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ABSTRACT

This report considers an efficient method for utilizing
the redundancy of the transmittible language to improve the relia-
bility of a digital cammnication system disturbed by additive
non-white gaussian nolse. Namely, the reliability of digital sys-
tems using orthogonal and binary digit codes™*2 is improved by
introducing an uncertainty region at the receiver. This method
is an extension and generalization of mill-zone recepfl:ion3 pre-
viously applied to the improvement of binary transmission in the
presence of white gaussian or peak-limited noise. It is shown
that, by permitting a small percentage of mulls to be printed,
considerable improvement in relisbility is achieved. In additionm,
it is shown that communication links using orthogonal digit coding
afford greater reliability than corresponding links using binary
digit coding. Performance results are given for several different
codes for the case in which the demodulated gamussian noise power
density spectrum increases with increasing frequency. Such a
noise power density spectrum acts as a weighting function which
confines the generated signals to the available band of frequencies.
A geametric interpretation of the results is given in terms of n-
dimensional Euclidean space. Applications to feedback systems

will be discussed in a future report.
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I. BACKGROUND

The transmission of information through single link uni-
directional commmnication systems requires both the selection of
an appropriate set of signals, {s4(t)}, 0 <t < T, and the design
of a suitable detection process at the receiver. When the channel
interference is additive white gaussian noise the key results are:d

1. The optimum receiver should use correlation techniques
(or the equivalent) in which the received signal is multiplied
with each of the possible signals that could have been sent.
The product signals are then averaged over the signal duration.
That averaging process yielding the greatest output at the end of
the signal duration indicates which signal is most likely to have
been the one sent.

2. The design of optimm signals of average power S2 is
based on the distance parameter

T

Dyy == I [s1(t) - sy(t) Tas (1)
0]
The distance parameter indicates the distinguishability between
pairs of the signals as an equivalent amount of energy per message.
3. One optimum set of signals can be constructed as follows:
Under an average power constraint, S2, vhen m bits of in-

formation are to be transmitted in the time T with the least error



probability, a basic waveform ¢1(t) of duration T/(2® - 1) 1s
chosen, subject only to the normalization that the r.m.s. value
is unity. The transmitted signal consists of strings of +Spi(t).
If [+5¢1(t)] denotes a one and [-Spi(t)] denotes a zero, the
strings resemble in structure a Slepian (2® - 1,m) group code.
At the receiver correlation detection of the entire string is
used.

This signal structure is considered an equidistant code
because the distance between all code words is the same. If the
equidistant code is slightly modified by permitting small ine-
qualities in the distances, while the total distance

> &
Dl"%z Znij: (2)

i=1 J=1
143

remains at its meximm, then either the transmission rate can be
increased or the bandwidth of the system can be reduced with only
a small increase in the error probcbil:lty.l

An alternate procedure is to select a set of orthonormel
vaveforms {@x(t)} each of which is of duration T. The optimm

signals are then of the form



1
s1(t) = ) e1kSou(t) (3)

k=1
in which eq) = = 1. Note that this is a parallel transmission of
the basic waveforms rather than a sequential transmission. An
optimm signal structure again resembles a Slepian (2" - 1,m)
group code if the k"D arthogonal waveform is identified with the
k'! digit and the corresponding two values of ey are identified

with the binary digits. The optimm distance parameter is

h R
DiJ:_ziam_:_f’i"J (4)

when m bits are transmitted in the time T.

When the interference is additive gaussian, but not
white (i.e., the noise power per unit bandwidth is not the same
at all frequencies), correlation techniques are again found to be
optimm, but the received signal is correlated not with the possi-
ble message signals, but with modified signals. These modified
signals are obtained from the characteristics of the message sig-
nals and the noise power spectrum. The form of these modified
signals 1s not obvious, although the results obtained for specific
cases agree with intuitive notions. For those not familiar with
this background material a brief discussion is presented in

Appendix A. The key results are as follows:



1. The optimm receiver should use correlation techniques
(or the equivalent) in which the received signal, y(t) is corre-
lated with each signal of the set {f;(t)}. The members of the
set have a one to one correspondence with the set of transmitted
signals, {84(t)] based on the relation

T
84(t) = J R(t-t)fy(T)dr (5)
0

in which R(T) 1s the autocorrelation function of the noise. Two
forms of the optimm receiver are shown in Figure 1.
2. If the set of signals, {84(t)}, satisfies the homogeneous

integral equation

T
01%84(t) = J R(t-1)84(T)dT (6)
o

£4(t) = 84(t) for each 1, as in the case in vhich the interference
is additive white noise. This set of signals, which is basic to
the system, will be designated by {y(t)].

This signal set has two important properties. First,
the set is complete and orthonormal so that any reasonable (finite
mean square value, finite mmber of discontimuities) set of signals
{s4(t)] can be expressed as linear combinations of the orthonormal
set {@(t)} - 1.e.,
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o0
51(t) = ) an@(t) ()
k=1
in which
T
&g = J sy(t)p(t)at . (8)
0]

Second, for any set of signals {s;(t)}, if the received signal y(t),
y(t) = s4(t) + n(t) (9)

is correlated with a member of the orthogonal set @y (t), the mean
output is afyx, while the output noise is additive gaussian of
variance 0,2 (0,2 being eigenvalue corresponding to the kth eigen-
function of the homogeneous equation (6) ).

Any signal s;(t) may thus be considered as consisting of
a sum of orthogonal signals each of which 18 independently affected
by the additive non-white system noise. Each such signal or digit
may be represented by

&y = agPx(t) (10)

The magnitudes of the weighting constants aix are determined from
the following considerations
1. To minimize interaction between the signals and the addi-

tive gaussian noise interference, the basic waveforms are the



ordered eigenfunctions {pk(t)} selected to correspond to increas-
ing eigenvalues, {c}°}, starting from the lowest, until as many
as necessary have been selected. This is because the lower or-
dered eigenfunctions correspond to more distinguishable waveforms
(see Appendix A).

2. A detection scheme is desirable which does not require
estimation of the signal or noise levels at the receiver. To
achieve this all K digits, agx for all 1, will have the seme
megnitude and the sign of the magnitude will indicate the digit.

3. For the signal structure to be completely symmetrical -
i.e., each signal to have the same noise immnity as any other -
each signal of the set {81(t)} will be chosen to have the same
mmber, u, of orthogonal digits and the power will be apportioned
smong the digits in proportion to the noises {ox®}. Thus,

aik =+ S VT $k=1,2,3 ..., u (11)

The signs of the digits are found from a suitable binary group
upha.bet.l’h

For such an orthogonal digit coding scheme the probability
that 84(t) will be received as sJ(t) excluding all the other sig-
nals is given by



g
PiJ =%[1-.<"—'f:—_d—>] » (12)
in which
X
o) =2 J " & (13)
/R

(o]
is the tsbulated error integral and

u 2
q- ) a»
k= %

Thevalneofsidkis zero if the signs of the orthogonal digits
iy, d,‘jk are the same and unity if the signs are different.

As can be seen the larger §§J the smaller the detection
error, P1j. For this reason ;ij will be called the separation
function.

Several types of signal structures will be considered
in this report. These structures will be limited to those having
the properties described in paragraphs 1, 2, and 3 above. The
analogy between these types of signal structures and coding is
quite apparent. The mmber of orthogonal waveforms {¢;(t)]
selected corresponds to the selection of the mmber of digits in
each code word. The selection of the signs of the orthogonal

digits corresponds to the selection of the binary digits of a



conventional code. For convenience any signal structure having
these properties will be called an efficient code. The efficient
codes considered in this report are

1. Minimex codes

2. Equal separation codes.

Minimex Codes

The minimax code is an efficient code the signal struc-
ture of which resembles uncoded POM. A minimm mmmber of ortho-
gonal waveforms is used, just as POM employs a minimm mmber of
digits per code word. The signal power is apportioned among the
orthogonal digits so as to minimize the maximm probability that
any transmitted code word will be recelved as another. If m bits
of information are to be transmitted, the minimm mmber of ortho-
gonal digits in each signal is m. The maximm detection error
occurs for any two signals si(t) and sd(t) vhen they differ by
one orthogonal digit. Since this error is to be minimized sub-
Ject to average power limitation of the signal, it means that
every digit of any signal si(t) must be affected by the noise in
the same manner, or for any sy(t) of the signal set {s{(t)} ,

1=1, 2, ..., 2® the following condition must be satisfied.

841 ai2 ain &im

= S eee = e E s I —— (15)

5 o2 S m
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This is, of course, one of the properties the code must have to
be an efficlent code.

The error probability of the minimax code is given by

Pe =1 - (1-P)" (16)
in vhich
P;,-%[l-l -%-)] (17)

mﬁummtionnmctmuﬁeenmcodemtut
differ by one digit - i.e.,

2. ST

),

k=]

(18)

Equal Separstion Codes
The equal separation codes are those for which all the
separation functions ;:J are equal and the total separation

R &
m=2) ) (19)
1=1 Jj=1

14

is at its maximm. A code defined in this manner determines a



stationary point for the error probability and is thus an optimm
code.

It can be shown that the signal structure resembles a
Slepian (2" - 1, m) group code. The words of this type of code
are equidistant from each other.

The separation function is

1

) oF
k=1

The corresponding expression for the error probability, Pp, is

Pe51-<1-Ps)2"1, (21)

22

8; - ;
B =3[1 '(/5
If the error probability is small, an approximate expression is

P, & (2-1)PB, (22)

R -y

/2% s




For purposes of illustration the specific case considered
in this report is that in which the interference is non-white

gaussian noise, the spectral density of which is
W (o) = A2 + FPaf® (double-sided spectrum) (23)

This can be considered either the noise at baseband corresponding
to the synchronous detection of an r-f signal, or as a "weighting
function” which results in the design of signals such that these
signals are confined to an available frequency band. In this
latter interpretation the signal set {s4(t)] is designed to mini-
mize interchannel interference. The autocorrelation function cor-
responding to the power density spectrum of the noise is given by
+o
R(r) =—21—;- J\ (A2 + FPaf] e @ (24)

=00
2
= A%8() - B 8"(1)
in which

6(r) = Dirac-delta function

8"(1)= Second derivative of the Dirac delta function.

The basic orthonormal functions ¢y(t) are solutions of
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T
ox*ox(t) = r Px(T)R(t-r)dr (25)
;
By substitution it is found that the functions Qy(t) are therefore
solutions of the differential equation

B2, "(t) + (0% - A2)i(t) =0 (26)

To avoid discontimiities in sequences of transaitted

signals the additional constraint

Pe(0) = @(T) =0 (27)

will be imposed. The corresponding orthonormal set is then

o(t) = [ 2 sin EEE (28)

inmchk=l, 2, 3, see o Sime

ox® - & xx (29)

the corresponding eigenvalues are

2 _ K2PPx?

Ok = = + Az (30)




1k

The orthogonal components of the signals are the Fourier
Series components. HNote, however, that the associated variances
{0}®] increase with increasing k. This is reflected in the fact
that higher order components are more heavily weighted before
being summed to form the signals. See reference 2 for specific

signal waveforms.
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II. UNCERTAINTY REGION RECEPTION

In many practical situations, the transmitted language
possesses redundancy and thus can tolerate the printing out of
some "nulls” - a null corresponding to none of the pogsible
transmitted signals being selected as the most probable signal
sent. This selection may be desirable i1f the noise conditions
in the chamnel are such that the two greatest p[s;(t)/y(t)] are
close to each other. In these cases, the amount of information
destroyed by withholding the decision - i.e., selecting the
mll - may be less than that destroyed by selecting the most
likely signal as the signal sent. If the language does not per-
mit the presence of mills in the final message, these may be
£i1led in by means of feedback systems discussed elsewhere.’%r7:8
Indeed the use of nulls itself is a useful means of obtaining the
advantages of feedback, particularly the fail-safe operation. 9,10

Thus, the reliability of the transmission can be improved
if instead of accepting the signal corresponding to the largest
posterior probability plss(t)/y(t)], the decision is withheld for
any two signals s4(t), sJ(t) of the transmittible set, {s;(t)},
if

plsi(t)/y(t)] <
P[Sj(t)/ﬂt)] -

1
—_ 1
7 = (31)
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in vhich 7) determines the "width” of the uncertainty region. The
value of 7 controls the percentage of nulls present in the accepted
message.

One can vary the width of the uncertainty region, 7, to
match the noise conditions in the channel. However, vhen the inter-
ference is additive Gaussian with Rayleigh fading, the receiver be-
comes complicated with only a small increase in reliability. Thus,
in practical situations the use of a varieble width is not usually
justified. However, if the interference is a linear combination
of Gaussian and other forms of noise, the use of a variable width
together with a nonlinear detection scheme may yield considerable
improvement in comparison with fixed width systems. This will be
discussed in a forthcoming report.

The performance of the uncertainty region reception system
may be characterized by two error probabilities and two null prob-
abilities. These are:

1. Binary Detection Error

2. RLna.ry Kull Probebility

3. System Error Probability

L. System Null Probebility
The binary detection error and the binary null probability are eval-
uated by considering only pairs of signals - the true one and one

other - and ignoring all others. The binary detection error is then
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the probability that the true signal will have a smaller & posteriori
probebility than the other signal, while the binary null probability
is the probability that the a posteriori probebilities will be too
close for a good decision. Note that if there are n signals, there
are _nL;LL possible differvent binary detection errors and binary
null probabilities. The system error probebility and the system
null probability are the usual overall system parameters.

To evaluate the bounds of the uncertainty region and the
above parameters, consider that the received signal y(t) is properly
correlated with each member of the signal set {fj(t)} to yield the
set of stochastic variables upon which the decisions are based. If

the received signal is expaended in the form

u
¥(£) = ) ¥ o(t) (32)
k=1
in which
T
Y = jy(t) nlt) at (33)

o

the set of stochastic variables is given by

() B8} i, (4
k-1 %k



The more likely signals correspond to larger values of the
stochastic variables. Moreover, the a posteriori probabilities

are exponentially related to the variables so that the bounds of

the uncertainty region are given by

u
g < ) Dok o) o (35)

k=1
for all 1,j, in which k; = 1n 7). This is a generalization of
previous work3 besed on the interference being white noise to the
case in wvhich the noise is non-white and orthogonal digit coding
is used.

To evaluate the binary detection error probebdlity Py

the a posteriori probability of the true signal s4(t) is compared
with that of the signal sj(t). To do this consider the stochastic

variable

u
V13 = Z n(‘i:i- et (36)
k=1
Since all yy have a Gaussian distribution and ajx, 8j, and ok
are fixed mumbers, each term of the sum is Gaussian and thus the
stochastic variable vy 3 has a Gaussian distribution. To specify
the probability density distribution,- P(v“) » 1t is therefore

sufficient to specify the mean value, Vyj, and the variance, O;J.
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As shown in Appendix A, the use of the orthonormal expansion re-
sults in each temm of this sum being a variate which is indepen-
dent of the other terms. Thus, the mean value is the sum of the
mean values of each term, while the variance is the sum of the
variances.

Since si(t) is the signal sent, the mean value is

i aik(aix - ajk)

Vi = (37)
K1 %
The variance is
u
p = z (aik - a:Jk)a (38)
=
The binary detection error is then given by
1 €13 +
Pid=-2—[l-erf<—$‘b?2£‘1->] (39)
in which
Vi
§15 = oy
and
Ky = = (40)
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The function k:J s which defines the uncertainty region in the
orthogonal signal coordinates, will be called the uncertainty
function.

VWhen efficient coding is used,

u 3

;id:zz_ﬁ&;‘iL ()
e %
and
u 23
4:1,2_31.11:?_“11:_ (h2)
k=1 k

in which 8; 5k is zero if the signs of the orthogonal digits ajx,
ajx are the same and unity if the signs differ. The correspond-

ing expression for the separation and uncertainty functions are

E;.j = -3 As T (43)
z 815k %
k=1
and
kﬂ
K, = —L (4)
13
ug;J
in which
u
A =

Gi,jk (45)
k=1
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The binary null probebility, W 5, is the probability that
having sent signal s;(t), the received signal will be in the null

region so far as s;{t) and sj(t) are concerned.

Hdz%[.(_‘u%"za_)-.(iu?;_"a_)] (46)

It is clear from this equation why kij is called the uncertainty
function; large values of ki;j imply large values of Uy -

An exact expression for the error probability of the sys-
tem depends on the exact signal structure used since the values of
Pij are not independent. However, using the same procedure as in
(1], a pessimistic expression for the error probebility is obtained.

gn n

Pe<l1-22 z W(l- Pyj) (b7)
=1 j=1

143

The corresponding system null probability, ug, that the
decision will be withheld after all comperisons have been made
similarly depends on the exact signal structure. As an approxime-

tioa,

vo < [ugjlpay (48)

in vhich [uj3],,. is the maximm value of uij for all i,J.
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In addition to the above efficient codes, conventional
binary digit codes will also be considered. In these codes, the
signals consist of strings of plus or minus the basic waveform
P1(t) - 1.e., the first eigenfunction of the hamogeneous integral
equation based on the signeal duration 1. For a total signal

duration T and u binary digits per code word,

z
u

(49)

Ty =

The corresponding separation function for these codes is

‘1,1 = :‘:3 (50)
1

In texms of this separation function, the above relations for the
error probabilities and null probebilities remain unchanged if the
noise in each digit duration is assumed uncorrelated with the noise

in other digit durations.
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III. BINARY SYSTEM

Consider the simplest, but very important case, of binary
commnication in wvhich there are only two possible transmittible
signals (m = 1). In this case, the choice of signals is
81(t) = -83(t) = 8T ¢, (t), in which g;(t) is the normelized
first eigenfunction of the homogeneous integral equation. The sys-

tem error probebility is

Pe=sz=Pzz=%[1'eﬂ<-sJ—;L>] (51)

e - s:T (52)
o1
and
k,?
K = - (53)
S

The expression for the null probability reduces to
uo:-:—[erf<—s—sz'k>-erf<—§——J%k>] (52)

When the bounds on the uncertainty region are set in ac-
cordance with a fixed a posteriori probability - i.e., fixed ky -

the error probability attains a maximum when
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[ 5+ 12‘;] (54)

is & minimum. This critical setting of the uncertainty parameter,
ke, is given by
ke = 282 (55)

For proper operation of the system (high reliability and low per-

centage of nulls) the uncertainty parameter should be in the range

0<k <k (56)

For convenience let us define a normalized uncertainty parameter

ky

Q= —k—c— (57)

res{1-er[2-ara ]} (58)
and

w=t{et[F-ra) ]-ar[ G- ]}

in vhich the proper range of operation is
0<a<l (60)

Figure 2 shows the behavior of the system error probability and
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the null probabdlity u, as a function of the normalized uncer-
tainty parameter, a, for fixed values of the separation functiom,
€?. One can conclude from the figure that for large values of the
separation function the system error probability, Pe, decreases
almost expomentially with an incressing null threshold, a, while
the system null probebdlity, uo, increases only lineerly. For
reasonable large values of the separstion function, £?, and for
operation near the minimm error probebility, o =~ 1, sulitable ap-
proximations are

P = —2 “"'L?"(lég_rll | (61)

Vax g(1+a)

wid{1-fsu-a} (€2)

These equations indicate that for values of the normalised uncer-
tainty parameter close to unity and for large values of the
separation function, small changes in §? result in a considerable
improvement in the reliability of the commmication system while
the increase in the percentage of nulls is negligible.

To relate these results to the noise in the system con-
sider the cagse in vhich the demodulated noise power spectrum is
such that the noise density increeses with increessing frequency.
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The importance of this case is discussed in S8ection I. PFigures
3 and 4 show the behavior of the system for noise power density

spectra
(L+0.1a”?) and (1 + 0.01 «?)

respectively, and for a fixed mall level @ = 0.5. For both cases
best operation occurs when the separation is large (large average
power, &, long signal duration, T) since a great decreese in
error probability is then obtained at the cost of only a modest
percentage of nulls. However, note that the more non-vhite the
noise, the more effective is an increase in signal duration over
& corresponding increase in signal power. This is in contrast to
the situation in which the interference is white, since then

doubling the duration is just as effective as doubling the power.
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IV. MULTISIGNAL SYSTEM

It bas previously been shown' that trensmission of & mes-
sage of m bits can be near optimally achieved by coding it as one
signal of a properly generated time-limited signal set, {si(t)},
1=1,2,3, ..., 2%, using orthogonal or tinary digit representa-
tions corresponding to orthogonal or binary digit codes. A brlef
summary of previous results is given in Section I. As bas been
demonstrated, the key parameters for these types of codes are the
separation functions given in Equations (43) and (50). When un-
certainty region reception is introduced at the receiver, the un-
certainty function becomes another key pearameter. Relation (kk)
defines the uncertainty function in orthogonal signal coordinates.
The purpose of this section of the report is to obtain general ex-
pressions for the performances of the multisignal systems in terms
of these parameters, and the evaluate specific cases vhich permit
an engineering comperison of the relative merits.

A. QGenersl Relations

One can introduce the concept of a critical value of the
uncertainty pearameter for these codes in.a manner similar to that
for binary case - nemely, it will be defined as that value of the
uncertainty parameter corresponding to the maximm detection error.
Using standard methods, this critical value is found to be
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kcij = 2;;3 (63)

Normelizing with respect to this critical value

-5 (61)
™ keij

the expression for the binary detection error probability becomes
Sl [y g Bty
y- g {10 [} (65)
The corresponding expression for the binary null probebility is

1 813(1 + a44) £14(1 - a14)
“13’2{’[ 7z ]"[ vz ]}(66)
Note that §13 and 01 j depend on the separation between the two
signals being considered. For two particular signals, if the
null level, ki, is fixed then f“u] are fixed. Systems using
variable k; will be discussed in connection with receiver imple-

mentation problems. The proper range of operation is, of course,
0< aij <1l

As might be expected from an exemination of the non-
uncertainty region systems, an exact expression for the system

error probebility is difficult to obtain because the values of
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Pyj are not independent. Using the procedure of [1] a pessimistic
expression can be obtained for the ceses in which orthogonal digit
coding is used. Let 7, be the number of code words of weight w.
Defining

@ (67)
) %
k-1
and
ra=3-[1-0(J)] (68)
then

Pe<1- ﬁo (1 - By)® (69)

A corresponding pessimistic expression for the system null prob-
ability is

ug < [u:ljlm (70)

S—:-{![ g};‘ (1+am)]-![ §3;n (l-a-z)]}
(1)
in which

Smax = S| 0y

(72)
gm:l.n:g(n'm P) “’#o
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Omax = 013 , alii,] 147
X
B. Cosperison of Performsnce

The pexformances of systems using the minimax, equal
separation, and equidistant codes will be evaluated under the
assumption that the additive colored nmoise in the system has =
demodulated power density spectrum which is an increasing func-
tion of frequency. As previously shown,l with the detector
selecting the signal corresponding to the largest posterior
probebility p(sy/y), the orthogonal digit codes yield lower
probebilities of error then binary codes, all other conditions
remaining the same.

With a noise power density spectrum as given by relation
(23), sdjustment of the ratio B/A corresponds to sdjusting the
effective bandwidth of the signals. VWhen B/A is small, the noise
is closer to being white noise and the signals designed will have
a greater bendwidth. When B/A is large, the noise is beavily
colored and the designed signals will have a narrow bandwidth.
If the bandwidth of the system is large, it is better to use
more camplicated signal forms (i.e., the equal separation code).
On the other hand, if the bandwidth of the system is small, the
use of the minimax code is indicated. The reason for this is

that the higher oxrdered eigenfunctions from which the higher
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ordered digits u'e‘gmerated have greater noise associated with
them. The specific variances are given by relation (30). When
the noise is highly colored, the noise increases almost with the
square of the order of the digit, so that it is better to use
fewer digits - 1.e., the minimeax code. On the other hand, vhen
more digits can be used, the equal separstion code is better.

Toevaiuatetheperfomceofmcertdntyregionrecep—
tion systems using the minimax, equal separation, and equidistant
codes described sbove, specific relations for error probability
and null probability will now be derived.

1. Minimex Codes

The minimax code is the orthogonal digit analog of

uncoded bMinaxy POL The structure of the code is such that the
meximm detection error is minimized. The separation functions
for this code are not ali the same, but instead resemble the
distances between uncoded binary words. Corresponding to the
error probabllity of the m bit code, given by (16), (17), and
(18) for normal reception, the error probability for uncertainty

region reception is given by

Pe=1-(1-P )0 A (13)

P1=-%'-{l-§[%'(1“’;ax‘)]} (7h)
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a- -5 (75)
o

@ =—32 <1 (76)
A pessimistic expression for the null probability is
wet {128 qean]-s[ 2 a-a ]} @
-2 V2 J2

These relationships are plotted in Figures 5 and 6 for the case in
which the noise power density spectrum is (1 + 0.01 @®) and

(1 + 0.0001 a®) respectively. Both the two bits per code word and

the three bits per code are shown, each for two values of signal power.
These curves correspond to holding oy constant at 0.5. Comparisons

of the performance of the minimax code with the other codes are

given at the conclusion of this section.

2. Equal Separstion Codes

The equal .separation code is an orthogonal digit
code with all spearation functions equal and the sum of these
separation functions as large as possible. For this code the

separation function is
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_ 2™ g
g____zu:‘l (18)
) &
k=1
e S W
ag ey (19)
B-g-{1-er[ -G ]} (80)
and
Pe<1l- (1-Bg)2-1 (81)

The pessimistic expression for the null probability reduces to

u‘,g%{m[%(lw)]-u-r[-jsz—(l-a)]}(ez)

These relations are shown in Figures 7 and 8 for the same
conditions as previously given for the minimax code. Comparisons
with other codes are made at the end of this section.

3. Equidistant Codes

The equidistant code is the binexy digit analog of
the equal separation code. For this code the separation function

is
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(83)

(2%1)
in which
1{ = _(gig_n.— + ‘ﬂ (&)
and
- 8
aa 268 (85)

In terms of these parameters, the expressions for the system error
probability and system null probability are analogous to those for
the equal separation codes if £5 is replaced by &3 and ag by ag.
Figures 9 and 10 show the performance of this code for the same
conditions as the other codes shown in Figures 5 to 8.

4. Comparisons

Figures 5 to 10 illustrate the performances of the

minimex, equal separation, and equidistant codes when the inter-
ference is additive colored noise. Two specific noise power
density spectra are considered (1 + 0.01 @*) and (1 + 0.0001 o?)
respectively. For each code the two bits per code word and the
three bits per code word casés are shown, each for two values of
signal power. The normalized null level is held fixed at 0.5.

As can be seen from the figures, for high information rate

and a noise power density spectrum that is far from vhite (this



corresponds to designing signals for a narrow bandwidth communica-
tion system), the minimax code performs best. For low informetion
rate and a nearly white noise power density spectrum, the equal
separation code is better.

In general, increasing the signal duratiomn results in a
much greater decrease in both the error and null probebilities than
does increas=s in average power. This effect is particularly pro-
nounced so far as the error probability is concerned if the uncer-
tainty region is small.

Comparison of the equal separation code with the equidis-
tant code shows the superiority of the former. This behavior may
be generalized by comparing any given orthogonal digit code with
its binary digit analog. In both cases the error probability and
the null probebility are the same functions of the corresponding
separation and uncertainty perameters. However, the uncertainty
parameters are the same but the separation functions differ. For
fixed values of the system pearameters, the sepearation function of
the orthogonal digit code is always larger than the separation
function of the corresponding binary digit code. Thus, for the same
aversge power and noise conditions, a comamunication link using
orthogonal digit coding is operating at an effectively grester
signal-to-noise ratio than if a binary digit code were used.
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Y. SYSTEM IESIGN

To select the proper signalling alphabet for a given
conmica{tion link, a flexible method of signal design is needed.
Such a method, based on the utilization of a digital computer is
considered below. This 1s followed by a discussion of various
techniques for implementing an uncertainty-region-reception,

orthogonal-digit-code receiver.

A Bignal Design

By means of a general purpose digital computer, one can
select a near optimm choice of transmittible signals for a set
of given design restrictions. To illustrate the technique con-
sider a case in which the constraints on the design are the infor-
mation rate in bits per second, average power, noise level in the
channel, and the bandwidth. The bandwidth constraint is trans-
ferable into the choice of a noise power density spectrum -- l.e.,
into the selection of b based on the weighting function (1 + b°c®).
In terms of the absolute level (A® + B’a’), the noise level of
the channel gives the value of A®, while the bandwidth constraint,
b, gives the ratio B/A. Specifying both channel parameters hence
determines both A and B.

The iterstive process is started by selecting a vyalue for

the signal duration, T, such that kxT/b 1s well sbove the NRyquist



rate. Several block codes are then generated by the computer,
experience indicating that about 60 percent of the digits should
be information digits and the rest parity check digits. The num-
ber of information digits selected will be dDased on the specified
data rate and the duration of the signals. Those codes having the
greatest Hamming distances are selected for further processing.
From these code structures the corresponding separation functions
are evaluated. This permits the evaluation of the performance of
the codes when uncertainty reception ix not used. From a specifi-
cation on the percentage of nulls permitted, the corresponding
reliability -- i.e., error probabilities — ean be determined.

The code with the minimm error probability is tentatively selected
as the best. If this performance is savisfying, this code repre-
sents a suitable solution. If not, or if a near optimm solution
is desired, the process is repeated with other codes at other
values of signal duration.

Since there is no strictly deterministic procedure for
evaluating vhen the optimm solution is reached, it is possible
to rind that the specifications cannot be satisfied within a
reasonable computation time. As a practical solution, the speci-
fications should probably be relaxed, as they may be impossible
to satisfy. Vhen a code with the desired specifications is found,

the corresponding signal set {li(t)} may be formally found by the
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matrix operations,

G -MaE o

in vhich the elements of the colusn matrix © are the members of
the signal set. 777 1s the matrix corresponding to selected binary
block code digits with O replaced by -1. This is a u by 2" matrix,
u being the number of digits per code word and m being the mmber
of message bits. The matrix { is a square diagonal matrix of

size u by u, the elements being

a, =0 for 1 # k

=a'kk for 1 =k

in which &, is given by relation (11). The £ matrix is a colusn
matrix of u rows, the elements being the ordered set of eligen-
functions {g J(t)}.

For communication systems with variable interference con~
ditions and an available feedback loop, sophisticated techniques
can be used such as variable coding schemes. For example, the
noise conditions in the channel can be estimated at the recelver
and from these estimates the best code picked from the set of
available codes. The transmitter is informed through the feed-
dack channel to correspondingly change the transmission and the

receiver is adjusted to receive the new alphabet. Thus, an



adaptive feature is incorporated into the system with considerable
improvement in the performance of the commmication system. At
the other range of possibilities there is the simple discarding
decision feedback technigues which have already been shown to be
effective.

B. Implementatiomn of the Uncertalinty-Region-Reception
Recelver

To simplify the instrumentation of the uncertainty-region-
reception receiver, it is desirable to employ orthogonal digit
codes with matrix ( of equation (86) chosen to be a binary group
codehwithdlzemre;plmdhyninnloml. In group codes the
distance in digits between any two code words is the same as the
veight of the code word (number of ones in the code word) obtained
by addition modulo two of the original two words. But since group
codes are such that the addition modulo two of amy two code words
is another code word, the distance in digits between any two code
words is the same as the weight of another code word. If one of
the code words is the identity word, the distance in digits is the
weight of that one of the two code words vhich is not the identity.
¥or any particular code word the set of distances in digits of
that code word from each of the other code words is thus the same
as the set of weights of each code word.

Using the properties of group alphabets, one can replace
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the decision process at the receiver by the following equivalent
operation. Eliminate the ldentity slgnal from the signalling set,

{s,(+)], and form for the remaining 2"_1 signals the sums

(87)

in vhich the summation is performed only over the positive orthogonal
digits of each signal. The simplified equivalent receiver prints

the signal si(t) corresponding to the largest S, exceeding the
threshold level, k; /2. If none of the sums, S,, exceeds the thresh-
old level, a null is printed which may be removed by retransmis-
sion requested through the feedback channel.

The receiver can form the set of levels {si} by cross-
correlating the set {-ak-h- ()} ¥ith y(t) for &ll k = 1,2,3, ...,
uj the crosscorrelators are followed by sign inverters and (2"-1)
accumlators. The outputs of the accumilators are the desirable
set {Si}‘ The suggested receiver circuit requires only u corre-
lations. JFor instance, for minimax codes (2"-1) are replaced by m
correlations. The receiver may also be implemented using a bank

of matched filters. Consider the set of functions, {51(1:) ], de-

fined by
3 & q(t)
g(t) = ) —= (88)
el %k



in vhich summation is to be taken over positive digits only. Thus,
to each ’1(t) corresponds a specific 51(t). Equation (87) can then

be replaced by
T
Si=j‘81(t)7(t) @& , o<t<r (89)
0

If a new set of functions is defined by

B (T-t) = g, (¢) (90)

one can interpret equation (89) as representing linear filtering
of y(t) using filters with impulsive responses h,(t). Thus,
alternately the set of detected levels {81} necessary for the
decision at the receiver can be cobtained uming a bank of linear

filters.



51

VI. GEOMETRIC INTERPRETATION OF UNCERTAINTY REGION RECEPTION

Consider a u-dimensional system of rectangular coordinates.*
Corresponding to each pair of signals, such as si(t), sd(t), define
a fixed vector Ai y the projections of which on the coordinate
vectors are of length

8 - 8

_iLz—iE- » k=1,2,5 ss0y u
%k

Corresponding to each received signal, y(t), define a vector Y such
that the projections of the Y-vector on the coordinate vectors are
of length y,y, being the 2 coefficient of the orthogonal series

expansion of y(t). Form the dot products

for all pairs of signals. If the dot product exceeds the uncertainty
parameter k;, 8,(t) 1s more 1likely the signal sent than ‘.1(")' Ir
the absolute value of the dot product is less than k,, no decision
is made. If the dot product is less than k;, -i(t) 1s less likely
the signal sent than ld(t).

The set of inequalities corresponding to the uncertainty
region reception decision rules can be interpreted as follows.

For any pair of signals s i(t) and s d(t) of the transmittible set,

¥ The u-dimensional Euclidean space
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the u-dimensional space is divided imto three distinct regions
by two parallel (u-1)-dimensional hyperplanes normal to the

vector Ai Iy The two hyperplanes are defined by equations

i

(Aid,l') K (92)

and

(Aid’r) - k:, (95)

respectively. The region between the two hyperplanes is the

region of withheld decision. The reglon located on the far side

of the hyperplane looking from the origin in the direction of orien-
tation of the vector A:l J is the region of acceptance for signal
-i(t). The region located on the far side of the hyperplane looking
from the origin in the direction opposite to the orientation of

3 is the region of acceptance for signal ’J(t)'
Repeating the above procedure for the (g‘) possidble pairs of sig-
nals of the transmittidle set, the generated hyperplanes will

the vector Ai

enclose a polytope in the u-dimensional spece. The interior of
the polytope i3 the uncertainty region. To find the distances
from the origin to the hyperplanes of the polytope one can use

two methods: one is a direct extension of the geometrical anmalymsis
used in three dimensional spaces to the multidimensional space,
the second one uses lLagrange!s method of indeterminate multipliers.
This latter technigue is used in Appendix B. The distance from

the origin to the hyperplane corresponding to mignals li(t),ld(t)
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is found to be

K

37 = (au ay)
[k; G; :P

The distances between the corresponding two parallel hyperplanes

8 (9%)

at the uncertainty-region boundaries 1is 2 d1 5

For orthogonal digit codes the distance from the origin

to the hyperplane reduces to

K,
4y = —TF T (95)
[Qzl“iak"iﬁ@]*

in which § 13k i8 zero if the signs of the corresponding orthogonal

digits aik’ajk are the same and unity if the signs differ.

u
A= ZaiJk (96)
k=1

as before.

For the minimax code, u = m and A ranges from 1 to m
For the equal separation code, u = 2‘-1, and A is z"'l for all

pairs of signals. In this case



k,

gzi 13K J(k_ °’x)

Note that the members of the set of variances, {a;} , are not all

equal, but depend on the pair of signals being considered. Thus,
for the equal separation code, though all the separations are equal,
the distances to the hyperplanes enclosing the polytope of the un-
certainty region are unequal. Equality can be achieved only by
varying the uncertainty parameter k, with the resulting complica-
tions in the processing of signals at the receiver. For the equi-
distant code not only are the separation functions equal dut also
the distances to the hyperplanes enclosing the polytope of the
uncertainty region are equal. The expression for the distance, 4

1y
reduces in this case to

d,=a= = (98)
13 { g3 } 7
(2%1) =

in vhich 1; is the lowest eigenvalue corresponding to a signal
duration T/Z' -1

The processing of the signals at the receiver can be inter-
preted in terms of the geometric model as follows. If the tip of

the received vector Y falls inside the uncertainty region polytope,
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a null decision is made. Thils decision could later be replaced

by information received by repetition requested by means of a feed-
back chammel. If the tip of the received vector Y falls outside
the uncertainty region polytope, the signal corresponding to the
largest distance of its hyperplane to the tip of vector Y is con-

sidered the most likely signal sent.



APPENDIX A

Background: Detection of Signals in Colored Noise

In a broad sense, a recelver 1s a computer — albeit in
many cases & fairly simple analog computer. From the incoming
signal, y(t), the receiver calculates vhich of the possible trans-
mitted signals [si(t)} is most likely the signal sent. Formally,
the receiver may be considered to evaluate the a posteriori proda-
bilities {p[y(t)/s,(t)]} for each possible transmitted signal.
S8ingle-valued functions of these a posteriori probabilities may
actually be present in the receiver as voltage levels. For com~
pletely automatic operation these voltage levels are compared
with preset threshclds or each other as a means of deciding the
most likely signal sent. Alternatively, the voltage levels can be
presented to an operator for final decision. The choice of the
preset threshold levels depends on a priori signal probebilities,
relative costs of making errors, and value Jjudgements. Yor
example, threshold levels can be used vhich correspond to minimm
error probability.

When the noise is additive, the conditional probabilities
{ply(t) /si(t)]} are simply the probabilities that imterference had

the waveforms [ni(t)} in which

n,(t) = 3(t) - 8,()
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The most 1ikely interference waveform corresponds to the most
likely signal. To determine the most likely interference wave-
form, the possible signals and the received signal are sampled at
instants of time t, apart such that there are N samples of the
signal duration T. The channel is considered distortionless so
that the k'L sample of the transmitted signal causes the ki

sample of the received signal. If s, is the value of si(t) at

1k
t =kt, andy,, is the value of y(t) at t = kt,, then

P[y(t)/‘i(t)] = % Lim p[ytl’ytz, A ytl/'il"iZ" one sﬂ]
A 3

is the same as expecting the Interference to have the sampled

values
41 " %1 " *n
Byz = T2 ~ By
N T Ten ~ %an
Note that this procedure is satisfactory if the total
noise powver is finite. If the total noise power is not finite,
the "samples” become the integrated values of the signals over

each duration tA’ Alternatively, the noise power spectrum can

be truncated at some high frequency f and then as t A o,

'f==1 Qo
T e



When the interference is white gaussian noise the sampled
values of the interference are independent and the analysis is
simplified. In this case the Joint probability density that the
sampled values of the noise are DyysByor ooe Byps oee Dy caR be
written as the product of the individual or marginal probabilities.

Thus
P(ngqs0y 05 <o ) = P(ng4)0(ny,) o0 p(ngy)
in vhich

1 o0 /20t

pn) = =

1
] = =X

A
since p(n) has a gaussian distribution and the noise power per
unit bandwidth is ¢*. The remainder of the procedure for deter-
mining the optimm receliver is straightforwvaxrd. Note that

N
1 —1/20°t T n,ik

2xo®t k=1

P(nil’niz’ cee myy) =
is such that the values of the noise samples appear only in the

exponent

nﬁ

1k

]
N
% |
9
N



This exponent corresponds to

X

— Z(y -8,.)?
tk ~ P1x

ar’rk=1

or in the limit, as t, = —> 0, to

A

1
- o

[y(t) - s, (+)F at

Oc___;”_l '4’-‘

in vhich T is the duration of the signals.

If the terms are mltiplied out

™ T s
- _?%;.[j )& - 2 J ¥(t)s, (t)at + J si(t)dt]
0 0 0

and the first term is discarded as being common to all signals,
vhile the last term is discarded since the value is known before
any signal has been received. The result (eliminating the scale

factor 1/c°)
T
J y(t)s, (t)at
o

gives the quantities the receliver should compute for each received

signal.



Letting fi(t) = ni(t) the result is that for optimm
detection the received signal y(t) should be correlated with each
£,(t) and the outputs of the correlators (or the equivalent) be
used to decide which signal was sent. For the case in which the
interference is white noise, fi(t) is the same as the corresponding
signal s i(1;). As w111 be seen, for the colored noise case the
optimm receiver is similar, but fi(t) will not only include the
8ignal structure, but the noise structure as well.

When the interference is colored noise the joint proba~
bility p(nil,niz, -s+ D,y) cannot be written as the product of
the marginal probability p(n) because the noise 18 no longer in-
dependent from one sample to anocther. The fact that the noise
1s gaussian can be directly applied by using the N2 order joim
gaussian distribution. The procedure is algebraically complex
but the difficulties are not inswrmountable. To reduce this com-
Plexity matrix notation will be used.

The Joint gaussian distribution is not readily written
in terms of the corresponding power density spectrum, but rather
in terms of the autocorrelation function. Iet R(t) be the auto-
correlation function of the noise — i.e., the Fourier transform
of the noise power density spectrum. let R be the matrix
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- 7]
B Bz e Ry
R21 R22 ot )

» - as e -

LRNl . cen RNN_

invhichRm=R(ntA—1rbA). Iet A be the inverse of R The

Joint noise distribution is given by

N X
Pny1smyp on Byy) = (21)17%‘,“1/2 e’p{’ ":zt_ Z Z )'mninnln}

»=1 n=1

in vhich |A| 1s the determinant corresponding to A.

If, as for the case In which the interference was addi-
tive white noise, it is noted that the probability is single-
valued dependent on the exponent, it follows that the receiver

need only evaluate

~ A

an n, for each 1.

N

-2

-z im in
=]l

I

n=1

Since the noise 18 additive, this is the same as

N X
- ’%‘ Z Z M (Ve = B (T — 84p)

»=]1 n=1

or



o~ =

Man(Tewtn = Tau®1n = Ten®1m * P1afin)

N
- = z ’
=z

m=1 n=1

The first term is independent of the signal, li(t), and can thus
be discarded. The last term is a priorl known before any signal
has been received. It can therefore be included in the decision
thresholds and need not be recalculated each time a signal i re-

ceived. In additionm, )‘m =X o’ and thus
N N N K
z 2 xmytmsin = 2 2 )‘lnytnsin
»>=1 n=1 n=1 n=1
Hence the receiver need only compute the test statistics
N X
z 2 )'nnytn‘in for each 1
»=1 n=1
By letting
N
Tim = 2 LS
n=1
the test statistics become
N
2 finyn
=1

orutA—po, N —» oo
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T
J fi(t)y(t) at
)

The result for colored noise is similar to that obtained for white
noise ~-- namely, that correlation detection is optimm. TInstead
of the locally generated signals at the receiver being the same as

the signals sent

fi(t) = si(t) for each 1 ,

it 18 determined from the sampled values

X

fin(t) = )‘m’in

=1

To determine a more suitable relation for fi(t) note that
the above expression represents a set of linear algebraic equa-
tions for [fil’fiz’ cem rﬂ] in terms of [sﬂ,liz, ces 'ﬂ]'
Solving this set of equations for the sampled values of -i(t)

glves

X
840 Z Rufin
1

or in the linitutA-—)O, N —> o,



T
-i(t) = J R(t-v) fi(-r) art
0

in vhich the sampled values of fi('r) are proportional to the
samples f, . This is the basic equation from which fi(t) is deter-
mined. As an example, vhen the noise is vhite, R(t) 1s a delta

function

R(t) = 20?8(1)

-1(1:) zc‘fi(t)
or, neglecting the scale factor
fi(t) = si(t)

To design an optimm receiver it is necessary to solve

the Integral equation

T
si(t) = J R(t-T) fi(r) dr
0

for the waveforms fi(t). Once these waveforms are known the re-
ceived signal is correlated (or an equivalent operation is per-

formed) with each fi(t) and the outputs of the correlators are

compared.
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To determine fi(t), & procedure can be used which is
similar to that used in solving ordinary differential equations.

The homogeneous Iimtegral equation
b
Po(t) = J R(t-7) o(<) dr
0

is solved for first. This equation has the trivial solution
¢(t) = 0. It also has nontrivial solutions for certain definite
values of 0. Each value of O for which there is & nontrivial solu-
tion is called an eigenvalue, and the corresponding function ¢(t)
is called an eigenfunction.

The solutions have the same character as those of an
ordinary differential equation plus boundary conditions. For
example, consider the ordinary differential equation

L) 4 Py(t) = 0

dta
This has the trivial solution y(t) = 0. It has the general non-

trivial solution
y(t) = A cos et + B sin ot

in which A and B are arbitrary, and w can be any constant. If,



howvever, we impose the boundary conditions
y(o) =0
¥(1) =0
then the solution becomes
y(t) = B sin mt

Thus, only if the constant o equals sn for n = 0,+1,+2, ... 1is
there a nontrivial solution to the differential equation which
also satisfies the boundary conditions. These wvalues of o for
which a nontrivial solution exists are called eigenvalues and the
corresponding functions are called eigenfunctions.

A homogeneous ordinary differential equation with boundary
conditions can be converted to an inmtegral equation. Yor example,
consider the above differential equation with the boundary condi-
tions. This corresponds to the integral egquation

T
Py (t) =J K(t,7) y(v) ar
0

in which K(t,t), the kernel, is
K(t,<) = (1 - t)r 0<r<t<1

=t(1-1) 0<t<1<1
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Because of the relation between integral and differential equa~
tions, one valuable technique for solving integral equations is
to determine the corresponding differential equation.

This correspondence suggests, as is true, that the solu-
tions to the homogeneous integral equation are orthogonal. For
convenlence, consider the solution corresponding to the lowest
value of o° to be the first eigenfimction, the next lowest, the
second eigenfunction, and so on. The orthogonal property makes
it easy to expand the signal wvaveforms in terms of these func-

tions. letting

Lo o)
5,(t) = ) ce(t)
n=1

since the {cpn(t)} are orthogonal
T
[ gttro e e

¢ =2
n

T

j‘ cp;(t) at

(o]

If the eigenfunctions are normalized so that

by
j‘ cp;(t) a =1 for all n
o



then
T
c, = J\ si(t)cpn(t) at
0

To solve the integral equation
T
s, (t) = j R(t-'r)fi(-r) dr
0

-1(1:) 18 expanded using this orthogonal set

si(t) =8 (t) +8 (t) +... +8 (t) +...

1191 1292 1P

in vhich
T
Sy = J li(t)cpk(t) at
0

and a series solution is sought for fi(t) of the form

fi(t) = Fil(pl(t) + Fizq’z(t) +... + Pn(pk(t) + eee

The ht—ll coefficient of this expansion, rik’ can be found

by multiplying both sides of the integral equation by cpk(t) and

then integrating from O to T with respect to T. The result is
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r
%

ik

® g
£,06) = ) —= g, (t)

k=1 “k
One method of correlating the received signal y(t) with fi(t) is
showvn in Figure A-1. Each voltage divider is set to correspond
to a coefficient of the expansion -~ 1.e., the !‘Eh; divider corre-
sponds to the factor Sik/d;. Since d; 18 grester for larger values
of k, the contribution to the sum for large k is usually small,
Thus a near optimm practical system need not require a great many
correlators and dividers.

Another importamt point to note that the kot component

of the output sum is proportional to
T r
J s, (t)p, (t) a + j n(t)p, (t) at
0 0

The first term is the mean output, the second the effect of the
noise. Since n(t) is gaussian, the noise present in each compo-
nent of the output sum, and hence in the sum itself, is also
gaussian. Moreover, the noise present in each component is inde-

pendent of the noise in any of the other components —- i.e., the
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cross-correlation is zero.

T
< J n(t)cpd(t) at n(‘r)cpk(‘r) ar >
0

T
j‘ < n(t)n(Tt) > q;d(t)q:k(r) datdr
0

|
|

oH

T
= J R(t-'t)cpd(‘t)cpk(f) atdr
0 0
'£ T
= cpd(t) at j‘ R(t-'r)cpk(-r) dr
0

Oe

T
0

To gain further insight into the problem of detecting sig-
nals in colored noise, consider the problem independently of the
previous analysis. In the previous approach the likelihood ratio
was based on the values attained by the received signal y(t) at

intervals t A apart. The fact that the noise was correlated led



to difficulties becamse the noise at these sampled times were not
One: useful suggestion is to find & set of observable
recelved signal y(t) by Iinear operations. This corresponds to

¥t) =) wa ()
k

in vhich, for convenience, thenet@k(t-) 1s orthonormal with re-
spect to the interval 0 <t <T. This permits the coordinates
(or coefficients) ¥, to be computed from
r
A j o (t)y(t) &
0

The functions [0k(t)], however, have exactly the same properties
as the orthogonal set {7, (t)},
o, (t) =g, (t)

This approach thus Ieads to the same result as that based
on directly observing the recelved signal. Note that the linear

circuits of the optimm receiver can be matched filters in which



the impulsive responses are matched to {ri(t)}. 'm 18 analogous
to the case in vhich the noise is vhite and the filters are matched
to {-1(t)]. The circuit shown in Flgure A-1 is simply one way

of synthesizing the matched filters.



T

APPENDIX B

Distances from the Origin of the u-dimensicnal Subspace
to the Hyperplanes of the Uncertainty Region Polytope

Consider the u-dimensional vector Y specified by its u
orthogonal projections (yy,¥Yss »--» y,). This vector starts at
the origin and terminates on the surface of the hyperplane

k = (A7) (B-1)

Thus, determination of the distance from the origin to the hyper-
plane defined by equation (B-1) reduces to minimization of the

length of vector Y

u

(F15Xas oo Yu) = ZY; (B-2)
k=1

subject to the constraint expressed by

u
2.’.1&.‘:%’_‘15’_ ok (5-3)
k=1 k

Equation (B-3) corresponds to equation (B-1) with the dot product

of the two vectors expressed in terms of their orthogonal projections.

Using Lagrange's method of multipliers, the minimivation of L(y,,Yy,,

veey yu) is desired subject to the condition

“- yk(.ik".' k)
2(7157as -“JYu) = Z"—""""—L— -y (B-4)
k=1 Oi



This reduces to the solution of (utl) equations

JL of
—— Ay rm— = 0
) 41 Y
oL df
L 4 e =0
o N7
- - (B_s)
L af
L 4 Ng—e—m = 0
My >
sL of
e+ N = O
My Yy
and f(YUYu-N:Yk:"-:Yu) = kg (3"6)

in which the set [yk] 18 now the set of solutionsl values and Ay

i{s the undetermined multiplier. Consider a typlcal term, b then

b4
_..__:: = —— (3-7)
k : o
WA
and
ar %k " % (2.8)
¥y o

Using equations (B-5), (B-7), and (B-8), we obtain



.
u o
N7 '
k=1

»
[
» Il

yk - . >‘.1 (&;k-‘!k (3-9)
u
La  *

k=1

Y Aa, ~a, )
—.—u——. = e —_—i-li—;ll-—

3 ]
)%

k=1

Multiplying both sides of equations (B-9) by yi1,¥gsse«s7, o T
summing both sides it is found that

w
8, - Zf; = - Ay (B-10)
]

Similarly squaring both sides of equations (B-9), summing both
sides, we obtain

2
1o § e (e
oy ‘

k=1 ,,g

"/m

From equations (B-10) and (B-11) it follows that



k
d,, = : (B-12)

13 u (aik_a k)" i
(Z e )
k=1

This result could have been obtained using a geometric method.

The distance from the origin to the hyperplane defired by equation
(B-3) 1s the length of the projection of vector Y on the vector
Ay This 1s true because both vectors terminate on the hyperplane
udthcmﬁailmmltothehyprylm. Thus, the distance
is

Y)

d = (EJL

(B-13)

Using equation (B-3) and the analytic expression for (Ai J,Ai d)’
equation (B-13) reduces to equation (B-12).
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The Research Division of the College of Engineering is an integral part of the educational
program of the College. The faculty of the College takes part in the work of the Research Divi-
sion, often serving as co-ordinators or project directors or as technical specialists on the projects.
This research activity enriches the educational experience of their students since it enables the
faculty to be practicing scientists and engineers, in close touch with developments and current
problems in their field of specialization. At the same time, this arrangement makes available to
industrial and governmental sponsors the wealth of experience and special training represented by
the faculty of a major engineering college. The staff of the Division is drawn from many areas of
engineering and research. It includes men formerly with the research divisions of industry, govern-
mental and public agencies, and independent research organizations.

Following are the areas represented in the research program: Aeronautical Engineering,
Chemical Engineering, Civil Engineering, Electrical Engineering, Engineering Mechanics, Indus-
trial and Management Engineering, Mechanical Engineering, Metallurgical Engineering, Mathe-
matics, Meteorology and Oceanography, and Physics. In addition, an interdisciplinary research
group is responsible for studies which embrace several disciplines. Inquiries regarding specific

areas of research may be addressed to the Director, Research Division for forwarding to the appropriate
research group.




