eq. (3.53). we have

At~l + cdLt- L-t - 1

where

2.S= 4

We have,

(At" +

(3.100)

Adding up Eqs. (3.99) and (3.99) and using Eq. (3.100), we get

+ , -4)f+ t" 
-j

N. ( t" + O.t - 4) - (-L) (3.100)
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We shall find now L it Re +N IT

'10 )

-Using (- + C) % o~r:+ ,, we get ,o

F. a (3102)

From Eqs. (3.97) and (3.101), we have

,,d

4(t) J ' j ) I')) .

N4 t Q +4
kA

<Q +t,, "

- t
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where

Ot I T (E (3.103)

For 0 , substituting Eq. (3.102) and (3.103) for Eq. (3.100)

- 14 (3.104)

where = (3,105)

and t 5 W' +)IcLA 0 +a-t2 ) 1 (310)

Imaginary part of &K+ ,

Referring to Eq. (3.84)

Sinoe + y )rYt e n te a u is +cCe (y

only t 2 contributes

Since t cenntbe negative, maximum/I is given by

IS A=o or -'L
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Therefore, varies from 0 to

Let

We get from Eq. (3.85)

ITT)____ 
L)

Using Eq. (3.58) and the limits rjf, we have

L ~,r t~ )'* I +

In the above expression t
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Using Eq. (3.92). we have

L I I o -t

+ ( *+ L) -

L2)' L

J0

Now (~f ~ ~ (+) . p

Q(,- L  2LL + -C(+L) 4_ _-L(_-L)

We get

aL I() W t+ L + 2 t+

and



56

+(t-Lf

Therefore

__ = LL 2 4j '~.)(t+~ -f'2 L)- l+

(t '-L) (1 4 /t-L9

t___L (3.-'0-7

where

it -LI

Using Eqso (3.107) ard (3o91). we get by integrating over y

(a Li..am)V I e 1 ( + (t

Q

TIW) L t -

+ '4L%7W"2Lfj. "& ;

L~



- L)

L~

where

M = (t L) _ (o9)

Let , + +Q

L

Using Eq. (3o10), we get

M' [=~i0 4- LJ lv) t4Et t___

Comparing Eqs. (3.85) and 3.85), we find

= ~ ~ 'CatL !G<Uf l 1L* )~

We get the imaginary part from the last two expressions,

y I,, ,4 = ' -I) A2 +. j (. T+- t-9 + (A t4+ °- T]

(2192 2 71- I ) Ji I- (w 1 + ,-t -j w_

where, we have used the results ofEq° (316
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3. Copmutation 2L We shall calculate 4i now for

Referring to Eq. (3.57), we have

J 3 
'A

Using Eq. (3.83), we get

=(-Z A) t4rr)4f~ tJ~ (t?+(a)

Ii -

where,

+* (( 4A <~t)1+ (c4.' - 5, . (J )-)' + V1)+ &-)

'Cj~k[~ 4 ~~g ~-+M2-Cp.)+(.j~

(2TT)4 fp"Ll(3.[1,2+
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and

krt) (~+.).~,t -

t + (3-113)

We shall compute now, P

As for 4M, make the transformation t-f-+1 in Eq. (3.112) and

let

~t ' I, t

in Eq. (3.112)

(,)4 4oo

3+ + / + +( ' .+ + L-)" + ,+ , + < / uIA
1+ J ' 0 + 0 +-IxOL

+~ J(O' Ik~
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Using Eqs. (3.89), (3.91) and (3.93), we get

(4) Go I J I IL 2. ( , '

= -phc it, 1 4 L ~ -)~ t 4 )-g ... _

L I

!I r

R ' ,- -(-2 : & -. .- + J _ )

+ y"(y - ', ' C /Z -'/)
-r4

Using Eq. (3.94), we get

+ ++ 6t ,, , 1

' L "to-" .+ jj ' )
+ 4t.,W
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Using Eq. (3.96)° we get

ATT ____ +_____ t-(3__4

where

Ctt) (TE " 1) 3-115)

We shall compute now % ',

For Eq. (3.113) using the calculations given in we get

= ' M.. t. t'. dCkC- 1,;IL + 2.L

2 -
LLM +~

L 2L

where M and T and defined by Eqs. (3. 109) and (3.110)

i.e. we have used the result

xI-

~Ji ~ ~~+L1) - ((p+-L)1)-( 4 j. 1 ) .

(~pY4L /1)2 L
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Using the properties of B-function, we get

~7

~+
4 - ...

____y__tj r- L-J -.'

t Frj/z I-T
I-A,

Svaries from 0 to aseor

Hq( * -L I' iN 4: : I Z fJfl t VLT'' Jv + T1' " ) -  -

__-___ (3 .116)

0 __ + -
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We shall find now M I L1

Using Eq. (3.101) in Eq. (3.315). we find

XJ 
4 A+ E12 .L4 to,

where

jto (3.117)

Using Eqs. (3.102) and (3.317), we get for - 0

N- t [ (J '(t) KL) (3].8)
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is given by Eq. (3.42)

For$=-o , is given by Eq. (3.43)

+ ((N + N 14

is given by Eq. (3.77)

MQi +N ) is given by Eq. (3.100)

r 0 ) is given by Eq. (3.111)

is given by Eq. (3.114)

,( is given by Eq. (3.116)

For 0

RC, I + , (N ) is given by Eq. (3.104)

R. M, is given by Eq. (3.118)

The matrix element for the scattering of the K--meson from the

from the deuteron is given by
c i
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H. Correction to Elastic Scattering D3e t2 Charge Excange

in th er State. We shall calculate now the contribution

due to charge exchange

2. + (+

We shall suppose that

E, -L=) for the process 1. (3,119)

S= .4CS(t -f//) for the process 2. (3.120)

where !' and are constants and will be determined in

Chapter VII. There is no direct charge exchange of the K -meson with

the neutron.

The Feynmann diagram for the charge exchange in the intermediate

state is shown in Fig. 3.

P

Figure 3.

The matrix element for this process is given by

- < t 41,(3.121)
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-y

.- : -? P,- - V C-) t 1 /') (3.122)

Unn is the separable non-loqal-otential between the two neutrons in the

intermediate state.

*4  and L are defined in Eqs. (2.1) and (2.2).

Introducing
T_.I< ) , f -= C -, ('<.,)<%(c.,t

and similarly for 4,, in Eq. (3.122). we get

< 4 ~~~ 49,P.) %f ~ # d~ i,.

In writing the above expression, we do not have to consider the

Pauli exclusion principle, since the additional terms obtained there-

by, are already included as part of the single scattering. Fig. 4

represents such a diagram.

P

Figure 4.
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This actually represents impulse approximation contribution.

There is no double scattering taking place at all as the K -meson

is being scattered from only one particle.

Using Eqs. (2.3) and (2.4), we can write Eq. (3.121) in the

center of mass system. The matrix element in the center of mass

system is given by

VM el ( etL t, e.)L i (3,123)

where t and % are defined in center of mass system.

In the plane wave approximation, we have

Gnn=G i with- U =O

Proceeding exactly as in Chapter II, we can write

(3.124)

Comparing this expression with Eq..(2.25), we can.

write

0 +  
(3.125)

The factor of I appears in the above expression because in Fig. 3.

we can not exchange the proton and the neutron while the expressions

for ( 2.Q)) )includes the exchange of the proton and the neutron

as shown in Eq. (2.25).

We can define the total contribution by

MT 1 M j(3.126)
The treatment for charge exchange is not exact, but does give an order

of magnitude of the correction to the elastic scattering cross sections.



CHAPTER IV

NUMERICAL EVALUATION

Sinze Scatteringo For any 9L and 0 0

M, + ts 4 L (3.25)

Double Scatterinao The calculations have been done at

three energies L = 0 M 105 M U/ and Iq4 M v_

Boud State. The results for the bound state forward

scattering are given in Table I.

TABLE I C
Values of the matrix element M12

C

0 0 -27.4 - 0
-I

105 .42 - 16.4 - i 12.9

194 .78 -10.1 -i 13.9

where 3= Li. (.105)

68
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Contiau jjate. The results for the continuum state

forward scattering are given in Table I7.

TABLE I
Values of the matrix element P112

____ _ _ ___ __ 2 + V j 1______

0 -5.0 1 0 18.2 1 0 -6.1 +14.1 -10

105 - 5.9 -i 1.7 21.1 - 1 1,8 -5.9 -1.34 18.6 .i3.4

194 -3.8 -i 2.7 16.2 1 1.0 5.1 -11.1 14.6 -19.5

Now

The results for M are given in Table III.

TABLE III

Values of the matrix eleirent M

M

0 t +t - 7 (13.3-io)

105 - Z (2.2-i6.3)

194 t 4.4 -123.-3)
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Charge Exchange. In the plane wave approximation. the total

contribution due to charge exchange scattering is given in Table IV.

TABLE IV

ex
Values of the matrix element M12.

0 !-(5.0 +i 0)

1o5 - (5.9 + i 1.7)

- (3.8 + i 2.7)

where W = , t2

Now total matrix element is

M" 7 = M +

which is given in Table V obtnined from Tables III and IV.

Table V

Values of the matrix element MT.

0 t Z(13.3-i 0) - Z(5,0 + i 0)1

1 o + (- Z'(5.9 +  .

194 + t' + (4.4-i23.3) -a (3.S+ 12.7)



CHAPTER V

BRUECKUS MOD

We have shown in Chapter I. that the scattering ampli-

tude for the K -meson is given by

--~~1 z+ .L + o - - -.

i-

where

r -_,iI,

We can write

and4/

We get

F4 L[ e+ e

1 + e

71
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(19)
where

=/ (5.2)

Since the scattering of the K -meson from the deuteron can

take place whatever the separation f and the direction of f may

be, we have to average over f and the direction of f •

Anticipating thf spherically symmetrical wave function for the deuteron,

we can average over the angles between the f and 3, and f and

/ ,we get

(5.3)

where

~f

1j CsI (5.5)

is the angle of scattering of the meson in the K--d center

of mass system.

Here, C is the final K momentum in the K'-d center of mass

system. In the above equations, lp and 1 are the K_-P and K--n

scattering amplitudes (in the deuteron) and are related to the free

19
See ref. 11
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K--nucleon amplitudes ( ;P and . ) by

1P 4, (5.6)

Where Pi are appropriate reduced masses, 4p and 4 are given

in terms of the scattering lengths AO and A1 by

+ A2

(5.7)

is the K -momentum in the K nucleon center of mass

system,

'o ", y (5.8)

where IL is the K -momentum in the laboratory system

The scattering amplitude from a deuteron is given by averaging

over allf. Therefore, the scattering amplitude is

<() KfQ) J~eI~ &)& (5.9)
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We consider the contributions up to double scattering only

Double scattering approximation.

4% + 2rK <eY

where

PCe)- - + L , ; -

,+ 4 1(40( 2+ ?'+I)9..PI+ LP,#)

+ similar terms with - 1 (5.12)
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P(I-=oi) L 2 ,, 1 + 1P$:I4o(, .- P='+"

IMs. e/) O-O) 4,a + (P.1)_ 40

+ similar terms with 4 j -2( similar terms with c4 OP)]

(5013)

In Eq. (5.13)

:( /.,,a. . I. " - £,c.' + 0III
The values of (0) are given in Table VI,

TAME VI

Values of the double scatte:ring contribution g(O)

.L 5) _________

O .57 +iO

105 .38 + i .24

194 .21 + i .27



CHAPTER VI

A. COMPARISON OF BRUECKNER MODEL WITH THE MODEL GIVEN IN CHAPTER III

To compare the two models we should express +- and ta in terms

of Jp and % .

Consider the scattering of the K-'-meson from proton. The scatter-

ing amplitude is given by

ft= - # K%' t/)

where 1k and are the momenta of the K -meson in the center of mass

system of K--P system.

~ u (Using Eq.(2.J))

Therefore,

41 C- -<_ l ('1 - b- - )l

(6.1)

If the proton is bound in the deuteron, then the effective ampli-

tude of scattering is

SY7 (5.6)
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since the amplitude 4 is proportioned to the reduced mass of

the scattering particles, we get

1P.P P

Similarly

C (6.3)

Substituting Eqs. (6°9) and (6.3) in Eq. (3.105), we get

-~ ~ (6.4)

The scattering amplitude of the K d scattering is defined by

S- M (6.5)

Considering only the double scattering without charge exchange in the

intermediate state, the scattering amplitude is given by

66d )
- r (6.6)
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Making use of the results for MI., and Mrgiven i. T:Ales I

and II in Eqs. (6.4) and (6.6), we can find the values of

S 1 at various energies. These values are given in

Table VII along with the values of ( 0) (from Table VI) which

represents the corresponding expression in the Brueckner model.

Neglecting the continuum state contribution, we calculate the

scattering amplitude for double scattering due to

the bound state of the deuteron. These values are also given in

Table VII.

TABLE VII.

Comparison of the double scattering contribution given

by Bruezkner model and the model given in Chapter III.

0 .93+ 1 0 .45 + i 0 .57 + J 0

105 .56 + 1.4 -.07 + 1.55 .38 + i.24

194 .36 + 1.47 -. 15 + 1.79 .21 + 1.27

We corcl-iae, on comparing the 3rd and 4th columns, that the Brueckner

model is quite unreliable for 1 b loo Ne , especially for what would

bp the real part of f if') and 9were real. Comparison with the 2nd

column shows that in some sense the Brueckoner model approximates the

effect of tle continuum states very taily, agreeing much better with

just the hcind state contribution. This result seems reasonable from a

pvs.caL point cf view
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B . CORRESPONDENCE BETWEEN THE BRUECKNER MODEL AND THE MODEL GIVEN IN CHAPTER

We can deduce the Brueckner model from the model given in Chapter II

The K -d scattering amplitude is given by

-~ (~I, <$p -+ t + IL+ -- ~)(6.7)
ar

Using Eq. (3.1), w-7 get

to e (6.8)

where is defined -in Eq. (3.34).

Similarly

<p t!,>= ~ - - ¢  (6.9)

Now

where EL and Et are defined by Eqs. (3.49 and (3.50).

Let us suppose that Et is replaced by some average value Et and

2 A(6.11)

20
Taking U = C
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Using Eq. (6.11) ir, Eq. (6.o), wp get

-'-!

Using

A "g -- ... _d - .... .. . ...

we get

I 4z

( + )' / .. 1) I,( '),i
air
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Similarly

,T 
(6.13 )

Substituting Eqs. (6.8), (6.9), (6.12) and (6.13) in Eq. (6.7),

we get

< t, (6.14)

Using Eqs. (6.1) and (5.6), we get

u I: "(6,15)

and

t! ' t(6.16)
2r

Substituting Eqs. (6.15) and (6.16) in Eq. (6.14), we get

-- ') -f -+ '

4L Ct)I~e, (6.17)

It is obvious that Eq. (6.17) is identical to the scattering ampli-

tude obtained by using the Brueckner model except $ is replaced by .

If Et= EB' we get @ = 9 and two models give the same scattering ampli-

tudes. It seems likely that some choice of , such that , might

give better agreement with the results of our model calculation (See

Table VII, Columns 3rd and 4th). This would be interesting to pursue a

further investigation.



CHAPTER VII

COMPARISON OF THE MODEL GIVEN IN CHAPTER III

WITH THE EXPERIMENTAL DATA.

A. Computation 2L Cross Sections. In this chapter, we shall

try to compute the differential, elastic and total cross sections.

As mentioned before in Chapter III, the matrix elements fo:- any angle

between a and I' red- ,e to the triple integrals which are hard to

evaluate, the differential cross seotion is available only for the for-

ward scattering. Consequently a rough estimation of the elastic cross

section is obtained by using the relaticn

where - is the differential cross section in the impulse

approximation.

The total cross section is calculated by using the optical

theorem

o*;. - 411 . (7.2)

82
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The scattering lengths : 4P and f, defined by Eq. (5.7) are calcu-
(21)

lated by using the Dalitz Solutions for the scattering lengths in the

zero range approximation. The scattering lengths are:

Sol. I A1 = .02 + i .38

Ao = -.22 + j .2-.74 f

Sol. II A, = 1.20 + i .56

Ao  - .59 + i .96

The values of and % defined by Eq. (5.6) are given in

Table VIII,

TABLE VIII.

Values of P and

105 I .03 + i 1.05 .02 + i .41

II .26 + i .91 .90 + i .88

194 I - .01 + i .78 .02 + i .37

II .17 + i .81 .59 +i .83

21
See refs. 14 and 15.
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0
Using the definitions of t i anrd t2 given in Eqs. (6.2) and (6.3)

and the results giver n Tables III and VIII. we can find the scatter-

ing amplitudes . The results are given in Table IX.

TABLE IX.

Numerical values of the scattering amplitudes.

C Sol.. 7

105 I .05 + i 1.29

II 33 +i 1.38

194 I .08 + i .93

II 12 + i .89

(22)
The differential. elastic and total cross sections are given in

Table X. The elastic cross section is calculated by using Eq. (7.1).

TABLE X.

Values of the elastic and total cross sections.

VI

105 I 16.7 110 383 1

II 20.1 132 410

194 I 8.7 35 150

II 8.0 31 142

22
As the coulomb interaction is significant at low energies, the
cross sections are not calculated at o MU /
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B. Contribution Due Charge Excne. The scattering ampli-

tude for the process

is given by

I AA I A
It is obvious that for the inverse process

+ ' K+P

we have

The corresponding expressions for t , ") are given by Eq.(5.6) with

p and < replaced by ip and .

The order of magnitude of the contribution due to charge exchange

in the intermediate state can be estimated easily. We can write the

elastic cross section as

Im vv +I+DLRe (7*3)

where M + M11

and M
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Using plane wave approximation in the evaluations of the

values of 2 Re + r at e z 0 are calculated by using the

Tables III and IV. The results are given in Table XI.

TABLE XI.

Ratio of the charge exchange scattering to ordinary scattering.

Sol. 2 Re i

105 I -. 24

II .25

194 I -. 17

II .18

It is obvious from Table XI, that the contribution due to charge

exchange in the intermediate state is small compared to the ordinary

scattering contribution. However, if anything approaching say 20%

accuracy in ccapating cross sections is desired, these effects would

have to be included.

If we take the plane wave approidmation in the charge exchange

contribution, we can calculate the cross sections using the Table V.

The results are given in Table xMo.



87

TABLE XII,

The cross sections including virtual charge exchange.

,0 {.KA so0 7- { °)

105 I 1.28 + i 1.15 14.0 92 342

II °82 + i 1.44 27.5 180 428

194 I -.01 + 1 .86 7. 29 138

II .21 + ,6 9.7 38 154
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C. Break uM Cross Sections and Comparison with the Exoerimental

Results. A crude estimation of the absorption cross section of th:

K--nucleon is made and the results are given in Tables XIII. We shall

take &L al -

where = -

and -_

Using the Table XII, th, results for (O-r - 0- ) Ar, alo given in

Table XIII.

TABLE XIIIo

Values of (UT - 0 L).

Sol. r -

105C I 181 106 287 55

II 155 125 280 .148

194 I 67 48 115

II 66 44 110 44

We have

- 9.( ICL-A K+a) + -(<+'-k±-o ) K- 4 P' - -ry

Therefore

- -( 4 K + A + KF+ J-r, (72.4)
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The experimental data(23) for the total cross sections for the

reactions K°+C 4 ,-+ O&

and W -[ -* p. + Y

is givten in Table XIV.

TABLE XIV.

The experimental data and the theoretical values for the total

cross sections for the reactions K-+a - k'+ c and k-+c4 -4 K'- -n

IL (Mev) CFexp. C-T - a-;
Sol. I Sol. II

105 55 148

125 145 ± 35

175 55 15

194 23 44

210 95 +25

23
L, Alvarez, Proceedings of the Ninth International Annual Conference

on High Energy Physics (Academy of Sciences, U.S.S.R., 1,60) p. 471
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D. Conclusic > A study cf tt- Table XIV shows that the Dalitz

Solution II is more favorable compared to the Soluticn I.

It should be emphasized that some of the estimates made to gL The

comparison with the data have been extremely crude. They have been made

only for illustration purposes. A more serious test and application of

the model in question would require the computations for other angles

than 00 of the elastic amplitude including a more careful estimate of

the. vTtu charge exchange - and this could certainly be done by machine

calculation - as well as a direct computation of the break-up cross section

-( K'+&-PCn + P) , within the framewtrk of this model. Again, this

seems feasible and the results obtained in this thesis would seem to justify

further work along this line Our conclusion that Solution II is favored

by the deuterium data is the same as that reached recently by Chaad(24)

and Dalitz who have studied the same problem by an entirely different

method which is, however, closely related to the Brueckner model, binding

and recoil corrections being neglected, Our results (Table VII) for the

double scattering part of the amplitude in a model in which such corrections
(25)

have been included do not support the conjecture of C#W that corrections

of this kind are unlikely to be important.

24
Private communication.

25
R. Chand: Thesis on K -Deuterium Interactions - University of Chicago.
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APPENDIX

Evaluation of the integral (3.89)

We shall evaluate the integral

IV

Since

I

Therefore, we get

-"0 + )J

' ,-.(A.1)
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For t 2 ,we get

,- - c-L0

From Eqs. (A.+) and (A.2), we get for ( A

- +)4~ /+ T() (3.89)

For 1 7 Z, we get

[ 0 44-) L , - ( - k
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From Eqso (A.1) and (A.3), we get for t 2

+ T(3.89)

where T (C, t ) is defined in Eqs. (3.90a) and (3.90b)
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