NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SILICON: ELECTRICAL CONDUCTIVITY

Data Sheets

M. Neuberger

June 1963

HUGHES
HUGHES AIRCRAFT COMPANY
CULVER CITY, CALIFORNIA

DDC
DECEIVED
AUG 21 1963

TSAIA D
SILICON: ELECTRICAL CONDUCTIVITY

Data Sheets

M. Neuberger

DS-126
June 1963
FOREWORD

This report was prepared by Hughes Aircraft Company under Contract No. AF 33(616)-8438. The contract was initiated under Project No. 7381, Task No. 738103. The work was administered under the direction of the Directorate of Materials and Processes, Aeronautical Systems Division, with Mr. R.F. Klinger acting as Project Engineer.

ABSTRACT

The Electronic Properties Information Center has been established to collect, index and abstract the literature on the electrical and electronic properties of materials and to evaluate and compile the experimental data from that literature. A modified coordinate index to the literature is machine stored and printed for manual use. The Center publishes data sheets, summary reports, thesauri, glossaries, and similar publications as sufficient information is evaluated and compiled. This report consists of the compiled data sheets on Silicon: Electrical Conductivity.

This report has been reviewed and is approved for publication.

H. Thayne Johnson
Supervisor
Electronic Properties Information Center

John W. Atwood
Project Manager
INTRODUCTION

In June 1961, a program was initiated under the direction of the Air Force to collect, index and abstract the literature on the electrical and electronic properties of materials and to evaluate and compile the experimental data from that literature. Placed at Hughes Aircraft Company in Culver City, California, the program, now called the Electronic Properties Information Center, was originally intended to cover ten major categories of materials: Semiconductors, Insulators, Ceramics, Ferroelectrics, Metals, Ferrites, Ferrimagnetics, Electroluminescent Materials, Thermionic Emitters, and Superconductors.

During the first year, studies were completed on the Semiconductor and Insulator categories; and Ceramics was discontinued as a separate category and subsumed under the other nine. Vocabulary studies have now been completed on all categories, and retrospective documentation is virtually complete for Semiconductors and Insulators. A full index to the literature is maintained; and publications such as data sheets, summary reviews, glossaries, and thesauri are periodically issued. The use of the Center and these publications are available to anyone wishing information within the scope of the Center's objectives. A full list of publications to date appears at the end of this report.

This report contains data sheets on Silicon: Electrical Conductivity. The data sheets have been compiled direct from the literature. Articles are allowed to accumulate in the system until it is judged that a sufficient number are available on one material for an adequate evaluation.
The manual modified coordinate index is then used to retrieve all literature on the material to be compiled. Bibliographies are checked to make sure that valuable and relevant literature is not overlooked. Then the assembled literature is given to the specialist doing the evaluation and compilation.

Evaluation is confined to primary source data except when only secondary citations are available. If equally valid data are available from several sources, all are given. Data are rejected when judged questionable because of faulty or dubious measurements, unknown sample composition, or if more reliable data are available from another source. Selection of data is based upon that which is judged most representative, precise, reliable, and covers the widest range of variables. The addition of new data to a previously evaluated property requires a reappraisal of the reported values. Older data may be deleted if the new data are judged more accurate or representative.

After a thorough analysis and evaluation, the data is compiled into data sheets which present it in its most optimum form. This will be, primarily, but not limited to, curves or tabular form. Where possible, graphs are adapted directly from the original sources. If this is not possible, they are drawn from data compiled from the articles. Where thought important, notes are entered with each graph to help the user.

The references, from which the data are drawn, are shown by reference number below each graph with the full bibliographic information.
at the end of the data sheets. The bibliography is referred to and listed in the order of entry into the Center (accession number). This provides a quick cross reference into the index used with the literature.

This compilation deals only with Silicon: Electrical Conductivity as a Semiconductor. Non-semiconductor data will be included in a future revision.
SILICON

Electrical Conductivity

Temperature °K:

Temperature ranges for electrical conductivity measurements shown on following pages. Numbers at the end of each line are the reference numbers.
Semiconductor Materials

Silicon

Electrical Conductivity

log Electrical conductivity of single crystal, p-type silicon as a function of temperature.

[Ref. 532]
SILICON

Electrical Conductivity

Electrical conductivity of p-type silicon single crystals as a function of the temperature. The curves (1) and (2) are taken from a paper by Pulley and Mitchell. Samples 5 and 6 are intrinsic. Boron impurity level reduced to 10^{11} cm$^{-3}$.

[Ref. 4465]
SILICON

Electrical Conductivity

Electrical conductivity of p-type, single crystal silicon as a function of temperature. $\rho = 74$ ohm cm at 300° K.

[Ref. 3901]
SEMICONDUCTOR MATERIALS

SILICON

Electrical Conductivity

Electrical conductivity as a function of temperature for intrinsic, single crystal, n-type silicon.

[Ref. 2956]
SILICON

Electrical Conductivity

Electrical conductivity σ (ohm cm$^{-1}$)

Voltage (Volts cm$^{-1}$)

Electrical conductivity of single crystal silicon as a function of field at 20.75°K. Sample is n-type. $n_D = 8.2 \times 10^{15}$ cm$^{-3}$; $n_A = 1.6 \times 10^{12}$ cm$^{-3}$.

[Ref. 2646]
Silicon

Electrical Conductivity

Electrical conductivity of single crystal silicon as a function of field at 20.75 K. Conductivity of sample at 300 K = 2.08 (ohm cm)^{-1}.

[Ref. 2646]
SILICON

Electrical Conductivity

Current - Voltage relation for single crystal, n-type silicon; n = 3 x 10^15 cm^-3 at 300°K. 0.5 and 0.6 show slope of curve at two points.

[Ref. 3012]
SILICON

Electrical Conductivity

Electrical conductivity of single crystal boron-doped silicon as a function of temperature. Sample data given in Table below.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Majority Impurity</th>
<th>Net Impurity Concentration cm⁻³</th>
<th>Majority Impurity</th>
<th>Mass Percent</th>
<th>Added Impurity</th>
</tr>
</thead>
<tbody>
<tr>
<td>131</td>
<td>0.015</td>
<td>1.5 x 10¹⁴</td>
<td>1.0 x 10¹⁴</td>
<td>6.5</td>
<td>arsenic</td>
</tr>
<tr>
<td>130</td>
<td>0.048</td>
<td>2.1 x 10¹⁴</td>
<td>1.5 x 10¹⁴</td>
<td>1.0</td>
<td>arsenic</td>
</tr>
<tr>
<td>139</td>
<td>0.048</td>
<td>2.1 x 10¹⁴</td>
<td>1.5 x 10¹⁴</td>
<td>1.0</td>
<td>arsenic</td>
</tr>
<tr>
<td>136</td>
<td></td>
<td>2.1 x 10¹⁴</td>
<td>1.5 x 10¹⁴</td>
<td>1.0</td>
<td>arsenic</td>
</tr>
<tr>
<td>140</td>
<td>degenerate</td>
<td>2.1 x 10¹⁴</td>
<td>1.5 x 10¹⁴</td>
<td>1.0</td>
<td>arsenic</td>
</tr>
</tbody>
</table>

[Ref. 430]
SILICON

Electrical Conductivity

Electrical conductivity as a function of temperature for single crystal silicon. ZG 131: n-type, phosphorus-doped, \(N_A = 1.8 \times 10^{13} \); \(N_D = 2 \times 10^{13} \). ZG 133: p-type, boron-doped, \(N_A = 5.5 \times 10^{13} \); \(N_D = 3.3 \times 10^{13} \). ZG 136; p-type, boron-doped, \(N_A = 5.3 \times 10^{13} \); \(N_D = 4.7 \times 10^{13} \).

Electrical conductivity as a function of temperature for single crystal silicon. Boron-doping is same for all samples, \(N_A = 0.8 \times 10^{15} \) cm\(^{-3}\).

Phosphorus-doping:
12) \(N_D = 1.1 \times 10^{17} \) cm\(^{-3}\)
9) \(N_D = 1.4 \times 10^{16} \) cm\(^{-3}\)
9b) \(N_D = 1.2 \times 10^{16} \) cm\(^{-3}\)
9a) \(N_D = 1.6 \times 10^{16} \) cm\(^{-3}\)
SILICON

Electrical Conductivity

Electrical conductivity as a function of temperature for single crystal silicon, boron and phosphorus-doped, $N_A = 0.8 \times 10^{15}$ cm$^{-3}$; $N_D = 2.7 \times 10^{17}$ cm$^{-3}$.

Electrical conductivity as a function of temperature for single crystal silicon, phosphorus-doped, $N_P = 1.5 \times 10^{16}$ cm$^{-3}$.

[Ref. 647]
SILICON

Electrical Conductivity

Electrical conductivity as a function of temperature for single crystal, p-type, thallium-doped silicon.
\(\rho = 50 \, \text{ohm cm} \).

\[\begin{align*}
3.33 & & 2.85 & & 2.5 & & 2.22 & & 2.0 & \text{°K} \\
300 & & 350 & & 400 & & 450 & & 500 & \text{(1/Temperature) } 10^3 \text{ °K}^{-1}
\end{align*} \]

Electrical conductivity as a function of temperature for single crystal, copper-doped silicon. Original sample, \(\rho = 1 \, \text{ohm cm} \) at 300°K, n-type, \(n_D = 2.7 \times 10^{15} \, \text{cm}^{-3} \).

\[\begin{align*}
0.1 & & 1.0 & & 10 \text{ (1/Temperature) } 10^3 \text{ °K}^{-1} \\
333 & & 250 & & 200 & & 166 & & 143 & & 125 & & 111 & \text{°K}
\end{align*} \]

[Ref. 182, Ref. 2769]
SILICON

Electrical Conductivity

Electrical conductivity as a function of temperature for gold-doped, single crystal silicon. Original sample, $\rho = 1 \text{ ohm cm}$ n-type, $n = 2.3 \times 10^{14} \text{ cm}^{-3}$.
Silicon

Electrical Conductivity

Electrical conductivity as a function of temperature for single crystal, copper-doped, p-type silicon, $n = 2.3$ to 6×10^{14} cm$^{-3}$. Original sample; n-type, $\rho = 1$ ohm cm, $n = 2.3 \times 10^{14}$ cm$^{-3}$.

[Ref. 2769]
SEMICONDUCTOR MATERIALS

SILICON

References

References (Continued)

PUBLICATIONS OF THE ELECTRONIC PROPERTIES INFORMATION CENTER

Summary Reviews and Data Sheets

