NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
HYPERFINE INTERACTIONS IN THE GROUND
STATE AND 21.7 KEV STATE OF Eu151 IN
EUROPIUM IRON GARNET

I. Nowik and S. Ofer

DEPARTMENT OF PHYSICS
THE HEBREW UNIVERSITY
JERUSALEM, ISRAEL
HYPERFINE INTERACTIONS IN THE GROUND STATE AND 21.7 KEV STATE OF 151Eu IN EUROPIUM IRON GARNET

I. Nowik and S. Ofer

The Department of Physics
The Hebrew University
Jerusalem, Israel

TECHNICAL NOTE NO. 8
June 1963

The research reported in this document has been sponsored in part by the United States Air Force, Office of Aerospace Research, through its European Office.
The hyperfine interaction of the ground state and 21.7 kev state of Eu^{151} in europium iron garnet have been measured at 300°K, 81°K and 20°K using the technique of Mössbauer absorption. Values of (335 ± 50) koe, (570 ± 35) koe and (670 ± 100) koe were found for effective magnetic fields acting on the Eu nuclei in europium iron garnet at the temperatures of 300°K, 81°K and 20°K respectively. These values are in agreement with theoretical calculations of the non-diagonal matrix elements associated with the admixture of states produced by the exchange interaction. The value of the quadrupole interaction eQq_{eff} of the ground state of Eu^{151} in europium iron garnet was found to be (-240 ± 100) mc/sec at 81°K. The results yield an assignment of a spin of $7/2$ for the 21.7 kev level and a value of $\mu = (2.54 \pm 0.15)$ n.m. for the magnetic moment of this level.
Introduction

The hyperfine Zeeman splitting in the recoil-free absorption spectrum of the 21.7 keV γ-rays from Eu151 (τ = 1.34 ± 0.1 \times 10^{-8}\,\text{sec}\,(1)) in Eu151 situated in europium iron garnet (EuIG) have been observed at 200\,K, 810\,K and 3000\,K, using the technique of recoil free absorption. This is possible since the sublattice of the rare earth ions in EuIG displays a spontaneous magnetization below the Curie temperature (about 550\,°C), which is correlated with the existence of an effective magnetic field at the Eu nuclei\,(2). The spontaneous magnetization of the Eu sublattice is temperature dependent and this implies that there will be a corresponding dependence of the effective fields acting on the Eu nuclei on temperature.

The ionic ground state of Eu3+ is 7\text{F}_0, which is diamagnetic. Wolf and Van Vleck\,(3) have pointed out, however, that the presence of nondiagonal matrix elements connected with the admixture of the excited 7\text{F}_1 state into the 7\text{F}_0 ground state produced by the exchange interaction accounts essentially for the behaviour of the spontaneous magnetization of EuIG below its Curie temperature. Using this approach, Wolf and Van Vleck succeeded in calculating the temperature dependence of the spontaneous magnetization of EuIG below its Curie temperature. Their results are in good agreement with the experimental data\,(4). In a recent paper, Gilat and Nowik\,(5), using the
same approach, have calculated the corresponding non-diagonal matrix elements determining the hyperfine interaction on the Eu nucleus in EuIG, and have in this way estimated, as a function of temperature, the magnitude of the effective magnetic field (H_{eff}) and the part of the effective electric field gradient (q_{eff}) associated with the orientation of the orbital wave functions produced by the exchange interaction through the spin orbit coupling. Their calculated values of H_{eff} and of q_{eff}/\hbar at 0°C were 7×10^5 oe and -550 Mc/sec per barn respectively.

One of the main purposes of the present work was to measure H_{eff} and q_{eff} acting on Eu$^{3+}$ ion in EuIG as a function of temperature and to compare the results to the theoretical predictions. A very good agreement between the experimental and theoretical values of H_{eff} was found.

The spin of the ground state of Eu151 is 5/2. The value of its magnetic moment is (3.419 ± 0.004) n.m.\(^{(6)}\) and of its quadrupole moment is (0.95 ± 0.10) barn\(^{(7)}\). The 21.7 kev transition is M1. From the point of view of nuclear information, concerning the 21.7 kev level, the results presented in this article yield an assignment of a spin of 7/2 for this state, and a value of $\mu = (2.54 \pm 0.15)$ n.m. for the magnetic moment for this state. The value of the magnetic moment is interpreted in terms of two possible models.
Shirley et al. (8) already observed the Mössbauer effect in the 21.7 kev transition of Eu151, using oxide sources and absorbers. The absorption patterns obtained by Shirley et al were single lines of approximately natural widths.

Experimental Details

The source used was Gd151 in the form of Gd$_2$O$_3$. It was produced by a (p, n) reaction on enriched Eu151 oxide. The bulk of europium was removed by a Na amalgam reduction (9) and the activity then precipitated with NH$_4$OH using 5 mg Nd$_2$O$_3$ carrier. The precipitate was then ignited at 800°C. The absorber used was 40 mg/cm2 EuIG containing enriched Eu151 of 91% isotopic abundance. The 21.7 kev radiation was detected by a 1 mm thick NaI(Tl) scintillation counter with a 0.001" aluminum cover. The absorption as a function of relative velocity between source and absorber was recorded automatically on a multichannel pulse height analyzer as already described (10). A scale of velocities was established by using as a frequent calibration the absorption spectrum of α-Fe$_2$O$_3$ which has been previously investigated (11). It turned out that the spectra obtained with the EuIG extended to velocities of about 6 cm/sec. On the other hand, the α-Fe$_2$O$_3$ spectrum extends to about 1 cm/sec. In order that the calibration should cover the required range on the pulse height analyzer the A.C. voltage applied to the loudspeaker coil during the
calibration run was a suitable fraction of the voltage used in the EuIG measurement. The ratio which determines the conversion factor between the two scales of voltage was measured accurately using a helipot potentiometer. The procedure assumes linearity of the loudspeaker which was confirmed separately in the relevant range. A block diagram of the electronics is shown in Fig. 1.

The measurements at 81°K were carried out using the cryostat shown in Fig. 2. The cryostat is suitable for work at a continuous range of temperatures between 81°K and room temperature. In the present experiment the heating coils were not used and the measurements were made with both the source and absorber at 81°K. Very thin rubber was used to close the hole between the lucite rod which held the source and the cryostat in order to prevent freezing of moisture in the cryostat which would impede the motion.

For the measurements at 20°K, the EuIG absorber was placed in a liquid hydrogen cryostat. The source was at room temperature. The radiation reached the absorber and detector through thin mylar windows.

Experimental Results

In order to measure the width of the recoiless emission line, measurements with Eu$_2$O$_3$ absorbers were carried out. Our results are in full agreement with those obtained by Shirley.
et al(8). The spectrum obtained with oxide source and absorber at $81^{0}K$ is shown in Fig. 3.

The measurements of the absorption by EuIG at $81^{0}K$ were carried out in two velocity ranges (Figs. 4 and 5). Six resolved absorption lines are seen. The spin of the ground state of Eu151 is 5/2. As the 21.7 kev transition is of M1 character, the possible spin assignments for the 21.7 kev level are 3/2, 5/2 or 7/2. The Zeeman effect splits the ground and 21.7 kev level into magnetic sub-levels. The selection rules for a pure M1 transition permit 12, 16 or 18 transitions between the sublevels, corresponding to values of 3/2, 5/2 or 7/2 for the spin of the 21.7 kev level respectively. The fact that only six resolved absorption lines are obtained shows that the ratio of the gyromagnetic ratios of the 21.7 kev state and ground state is such that many of the possible absorption lines overlap. A preliminary analysis of the experimental results showed that the general shape of the absorption spectrum is consistent with either one of the following three assumptions:

(a) The spin of the 21.7 kev level is 3/2 and the ratio of the g-factors of the excited state and ground state respectively is about 1.5.

(b) The spin is 7/2 and the ratio of g-factors is about 2/3.

(c) The spin is 7/2 and the ratio of g-factors is about 0.5.
In order to decide which of the three assumptions fits the experimental results, the ratio of the areas corresponding to peaks "c" and "d" to the areas corresponding to peaks "b" and "e" was determined from Figs. 4 and 5. The ratio was found to be 1.05 ± 0.20. The theoretical ratio corresponding to assumption (a), (b) and (c) are 1.6, 2.3 and 1 respectively. Thus, the present experimental results indicate that the spin of the 21.7 kev level is 7/2 and that the ratio of the g-factors of the 21.7 kev level and ground level is about 0.5. Following this interpretation, the transitions between the sub-levels are classified in Table 1 according to their positions in the experimental absorption spectra. The calculated relative transition probabilities are also given in this Table. The absorption lines corresponding to the +5/2 → +3/2 and the −5/2 → −3/2 transitions were not detected experimentally because of their very low relative intensity.

In the final analysis of the results, a possible axially symmetric quadrupole interaction was taken into account and it was assumed that each level was split according to the following expression:

\[W = mg\mu_n H_{\text{eff}} + 1/4 eqQ(3m^2 - I(I + 1))/(2I - 1) \]

where \(g \) is the gyromagnetic ratio of the level and \(Q \) its
quadrupole moment. In addition a possible shift ΔE between the centroid of the absorption lines and the emission line was taken into account. The results obtained for the splitting parameters at 81^0K from the analysis of the experimental peak positions are given in Table 2.

From these results we see that $g_1/g_0 = 0.53 \pm 0.03$ and $Q_1/Q_0 = 1.3 \pm 0.5$. The magnetic moment of the ground state was measured by Pichanick et al and found to be (3.419 ± 0.004)n.m. (6) and, therefore, our results show that the magnetic moment of the 21.7 keV level is (2.54 ± 0.15)n.m. The present results show that the value of H_{eff} at 81^0K is $(570 \pm 35) \times 10^3$ oe.

The recoil-less resonance absorption spectrum by EuIG at 300^0K is shown in Fig. 6. The peaks "a", "b", "c", "d", "e" and "f" can be identified in this spectrum too, although they are not very well resolved. By comparing this spectrum to that obtained at 81^0K, a value of 0.59 ± 0.08 was obtained for $H_{\text{eff}}(300^0K)/H_{\text{eff}}(81^0K)$. Thus, the value of H_{eff} at 300^0K is $(335 \pm 50) \times 10^3$ oe.

The absorption spectrum obtained at 20^0K is shown in Fig. 7. The measurement was carried out in this case for a relatively narrow range of velocities, with the intention of measuring accurately the separation between the peaks "c" and "d". By comparing the splitting between peaks "c" and "d" at 20^0K to the corresponding splitting at 81^0K, a value of
(1.18 ± 0.15) was obtained for $H_{\text{eff}}(20^o\text{K})/H_{\text{eff}}(81^o\text{K})$. Thus, the value of H_{eff} at 20^oK was found to be $(670 ± 100) \times 10^3 \text{oe}$.

Although a 3/2 spin assignment to the 21.7 kev level seems very improbable, an analysis of the results was also made assuming such an assignment. Then, a value of ~3 n.m. was obtained for the magnetic moment of the 21.7 kev level and the values derived for H_{eff} were about 10% lower than those given before.

Discussion

In Table 3, a summary of the experimental values of H_{eff} and eQ_{eff}, together with their theoretical values according to Ref. 5, is given. Fig. 8 also displays the results for H_{eff} as a function of temperature. From the table and the figure it can be seen that the magnitude of H_{eff} and its temperature dependence are in good agreement with the theoretical predictions. The absolute values are also very close to the theoretical results. On the other hand, one must take into account the following qualifications with respect to the theoretical calculations. (a) Possible effects of core polarization were neglected (the contribution to H_{eff} due to core polarization was estimated roughly by Freeman and Watson to be $-9 \times 10^4 S$ where S is the spin). This contribution is negative and therefore diminishes the total effective magnetic field. (b) The values of the exchange field used in these calculations are obtained in a very approximate way.
(c) There is still considerable doubt concerning the true value of \(\langle 1/r^3 \rangle \) to be used in the theoretical formula for the hyperfine interaction\(^{13}\).

There are large errors in the experimental value of \(e_{Q_{\text{eff}}} \). It is interesting, however, to note, that at least the negative sign of the observed quadrupole interaction is in agreement with the theoretical estimate. As pointed out in the introduction, the calculated quadrupole interaction assumes that the only contribution to the gradient arises from the presence of the exchange field. In Ref. 5 reasons are given to justify the assumption that other contributions are relatively small. Good agreement between experiment and theory for the value of \(e_{Q_{\text{eff}}} \) at 81\(^0\)K is obtained if we assume a value of about \(R = 0.4 \) for the Sternheimer shielding correction factor.

The properties of the ground and first excited states of Eu\(^{151}\) are, in many respects, very similar to those of the neighbouring lower \(Z \), odd proton even-neutron isotopes. For example, in \(^{59}\text{Pr}^{141} \) the spin of the ground state is 5/2 and of the first excited state 7/2. In \(^{57}\text{La}^{139} \) and in \(^{55}\text{Cs}^{133} \), the spin of the ground state is 7/2 and of the first excited state is 5/2. The value of the magnetic moment of the ground state of Eu\(^{151}\)(3.4 n.m.) is close to that of \(\text{Pr}^{141}(3.9 \text{ n.m.}) \)(14) and the value found in the present work for the magnetic moment of the 21.7 keV level
of Eu151 (2.76 n.m.) is very close to those of the 7/2 ground states of La139 (2.76 n.m.), Cs133 (2.56 n.m.) and Cs135 (2.71 n.m.) (14). In these cases mentioned, the 5/2 spin states are identified as d$_{5/2}$ shell model states and the 7/2 spin states as g$_{7/2}$ states with positive parities. One possibility therefore is to interpret analogously the ground state of Eu151 as a d$_{5/2}$ level and the 21.7 kev level as a g$_{7/2}$ level.

On the other hand, the quadrupole moment of the ground state of Eu151 is about 1 barn (7). This moment corresponds to a deformation factor δ of about 0.15 (15). According to the unified model, the ground state of Eu151 is probably a [532 5/2], negative parity Nilsson state (15). For such a state the calculated magnetic moment for this ground state is a function of its deformation and for $\delta = 0.15$ one obtains a value of about 3.1 n.m., which is not too far from the experimental value. But, there does not seem to be any individual Nilsson state of negative parity which is suitable for the 21.7 kev level. The [523 7/2−] state is too greatly separated from the [532 5/2−] state in addition the magnetic moment for the latter state corresponding to $\delta \sim 0.15$, is not in agreement with the experimental value of the magnetic moment of the 21.7 kev level. Likewise, there is no pure rotational state which could occur at an energy so low as 21.7 kev. With a deformation of $\delta \sim 0.15$, the lowest rotational state should be several hundred
kev above the ground state.

A possible conclusion is that Nilsson's collective model does not describe in a complete and satisfactory way the properties of nuclei with small deformations and the spins and parities of the ground and 21.7 keV levels of Eu151 are $5/2^+$ and $7/2^+$ respectively.

Another possibility which has been suggested is that the 21.7 keV level is not a regular Nilsson level and not a regular collective state, but a combination of an individual particle state with some collective excitation, for example, a combination of a 2^+ Sm150 vibrational state as a core plus a proton with spin $5/2$ (15). We have calculated the magnetic moment of the $7/2$ state, assuming this model, in which we couple vectorially the magnetic moment associated with a 2^+ vibrational state with g factor 0.4, to a single particle $5/2$ spin state of magnetic moment 3.4 n.m. (as in the ground state of Eu151) and we obtain a value of 2.9 n.m. close indeed to the measured value of 2.54 n.m.

Acknowledgements

We would like to thank Professor S.G. Cohen for helpful discussions and A. Mustachi for help in chemical problems.
TABLE 1

Identification of Observed Transitions Between Nuclear Zeeman Levels.

<table>
<thead>
<tr>
<th>Peak Observed</th>
<th>Transition Between Zeeman Substates</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>"a"</td>
<td>+5/2 → +5/2</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>+3/2 → +1/2</td>
<td>0.14</td>
</tr>
<tr>
<td>"b"</td>
<td>+5/2 → +7/2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>+3/2 → +3/2</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>+1/2 → -1/2</td>
<td>0.28</td>
</tr>
<tr>
<td>"c"</td>
<td>+3/2 → +5/2</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>+1/2 → +1/2</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>-1/2 → -3/2</td>
<td>0.48</td>
</tr>
<tr>
<td>"d"</td>
<td>+1/2 → +3/2</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>-1/2 → -1/2</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>-3/2 → -5/2</td>
<td>0.71</td>
</tr>
<tr>
<td>"e"</td>
<td>-5/2 → -7/2</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>-3/2 → -3/2</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>-1/2 → +1/2</td>
<td>0.28</td>
</tr>
<tr>
<td>"f"</td>
<td>-3/2 → -1/2</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>-5/2 → -5/2</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>-5/2 → +3/2</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>-5/2 → -3/2</td>
<td>0.04</td>
</tr>
</tbody>
</table>
TABLE 2

Results for the Hyperfine Interaction and Chemical Shift Observed in EuIG at 81°K. g_o and Q_o correspond to the ground state of Eu151. g_1 and Q_1 correspond to the 21.7 keV level.

<table>
<thead>
<tr>
<th>$\Delta E/h$ (Mc/s)</th>
<th>$g_o\mu H_{\text{eff}}/h$ (Mc/s)</th>
<th>$g_1\mu H_{\text{eff}}/h$ (Mc/s)</th>
<th>$eQ_o q_{\text{eff}}/h$ (Mc/s)</th>
<th>$eQ_1 q_{\text{eff}}/h$ (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-17 ± 25</td>
<td>595 ± 35</td>
<td>315 ± 35</td>
<td>-240 ± 100</td>
<td>-320 ± 100</td>
</tr>
</tbody>
</table>

TABLE 3

Summary of Experimental and Theoretical Values

<table>
<thead>
<tr>
<th>Temperature (°K)</th>
<th>$H_{\text{eff}}(\text{exp.})$ (koe)</th>
<th>$H_{\text{eff}}(\text{theory})$ (koe)</th>
<th>$eQ_o q_{\text{eff}}(\text{exp.})$ (Mc/s)</th>
<th>$eQ_1 q_{\text{eff}}(\text{theory})$ (Mc/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>335 ± 50</td>
<td>320</td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>570 ± 35</td>
<td>665</td>
<td>-240 ± 100</td>
<td>-480</td>
</tr>
<tr>
<td>20</td>
<td>670 ± 100</td>
<td>700</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES

Fig. 1 Block diagram of the electronics used for the automatic measurement of the recoil-less absorption as a function of relative velocity between source and absorber.
Fig. 2 Experimental arrangement for carrying out recoil-less absorption measurement with source and absorber at liquid nitrogen temperature.
Fig. 3 The absorption by Ba$_2$O$_3$ at 81°K of the 21.7 kev y-ray emitted from an oxide source of Gd151 at 81°K, as a function of relative velocity between source and absorber.
Fig. 4 The absorption by europium iron garnet at 81°X of the 21.7 keV γ-ray emitted in the decay of 151Gd, as a function of relative velocity between source and absorber. (Range of velocities -6 cm/sec to +8 cm/sec).
Fig. 5 The absorption by europium iron garnet at 81°C of the 21.7 keV γ-ray emitted in the decay of Gd^{151}, as a function of relative velocity between source and absorber. (Range of velocities -4 cm/sec to +4 cm/sec).
Fig. 6 The absorption by europium iron garnet at 300°K of the 21.7 keV γ-ray emitted in the decay of γ_2^{151}, as a function of relative velocity between source and absorber.
Fig. 7 The absorption by europium iron garnet at 20^oK of the 21.7 kev γ-ray emitted in the decay of Gd^{151}, as a function of relative velocity between source and absorber.
Fig. 8 Solid line represents the theoretical temperature dependence of H_{eff} action of the Eu nuclei in EuI6. Points represent the experimental values of H_{eff} obtained in the present work.
HYPERFINE INTERACTIONS IN THE GROUND STATE AND 21.7 KEV STATE OF Eu151 IN EUROPIUM IRON GARNET

I. Nowik and S. Ofer

June 1963
13 pages, 9 illustrations
Department of Physics, The Hebrew University
Jerusalem, Israel.

ABSTRACT: The hyperfine interaction of the ground state and 21.7 kev state of Eu151 in europium iron garnet have been measured at 300 K, 81 K and 20 K using the technique of Mössbauer absorption. Values of

ABSTRACT: The hyperfine interaction of the ground state and 21.7 kev state of Eu151 in europium iron garnet have been measured at 300 K, 81 K and 20 K using the technique of Mössbauer absorption. Values
ABSTRACT (Cont'd)

of (335 ± 50) koe, (570 ± 35) koe and (670 ± 100) koe were found for effective magnetic fields acting on the Eu nuclei in europium iron garnet at the temperatures of 300°K, 81°K and 20°K respectively. These values are in agreement with theoretical calculations of the non-diagonal matrix elements associated with the admixture of states produced by the exchange interaction. The value of the quadrupole interaction eQ_{eff} of the ground state of Eu151 in europium iron garnet was found to be $(-240 ± 100)\text{mc/sec at 81°K}$. The results yield an assignment of a spin of 7/2 for the 21.7 kev level and a value of $\lambda = (2.54 ± 0.15)\text{n.m.}$ for the magnetic moment of this level.

ABSTRACT (Cont'd)

of (335 ± 50) koe, (570 ± 35) koe and (670 ± 100) koe were found for effective magnetic fields acting on the Eu nuclei in europium iron garnet at the temperatures of 300°K, 81°K and 20°K respectively. These values are in agreement with theoretical calculations of the non-diagonal matrix elements associated with the admixture of states produced by the exchange interaction. The value of the quadrupole interaction eQ_{eff} of the ground state of Eu151 in europium iron garnet was found to be $(-240 ± 100)\text{mc/sec at 81°K}$. The results yield an assignment of a spin of 7/2 for the 21.7 kev level and a value of $\lambda = (2.54 ± 0.15)\text{n.m.}$ for the magnetic moment of this level.