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SEBTRACT

‘The wontract stutly mesiittetl in mew antl powentill processing ant
imachanization techriigues thet haue theen intagmatted] it tthe diedign
«of a fill scale | }zrqg;mi{rma'lﬂe muilti-inrmemaentt onmpitter ffor Ml
Aervspane missions. &‘md]vym af tthe funtiamerttdlly digparatte jpro-
oeﬁa,mg mequinements af essentidl aernapace sithrotines demon-
sAtrated that maticdlly mew diigital cormtter design techriigues and
more efficient compitter mMmedhanizations wene meguiretl. Bbechan-
dzations wene aptimizet] for tthetbhadic types of computattions, tlem
dmtegratet uwsbing muotidl design conoepts to adhiese 2 shmdiifet
sys.em through mew time-sharimg technigues. Trittizl thosic Sheo-
retivdl andlyses formet the fountiattions for thhe inttegrattive affonts.
Numericsd] Stidljes imagration algorittims were dexivet and devekapet
Hor iinput provessing ant intterned]l compittattions. Funtamets] dhigittdl
SBtidljes dlgortthms atttdinet mew lexdls off aoourany iin singlle and
multi-increment aonputers. Invsntion of seoont differsnoe aom-
mutation Aantd cormmunication ket to tthe firat genersll ((guatient) algomittion
vitth milti-inorementt acouwracy ant a mullti-trarsfer aritt wihidh, in
cases, cequils precision af aonuventiond] dexioes of ttawdice the ccnrrglkev;it,y: .
In meeting diemantling aeroapene meglimementts, sesiEl-gerelidl it
~ metic motid] techiigues weme develnpet wiliich eratke 2 memr cminuous
maximization ©f arithmetic capability for digperatte woutines of the
ull jprogram, Leading to Heoreese computier complledity for the
reguired commttation capdability .
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CHAPTER i

INTRODUCTION

The study program at the comclusion of the second phase of a two-year effort
resulted in development of markedly powerful processing and mechanization
techmiques which have been integrated im the design of 2 full scale program-
mable incremental computer system for full aerospace mission. Especially
efficient mechanization for a computer has been derived which meets compu-
tation requirements for an aerospace mission from boost through coast to
apogee, imjectiom imto orbit, retrofire. tramsfer orbit., re-emtry, mamewvering
and landing The design level also provides for sophisticated auwxiliary fumc-
tioms of military missions which may be expected within 3 years. [t was dem-
onstrated acalytically and im simulations that the breadth of computation capac-
ity requred by the large set of computation routimes, of individually fundamertal
disparate natures, is mot met by existing real time computer systems of ac-
ceptable weight and size. To folfill the goals of the comtract effort, tke
iollowing sub-investigations were carried out during Phase II (in considerable
over-lapping time sequence): (1) applications surveys and evaluations were
made of the computation requirements of the subroutings for these vamnscas
applications; (2) a fundamental classification of computation types was car-
med out; (3) study of system implications with respect to overall computatioz
capability and tardware requirements was completed: (4) improved digutal
computation techmigues including new arithmetic modal design cozcepts and
special basic tramsier umts were developed for kardware ecomomy: (%) andi-
vidually optimmm™ mechamzations for each computation type were inlegrated

i. e., arithmetic modal desmign techmigues were developed or time skared
mumamezed meckanization to form a sungie versanie meckanization for tke
required new level of computation capability iz a computer of moderate bard-

ware complemtr

Manascript released by the anthor oa 30 April, 1963, for publication as an

ASD Techmical Documentary Report. I-1



Phase 1 had consisted of a broad study ranging from the analysis of the
basic nature of the most demanding airborne guidance and control compu-~
tation problems, and the gemeral computation approachkes to their solution,
to the development of specific high performance incremental computation
algorithms. To show the cavputer design teckniques and evaluate a theory
of nmmerical Stieltjes integration that was developed, a special purpose
computer for strap-down computations was designed during Phase 1 and
later constructed during Phase Il

The general approach to full scale computer system design for aerospace
and airborne applications, of whick the strap-down processor exemplified
bt a2 major part, was seen to offer a potestially great step iz computation
capability for a full scale system of given level of mechanization and
complexity, provided major developments in digital computer design tech-
miques exploited them in full measure. The well defined gosl of Phase II
made possible an intense concentration on the challenging desiga problems
involved and assisted in development of the design of a full scale incremen-
tal computer system which provides a remarkably kigher level of computa-
tion capadility for given hardware costs than existing computers constructed
fromn the same state ot the art hardware. Design tecimiques were developed
for extracting comsistently in real time greater real computation value.
The basic classes of computations whick comprise airborne and aerospace
computation programs. imroduced as input processing and invernal compu-
matos i the amalyses of Phase 1. are provided for iz a higely integrated
programmabile 1acremental computer evolved during Phase II. Further
detailed analyses during Pinse Il revealed that certaia additional reguire-
ments (10 be described)., are act met ia existing incremmental computers,
but are aseded in a full acroepace mission computer. However, these

and previcusly recoguized requiremmends are met ia highly efficient design
waich wtilizes the advanced algorithm aad digital processing teckaiques
developed during Phase 11 of the pregram.

1.2



Analytical efforts during Phase 1l in the general theory of numerical
incremental computation, served to complete the establishment of the
general relationships of the processing concepts, with development of
simplified algorithms for internal computation in terms of what is referred

to as "virtual® variables.

Computation requirements and capability analyses for a full acrospace
mission demonstrated that for internal computations the computer with

the time shared arithmetic module, reguires (]) several bit increment
computation, (2) precision general (quotient) integration algorithm and

(3) a2 degree ot parallel processing capability. These sophistications are
shown realizable without significant additional cost, assuming a programmable
nput processing capability, because of the comcept of a single arithmetic
module, that is simpler than 2 whole-word fast multiplier and that uses

time sharing and modal switching in the emecution of all the system functions
each of whick is at an individually required level of precision. In the in-
ternal computation design studies 2 major deficiency of the conventional

DDA, but a partially developed attribute of at least one of the more recent

inc remental computers, was fully developed upon discovery of digital pro-
vessing techniques capable for the first time of division with multi-increment
aLLurecy I an incremental computer (with no direct division capability).
Because of high variable rate data and precision requirements, division
algorithm :s amenable to accurate doppler damping in conventional savigation,
in coordinate transformation computations, such as toss bombing and fire
vontrol, amg, most important, in the generally demanding aerospace

Cumputations.

The multi-inc rement camputer is almost universally considered inherently
10 have « more complex communication structure, but new technigues

based on the theory ot informatioa for baad limited variables led to a cam-
puter structure i1n which commumcatioa ceets are less than in 8 conventional

1-3



single increment DDA with the same imtegrator count. Multi-transfer wmit
costs are reducible to an emtirely acceptable proportion of computer system
costs. For applications demanding both input processing, as well as imter-
nal computation capainility, a time shared arithmetic module capable of
parallel (high rate) several kit increment and serial (intermediate rate)
many bit increment camputation was evolved. Axcther remariatile multi-
tramnsfer unit was developed for internal computation by applying the new
design techmiques. The new multiplier is capaible of M hit transfer, with
mechanization comparable to a three hit transfer anit, where, for example,
M may be as large as 10 bhits depending un the scaling implied by the analytic
or empirically determined character of the computation variahle.

The development during phase [ of this contract study of a design techkmigue
for gemeral (guotient) algorithm computation with multi-inc rement accuracy
had not been met for challenging techmnical reasons. The solution during
Phase 1l of this problem for band-limited variatles was accamplished together
with invention of second difierence computation and communication in what is
believed to be a significant comtribution to the Sield of digital computation.
imply remarkatle simplifications in general multi-increment compate r
banizati

Integration of the many new processing technigues imto a single system

was accomplished in a natural and highly efficoent mnanner. The result

was a design structure of an incremental computer of modest weight and
volume, assuming use of state of the art lardware, and modest clock rave,
which can execute the computations On Continuons variables (and with pero-
posed design developments, miecewise comtinuons variables) izwvolved in the
contral in all phases ot the acrespace mission inciuding re-emtry with sopiue-
ticated energy mmanagement and all at the new levels of accuracy required.

1-4



CHAPTER II

THE STRAF-DOWN PROCESSOR CONSTRUCTED TO DEMONSTRATE
INPUT PROCESSING PRINCIPLES AND SPECIAL
PURPOSE MECHANIZ ATIONS FOR
AERCSPACE APPLICATIONS

2.0 INTRODUCTION - lnput processing principles developed during Phase I
amd multi-iteration rate computation of integral increments. The strap-downs
processor was constructed durimg Phase I to demonstrate the high lewel of
accuracy aftaimable by application of those principles to 2 computation pro-
e witth high error sexsitivity, such as that of strap-dowm computations.

I was proposed that on the basis of these and expected further developments,
im processing and mechanization principles, that 2 faull scale design be developed
for a computer capalile of executing all aercspace camputation tasks of a full
mission, amd meckavirable within 2 package of modest size amd weight. This
cdhapter presents comtract study resuits which, rather tham a direct gemeral
stage of the primary effort, are the resalts of special analyses, hardware
purpose strap-down computer desigm. The strap-downm processor is a special
purpose computer which, guite apart from input processimg principles, incor-
porates special purpose computer degign principles. While the primmary
coatract study efffort was dewoted to the developmentt of a full scale pro-
grammable comguiter system, it was mevertheless considered profitable to
evaluate the immplications of the strap-dowa processor as a design basis for
special purpose computters whick execute strap-dowa computations. Certairm
applications, such as pre-mid course missile guidance, are regarded by mamy
system amalysts as calling for a strap-dowse comgputer, a special parpese com-
pPatter to be placed im am imtermediate missile launch stage package.-



For such applications the strap-down computer, for a system using state of
the art sensors and transducers, 13 tailored to meet a given precis.on re-
guirernent. This presemnts the relatively straightforward design task of modi-
fyimg specific parts of the strap-down processor to adjust multi-increment bit
length, algoritihmm sophistication, and input accumulation for the transducer
type to meet the generally less demanding levels of those applications.
Z.1 STRAP-DOWN PROCESSOR DESIGN MODIFICATIONS DURING PHASE
Il AND ANALYSIS OF RESULTANT COMPUTATION CHARACTERISTICS.
A Introduction - Certa:n design modificat.ons to the preliminary de-
s1gm of Phase ]| were made dur.ng Phase [I to obtairn 2 special purpose
computer capable of mot only lugh precision, but one whose des.gn
could be readily ta.lore . to pozsible spec.al purpose applications.

B. Strap-Down Processor Design Modifications - The input processor
logical desigm problem, involved .m the sequencing of component
calculations of the angular and inertital velocity requirements, was
reviewed to establish a process which achieves total updat.ng
withim & simgle slow iteratiom interval. The modif.ed log.cal de-
s.gn, adopted amd described in the sectiom on Log.cal des.gnm,
achieves & sequencing with s mpler input processor mechanization
and checkout, and has an output variabd'e set rmore naturally as-
sun:lated by an internal computer or output device A second
major modific aton 1% the shortened but length of the mult.pl.er
urt to 19 bits gaimed by intro uction of a roundoff operat.on on
imput accumulator outputs to the multiplier. Simple roundoff
based on the value of the 20th b.t .s shown :n a later section to
irtroduce bias error s.gnificant with respect to processor output
ACCWTaACY, the effects of which can be removed 1z the foliowing

alternative mod.tications:



1. Biasing of analog input reference voltage level.

2. Logical design .f a somewhat sophisticated roundoff

process.
Thelatter was chosen in the final logical design.

2.2 SCALING PROPERTIES OF THE STRAP-DOWN PROCESSOR AND
MINOR HARDWARE MODIFICATIONS FOR UNUSUAL APPLICATIONS -

The basic design features of the High Speed Digital Differential Analyzer
(HSDDA) for strap-down computations are such that, essentially, any real
strap-down computation application can be handled provided that in certain
cases, minor hardware modification is made. The rate handling capability

is the result of the wnole word input feature. The minor modification wnich
in certain applications may be necessitated is the result of non-programmable
:nternal scaling, specifically in the phasing of updating additions determining
magnitude of increments of direction cosines. The modification which easily
atta:ns any conceivably desired rate handling capability is a delay of extra-
polator output by d bit umes to attain a Zd increase in rate handling capability.
Anticipated future appl.cat.ons do not require more than a 2 bit ime delay.

Consider now the details of internal scaling of the strap-down processor.

The 20 bit 1nput words which are angular increments and velocity increments
are accumulated 9 imes in pre-processing. The immediateiy subsequent input
extrapolation 1s mechanized with an effective increase in amplitu..e of 8

(the result of a 3 bit ime delay). The resulting quantities are rounded off

and effectively decreased by a factor of 2-7 on entering the multipl.er as

20 bit numbers. The scale of these multiplier quantities is seen to be

9xaxz‘7 = 9/16 (-1)



relative to the input words. Assuming the Ujy quantities have scale Sy the
output of the multiplier has scale 9/16 Sy. On passing through the extra-
polator the scale is increased by a factor of 12. The outputs of the
extrapolator are presently added to the Ujk line at the least significant end

of the 32 bit word. Since the 32 bit word for Ujk quantities is regarded in
multiplication as unity for full register the latter updating mechanism amounts
to a scale factor reduction of 231 # 19 = 212 11, 4caled Ujk quantities
make this part of the updating effective by a scale factor change of 2'12/80.

The net relative magnitude of £Ujk to U for full input angular rate is given by:

9 12x2 _ 27 -9 (1n-2)
RSU . T =33 - 2

which is the largest fractional change in U which can be carried in one itera-
tion (without the minor modification previously discussed). The maximum

angular rate which can be handled without the proposed change is

- 27 . _ rad (11-3)
£ ax s T6(1024) (256 it/sec) = 43 vec

for the 266 it/sec iteration rate of the HSDDA. The simplest method of in-
creasing w, .. is to displace the write head of the U channel the proper

number of bits to increase Wmyy a factor of 2 for each bit moved over.

2.3 ROUNDOFF ERROR GROWTH IN THE STRAP-DOWN PROCESSOR.

A. iroduction - The final logical design of the strap-down pro-
cessor implies a computer subject to roundoff errors at only

three points of the input processing. These are:



1. Input conversion, resulting from sampling inputs to finite

word length,

2. Roundoff of lnput Accumulator Outputs, enabling use of a
fast multiplier of moderate word length.

3. Roundoff in the multiplier, which is negligible because the
Litton fast multiplier effects roundoff at double word length.

Roundoff Error Resulting From Input Sampling - Input sampling

errors are assumed to be reduced to purely random errors by

elimination of converter bias errors. The 20 bit word input of

19 bits magnitude plus a sign bit are then sampled with a re-
-19

sultant maximum error value of -;- x 2 of full scale. A flat

probability distribution implies that the rms error of a single
converted value is 7;- x Z-zo of full scale. The maximum angular
rate for full scale of inputs is adjustable in the strap-down pro-
cessor, being in the shipped computer 0. 43 rad/sec for which the

rms angular rate error of a single reading is

20

c, = 0. 43 37% x 2 ;'-:- x 10-6 rad/sec (11-4)

The cumulative random error in angle produced in an inertial
coordinate may be evaluated on the basis of summation at the
input rate of 1/7 = 2400 iter/sec which is 9 times the output rate.

The angular error sum after a period of operation ~ is

/v
0 = 2 N (11-+)

-5



which has variance

Hence

t/r
2
08® = 1’2 c, (11-6)
n=1] On
o'e = Tz;tr o (1-7)
“w
oze =JtT C! (11-8)
-

Fort = 6 hr, 1/7 = 2400, f. = 1/4x lO‘6 the rms error re-

sulting from input sampling is approximately 3/4 x 10‘6 rad=1/6
arc sec, hence the random input sampling error is negligible.

Error Growth Resulting From Roundoff of Multiplier Inputs - The
hardware requirements of a whole word fast multiplier are es-
sentially proportional to the word length of the multiplicand. A
substantial saving in multiplier complexity was effected by in-
troducing a roundoff operation on outputs of the input accumulator
unit (operation of which is delineated in the section on general
logical description of the strap-down processor). The basic in-
puta to the strap-down processor are 20 bit words of 19 bits
magnitude plus a sign bit. A coanstant input is esseantially multi-
plied by 9 in pre-processing summations and then multiplied by

8 in the input extrapolation section hence the input accumulator
ocutputs before roundoff can be 27 bit words of 26 bit magnitude
plus a sign bit. The roundoff operation, producing a number of
20 bits if sufficiently accurate, may introduce an acceptable error



of the same low level as in input sampling. The most commonly
mechanized roundoff operation, however, can be shown to be
inadequate because it introduces a bias of 2 “N+1 chere Nis the
number of bits socnded off. The simple roundoff operation con-
siste of adding a 1 in the most significant bit rounded off, to the
truncated number in the least significant bit position. The average
error introduced in this operation is evaluated by assuming that
all possible numerical values of the truncated number occur with
the same frequency during extended computer operation, and there-
fore average the individual errors which result for each possible
number. The truncated number, regarded as in a unit register,
ranges from 0 to (l-Z'N) and includes 1/2. The value 0 introduces
no error when it occurs. The remaining successive values, on
each side of 1/2 of each absolute magnitude difference from 1/2,
produce equal and opposite errors. The resultant error using

the simple roundoff operation is purely that iatroduced when 1/2
occurs, for which the error is 1/2. Since the number 1/2 occurs
with frequency 2 -N the long term effect of the simple roundoff
method is a biag error of 2 -N times the least significant result

of the rounded number. In the strap-down processor the simple
roundoff would create an effective bias of 2 -7 of the least signifi-
cant bit of the multiplicand. For full scale direction cosines the
least significant bit pr.sses directly through the multiplier, thence
through the extrapolator unit where it is multiplied by 12 and then
added at the least significant end of a 32 bit word of the direction
cogine line. Regarding the error produced in the direction cosine
line as an angular error in radians (since for 6 small U = cos

(@ + 90°) 2 € the angular error produced per iteration (on the

average) is:



-31

2 x 12 x 2!

20.5 x 10710 rad (11-9)

After 6 hours at 266 iter/sec the bias errors can add up to a total
angular error of

-10 -4
6(3600) (260) 0.5 x 10 =3 x 10  rad (II-10)

~ 1 arc min.

resulting from the use of the simple roundoff operation. The bias
error can be removed using the elaborated roundoff operation
based on the fact that error is produced when the roundoff section
of bits, regarded as in a unit register, has value 1 2 in which case
the addition of a bit to the truncated number in the simple roundoff
is now inhibited., With effective bias error removed the only error
effect remaining is the random error effect analyzed in the pre-

vious section.

2.4 LEAD-LAG EFFECTS IN INPUT SAMPLING AND ASSOCIATED ANALOGUE
FILTERS - Strap-down computations are extremely sensitive to lead-lag

effects in input variables or processing action. The analysis of Phase I pre-
sented in Chapter 7, Section 4, of the first report,* showed that introduction of
an analogue filter of very short time lag between sensor and digital computer

was necessary in order to effect the second order Stieltjes integration algorithm
in a strap-down processor, with simplified mechanization. Assuming the
strap-down processor mechanization executes precisely the processings derived

in that analysis the time constant of the analogue filter was shown to

s First Phase Technical Documentary Report on Development of an Airborne
HSDDA, H. W, Banbrook, 7 July 1961, Contract AF33(616)-6936,

u-s



necessarily be %1’ where T is the output iteration interval. In the final mech-
anization the processing was modified slightly to imply analogue to digital
conversions made by only two converters, rather than six converters (one for
each input variable) for a hardware saving in any operational system. The
effect of serial rather than parallel samplings of inputs is to introduce leads
and lags in certain angular rate and acceleration inputs. The leads and lags
are 21 word times of £1/27 T which while small would have a serious effect
on computer accuracy if not corrected in an operational system. Such cor-
rection made for each input in the associated analogue filter, by choosing the
time constant to be ;—;’ T t:,%'r instead of :l,%‘r » is evaluated since such cor- ‘
rection involves no actual cost in mechanization. A small error effect in

the second order algorithm results from making the parameter change for
exact first order algorithm. The level of error in second order algorithm

for the case of 1 word time phasing error is seen by the following analysis for
the general case of W word times. Expressed in the delay operator form of
previous algorithm analysis the necessary compensation of a W word time

delay in the 27 word per iteration processor is
(I-C)'k ~ (1 +1¢ *ﬂz_t‘_) ¢*) (11-11)

where ) = 2‘-’.;. and { is the ] iteration delay operator. The required com-

pensation for an analogue filter was shown to be

l-u'(-u‘(%-u*) ¢? (11-12)

where u® = 1/K**, and K* the time constant of the modified filter intended to

compensate the lag of the sampling.
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The net algorithm effect is given by the product of the required compensations,
which should approximate the required compensation for the filter with time
constant K = -.{—;7 determined for the W = 0 case. Thus the net uncompensated
algorithm effect is given by:

\ r
[1+xc+ Mzﬂ-L ¢ 2] f

“u¥Cu® (G -u®) c"‘] (L1-13)

[l-uC -u(;‘-u)c"]

A=

The lag cancellation yields first order agreement as implied by equating first

order terms in numerator and denominator,
LI P S (11- 14)
which on substituting for *, ., g implies the choice

W-
— -15
+ 37 (1 )

R e

1
—‘ =
K

The net uncompensated algorithm effect for ..* = X + . is

1 Y -2
l-uf+ -\.(:,_-- )+ (3t ) ) Cz
A= 1 ~5 ~ l+\(-z-+d) (11-10)
l-~J :-“(i- .‘) 3
to second order
Substituting for \, -,
w W 17 ¢ 2 {11-17)
-———— - . -
Al 57 *33)
which for 1 word time lag is
A~1+0,0095 Ca (11-1v)
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The compensation of second order term to 1 percent corresponds to precision
improvement.due to second order algorithm relative to first order algorithm
of 50 to 1. Note that if an additional filter were used in series with the re-
quired filter, for which the analysis above may be used, with u = o, then

-~ w.,2_.2 -
which for v =]
leads to A 1+0.004r° (11-20)

indicating negligible second order algorithm error, using a two filter per
input, mechanization.

2.5 TRANSMISSION WITHIN THE STRAP-DOWN PROCESSOR OF SECOND
ORDER ALGORITHM TERMS FOR HIGHER ORDER INTEGRATION ACCURACY -
Roundoff procedures and word length determine the level of roundoff error.

If the roundoff error exceeds the level of algorithm error produced by neglecting
second order terms in the integratior. algorithm then, depending on the ap-
plication, either the sophistication of higher order integration is not justified,

or higher precision computation is required. Employing the most precise
roundoff techniques it is possible to compute effectively, including higher

order effects, even if they are smaller than the resolution. This is seen in

the case of first order algorithm computation in a single increment DDA in
which the difference between first order algorithms in accuracy, in a sinusoid
for example, is very great, yet the size of ' x in the algorithm may be much
smaller than the single bit. In general however tae noise in transmission of
small terms makes the value of algorithm terms a significant number of bit
positions smaller and the resolution essentially nil. Consider, for the case of
the strap-down processor, the determination of the level of magnitude of

second order algorithm terms compared to resolutions. The second order
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erms in the strap-cown inertial orientation computations involve changes in
angular rate between iterations. A feature of auto-piloted flight, especially
in the atmosphere, is that craft axis angul.r rates change at usually several
times the angular rate of the craft axes. This is explained by the fact that
control of the craft about a fixed chosen orientation without complete rotations
requires that the phase of angular rate changes must change before the angle
of orientation has changed as much as say <1/3 radian. In the Dutch roll

case,

- (1-21
2 v, cos Got )
where 8° /e a3tob
o ©
then M~ -0 o %o sin € ot (11-22)

from which it is deduced that (Ar) mn/"m = ?.0‘7. Assurne 9.0 =48, in
typical flight involving craft motions similar to Dutch roll. Then the rms
magnitude of second difference terms in direction cosines is related to that

of first order terms in a ratio of about 41,5, where &, is regarfed as maximum
input angular rate and 7 is processor output iteration irmterval. In the Stiekjes
integration process of the strap-down processor the independe . vzriadble is
angular displacement, scaled as a fraction of full input register, ard has a

maximum for 0.4 rad/sec of

0.0061 <2~ (1-23)

At 0. 1% of maximum angular rate the change of angular rate per iieration is
less than the resolution of the input register having 19 bit and sigz, but is

expected to have accurate statistical transmission, assuming precice sampling
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techniques. The angular displacements (modified for algorithm) leave the
input accumulator, and enter the multiplier where they are multiplied by

31 bit (plus sign bit) direction cosines, the products being rounded off to 19
bits. Emtering the extrapolator, second differences comtribute to the output
according to a2 magnitude level determined by the second order terms of
angular displacements, and direction cosimes (and products of first order
terms). For full scale of the direction cosines of 1~ their second differences
have maxiroum magnitude

s, MENTeE, =107 (I 24)

for 1o oy = 0-4rad/sec, T = 1/266 sec. Entering with weight 5/12 in the
extrapolator action their magnitude compared to the least signmificamt bit of
the 19 bit cutput from which they are computed is generally less tham

2.3 1002 (I-22)

12

that is 4 times the resolution. Since the mechamism of the extrapolator wmit
introduces mo error whatever om a perfect 19 bit imput, the omnly source of
error in second order term tramsmission would be in the output of the multi-
plier (and earlier stages of computation). Since the multiplier has very precisze
roundoff the second order terms when sub-sigrificant may be regarded as fullw
trangmitted but coataminated with roundoff noise in a pulse strearm representa-
tion (in pulses of magnitude of the least sigmificamt bit) im whick the frequemcy
represents the magnitude. In Duich roll (worst case) the overall effect of
second difierence terms on ineriial reference > accumulative. The
cumulative eifect (reduced b a {actor of two ior phase effects) re-

sulting irom serond order terms :n I hour can be estamated by taking :nlc

J-13



account the scale with which the terms are added .- the directiom ccsine line
{2 more detailed amalysie <7 Dutch Roll is presenicd in the final report of

Phase ), the scale being 17 x 2-31. for which the maximum error is

172 x 12 % 2721 x (2 bits) x 266 > 360 radians

3 ({I1-206)
=5 x 15 radizms = I7 arc mim

Implermentation of carefully chesen roundoff pro-edures is called for im com-
puting with sec;md order sccu:acy since this significant error effect can re-
sult from terms comtribtut-mg magmitudes im 19 L't mumbers at the least sig-
mificamt bit positions. Vizwed purely from the :tandpoint of roundoff error
the amalysis of [IB4 show=2 that the required care has been taken in the strap-
down processor desigmn.

2.6 SPECIAL PURPOSE MEZHANIZATIONS "OR AEROSPACE AFPPLICA-

TIONS REQUIRING STRAP-DOWN COMFUTATIONS.

A. Introductior. « The marked periorr ance and mechanization
characteristics of sizte of the art _ensors, and certain low cost
transducess preseni constrairis ¢ digital computer ¢2:.gn for
aerospace :ppiicatisas in whi h computer weight and s lume are
significant. In the case of str:p-down inertial refe: :nce com-
putations the relatively low accuracy “evel of the -ti:e-cf-the-art
rate gyros (discussed in the next sect on) imposes a: unusually
marked desizn constraint. The direc’ impact of this constraint
is the implication of a low cost transducer, the pulse stream
analogue to digital -onverter, which has accuracy limitations (dis-
cussed in 2 later section) comparable o the rote gyrcs. The im-

plications of the se- sor and transduce:- accuracy constraints are
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the limitation to a rather narrow subset of applications of strap-
down inertial reference computations requiring modest accuracy.
This fact implies an allocation of digital computation capability
of reduced degree. Note that the implication regarding computer
sophistication depends on whether the strap-down computations
are the only task, or merely one of many tasks of the computer.
For applications in which system analysis implies the need for

a special purpose computer for simple stnp-dM inertial re-
ference computations, to be executed in an individual unit in a
missile system (physically separated from the main computer
system), the requirement for a special purpose computer of
modest size and probably modest mechanization complexity is
seen to be clear cut. For applicat:ons in which the strap-down
inertial computations or similar computations comprise only a
part ot the computation task, the mechamzation of the computer
may necessarily be of at least moderate sophistication because

of the overall computation capacity require !. In this section
pertinent special purpose computer mechanization designs are
developed in contrast to the primary design task consisting of the
design of a full scale computer system for a full asrospace
mission. The strap-down processor was constructed on the basis
of the analytical developments oi Phase 1 and provides a design
basis for the special purpose computer with several applicat.ons.
It also served as the basis for the subsequently developed program-
mable input processing portion of the primary design efiort wh:ch
was directed toward the development of a full scale computer for

the full aerospace mission.

State of the Art Sensor L.mitations - State of the art rate gyros

have accuracy limitations on the order of 0. 01 percent of maxumum

.15



angular rate. Until markedly higher accuracy angular rate sensors
are developed, the major application of strap-down inertial refer-
ence systems is limited to short period operation where very high
accuracy is not important. Certainly, long period airborne navi-
gation does not presently fall into this class of application. The
strap-down processor developed in this contract study is capable

of executing computations for any of the broad set of applications
presently conceived in anticipation of the development of adequate
sensors. The direct purpose of constructing the computer was to
establish computation capability using the general design techniques
developed during Phase 1.

The basic limitation of the rate gyro, as an angular rate sensor,
stems from the fact that an analogue voltage is generated to pro-
duce counter balancing torque on the rate gvro when the case is
rotating relative to inertial space in order to cause the gyro te
follow the case. The source of error is that common to all
analogue electrical systems. The indicated path to major im-
provement in angular rate sensors appears to be in the direction
of obviating the requirement of generating the torque signal by
analogue voltages which in turn must be assumed proportional to
the torque. I would appear that sensor development must neces-
sarily rest on avoidance of this error source and must perhaps
utilize some of the dramatic technical developments in the field
of precision angle generation and meagurement. An angular rate
device using optical measurements also can obviate the analogue
to digital transducer problem. Comnsider, for example, the
microgon (the high accuracy angle encoding system which is a
product of the Norden Division of United Aircraft) which is capable

11-16



of reading 106 counts per turn of an input shaft and of accurately
following shaft angular rates corresponding to 175, 000 counts per
second. An angular rate of 1 radian per second car. Ye read by
the Microgon to 0. 05 x 10—4 whick is at least 20 times more
accurate than inertial angular rate defined by a rate gyro. The
Microgon output being a whole word, it is ideal in this respect
for the strap-down processor input. The unsolved problem of
making the input shaft of the Microgon maintain nil rotation with
respect to inertial space in more than one degree of freedom is,

however, an obstacle in the way of a definite solution,

Transducer Performance Limitations and Mechanization Costs.

1. Performance of the Pulse Stream Analogue to Digital Con-
verter - The pulse stream type of transducer has relatively
simple mechanization compared to that of the whole-word
sampler {(of say 14 to 20 bits). The information transmission
capability of the former can be far less urless the pulse rate
greatly exceeds the sampling rate. The quantitative com-
putation error associated with the pulse stream transducer
depends on the required information trausmission of the
application as well as the capability of the device. Thus,
the band limited character of inputs implies the possibility
of better performance than would otherwise be expected.

The use of the pulse stream transducer for a specific appli-
cation is tempered by the effective accuracy in relation to
state of the art sensor accuracy. The lead-lag effects of a
bias-corrected pulse stream transducer, which result from
the ambiguity of sensor outputs in pulse stream representa-

tion, are possibly serious for strap-down computations
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3.

because of the sensitivity of the latter to such effects.
These effects are exaggerated at very low rates, indeed,
for motion within an angular range of the resolution they

are capable of periods of bias on the order of the resolution.

A Preliminary Theory of Pulse Stream Transducer Error
Effects Applicable to Strap-Down Computations - Extensive
DDA sinusoid simulations during Phases [ and II of this
contract study led to the formulation of a theory for a
particular roundoff effect which is the major type of round-
off error for sinusoid computations. The overflow inhibitor
design technique led to much less frequency infidelity (re-
lative theoretical frequency) of sinusoid calculations. The
error effect takes place when the output rate of a rounded
variable is near null. A theoretically derived formula for
the effect which is in quantitative agreement with micro and
macro error magnitudes of sinusoid computations is applied
in Chapter X in estimating roundoff error in general DDA
calculations. The pulse stream transducer is a roundoff
device which may induce error effects (among others) of the
same nature as that evaluated. Thus, the design principle
of the overflow inhibitor could be applied to substantially
improve the performance of a system employing the pulse

stream transducer, especially for the strap-down application.

Digital Computer Mechanization for Analogue to Digital Con-
verter - A whole word sampler is assumed in tl.e con-
structed strap-down processor. Assuming the use of the
pulse stream transducer a significant implication in the

digital computer design results because of the pulse rate



limit cf t..e state of the art devices. Thus, for a strap-down
procese-- with an iteration rate of 400it./sec and a pulge
stream transducer with a maximum 2 x 104 pulses/sec, the
maximum number of pulges per iteration is 50, the sum of
which may be represented by a 6 bit binary number. As a
result f the character of the strap-down computation the
digital multiplier unit appropriate for this application,
without intermediate quantitization (which lowers accuracy)
is a 6 bit multiplier. The relatively large granularity im-
posed by the pulge stream trangducer obviates input pre-
processing (appropriate for the whole-word transducer).

The pulse stream transducer can be mated with the strap-
down processor by a summation register reset at each
iteration to zero, the contents being processed, thereafter,
in the same manner as sums of nine samples formed at high
rate in the preprocessing of whole-word inputs in the bread-
board s:rap-down processor. A hybrid transducer with pulse
stream and short word inputs could be mated to the bread-
board strap-down processor to retain the major mechaniza-
tion simplification of the pulse stream transducer which is
an overall reduction of converted word length. A hybrid
mechanization which utilizes the pulse stream in parallei with
a several bit analogue to digital conv.1sionof the sub pulse
analogue signal which triggers the pulse output is possible.
The merit of such a transducer, of intermediate complexity,
is the reduction of lead-lag sources in digital computation

resulting with increase of effective word length.
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2.7 SPECIAL PURPOSE STRAP-DOWN COMPUTER DESIGN TECHNIQUES
IMPLIED BY STATE OF THE ART SENSORS AND TRANSDUCERS - Previous
discussions concluded that a special purpose strap-down: computer for aerospace
application need not achieve a computer accuracy comparable to t.at required
for long term inertial navigation, specifically because of state of t'.e art sensor
accuracy limitations which limit applicatior:s to those with corresponding accu-
racy requirements. The relatively high error sensitivity of the strap-down com-
putations (assuming no sensor error) however, implies a computer, even for
present special purpose computer applications, of distir.ctly greater computation
capability thar state of the art incremental computers. The design of the
constructed strap-down computer may be tailored (for th.ese special purpose
applications) to supply the required computation capability ir a mechanizatior of

minimum complexity. The straightforward tailoring procedure consists of:

1. Modifying the input accumulator to absorb pulse stream transducer
information.
2. Reducing the multi-ircrement computation bit lengtk:, and obtaiiing

further hardware economy by mechanizing the simplified multiplier,
for which a design techrique was developed during Phase L.

3. Reducing tke complexity of the integration algorithm,

4, Reducing the word length to correspond to the resolution of ti.e iv.put

pulse information.

Specific problems associated with these procedures are:
1. Input Accumulation With Pulse Stream Transducer Inputs - Tne

pulse stream transducer supplies pulses of angular clhiange (prefer-
ably at a maximum rate whic'. is ligh for precision) to a computer
with lower iteration rate (for simpler mechanization whict avoids a
high degree parallel processing). The appropriate input accumulator
may have an identical processing form to that for whole-word samplii g,
however, it has (higher) pre-processing rate fr {ar: integral multiple
of output rate) which just exceeds the maximum input pulse rate, tLus

obviating appreciable buffering of inputs.
-20



2. Multi-Increment Bii ..ength - Selectior. of irputs as indeper.dent
variables of integration implies that the multiplier must Lave the
capability of executing multi-transfer of bit length log2 7/ Tl__. The
arithmetic unit may have fast multiplier mecharization for this bit
length requiring one word time per multiplication or, if multi-
transfer bit length (!ogz T/TI__) ~5, it may have a multi-pass multiplier
which may be more economically mechanized. The latter has fast
multiplication capatility which is only a fraction of the required
multi-transfer bit length for one word time multiplication, ar.d cou-
sequently implies a reduced processor iteration rate relative to tlLat
obtainable by the more costly multiplier. The case of pulse stream
transducer with the maximum rate of about 104 pulses/ sec for maxi-
mum angular rate of 1 rad/sec implies for inertial reference ar:
inertial velocity computation witk the same bit rate as the constructed
input processor i. e. a multi-transfer bit length of 5 bits, a word
length of 1t bits and an iteration rate of 500 it/sec using a fast multi-
plier. A two-pass three-bit multi-transfer multiplier computes at

250 it/'sec with the same resolution.

3. Simplified Integration Algorithm - The inherent errors of t.e state
of the art sensors and pulse stream transducers make computatio:.
with precise first order algorithm the natural cloice in furtker
simplifying mechanization. A less than first order algorithm, suc.:
as that employing old y instead of new y algorithm when the latter :s
appropriate, would seriously degrade overall accuracy. In a special
purpose computer, based on the input processor, certain delay lhes

and adders are left out in realizing the simplified algornithm witl.

some hardware saving.

2.8 STRAP-DOWN PROCESSOR MECHANIZATIONS TAILORED TO SPECIAL
APPLICA TIONS - As a result of differing strap-down processor accuracy and
unit weight /volume requirements for different applications, three s)stems

have been evolved each of which is appropriate for the particular class of
u-21



applications for which it was designed. The three computers are briefly de-

scribed as below, and the minimal version is shown in Figure 2-1.

A‘

o-22

Minimal Equipment Strap-Down Computer.

1.

Performance: Reference error s.1°, velocity error S 2 ft/sec

{in 15 minutes) for launch phases of missile guidance.

Analogue to Digital Converter: Angular and velocity increment

pulse stream type with 0. 002° granularity.

Integration Algorithm: One level higher accuracy than conven-

tional DDA algoritnm.

Multi-Transfer: 15 bit multi-transfer operation by 5 bit (multi-
pass) multiplier.

Memory: Delay line (or drum).

Iteration Rate: 500 it/sec witn delay line (100 it/sec with drum)

memory.

Volume: 1/4 cubic foot with delay line {1 cubic foot with drum)

memory.

Full-Scale Aerospace Strap -Down Computer.

1.

Performance: Reference error £.05°, velocity error 2 ft/sec
ior launch and re-entry phases (in which a pre re-entry spot

reference correction is made by stellar or other means).

Analogue to Digital Converter: Whole-word sampler of anguiar
rates; granularity 0. 0004°.

Integration Algorithm: Two levels higher accuracy then con-
ventional DDA.

Multi- Transfer: 18 bit multi-transfer operation by 6 bit (multi-
pass) multiplier.



Memory: Delay line (or drumj.

Iteratiosn Rate: 500 it/sec with delay line (100 it/sec with drum)
memory.

Volume: i '3 cubic foot with delay line {1 cubic foot with drum)

memory.

Airborne Strap-Down Computer (effects same computation as the

Breadboard moadel now being fabricatced).

1.

Performance: Refer-unce errur - 7 sec, velocity error $ 0.1 ft’/
sec in 1 hour of airborne flight.

Aralogue to Digital Converter: Whole-word sampler «f angular
rates, accel:rometer inputs; granularity 0.0001 .

Integration Algorithm: Two levels higher accuracy than con-
vettional DDA,

Multi-Transfer: 20 bit multi-transfer operation by 10 bit
{multipass) mult: lier.

Memory: Drum.

Iteration Rate: 1301t sec.

Volume: 1 cudbic fool.
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2.9 LOGICAL DESCRIPTICN OF THE STRAP-DOWN PROCESSOR.

A, Introduction - T>e strap-down processor is a special purpose

computer which solves the following equations:

L]
€
c
L]
€
c

j=12 3

&
"
€
(=
'
€
[ =

(11-27)

The angular velocities (\\'l. WZ' \\'3) and accelerations (Al. AZ. AS)
are inputs to the computer from a magnetic tape. Each input has
twenty bits including sign. The direction cosines wnich are com-
puted are recorded on magnetic tape and are also routed back into
the computer to be used for further computations. The velocities

are recorded on the output tape but they are not used in the computer.

An iteration of the computer consists of the following cycles. The
input data is transferred from the input tape into a core buffer
memory unit. Then it is entered into the computer and operated
on to solve the equations listed above. The results are then
recorded on the output tape and also recirculated on the magnetic

drum to be used in the following iterations.
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The logical equations are expressed in a six-letter format. The
unit designation (2nd letter) is as follows:

Input Accumulator

Control

Extrapolator

Tape, Core, and MCU inputs
Multiplier

Input

Control Panel

“ Y ZE"mMQOo»>

Output

The necessary reading, writing and control circuits are included
in the computer to allow the magnetic tape units to be connected
directly to the computer without any external control units. Either
IBM 727 or IBM 729 11 tape units can be used.

Input Unit - The input unit consists of the tape input amplifiers,
the tape-to-core buffer register, the core output buffer register,

the serial input flip flops and two parity check circuits.

Signals from the input tape are in an NRZI form, a change in mag-
netic flux indicating a binary “one”’. The signal 1s put i1nto boti. an
inverting amplifier and a non-inverting amplifier, and will alternatei:
be read from these two circuits. Both circuits will not have a true

output at the same time.

The information on the tape 1s put into the tape-to-core buffer
register (FNWOC-FNWO06). Because of skew on the tape, all seven

bits of information might not be recorded on the same pulse, so as



soon as any bit in the tape-to-core buffer register is turned on the
input counter begins to count from zero to seven. I the instruction

' the information is written into the

register is set to “fill core,’
core on the count of five. If the instruction register is set to

" ready for instruction” then the instruction register is set from
the tape-to-core buffer register on the count of seven. The tape-

to-core buffer register is reset on the count of seven.

Information is read from the core into the corebuffer register under
control of the input counter during the fill irum, set address and
compute instructions. From the core output buffer register the
information is shifted into the serial input flip flops and then into
the input summing registers in the input accumulator unit. Each of
the instructions will be explained in detail in another section.

Parity is checked (see Figure 2-2)both at the tape-to-core buffer
register and the core output buffer. The tape check can stop the
computer under contra of the operator. This will be explained in
more detail in another section. The core output parity check wili
turn on a light if an error is indicated but computer operation will
not be interrupted.

Input Accumulator Unit - The input accumulator _Figure 2-3) accepts
accelerometer data and angular rate data from the serial input flip
flops in the input uni:. There are three accelerometer inputs (A".

A S, AS.) and three rate gyro inputs ('l.' w_=*, Ws‘). During a

2 2
compute cycle of 27 word times, which will be denoted by T, =ach
input is summed into the :input summing register once every third
word time. If the first value is Wi'(t + T/9Kor Ai‘ (t + T/9)) then

the final sum becomes

'i.“ + T/9) ~ Wi'(t *+ 2T/I9)+ ... + l’it(t + 8T/9) + Wi'(t +T)=

Sit - T) (11-27)
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Figure 2-2. Input Unit
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The sum S{t + T) goes tc a ¢7 word drum line (WAWO02), to a three-
bit delay line (FAD00-7AD02) and into an adder (DAAO02). The
output d the 27-word line (FARO2) is S(t), the output of the three-
bit delay is 8S(t+T), and the output of DAAOZ is 85(t+ T) + S(t+ T)

= 9S5(t+T). FARO2 iz subtracted from DAAO2 in DAAO3. This
gives 9S{t+ T) - S(t) which is Wi and Ai. These values are put

into a one-word delay line (WAWO03) at the proper word times and
the output of this line is the multiplicand input to the multiplier

unit. The flow of information is shown in Figure 2-4.

The computer word length is 32 bits and the input word length is
20 bits. The maximum length of 9S(t+ T) - S(t) is 27 bits, and
must be rounded off before being entered into the multiplier unit

which has 20 bit registers.
The output of FARO3 is shown in Figure 2-§.

The round off is performed as follows. If bit 6 is zero enter bits
7-26 as they are. If bit 6 is a one and any of bits 0-5 are also a
one, add one to bits 7-26. If bit 6 is a one and bits 0-5 are all

zero then the multiplicand is increased by one only if bit 7 is a one.

D. Multiplier Unit - The multiplier unit (Figure 2-5) ~onsists of three twenty -
bit registers, a twenty - bit parallel adder, a two's -omplement carry
flip flop (FMCO00), and a multiplier input flip flop (FMQO1). This
unit multiplies a twenty-bit multiplicand by a thirty-two bit multi-
plier each word time. The output is a twenty-bit product which is
placed in the least sigrificant end of a thirty-two bit word. The
multiplication process is basically that described by Booth and
Booth. *

*Booth, A.D., and Booth, K.H. V., Automatic Diji_ul Calculators, Academic
Press, pp. 45-48, 1956.
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WORD DAAO0O DAAO1 DAAO2 FARO3
0
1
2 w2 w2
3 w2
4 w2
5 w2
6 w2
7
8 |
9 ' w3 w3
10 i w3
11 | w3
12
13 ;
14 {
15 ‘
16 A3 A3
17 A2 A2 * A3
18 A2
19 i A2
20 | A2
21 Al Al ! A2
22 g Al
23 ' { Al
24 ;
25 wl wl |
26 l wil

Figure 2-4. Information Flow in Input Accumulator Unit

31 27

26 25

7

6

Sign jI Sign

MSB

LSB

lo—— Multiplicand -———.l

Figure 2.5 Output of FAR 03.
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.
19 Accumulator 00

19 Adder 00 f@a——FMCO00

19 M-Register 00
Multiplicand .
Input —ﬁ 19 B-Register 00 ——& Output

Multiplier
Input

FMQO1

Figure 2-6. Multiplier Unit

The multiplicand input is entered serially into the B-register from
the input accumulator unit during bit times 7-25. During bit times
26-30 the B-register remains static with the first 19 bits of the
new multiplicand in bits 1-19 and the sign of the last product is bit
zero. This allows the outputtobe in the form shown below in Figure
2-7,

l— o —vl—— Product —d

Continued

31 20 19 18 0

Sign MSB LSB

Figure 2-7, Multiplier Output

At bit time 31 the complement of the sign bit of the multiplicand is
entered into FMM19 and the complement of the B-register is shifted
into the M-register shifted right one bit. This puts the complement
of the multiplicand into the M-register and the multiplier unit is
ready for the next multiplication. As is shown in Figure 28, the

multiplicand does not change every word time. The new multiplicand

11-34



Word Time

W ® N OV b W N e

NNNNNNNM.———-—-.—-—-——u—
e W N O~ O WO NV e W N o= O

Figure 2-8 .

M t-rlicand

L I e Y Y

£E £ £ £ £ £ £ %

&N NN e

£ £ £ £ £ £ £ €
W oW owWwWw NN N

>5> > 55> 5% 5> > > g
e e e BN NN W W W W

Multiplication Schedule

Multiplier

v
U
U
8]
U
U

13
23
33
12
22
32

_C‘.

w N
—

ccococaocococaococcocococacacaccacoccc e
N o W N e WO e WY R WO e WO e
= e NN NN VW W W e e o NN N W W W

w
—

11-35



i8 brought in as described above only during word times 5, 11, 17, .
20, 23 and 26. During all other word times the multiplicand is

already in the M-register, either in true or complemented form.

If it is in complemented form, the two's complement flip flop (FMC00)

will be on. If it is not in this form then the M-register is comple-
mented and FMCOO is turned on at bit time 31. The reason for this
is that in the Booth and Booth multiplication, a subtraction is the

first operation.

The multiplier inputs come from two read heads on a drum line in
the output unit. The correct value is at FTRO05 during word times
0-17 and at FTRO6 during word times 0-2 and 6-26. It is read
from FTROS5 during word times 0-17 and from FTRO06 during word
times 6-26.

The contents of the output read flip-flop (FTRO05 or FTR06) and
FMQOI] control the operation of the multiplier unit. If an addition
or subtraction is to be done, the adder output is transferred to the
accumulator on the nalf clock. Then the accumulator is shifted
right onthe master clock. The signbitis shifted into bit 18 and the
sign remains unchanged at all bit times except bit time 11. During
this bit time, '"one" is effectively added to bit 18 by shifting the
complement of the sign into 18, and resetting the sign to zero.
Since twenty shifts remain, the added *one" at bit time 11 has the

effect of rounding off the product.

Extrapolator Urit - The output of the multiplier unit goes to the
extrapolator unit (Figure 2-9 ) where it goes through an extrapola-
tion by T/2 and a multiplication by 12. If the input to the extrapola-

tor unit is y(t) then the output 1s:
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lZl-);(t) +1/248y(t) + S/IZAzy(t] = 23y(t) - 16y(t-1) + 5y(t-2) (11-29)

T!:= multiplication by 12isincludedtoavoidadivision by 12. Figure

2-5 shows the mechanization of the extrapolator unit.

F. Output Unit- The output unit (Figure 2-10) accepts inputs from
DEAO4 and processes them on three drum lines as shown in the
schedule of Figure 2-11. The output from DEAO4 is a multiplication

of two variables and these must be combined to form the following

equations:
%&l = WU, - W, U5 =123
2%.25 = WU, - WU
%{2 _ wzujl ) wxujl (11-30)

AV, = AU
J d

1 *.-\2Uj:°.-\ U

3733

1

After the above equations have been formed, they must be available
for use as a multiplier input (the direction cosines only) at the cor-

rect word times, and they mus: be recorded on the output tape.

The direction cosines must be fed back into the multiplier unit in
the order indicated in the description of the multiplier unit. The
correct variable is at FTRO0S5 during word times zero through 17

and at FTRO6 during word times six through 26.

The information that is recorded on the output tape is first put on
the one-word drum line through WTWO02 where it is recirculated
for at leas: three word times. The drum line inputs are

shown in Figure ?-12. The tape accepts a character of
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Word WTWO00 WTV01 WTW02* WTWO02%*
0 DEAO4+FTRO0 | FTRO4 FTRO8 FTRO8
1 DEAO04 FTROS
2 FTRO4
3 FTR0O FTRO8
4 FTRO8 FTRO8
5 FTRO5
6 FTRO8
7 FTRO] DEA04-7TROO+FTRO?

8 FTROl l

9 FTRO] FTRO6
10 DEAO04 FTROO+*TRNT TTROO FTRO8
11 DEA0O4 FTRO8 FTRO8
12 DEA04 FTRO6
13 FTROO DEAO04A-FTROO+FTRO7 FTRO8
14 FTRO8
15 FTRO6
16 DEAO4 FTRO4 FTRO8
17 FTROO ‘

18 FTRO8

19 FTRO2-FTROO+FTRO7 FTRO8 FTRO6
20 FTROS FTRO8
21 FTRO8
22 DEAO4+FTRO0 | FTRO4 FTRO8
23 FTRO4
24 FTRO8
28 FTRO8
26 FTROS

#Aﬁ%ﬁ
*Compute
s8]gt 27 words after compute

Figure 2-12.

Drum Line lnputs
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seven bits in parallel at the rate of two characters per word time,.
A 32 bit word is divided into six characters each containing six
bits of information and one parity bit, and it is recorded on the
tape during three consecutive word times. Four of the bits are

recorded twice. For each iteration there are 13 words of informa-

. tion to be recorded on the output tape: one address, 9 direction

cosines, and three velocity increments. This is done within the
compute cycle and the first 27 words after the compute cycle.
During each of these 54 word times a character is recorded at bit
time four and bit time 20. The order in which the information is

output can be seen in Figure 2-11 as the output of FTROS.

The output of the one-word drum line, FTRO08, is continuously
being transferred into FTS05-FTS00 as shown in Figure 2-10,
Then, at the proper times, FTS00-FTS05 are transferred in
parallel into FTT00-FTTO05. A parity bit is generated in DTP02
and then the character is recorded on the tape either at bit time
four or bit time 20. Figure 2-13 shows the organisation of the
output word. Note that bita 5, 10, 2] and 26 are each output twice.

This fills cut the 80 bits of infor.nation, in the six characters.

FTS(n) FTT(n) Output Pulse Output Word
Bit Time Word Time Bit Time Word Time Bits
n 20-21 n 0-5
atl 45 nt+l 26-31
16 at+l 20-21 nt+] 10-15
22 atl 4-5 o+ 16-21
11 u+2 20-21 n+2 5-10
27 n+2 4-5 n+3 21-26

11-42
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Control Unit - The control unit is made up of a number of
flip flops which are used to control the cycles in all the other
units, the amplifiers which specify certain conditions of the

flip flops,and the clock system.

1. Bit Counter (FCB00-FCBO04) - The bit counter is a
binary counter which counts from 0 to 31 stepping
one count on every master clock pulse. The states

of the counter are shown in Figure 2-14.

1I-43



FCB04 FCBO3 FCB02 FCBo1l FCBO0O
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Figure 2-14. Bit Counter
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Word Counter (FCWO00-FCWO05) - The word counter counts from

0 to 26 as shown in Figure 2-18. It counts up one state every time

the bit counter is in state 31.

FCWO05

FCW04 | FCWO02 FCwo2

FCwol

FCwWo00

CONCMAEWN—~O

s gt pt pt et b et QOO0 000000 OO0O0DO0COOOO00OCO

QOO0 OOOOOQO ™imm sttt 0 e e ODO0OO0DO0CO0OO0O0O0O

e QOO O0OO0OOQOO == =~0O0DO0OO0O0O0O0 ™ mOODOOO
QOO = OO0 O0OO0OO == meO0ODOOOO ~m~r~mO0OOO

~ OO OO~ 0O0O0O~00~00=O0O0O—-00~00~0O0

O OO =MOO0O~00~00 00 =00 =00~ OO~O

Figure 2-15,

Word Counter
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3. Input Counter (FCNO0O-FCNO2) - The input counter is used
to control the timing of all input operations, the resetting of
the instruction register at the end of the compute cycle, and
the resetting of the output counter at the beginning of an out-
put cycle. The count sequences are shown in the timing
diagrams.

4, Instruction Register (FCC00-FCCO02) - The instruction
register (Figure 2-16) controls what the computer is doing.
When it is in state zeco, ready for instruction, then an in-
struction will be set into this register from the input tape.

This will cause the comput~r to go through a cycle of one
or two instructions and then return to the '"Ready for Instruc-
tion'' state.
State Instruction FCCo2 FCCOl FCCO00
0 Ready for Instruction 0 0 0
1 Fill Core 0 0 1
2 Start Output Tape 0 1 0
3 Stop Tapes 0 1 1
4 Fill Drum 1 0 0
5 Prepare to Fill Drum 1 0 1
6 Set Address 1 1 0
7 Compute 1 1 1
Figure 2-)6 . Instruction Register
5. Ferranti Flip Flop (FCC03) - This flip flop is turned on with the

11-46

master clock and turned off with the half clock. It is used to

generate a Ferranti write pattern for the write amplifiers.




Start Control - What is needed to start the computer properly
is a signal that is true for one bit time only. When the start
button is depressed FCCO04 is tumed on. Then, when the bit
counter is in state 31, the start signal (NCC20 and ICC20) is
true. This start signal starts the input tape and resets the in-
struction register, the tape-to-core buffer register and the
parity check flip flops. The computer then idles until it re-

ceives an instruction from the input tape.

Before the computer is started the clear core button must be
depressed. This will load the core with zeros and set the ad-
dress register to word zero. To prevent tapes from starting
prematurely the following sequence of operations must be per-
formed in the correct order when turning on tle computer

power.

(a) Press thie reset hutton on both tape units.
(b) Turn on the power.

(c) Press the halt huttons.

(d) Press the start button on hoth tape units.

Tape Motion Control

a. Input Tape - The motion of the input tape is coutrolled
by FCNO5. When it is turned on the tape will start and when
it {s turned off the tape will stop. This tape is always started

with the start button. The following counditions will stop the tape:

(1) The computer accefts a ''stop tapes" instruction from
the tape.

{(2) The halt buttons are depressed.
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(3) A tape parity error is detected and the parity control
switch is set to halt,

(4) The tape has backed up to reread a record.

(5) The computer is in the single cycle mode and the core
is filled.

Output Tape - The motion of the output tape is controlled by
FCTO00. When it {s turned on the tape will start and when it
is turned off the tape will stop. The tape will start when the
computer accepts a ''start output tape' instruction from the
input tape or when the start button is depressed and the tape
parity check flipflop (FCNO3) is on. The following conditions
will stop the tape:

(1) The computer accepts a ''stop tapes' instruction from the
input tape.

(2) The halt buttons are depressed.

(3) A tape p-rity error is detected and the parity control
switch is set to halt.

(4) The computer is in the single cycle mode and the core
is filled.

At the beginnir.g of a problem, the output tape is started under
control of the input tape to allow a 3.5 inch file gap to be placed
on the output tape. To do this the tape parity check flip flop
must be off when the start button is depressed. If the tape
parity check light is on, then the reset error button must be
depressed before the computer is started. A tape parity error
will stop both tzpes. This will prevent running out a lot of out-
put tape while the input tape is being backed up. When the



computer is again started, both tapes must start simulta-
neously so the parity check circuits must not be reset then,

The start button will reset the tape parity check flip flop.

8. Error Control

a.

Tape Error - During the '"Ready For Instruction’ and " Fill
Core'' modes of the computer operation, information is trans-
ferred from the input tape to the instruction register and the
core buffer unit. All circuits not directly involved in this
transfer of information are idling, thus if a parity error is
detected at this time, the record in which the error occurred
can be reread. The parity is checked at the tape-to-core
buffer register and if it is incorrect FCNO3 will be turned on
and the tape parity light will be turned on. If the parity con-
trol switch is set to halt, the tapes will stop. The record can

then be reread as follows:

{1) Set the tape direction control switch to reverse and press
the start button. This will back up the input tape to the
beginning of the record.

(2) Press the clear core button. This will prepare the core
to be filled from word zero.

(3) Set the tape direction control to forward and press the
start button. This will start both tapes and reset the
parity check flip flop.

The reset parity button must not be depressed as this will pre-
vent the output tape from starting, If the parity is reset then
it can be turned on again with the test parity button, and must

be done before the computer is started,

If the parity control switch is set to ignore then the tape parity
light will turn on but the computer will not stop.
I-49



9.

11-50

b. Core Error - During the ' Fill Drum', '""Set Address', and
""Compute'' instructions parity is checked at the core buffer
register, The register is set with PCX06 and immediately
starts shifting, so the parity must be checked the bit time

after it is set,

PCX06 turns on FCNO6 which turns itself off the following bit
time. The core parity flip flop (FCNO4) will be turned on if
FCCO02 (correct instruction), and FCNO06 are both on and
there is an even parity. FCNO3 turns on the core parity
light, but the computer continues to run. The light can be

turned off with the reset parity button.

Output Write Control - Three {lip flops control the write cycle to
the output tape. FCTO! inhibits the tape write pulse when it is on,
FCTO02 and FCTO3 control the lengths of the record gap, output
data and output excess cycles. This is shown in Figure 2-17,
Information is transferred from the output register, FTT00-FTTO05
and DTPQ2, through their line drivers onto the output tape when-
ever there is a tape write pulse (LCX36). This is an eight micro-
second pulse during bits 4-5 and 20-21 when the IBM 727 tape unit
is used. The IBM 729 tape unit requires four microsecond pulses
and they will occur at bit time four and bit time twenty, The write
check character pulse tells the tape unit to record the longitudinal
parity character. For the IBM 727 tape unit this is a 16 micro-
second pulse (LCX37), and for the IBM 729 tape unit the signal is
the turn off of a flip flop (FCT04) which was turned on by the first
character of the record. The check character is recorded four

character spaces after the last character of the record.
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H. COMMANDS

1. Ready for Instruction - The computer accepts the next character
on the input tape as an instruction, providing the character has a
zero in channel eight. The rest of the computer idles, See Figure
2-18,

2. Fill Core - The information on the input tape is routed through the
tape-to-core buffer register into the core buffer unit. The core
willaccept 193 characters and then signal the computer that it is
filled. The instruction register will then return to a ready for

instruction configuration. See Figure 2-19.

3. Start Output Tape - When the instruction register is set to ''Start
Output Tape,” the output tape motion control flip flop (FCTO00) is
turned on and the output tape write control flip flop (FCTO1) is
turned on, starting the tape and inhibiting the write pulse. The
output counter starts its cycle when the tape mark is recognized
on the input tape. The computer will accept instructions from the

input tape when the instruction register is in this configuration.

4, Stop Tapes - This instruction indicates the end of a tape. It stops
both tape units and turns on the end of tape light on the control

panel.

5. Fill Drum - The instruction on the tape is '"Prepare To Fill Drum. '
This instruction synchronizes the input counter to the bit counter
and word counter for the fill drum operation. At bit 24 of word 26
the input counter is set to three. Then on bit 31 and with the input
counter again at three, the instruction register changes from
prepare to fill drum to fill drum. The drum lines now change from
individual recirculation to a serial connection as shown in Figure

2-20. A total of 144 characters are put cn the drum from the core
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buffer unit. This is the amount of information on a 27-word drum
line. Six fill drum instruction cycles are needed to completely fill

the drum. See Figure 2-21.

Set Address - The set address instruction transfers the address
of an iteration from the core buffer unit to the one-word output
line. This consists of four characters and upon completion the
instruction register changes to the compute configuration. See

Figure 2.22.

Compute - The compute instruction is started automatically at the
end of the set address instruction. During this cycle of 27 word
times the data is read into the input summing registers and sent
through the computer. The instruction register returns to the ready
for instruction configuration at the end of the cycle. See Figure
2-23.

L TAPE FORMAT

1‘

Input Tape - The tape must have a 3.5 inch file gap before the be-
ginning of any recorded information. At the end of the file gap is

a tape mark and its associated check character.

During word times 0-5 of a compute cycle, the multiplicand register
holds W1. This is entered into the register during the last word

of the previous compute cycle, so the register must be preset be-
fore the first cycle. This is accomplished by filling the input
accumulator drum lines and going through a dummy compute cycle.
The correct value will be entered into the multiplicand register if
-W1 is filled on the drum to read from FAROZ at word time 25, and
the data during the dummy compute cycle is all zeros. This is
shown in Figure 2-24.
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After the multiplicand register is preset the drum must be filled
with the initial conditions. This requires six records, each re-
cord having enough information to fill a twenty-seven word line.
The record consists of a fill core character, followed by 144

data characters, 49 excess characters which are needed to com-
pletely fill the core buffer unit but are not entered into the com-
puter, three excess characters which cannot look like instructions,
and finally a fill drum character. The last three excess characters
are necessary to {ill the record out to a multiple of six characters
which is an IBM word. The drum line interconnections during the
fill drum mode is shown in Figure 2-20. The layout of a fill drum
record is shown in Figure 3-25..

After the drum is filled, the output tape must be started. A six-
character record is used to do this and it is shown in Figure 2+26.
Following this short record is a file gap instead of the normal
record gap. This is used to provide the output tape with a file gap.

The computer is now ready to accept input data and compute, One
record of 198 characters as shown in Figure 2426 is used for each
iteration. The first character is a fill core instruction. This is
followed by 193 characters of data, ordered as shown in Figure 2-27.
After the data the set address instruction is used to start the com-
pute cycle. Three excess characters are used between the last

data character and the get address character so that the record

will consist of an integral number of IBM words. The first char-
acter of the last record is a stop tape instruction. This will stop
both tapes and turn on the end of tape light.



2. Output Tape - The output tape is started with an instruction on
the input tape, and then nothing is written on the tape until the
tape mark on the input tape starts the write cycle. No tape mark

is recorded on the output tape.

The record consists of excess information followed by the output
data. The excess information i8 zeros in channels 1, 2, 4, 8,

A and B, and a one in channel C. The last three characters of the
excess information will have a one in channel B and zeros in the
other channels. The output data is a total of 108 characters in
length, but only 76 characters contain output information. The

output record is shown in Figure 2-28 and Figure 2¢29,

J. LABORATORY MODELS OF HSDDA - Photographs of the laboratory
models of the HSDDA Computer and the manual control unit for the computer

are reproduced as Figures 230 and 2-31.
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Record Record Reco:d Record Record Record
Words No.1 No.2 No.3 No.4 No.5 No.b6
0 x Ul3(n-1) 0 w2u21(n-2)|W2U21(n-1) x
1 x U23(n-1) 0 w2u31l(n-2)|W2U31(n-1) x
2 x U33(n-1) 0 W2U13(n-2) | W2U13{n-1) x
3 x x 0 w2U23(n-2) | W2U23(n-1) w3
4 x x 0 wW2U33(n-2) | W2U33(n-1) x
[ x x 0 W3uU12(n-2) | W3U12(n-1) x
) x Ull{n-1) 0 w3iu22(n-2) | W3U22(n-1) x
7 x U21(n-1) 0 WwW3iv22(n-2) | W3U32(n-1) x
8 x U3l(n-1) 0 wW3Ull(n-2) | W3Ull(n-1) x
9 x Ul3(n-1) 0 wW3iu21l(n-2){W3U21(n-1) x
10 x U23(n-1) 0 wW3U31(n-2) {W3U31{n-1) Al
11 x U33(n-1) 0 0 0 A2
12 x Ul2(n-1) 0 0 0 x
13 x U33(n-1) 0 0 0 x
14 x U3z(n-1) 0 0 0 x
15 x Ull(n-1) 0 0 ) Al
16 x U21l(n-1) 0 0 0 x
17 x U3l{n-1) 0 0 ] x
18 x Ul3(n-1) 0 0 0 x
19 x U23(n-1) 0 0 0 wl
20 |U33(n-1) x W1lU13(n-2)|{ W1U13(n-1) x x
21 Ul2(n-1){A Ul2{n-1) | WIU23(n-2) | W1U23(n-1) x 1A1
22 |U22(n-1)|A U22(n-1) | W1U33(n-2) | W1U33(n-1) x 3A)
23 [U32(n-1)|]AU32(n-1) | WIU12(n-2)]| W1U12(n-1) w2 3A2
24 |Ull(n-1) 0 W1lU22(n-2) | W1U22(n-1) x 5wW3
25 |U21(n-1) 0 W1lU32(n-2) | W1U32(n-1) x x
26 |U31l(n-1) 0 W2Ull(n-2)| W2Ull(n-1) x 8wz
*32 bits each
x - don't care
(n) = result of nth iteration

Figure 2-25, Drum Fill Information
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Channels

Word Characters 1,2, 4 8,A,B
0 1-7 w3 Al
1 8-14 Wl A3
2 15-21 w2 A2
3 22-28 w3 Al
4 29-35 w1 A3
5 36-42 w2 A2
6 43-49 w3 Al
7 50-56 wl A3l
8 57-63 w2 A2
9 64-70 w3 - Al

10 71-77 w1l A3
11 78-84 w2 A2
12 85-91 Wis Al
13 92-98 wl A3
14 99-105 w2 A2
15 106-112 w3 Al
16 113-119 wl A3
17 120-126 w2 A2
18 127-133 w3 Al
19 134-140 wi A3
20 141-147 w2 A2%
2l 148-154 w3 Al
22 155-161 wl A3
23 162-168 w2 A2
24 169-175 w3 Alx
25 176-182 wil A3
26 183-189 w2 A2
% These values correspond in time,

Figure 2-27 Input Data Organization
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Figure 2a30. Laboratory Madel ot the HSDDA Computer
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2.10 STRAP-DOWN PROCESSOR CHECKOUT AND PERFORMANCE

EVALUATION

A. General Features of Checkout and Performance Evaluation
Programs and Tapes - Operation of the breadboard HSDDA
was verified to be in accordance with the logical design de-
scribed. Test tape programs and preparation for evaluation of
the HSDDA in the strap-down function was not fully debugged within
the program effort period. It is recommended that a brief further
effort be provided to evaluate HSDDA performance. For purposes
of clarity Figure 2-32 presents the total flow of information pro-
cessing required for final evaluation and demonstration of the
high speed DDA hardware and in block diagram form indicates
the requirements for the five 704 programs which are described

below.
’—+ HSDDA
Error

Raw =04 704 704 | _o Analysis
Data A B D Report

Synthetic 704

Dutc!. Roll c

704 E

Figure 2-32. Information Processing for Evaluation of High
Speed DDA Hardware.
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B.

IBM 704 Programs

1.

2.

3.

The A Program was pl;nned to process raw data provided

by WADD int.o a form compatible with the instrumentation
assumptions made in establishing the input characteristics
of the high speed DDA. This program accounts for data
sample rates, scale factors, resolutions, phase shifts,

etc., which may be inherent in the raw data and which

must be compensated for before the data can be assimi-
lated by the HSDDA. This program was never written, since
no raw data was provided to Litton by WADD.

The B Program accepts data in proper analytic form, and
provides required phase shifts, formatting, and control
signal insertion. The output of this program provides
tape which is directly acceptable by the HSDDA.

The C Program accepts a tape produced by the B Program and
provides a higher accuracy integration process than that used in
the HSDDA to produce a set of "yardstick' computations used
for performance evaluation of the HSDDA. Care is taken that
the phase shifts introduced in the B Program for HSDDA input

are properly compensated for in the C Program.

The D Program accepts the output tape from the HSDDA and
the "yardstick" computations derived as an output tape from
the C Program, and provides an error analysis of HSDDA

performance.

See C. below.
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C. Tests Planned For Strap-down Processor Evaluation

1. Functional Tests- The functional tests were designed to
prove that the hardware was operating in the manner that
the logical designer had intended it to operate. Magnetic tapes

for these tests required the B Program,

2, Mechanization Tests - The mechanization tests were de-
signed to prove that the arithmetic operations built into
the HSDDA had indeed provided a valid mechanization of
the integration algorithms which the machinewss supposed to
contain, These tests required the existence of the B Program
and also required hand-computed check values which were
computed on the basis of the fundamental algorithms of the

machine, but without utilizing the machine mechanization.

3. Algorithm Validity Tests - These tests were designed to
prove the validity of the algorithms which had been mechanized
in the HSDDA. They were based on the generation of an input
tape which simulates a Dutch roll environment. The Dutch
roll is chosen because the closed analytic solution is known,
so that arbitrary check point computations are readily ob-
tainable. The first phase of these tests showed that it is
possible to demonstrate HSDDA performance through the use
of check points hand-computed from the analytic solution.
Through the proper choice of amplitude, frequency, and phase
of the Dutch roll components it should be possible to make
direct visual comparison between two iterations, separated
by a specific number of iterations, without having to go to any

hand calculations. This effort requires Program E, the
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Dutch Roll Generating Program, Programs C and D were
completed so that the Dutch Roll Program could be played
through the high accuracy integration program and per-
form error analysis. Then there would be comparative
results of the HSDDA, the "yardstick'' calculations, and
the theoretical analytic solution.

Real Data Tests - These tests were designed to demonstrate
machine performance when operating on real data which was to
be provided by WADD. These tests were not executed for the

reasons described above.
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2.41 FUNCTIONAL AND MECHANIZATION TESTS OF THE STRAP-DOWN
PROCESSOR - The earliest stage of testing of the computer sought to verify

the final mechanization operation with regard to the logical designer's intent of basic
logical operation and the system analyst's intent of arithmetic processing by the
computer. The first of these tests were of an elementary nature consisting of
testing the response to streams of alternating 1's and 0's for selected inputs and
debugging on this level. In order to confirm the arithmetic processing consistency
of the machine for a desired function with a high level of confidence, a set of rela-
tively complicated inputs were selected for which the exact desired outputs could
be hand computed by the system analyst over several iterations. To verify the
second order algorithm, or any component, requires at least 3 iterations on an
input variable of at least the complexity of a quadratic function. To verify com-
munication the quadratic inputs should be distinct for each input variable. The
following quadratic family was constructed on this basis:

s, .
I(w) = (-1)° - 2"° [1+ (-n‘wz'i'*'-‘/2(3--)(2--)§]

where s = 1, 2, 3 for coordinates 1, 2, 3
w = 0, 1 for acceleration or angular rate input
w = word time of input

Since inputs are sampledat a high rate, and preprocessed by summation
of 9 values, the hand computations are simplified byananalytic evaluation of
the preprocessing output which is

81" = o-1)"2"° [u TN B Pt Sl v {6 + (c:'“r}z"]

.
where v s 27ty

c:" = 27x - 15+ a® ¥
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$w is the word tuime at which the input is absorbed in the computer,

where a
(deducible from the pertinent table in the logical design description). The input
accumulator outputs are then quire simply computed, rounded off, and multiplied
by the proper U value of the set specified for tape preparation in the test. The U
values used were arbitrary, non-trivial, binary numbers. The products obtained
by an octal desk computer were rounded off and put through the desired extra-
polator computation to yield the integral increment for each variable, debugging
of the computer proceeded on the first iteration, When all desired results were
obtained exactly, the next iterations were hand computed, to verify the exact
computation of results by the strap-down processor as being for the above inputs.

l)’jw s V jwi‘ Av jw

x_1 x where j,t = 1, 2, 3; w=120

Jjtw 8. arot t 0 jrs rs rs -7
A 6 F Jt ("] ("] w
uu = [ W + 8 8 u][;;p; -151'-11 + SIiz 2

piree , g[uj? . ¢"“’] . R = precision round-off to 19 bits & sq
3 N o
.lu ..0 ..w
’n =9I -8,
.
u.'“ = 2 1% %w) where w = 27(n-1)+ 3k + o™ ¢
n k=0

A. Algorithm Validity Tests.

1. Introduction - The accuracy of the strap-down processor for
a given set of input functions is determined,in practice, by
comparison of processor outputs with other computed values
which insofar as possible are nearly exact values or at least
of significantly higher accuracy than can be expected of the
processor. Two approaches enable computation of ' exact
or "yardstick'’ solutions for certain output types and have
valuable coordinateduses. In the case of simple Dutch roll
motion generated by inputs which are expressable as analytic
functions of the type presented in Chapter 6 Section 4 of the
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Phase I report, the exact inertial reference is expressed as an explicit function
50 that evaluation of the processor can be as exact as desired at any point, by
hand or machine computation, without using incremental computation techniques
subject to error build-up. This approach is the most incontrovertible for the
limited class of inputs for which it is feasible. The second approach is the
general solution by incremental computation of very high accuracy which in
principle can be attained because numerical integration .with any nth order
algorithm (n > 0) has accuracy which generally increases with decreased
iteration interval. The second approach however, is subject to accuracy
limitations because the actual computation is not performed with whole numbers
of unlimited accuracy as required by theoretical considerations, but with a
whole number of limited bit length, There are other practical problems such as
increase in costs resulting from the decreased iteration interval. The next
section of this report presents the ECD programs which enable evaluation of
the processor for Dutch roll and provide a general "yardstick' incremental
computation. The validity of the latter should be checked by comparison of the
exact analytic solution for Dutch roll, Provided the comparison is found suf-
ficiently close compared to processor output, it can be assumed that round-off
and algorithm error in the C Program is not a problem for low frequency var-
jiables. The sensitivity to noise of the yardstick computation can probably be
evaluated analytically on the one hand and by yardstick program runs with con-
tracted or expanded iteration interval on the other. If it is found that two widely
different but small iteration intervals yield substant.ally the same results the
really general accuracy of the proposed yardstick computation program is
assured with respect to random rather than bias errors. These latter analyses

were not performed during this program,
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2.12 THE DUTCH ROLL INPUT, GENERAL YARDSTICK COMPUTATION,
AND PROCESSOR-ERROR EVALUATION (ECD) PROGRAMS.

A.

General Description ~ The following is a description and listing
of the IBM 704 ECD Program for the High Speed DDA. The

ECD Program simulates the HSDDA and compares the simulation
with the true output of the HSDDA.

The E section of the ECD Program generates six inputs.
Casel - w = A sin Goswtn3wt + 8) (1I-38)

wy = A cos (eoswtnsut + 8)
wq =0

Alto

Azso

A3=0

Case Il - wy =0

(11-39)

= A sin (Ooswtn wt + 8)

“2 3

wy = A cos (903“"“3"" + a)
Al =0

AZSO

A3-0

Case Il - w, = A cos (ﬂosutnsut + 8) (I1-40)

wzio

Wy ® A sin (eosuma..e +8)

177
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Case 111 - Al =0
(cont)
Az =0

A3=0

The values for the constants and variables are:

Ooswt = U. 0004882812694

A= -0.6666663342844
8 = -0.002502441124

nywt = A positive integer starting from
gzero and increasing by one (1)
every iteration of the 704 pro-
gram.

It will be noticed that a sine and cosine polynomial has to be generated
every iteration. Since thousands of iterations will be performed,

the above equations will be generated once every 50 iterations.

During the intervening iterations, the following equations are used

{for the sine and coesine:

Sin 0__ut

Sy ™ S,y Cos ® 1 03 (L-41)

a get + Cn_

0

wt

] -
C = C Cos wt sa_lsu 003 (L1-42)

n n-1 03

Where Sn and Cn are the sine ard cosine for the present iteration,

Su_l and Cn_ ) ATe the sine and cosine fo: the previous iteration.

Cos 0_.uwt = 0. 9999998809

03

-11
Sin 003“ =2



U

N

Since there is a possibility tha’ the argument for the sine and

cosine can become increasingly large and cause overflow due to

the variable n

3

wt, the argument is tested against /2. When it

exceeds l1/2, the excess Lacomes the new argument. Consequently,

there will also be a change in the signs of the sine and cosine.

The C section of the ECD Program receives its inputs from the E

Section and evaluates the following set of equations which are also
solved by the High Speed DDA.

Ve = U1t Y2t Y,
AV, = %AV‘ --:-z‘lAv‘ +%AV‘
j ju ju-l ju-z
AU. = o U -w,U
jo1 3°5,3 " “2%,3
AU* = W U . -wU
jo2 13,3 " “3Y5,1
au®, . = LU, -wU
3,3 2751 “175,2
. 23 . e 16, 5 .
[ SRR P B F A N SR I § I
23, & 16 .= S *
u = —Au -—AU *—AU
p2 2T 2T g2 TTR2TT g2,
23 ..¢ 16 ... 5 .
B3 C T 3T g T g,
‘um.l - u‘“muj’l
Upi.2 uj'szj.z j=1.3
* +
Uny.3 Uj,3tA0

s new value of U

i

j=1.3

j= 1.3

j= 1.3

j= 1.3

j=L.3

j=1.3

j=1.13

j= 1.3
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Program Execution - The Uj. Kk 3TTaY is initialized before any
computations are made. Then controlnumbers for a tape input
ak.'mode or case selection (1, 2, 3) for input of wy are zero. The
case selection refers to cases I, 1I, III for selection of the order

of sines and cosines (i.e., @ ’ u3) described previously. The

, W
calculations are performed itlx dmszle precision floating point except
for the sines and cosines generated by the Dutch roll routine. The

fixed point values of the Dutch roll (ul. Wy us) are floated and used
in the double precision calculations. The output quantities are fixed

and sent to an output area where they are printed in the D Program.

The D section of the ECD Program prints and/or compares the
output from the High Speed DDA and the output from the C section
of the program. The D section of the program for the High Speed
DDA has three modes of operation:

1. Comparison of the 704 tape (output of the C Program) and the
High Speed DDA tape {(output of the High Speed DDA) and listing
of the corresponding elements of each matrix, and the difference

between the corresponding elements in decimals.

2. Listing of the elements of the High Speed DDA tape in both

octal and decimal.
3. Llisting of the elements of the 704 tape in decimal.

The interval between printing aad the number of consecutive records
that are printed can be selected. A general flow chart of the D
section of the program is presented in Figure 2-33,
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C. Control Cards - Placed After Transfer Card,

Card 1:
Column 1 ~ Mode
1 - Compares DDA tape and DDA simulation
program and prints difference
2 - Simulates DDA and prints result
3¢ - Prints DDA tape (on Unit no. 4)

Starts in Column 2 - Skip interval (in decimal) must be followed

by a comma

Next Column = Print interval (in decimal) must be followed
by a comma
Next Column - Maximum number of records (in decimal) to

process next column must be blank

Example: Column-123456789101112. ., ...
Punch-158, 9, 804

Mode = 1, (which compares DDA tape and DDA simulation and
printe the difference)
Skip Interval = 58, (after every 58 iterations, 9 consecutive itera-
tions will be printed)
Print Interval = 9, (9 consecutive iterations will be printed)
Maximum Number of Records = 804, (after processing 804 records
" iterations'' the program will halt)

¢+When using Mode 3, no more control cards are necessary.
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Card 2:

Column 1 - Tape Number (A-Program input, not used
yet)
Column 2 - Case Number for Dutch roll, a 1, 2, or 3

must be punched in this column

Column 3 = Must be a comma

Starts in Column 4 - Identification N\uuber*(in decimal)
column following must be a comma

Next Column - [teration Numbcr‘(iu decimal) column
following must be blank

Example: Columa-123456789 1011 12
Punch-11, 3, 18724

Tape Number = 1 (not used) can be anything

Case Number = 1

Identification Number = 3

Iteration Number = 181241 0 (DDA iteration number m-.st be equal

to 444448 in octal)

Control Cards 3-35: The following 33 cards are for initialization

and each card must be included even if the value is zero.

Column 1 - Blank

tWhen mode number 1 is used (control card 1), the identification of the
DDA tape (1st record) and the identification punched in control card 2 must

be identical. .
¢ When mode number 1 is used (control card 1), the iteration number on the

DDA tape (record 2) and the iteration number punched in control card 2 must
be identical.
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Column 2 - If the sign of the decimal value is negative, then a
(~) sign must be placed in this column and a decimal

point (. ) is placed in Column 3

If the sign of the decimal value is positive, the decimal
point (. ) is punched in this column

Column 3 or 4 - The decimal value starts in this column. The
decimal exponent follows immediately after the char-
acter E (which follows immediately after the last
digit of the decimal value). If the character E does
not appear, the exponent is assumed to be zero.

Example: Column-12345678910
-. 03462
.3462L-1

(. 3462E-1 is the same as . 03462)

Card 3-4aV* 1 n-l Card 15 - sU* 31 a-1
Card 4-4aV* 2 n-l Card 16 - aU* 32 n-1
Card 5-4v* 3 n-l Card 17 - aU* 33 &-1
Card 6-4V* 1 a-2 Card 18 - sU” 11 n2
Card 7-4V* 2 n-2 Card 19 - aU® 12 n-2
Card 8-av® 3 a2 Card 20 - 8U* 13 n-2
Card 9 - AU® 11 a-l Card 21 - 8U® 21 g2
Card 10 - 8U* 12 a-l Card 22 - 8U® 22 n-2
Card 11 - AU®* 13 a-) Card 23 - U* 23 n-2
Card 12 - 8U* 21 a-1 Card 24 - 8y® 31 n-2
Card 13 - 8U* 22 n-) Card 25 - 8U® 32 n-2
Card 14 - 8U* 23 n-1 Card 26 - oU® 33 n-2



Card 27 - U 11
Card 28 - U 12
Card29-U 13
Card 30 - U 21
Card 31 - U 22

Operating Procedures. (Tapes)

Unit
4
6
{all others not used)
Sense
Switches
1
2

(- " B S 7]

Card 32 - U 23
Card 33 - U 31
Card 34 - U 32
Card 35 - U 33

Purpose

High Speed DDA tape
Off line output if sense switch 2 is OFF

ON

ON for on line printing

OFF for off line printing to go on

Tape Unit no. 6

OFF
OFF
OFF
OFF

The SHARE 2 Printer board is used. The Program does not

rewind any tapes.

Programmed Halts.

33143 - Control cards missing (Card no. 1)

33144 - Control cards incorrect (Bad punch) (Card no. 1)

34032 - Control cards n..3sing (Card no. 2)

34033 - Control cards incorrect (Bad punch) (Card no. 2)
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34051 - Control cards missing (Cards 3-8)

34052 - Control cards incorrect (Bad punch) (Cards 3-8)
34062 - Control cards missing (Cards 9-26)

34063 - Control cards incorrecc (Bad punch) (Cards 9-26)
34073 - Control cards missing (Cards 27-35)

34074 - Control cards incorrect (Bad punch) (Cards 27-35)

34564 - End of File Mark on HSDDA tape found while reading
data (Mode 1)

34605 - Iteration numbers do not match - tried 3 times

34636 - Iteration number = 0 (Mode 1)

34665 - [teration number = 0 (Mode 2)

34706 - End of File Mark on HSDDA tape found while reading data
34742 - Iteration number = 0 (Mode 3) to restart transfer to 34671

35044 - Maximum number of records have been processed as
specified in control card 1

35603 - ldentification of HS DDA tape and identification number
punched on Control Card 2 are not identical

35602 - No identification number has been punched on Control
Card 2
2.13 INITIALIZATION OF THE STRAP-DOWN PROCESSOR - The AUSk gener-
ated by the HSDDA are approximations to the central differences indicated in

Figure 2.34,

-r-
Aufk(n)

Ujk(t) e

AU‘Sk(ﬂ-l)
: I * -
t
tn-4 tn-3 th-2 *a-1 tn
11-86 Figure 2-34 Central Differences for 4 U}k



The extrapolation formula

23 .# 16 5

Ll . ‘
AUjk = -ﬁMij(n) - l—zAUjk(n-l) + Ti'AUjk(n'z) (II-52)
is used to approximate
Al{ik = Ujk“n’ - Ujk(tn-l)' (1I1-53)

I;\itialisation requires the computation of the At{i: 's or, equivalently, of

products (involving angular rates) which sum to them. An alternate approach

requiring values of the U, 's only, is to compute suitable AU* 's from the

Jx )
formulas
Au;k(l) = b ULl - UL
Auj';(o) = aUR(M) - Uy lta) = 20, () + Uy (e-) (11-54)
auS(-1) = At{':(o)- Uplta) - 20, (to) + Uy (e.y)

These formulas are exact if t{’k(t) is a quadratic. Furthermore, elimination

of the AUJ'; 's between (II-54) and (II-52) does indeed yield (1I-53) exactly.

During the first iteration the computer computes & Uj;(ll- 54) from initially given
Uy'® and w's. It is possible, however, to determine w's from the U,k(t“)"
which will generate the desired values as given by (II.54). The necessary equa-

tions are

»
Ve, = U,ltdaun) - U’z(t.)AU;'s(l)

* 11-55
Vo, = j,(:.)Au;,m-u,,m.)aujlm (11-55)
. [ ]
U'u. = UJZ(O.)AU“(I) - U“(t.)Asz(l)
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where U? = U;l + UjaZ + U;'3 .

If computations (in the HSDDA) are to be performed for more than one inertial
axis, (II-55) is not sufficient, since it determines a set of w's for which the rata-
tion about the jth inertial axis is zero. What is necessary for an orthogonal
inertial system is to calculate an w-vector from (II-55) for eachj. The appropri-
ate w-vector to be used for the first iteration is then given by half the sum of
the three vectors so calculated. The multiplicative factor 8/9 must also be
included in the scaling constants to defeat the extrapolation in the input accumu-

lator unit.

2.14 PROGRAMMING METHODS FOR PROCESSOR EVALUATION FOR REAL
DATA INPUTS - Real data which is recorded during actual flight is not expected
to be in a form directly assimilatable by the strap-down processor. In addi-
tion to recording format, there are more fundamental differences stemming
from digital representation and sensor-transducer accuracy. The latter
problem is overcome by making yardstick calculations on the same transformed
real data that is input to the strap-down processor. The problem of trans-
forming data recorded by, say, a pulse stream analogue to digital converter to
the form in which a whole word sampler would present the real data is analyzed

in the next section.

2.15 INTERPOLATION CALCULATIONS ON WADD SUPPLIED DATA FOR
GENERATION OF STRAP-DOWN PROCESSOR INPUT DATA.

A, Proposed Methods - Data supplied by WADD for strap-down
proceseor evaluation which is the recorded output of a pulse stream
analogue to digital converter must be put in a form assimilatable
by the breadboard processor (it must be subjected to short lag
smoothings corresponding to analogue filtering in the required
analogue setup of the strap-down system asisumed in strap-down

processor design).
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The WADD supplied data must be processed by an interpolation
calculation which is capable of yielding each appropriate equivalent
(or interpolated) data point for the specific sampling time, at which
the processor would normally sample real time data represented

by the WADD supplied data. Two possible interpolation calcula-
tions are derived in the following sections for methods differing in
the degree of polynomial assumed and the number of fit data, for
each computed data value. The first analysis assumes computa-
tions based on step change in slope as a function of systern parame-
ters which occur in the three point quadratic fit method. The second
analysis evaluates fractional error from that of equivalent inputs for
preprocessor section outputs. An error of fractional amplitude
?003/24 (90° out of phase with the input is 0.6 x 10 *for 1 cps inputs
to a processor with 266 it/sec). While the step slope changes at
tape data points for a three point quadratic interpolation routine are
anappreciable fraction (2 1 percent over 1 cps signals) of the total
slope, the effect on short integrals is small (0.6 x 10 °for a 1 cps
signal), being at the border line of effecting the 20 bit input to the
processor. ¥ If the errors were similar to the roundoff error of
independent distribution the system error would be small. I the
errors were similar to the roundoff error of a bias nature, the sys-
tem error would be large in one hour. A heuristic analysis based on
the assumption that the errors have a correlation time of 0, 4 sec¢ for
1 cps inputs leads to a net error of 0.6 x 10~ X N 0. 4 sec 360° sec
=2, 16x 10'. radians = 5 arc sec ininertial reference computation
after one hour. This is a small but appreciable error. The
conjecture that the use of interpolated values for both the pro-

cessor and for the evaluation of GP solutions removes most

?oo = 2nfr, f - frequency, T - iteration interval of processor outputs.

$Assuming maximum angular rate frequency of 1.5 cps.
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B.

of the difference of aolutions, 1s complicated if a third order

algorithm is used in the latter, since discontinuities occur in the

higher differences utilized. These considerations together with

the unacceptable complexity of a four point cubic interpolation imply

the preferable use of the three point quadratic formula typs, whose

calculation function is presented in the following section.

Derivation of Three Point Quadratic Interpolation Method - A quad-

ratic interpolation formula of the form

Ip' = Iu + A(p-n) + u(p-n)'

is correctat p=n. At p= ntl, n-l correctness requires

In+l = Iu+ A+u

In-l = In-1+u
-]
A%1
for which u = -—;—ﬂ-

Alml + Aln

2

The quadratic interpolation formula is

(Al . +AlL) a'1
. +
1’ .xu*_."_;.;__“_(p.n)+_z_'.‘.(p-n)'

which for p = t/7 has the form

(A1 . + Al ) a1
%) = I+ -—“—"-;T——"(e-n'r)i» -5;.'3 (¢t - aT)®

(11-56)

(11-57)

(11-58)

(II-59)

(11-60)

(11-61)

(11-62)
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Computation of I‘(t) each interval v/M starting at t = nv is investi-

gated in terms of a difference operator A*( ) defined by A‘X =
x(ﬂ ) - Ll_t] (11-63)

In terms of counts at /M intervals where t = % ’

. (Al . +Al) INS

?
Lo = Lt "‘;‘M 5 (r "‘M“z_;;'ﬂ (r - nM) (11-64)

The application of the A%*( ) operator yields

a1, +aL) a'l
A.“rm’ = 'Izlu M l;'ﬂE' - aM) - ”.ZJ (11-65)

& Inﬂ

b (o ®
AT N -

For interpolation fromt=nTtot = (n+ 1)T at intervals of /M,

the three numbers, l;‘ and

a’1
e = —2t (11-66)
n M
B = Bl * o) n (11-67)
n ZM 2

are adequate for a sequential generation by pure summations in an
interpolator program used in input tape preparation for the strap-
down processor. Tape preparation by a computer with slower
multiplication operation than two addition times should be less
costly using the above calculation procedure than methods using
multiplication,




C.

Derivation of Four Point Cubic Interpolation - A cubic interpola-
lation formula of the form

*
xp =1 +Mp-n)+up-n)+vp-n) (11-68)

is correctatp=n. Atp=n+2, N+ 1, N- 1 correctness requires

1n+z = xn +2)+ 4u+ By (11-69)
In+l = In + A+ u+ v (I1-70)
La=L- A+ ey (I11-71)

Adding the last two equations we obtain

a%1
u = —,_-Eﬂ . (11-72)

Eliminating A and substituting u

a1 2
v s __"‘_ (11-73)
aleso
A=Al -H-Y (11-74)

The four point cubic interpolatiom formula has for p = t/v the form

l‘(t) = xn + %(t -nt)+ %(t -nr)® ¢+ -3-’,(; - nr)?® (11-75)

Computation of l‘(t) each interval T/M,starting at t = n-,is investi-
gated in terms of a difference operator A%( ) defined by

8%, = X(pT/M) - X [(p . l)nu] : (11-76)
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Substituting t = -;% in the I*(t) formula

W %(r - M) + $a(r - aM)® + f‘;-,(r - nM)® (11-77)
since
A% (r - nM)® = 2[(r - aM) - 1/2] (11-78)

A® (r - aM)® = 3[(;- - nM)® - (r - nM) + 1/3].

Application of the operator A'( ) toI* r/M yields

&', r“wf—:. [(r - aM) - 1/z]+-3i",[(r - nM)® - (r - aM) + 1/3]
Pt LT +33 [z(, - aM) - z] (11-79)
A"'xrm = + ::-“’,

denoting a, = 6w/ M?

R

where ), u, V (for interval t = nT to (n + 1)) are computed in the

manner derived. Then

4
3 .8 )
) 4
.0 9,8
a’'l M " 9t 2 a Ir./“ (11-81)
r® = aM+l



4
I pg " It T B lne (11-82)

r* =M+ 1 /™

define a program computation requiring three add times per iteration.
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CHAPTER 1l

ANALYTICAL DEVELOPMENTS DURING PHASE ! IN THE
GENERAL THEORY OF REAL TIME COMPUTATION

3.0 MOTIVATION OF INVESTIGATIONS AND APPLICATIONS OF RESULTS-
The relations of input variables of the external world to the internal operation
of a computer, subject to certain general constraints in numerical operation,
provide a basis for development of a general theory of real time computation
which may otherwise have an abstract nature in that mechanization is to be
deduced subsequently (independently taking into account hardware factors) in
applying the principles developed. The feasibility and use of such general
investigations stems from the fact that a computer is designed to accomplish
the analytical task. A major analvtical development during PLase ! was the
derivation of a theory of numerical integration applying to the most general
type of integration of an incremental computer (actually appropriate in nearly
all applications) which is of the classical operation of Stieltjes' integration.

The algorithms developed for precision integration of the Stieltjes types were
seen to be previously accomplishable within a framework of classical numeri-
cal integration techniques only by such special methods as the Runge-Kutta
which requires relatively complex, special, and inefficient computer mechani-
zation, Integration algorithm is generally accomplished in digital mechaniza-
tion by combinations of (1) extrapolation type operations, i.e. linear weighings
of past function values, (in this case with relatively simply realized weiglings),
and (2) transfer operations. In contrast to algorithms of the Runge-Kutta type,
the Stieltjes algorithms developed made possible the minimum number of transfer
operations (one per integral increment) and permitted maximum rate of com-
putation. Actually all algorithms have an undesirable degree of (1) for tranefer
mechanizations of short bit length with respect to indepeudent variable in pre-
cise computation of Stieltjes integral increments. The undesirability stems



from the requirement to quantize independent variables at given short bit
lengths to an effective accuracy of much higher bit lengths. Hence analytical
investigations were launched to determine the feasibility of removing this
design problem, one which actually occurs in internal computation alone

since multi-transfer design is typically only single or several bit. The re-
sult was the development of the theory of numerical Stieltjes integration in
terms of "virtual variables" i.e., variables closely related to desired
variables but which are involved in computations simpler than the desired
variables. External inputs to a real time computer are not virtuzl variables.
It is possible to alter integration algorithms used in input processing to gener-
ate answers in virtual variables. The major result of the investigation was
the proof that there exist virtual variables which in general may be utilized in
numerical integration with respect to general independent variables as though
they changed linearly, i.e., like time, although the actual variable does not. In
consequence virtual variable numerical Stieltjes integration may have pre-
cision corresponding to multi-transfer bit length potential using direct multi-
transfer of that bit length. The generation of computer outputs involves
simple transformation of the virtual vuriable using available data. The prac-
tical necessity of mechanizing the transformation depends on existence of

high frequency variables and relatively high precision requirements. The
theoretical relation of desired and virtual variables provides a further demon-
stration of the fundamental nature of the computation ty'pu evolved in the
contract study, the realization of which has enabled the design of the first
real time computer (for high frequency variable applications) capable of high
precision with mechanization of modest complexity.

Another fundumental problem in incrementil computation finds practical moti-
vation for solution as a result of certain computation error churacteristics

rather than mechanization characteristics. It is generally recognised, and



was quantitatively established during Phase II that division in a conventional
DDA is relatively highly inaccurate. Aerospace applications for near orbital
speed missiles which undergo large altitude variations require precise division
capability for solution of the basic navigation equation, coordinate transforma-
tion from satellite to earth coordinates, and many other important functions.
For a full aerospace mission division algorithm mechanization is highly
desirable to obtain the required accuracy, though a breakthrough in modified
conventional DDA design (Chapter IX) 1.resents a design alternative. To
develop a division algorithm mechanizution which yields high precision there
must be a fundamental theory of numerical quotient computation. Such a
theory was developed by t*ansforming the results of the theory of numerical
integration into numerical quotient computation form. The results of this
analysis are a basis of the design of the full scale computer developed in the

contract study, and have been simulated to confirm their validity.

3.1 SIMPLIFIED COMPUTATION IN TERMS OF VIRTUAL VARIABLES IN
EXECUTING STIELTJES NUMERICAL INTEGRATION PROCESSES -
A. INTRODUCTION - An investigation into the theory of Stieltjes

numerical integration for incremental computation, including in-
put processing and internal computation, has led to ar important
combined computation structure. The relation of incremental
computer processing for function generation, to over-all com-
puter processing involving real time input variables, has been
delineated in quantitative form with important implications of
significantly simplified mechanization capable of >recise com-
putation for both types of computers. Generally, it has been
shown that Stieltjes numerical integration can be carried out in

terms of " virtual” variables, by which is meant variables not
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equal to the desired variables but bearing a fixed transformation
relationship to them. Proper algorithm in terms of virtual
variables can be made simpler for an internal computer, or
function ''generation' computer, in that the classical non-
Stieltjes numerical integration algorithms apply to them. How-
ever, in principle it is required that the true variables, when
they are to be extracted from the computer for external use, be
generated by inverse transformation of the virtual variables.
Since it was shown in continuing analysis that there exists a
class of virtual variables, which are slightly lagged relatively,
and any one of which satisfies the simplified algorithm relation-
ship, the specific virtual variables which most closely approxi-
mate the true variables could be chosen. Analysis indicated that
the pertinent virtual variable differs from the true variable by a
second difference of magnitude of (f/ IR). approximately, where

f = frequency of variable and IR = iteration rate; for example if
£s 0.5 cps, IR s 100 iter/sec the virtual and time variables
differ by <0. 003 percent. Typically, the greatest demand for
accuracy in high frequency variable computations, is within the
computer (where feedback efiects can cause error growth), rather
than in outputs. The outputs have the highest accuracy demands,
in applications such as navigation, inthe variables with primarily
low frequency content. Thus, outputs in contrast to inputs and
intermediate variables of a precision computer may be taken with
usually close approximation as the virtual variables. The output
mechanism of the computer system is analysed elsewhere in the
report, in relation to the contingency (for general computation in
aerospace applications) of conversion by elementary transforma-
tion from virtual variables to true variables in outputs. The internal
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computer design in this study is the proposed QDDA whose regis-
ters contain the information available and necessary for the
virtual variable to true variable conversion in mechanization
through alternative use of logic necessarily present for integrator
operation in effecting the precision algorithm. The carrying out
of this design modification is determined by the particular com-
puter applications, i.e. their precision requirement and variable

frequencies.

The theory of the combined input processor, internal computer
algorithm structure involving virtual variable computation, leads
to less complex internal computer design. In principle, an input
processor designed as part of this structure should generate
virtual rather than true variables. However, the following factors
led to a decision to fabricate the previously proposed (etrap-down)
input processor design:

1. The previously proposed input processor design generates
true variables most readily used to evaluate design

performance.

2. A later combined input processor internal computer system
has an input processor design obtainable by modest logical
design modifications relative to the previously proposed unit.

ANALYSIS - Consider the generating function for parametric cal-
culation form associated with unlagged integrand and independent
variables, in numerical Stieltjes integration (Chapter 5, Section
3 of the Phase [ final report):

' In(1-4)
ab
F(a b '[m u.a.b)] -5 ] b B3-1
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Denote the operators,

-8
ab
[m"(i"-_a‘b)] =% (3-2)
In(1-8)7 1[ -6 N
[—"b ]' [-ln(l"-_ﬂb ]' % (3-3r

the operator O with respect to any variable has inverse ()'x since

0.0 = ] as seen in the case Ob". Then

F(a,b)=0,8°" 4 (3-4)

A similar relationship holds for lagged or led integrand in the
parametric calculation cases, since the associated generating
function for p iterations lag (p may be positive or negative),

P
re oy, %] 5—&){’-"- [(-’ v %, ] (3-5)

then

P
Fe(a, b) « Ll B)b 6" (3-6)

(ab)P
substituting the F (a, b) function
: -8

R Pl E: — Y ]".,

a ““oﬂb‘o ‘b (3=17)




where:

-5
0%

X
x " pm-3) (3-8)

x being either ab or b, If computation of lagged integral is con-

sidered, then note from

Al = F(a b)y x (3-9)
q _ F(a, b)pP9 q
a1 (ab)? = --:?;)3)_-;— [(yn aP) (x, b )] (3-10)

any p, q, from which

pP=q
a1 = i b) B vy, _x (3-11)
n-q (‘b)p-q n-p n=q

The associated generating function integral and independent
variable lagged q iterations and integrand lagged p iterations is

@ p) _ Fis B)dP9
F*e = (3=12)
(a, b) (.b)p-q

the superscripts on the left indicating q lagged integral and ine
dependent variable, p lagged integrand

[ “bap “b
Fee - o o é
@5 | @we* a1 c“)] [b’“ In(1- ‘u’] ®

=03 o obw‘ ° & (3-19)




where

)
x U1 - 5)

In terms of the formula for integration in these variables
-1
L g -

Axn_q = [o:g Yaep © (8" &, xn.q) ] (3-15)
Consider now a computation in terms of virtual variables of x, y
and integral designed to be simpler than that of direct parametric
algorithm computation, Take the virtual x variable to be x;
defined by

-1

x: = ogt xn_q (3=16)
then

‘n—q = Og‘ x; (3-17)

Taking the virtual variable of integral to be

-l
a1y = ogr” AL (3-18)
then
Axn.q = 0% [yn.p o & x;] (3-19)
multiplied by O%s ! yields
Al: = yn-p o x: Gb (3-20)

the virtual variables I;. x: being formed by identical operators
and delay on the deeired variabls,

-l
( ): = o;. ( )n_‘l (3=21)



consider computation in which y variable is converted to a virtual
variable of the identical kind to that of I, X, for which

Yoeq * %' V2 (3-22)
note
P-q P-q -
vn-p = yn-q. = g .:‘ y= (3-23)

then substituting Yn-p in the partially virtusl variable equation
Al: = 0‘ y: x: Gb (3-2¢)
where

), - aP 4 ose

) o]
L In(l-8)

Y ]
a
'[‘m"—"iu - ]
= 0‘ (3-29)
thus,
Al: a O.y: ° 3;'6‘ (3-26)

is a virtual variable algorithm involving a single operator process
on integrand but not independent variable and a single whole aumber
multiplication per iteration. The corresponding algorithm de-
scribed in previous analysis as a nonparametric algorithm not
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involving virtual variables involves a single operator but two or

more whole number multiplications.

This virtual variable algorithm can be directly applied in any
incremental function generation (without external inputs) by
simply starting variables at virtual values. The generated
virtual variables are at subsequent times related to the desired
variables by a linear operator generally differing slightly for the
actual variable. In closed loop computations the crude use of
approximate algorithm could, of course, lead to 2 build up of
large errors. But this is avoided in the virtual variable case,

because only the externally observcd variable is in error.

The problem of processor application of the virtual variable

approach is associated with the problem in generating x: where
x* = O¥* -3 %
n b n=q

-l

r -Gb ]
= x
5P Y in (14 6)) n-q

.F In(l - ab)] .
n-p

L %
3 ]
-[14-7"- + %b— + .. ] xn_p {(3-27)



assuming that an input delay of rT is reliable then

[ 6 ' 1
x* = 1+—b-+-b—-+ . oP T x
n g 2 3 i e
[ 6 5 * )
b b p-r
8L1+ z + 3 + . -k (l- b) xn-r
[
é 6 3
b b
-_l+.-2- +T+...][‘-(p.g)6

2 b N=?
1 1 - P
. {1 +(-i-(p-g)ob+(3.12-z—’
+lpozifpors 1 ) cb'] x (3-28)
taking (p-r) = 1/2 then
-2 0 e el & 0o
hence for (p-r) = 1/2,
x* [ 1 -— ‘b] (3-30)
x: -x -ﬁ- & x X . (3-31)

is the relation of the actual desired variable to the virtual variable
computed. Here x can be taken as Mu’ AL well as the
variable x of (3=1). Then the algorithm computation in terms of
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virtual variables is Eq (3-2) for undelayed variables, which in

direct computation form is

* nr__l_ t__l__ 2,.% % -
ar* =[yn 5 Ay? leyn]Axn - (3-32)

For undelayed and also delayed variables the classical algorithm
applying to the case of uniformly increasing independent variables

holds for general independent variables in virtual variables.

3.2 ANALYSIS OF HIGHER ORDER PARALLEL INTEGRATION ALGO-
RITHM FOR COMPUTATIONS INVOLVING DIVISION. - Parallel integration
algorithm of a QDPU (Quotient Differential Processing Unit) was investigated
for modes involving division, The sought for QDPU design has the p'u.rpou.
of equivalently computing in the manner (apart from round off properties) of
an integrator ensemble in each of two parallel channels, The quotient gen=-
eration action of the QDPU differs in fundamental form from that of a pure
integration process, A theory of higher order integration algorithm for the
QDPU for second order integratidn accuracy is of interest in an incremental
computer design. The desired second order algorithm is two levels of
accuracy greater than those designed in existing DDA hardware., Some in-
vestigators have formed and used the DDA algorithm problem as the re-
sultant of a goal to accurately execute incrementation of algebraic relations
and to solve difference equations inferentially obtained from the application‘
computation. Actually the great majority of application computations inVol\;e
a close relationship between both algebraic and integral incrementation.
Algebraic relation incrementation is readily expressible in terms of equiva-
lent integral incrementation, however, the reverse process is possible only
through the use of appropriate integration algorithm in one manner or another.
The concept of effecting accurate computation without mechanization of pre-

cision integration relies on finding a set of difference equations (ordinarily a
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modification of the application differential equations) which are equivalent to

the desired calculation for incremental computations. In the applications of

-real importancé the desired calculation is almost without exception of such

non~linear nature and coupling complexity that it would be a matter of luck to
find the equivalent set of difference equations sought, and usually a price in
computation accuracy would result. One of the two outputs of the QDPU for

a mode involving an element of division has the purpose of executing the

computation
nT
- B(t) -
Aen —f T (1) dx (t) (3-33)
(n- 117

The theory of Stieltjes numerical integration for virtual variables relates

AQn to Pn’ Un’ x and various differences thereof for a given order of

- accuracy.. The QDPU mechanization effects transfers and decision processes

in a2 manner differently than the direct algorithm form. The analytical prob-
lem of deriving explicit QDPU algorithm is that of finding the equivalent
mechanizable algorithm, Analysis has led to an equivalent algorithm of
second order accuracy, the terms of which are mechanizable with second
diffetence communication with the possible exception of a single small term
involving a second difference term of the independent variable. The cor-
responding case of ordinary integration in virtual variables did not require

a second difference term in the algorithm of the independent variable, which
was the purpose of the introduction of virtual variables. The implications of
this result will be examined further in relation to theory, mechanization, and

accuracy for the QDPU.
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The theory of Stieltjes numerical integration developed in Phase I and simpli-
fied algorithms for machine computation dealt with ordinary incremental

integration. Thus the operation

A on = j ydx (3-34)

(n-1)7

is effectively performed on the given series of Yo values given in the series
of Axn. by carrying out the computation in virtual variables y* and x* using
an algorithm of form

A0% = [yS+r,8y2+ 2, 8%+, . Jax? (3-35)

The problem of incremental computation where Yn is not given but rather,

where,
Yo * P/, (3-36)

involves the given information A Py Avn series and Poi Yo for QDPU oper=-
ation. Substituting Eq. (3-36) in Eq. (3-35) the computation should perform
in one way or another in virtual variables, the asterisk of which is here-
after dropped for brevity.

ae -[;f + A,A(:—:) + A.A'(;:’:-)+ .o .]Axu (3-37)

#Chapter 3 Part 5 First Phase Technical Documentary Report on Develop-
ment of an Airborne HSDDA, H. W. Banbrook, 7 July 1961, Contract
AT 33(616)-6936
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The following analysis is carried out to achieve second order numerical
integration accuracy. The first order difference of a quotient is determined

to second order accuracy as follows:

P (1-4p /p)
a (Pn/vn) " pn/vn - pn-l/"n-l =V 1- (1- Avn7vn)

Ap p Ap Av P
~—_2 —_—n_ 8 _ B s -
- 57 AV, t—3 T3 (8v) (3-38)
n n n

For the same accuracy level when used in Eq. (3-37),

Ap, P,
a%(p /v,) = A(a(p/v)~ A(T- -=3 Avn)
n n

Ap ) Av P Av

. A(——-n )- A(—-—”) n __nd A( a ) (3-39)
- v v v v v
n n n n-1 n

using the exact difference formula for a product. In Eq. (3-38) if Pn - Apu

Ap,
n
we obtain A( - ) and if p — AV, we obtain D (AV /V ). Truncating all

terms of higher order than second,

. a%p ZAvnApn 2p, Pn o,
Alpgfvg) == - I AP Sy, (3740)
n n n n

111-15



Substituting these results in Eq. (3-37),

P ‘Ap P Ap
n n n n
A = ;’-_- + )H[ v - Avn _!..]+ Ag S

n v
n n n n
Av_ Ap P
n n n
1 - 2 — (2 - M) oy (Avn)'
n n
-2 -,-p" v fax (3-41)
2 v, n n

The QDPU must effect Eq. (3-37) or Eq, (3-<.) without using division directly.
To do this assume a realizable form to QDPU computation and investigate the

level of equivalence to Eq. (3-41) possible by parameter adjustment. The form

(3-42)

P o+ \PaP_+ 2,2 AP + ¢,
A0 a 2 2 aX_

nDDPU .[-v-:+ My Avn+l-1,AVn+c,

is realizable in the stated sense (assuming that ¢,, ¢, Which are of second
order are individually realizable) as {s shown in later presentation the theory
of QDPU operation. To put Eq. (3-42) into the form of a polynomial in

I\Pn. AVn. similar to Eq. (3-41) use the relation obtained by the geometric

series:

* s .8 -1 )} .AVn
Vn+u, AVn+u'AVn+c, -v-— l-u‘-v—

n n
t ] ]
. &'V - av, o 5t
2 Y I S ) v
n n n
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Substituting Eq. (3-43) in Eq. (3-42) and expanding the product,
*

P [x, + Pn
A® = = +|5 AP_-pul o5 av
"DPU Vn Vn n Vn n
. &P, . o o SPAV
+[A, v " " B &V - AN =5
n n n
P . AV, ¢ P (3-44)
——_— ' L -—— -
M 20 e 2 2 AL
n n n n

For equivalence of Eq. (3-42) to Eq. (3-4l) to first order, the first order
terms of Eq. (3-44) must equal those of Eq. (3-41), hence take

AY = oA, p ey

The difference of the second order terms of the QDPU calculations of
Eq. (3-42) from those of the desired calculation Eq. (3-41) is

. &P PAYV € P,
i bl A A

+ A2+ - 22 f-’-‘Av -fi‘--A—v!‘- AX (3-45)
1 3 8 Vn n Vn Vn n

The first two terms may be nulled taking
M e A,
P: = A

The last term is predetermined by the first order equivalence conditions.
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]
The error of the QDPU algorithm with ), = ut. A o X: = u: = ), is:

AVn Pn APn
2 3 - | = AV - —
9691QD = ()\1 + >\1 Zl,) vn ( vn' n v )

P
( vy - ) ax_ (3-46)

Such realizable choices of =;, €5, are sought so that the error is minimized.
First consider the explicite algorithms Eq, (3-35) sought for realization
noting that the QDPU algorithm has analogous form

P +2,0P + X.A'Pli» ¢,

Ae = AX
ppy |V, * MaaV ¢ X.A’Vn t e B

(3-47)

except for ¢,, ¢4, to be determined,
For unlagged input variables ), = -1/2, A, = -1/12, hence the constant
coefficient of the error term Eq. (3-46) is
M® +2y - 22,) = -1/12
For lagged input variables Xy = +1/2, A, = +5/12 and
(L% + 2y - 2),) = -1/12

the same value, When only one variable is lagged it is readily shown that
Eq. (3-47) is replaced with an expression obtained by replacing the lagged
variable terms with that obtained by the substitution

9 3-48
xn._.xn»,ntnssaxn ( )
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the choice of ¢,, €, being unaltered because of their second order magni-

tude. Thus the choice of ¢,, ¢, is generally that which minimizes

[ where
A8 QpPY
1 AVn Pn APn
S ML Y Y
MQDPU 12 Vn (Vn n Vn n
P (3-49)
n e
of — €, - =i IaAX
(an ' n) n
Consider choices ¢,, ¢, and their implications, If we choose
-AVn
3-50
c\ = lz A(Pn/vn) ( )
e = 0
then ¢ A6QDPU * 0 formally, The ¢, term enters as a small second order

term when the quotient I-’n/Vn changes in a regular manner e.g. where
Vn % 0, No satisfactory way of effecting the term generally in an incre-
mental algorithim has been devised, The inclusion of the term in special

cases will be discussed later. Approximate second order algorithim is
given with ¢,, ¢, = 0 in Eq, (3-49).  Write this relation (which can be

derived readily by approximate analyses) in the form
0xP AX -V ae
n n n n
where
~ 9
() = () #2080, +2,8°( )
For the moment assume that AD. is estimated in some manner and that an

R register is updated according to

R R 1 - 3-51
R = "n-x*’n“xn vnAo‘ ( )
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Then if AOn had been estimated exactly (according to the approximate second
order level) then no net change would occur in R in that iteration. A

residue of past errors is reflected in R on the value in- Consider the

1.
method of making estimates of AOn in the case where AOn is represented
as a single increment. The A® value actually available is the lagged value
estimated at the previous iteration. Let the decision that output Mu be

represented as a given magnitude be made using the magnitude of Rn where,

R =R
Ne

+P AX (3-52)
n n n

1

where Ttn- is a residue corrected for all past decisions by appropriate

1
addition of -V A9 terms: accordingly the relation

R = R
=

ne1 = Vo1 49

1 1 "n-l

-v ,al

=R n=1 n

el (3-53)

where Mi“ is the lagged incoming value of the nth iteration equal to the
computed value of the (n- l)'t iteration. Then the computation of .n is
given by

~ -~ L -
Ry ® Ry *P X, -V, , a0 (3-54)

The decision for output Mn (no overflow) is according to a correction which
minimizses the absolute valus of Rn - ;n Mn .

In multi-increment computation use may be made of the relation

a0 = M
. n n-

where A0 _. is known and at 0, is to be determined. Then the ideal
R-register value is

 * A“On (3-55)
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=R . +P AX -V A8 .V A% (3-56)

Making the decision as to the magnitude of A? On we may use the magnitude

Rn given by
R =R _+PAX -VAe (3-57)
n n-1 n n n n-l
where
- ~ z -——
Rn—l - Rn-l - Vn-l a °n-l ’ Rn-l

being the ideal of the past iteration which at the next iteration is realizable,
Thus multi increment quotient algorithm determines output A® On according
to magnitude

R =R .+P AX -V AeL .V
n n n n Ne=

2qL -
2 " R, a’el (3-58)

1
where
Aol = Ae AL = A%
n n n

n-1"' -]’

the subscript indicating lagged outputs which are inputs to the computation.
The decision for output A? On ismade according to the choice which minimizes
the absolute value of

R -V &0

The computations for different digital representations are presented in chapters
VIO and VIIL

Consider again the problem of the (small) second order term ¢, omitted in the
algorithim just derived. If formally included the more exact calculation of Rn is

= - - sg L
R =R, *[’n”*]“‘n V_ sl v 8%
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where

-AV P

n n
€ Axn = -—iT A -V-; Axn
-av_ P P, .
-1 A ¥ AX, -§ 48X
n n
-av_ . AV A? X, P,
= A, t—3 v,

If the primary contribution is from the first of the two terms of ¢, Axn
then improved calculation is
-~ L av

Rn = Ru---l"'Pu Axn an.n ne~1 + 12 a ?n

<

for approximate second order algorithm.
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CHAPTER 1V

DESIGN CONCEPTS FOR COMPUTER SYSTEMS WITH
PROGRAMMABLE INPUT PROCESSING CAPABILITY

4.0 INTRODUCTION - Input processing is required in special computation
routines demanding a level of computation cagability higher than the internal
computer processes, which have already been assigned the time consuming
computation routines associated with the computation task of the mission.
The special computation routines requiring input processing are character-

ized by one or both of the following:

1. High frequency inputs presenting rate handling and precision

problems to an incremental computer.

2. Bulky data processing at high rate, the structure of which is
simple and repetitive in form.

A hybrid GP-DDA computer system without the input processor mode is
capable of performing moderately demanding computation tasks which could
not be performed by a less sophisticated system. Many special routines of

an application computation are sufficiently demanding as to require full

input processing in addition to the normal processing capability of the direct
GP-DDA combination. They impose their input processing requirement as

a result of a need for special digital processing features which (as a major
result of this phase of the contract study) are shown to be largely attainable
(without significant increase in complexity) by implementing share modal
action®* of the GP-QDDA tys‘em or QDDA computer to achieve input processing

*The processing action resulting from essentially the same hardware com-
plex used through instantaneous modal switching to effect modified multiplier
bit length or modified subroutine iteration rate.
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functions. There are four design problems involved in realizing programmable

input processing by share modal action. These problems require:

1. Multiplier share and modal switching action which implement
input processing without significant increase in system

complexity.

2. Programmability of input processing routine to perform any
of a number of input processing applications such as: strap-
down computations, midcourse guidance, air data computa-
tions during re-entry for ICBM terminal guidance, damping
and digital servo computations in navigation, digital auto-
pilot, fire control, and radar terrain picturing.

3. Programmable input pre-processing and extrapolation
processing which characterize input processors of maximized
iteration rate, and that achieve precision algorithm. (They
present a problem in only one of the two design types
developed. )

4. Communication and storage modifications for precision com-

putation and processing versatility.

These problems will be analyzed separately in the following discussions after
which results will be combined to form system configurations augmented to
attain input processing for the GP-QDDA and QDDA systems.
4.1 ARITHMETIC CAPABILITY FOR INPUT PROCESSING IMPLEMENTED
WITHOUT SIGNIFICANT INCREASE IN SYSTEM COMPLEXITY
A GP-QDDA Computer System With Input Processor - The majority
of input processing computations involve high frequency variables
which at moderate iteration rates must be executed with whole
word multiplication or many-bit transfer. In the case of the
GP-QDDA system, the whole word multiplier of the GP can
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basically supply this required whole word multiplication capacity
at adequate iteration rate for input processing provided balanced
time sharing is achieved. The most demanding application, i.e.,
strap-down navigation, requires an estimated one-fourth time
share of the fast multiplier services to realize adequate accuracy;
other applications involving precision input processing require

considerably less.

The effectively lower iteration of the GP program is more than
offset by the reduced program task of the GP as a result of in-
creased program allocation to the QDDA and input processor
mode. The sharing pattern adopted for the whole word multiplier
should have a time schedule which requires minimum buffering of
inputs for input processing action, and minimum loss of GP pro-
gram efficiency resulting from share action. For accurate in-
cremental integration algorithm to be obtained with minimum
complexity it is necessary that inputs be sampled at equal time
intervals. The implementation of constant input pre-processing
intervals and minimum buffering implies the adoption of a share
allocation of the multiplier unit consisting of evenly spaced periods
of product formation from inputs and programmed quantities. Use
of a " slow' multiplier would introduce preliminary system design
problems as a result of the variable time for instruction execution.
In this case, to ensure that the slow multiplier is available at
fixed word times, a certain amount of programming inflexibility
and consequent inefficiency would be forced if the interval of con-
tinuous GP mode were very short (the latter can be avoided). To
ensure essentially unimpaired GP program efficiency without pro-
viding temporary storage of GP instruction and data words at an
interrupt time, the input data would be buffered the appropriate
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few word times required to complete the GP instruction. There-
after, the input processing multiplications would be called and
executed with products entering a buffer to the extrapolation unit.
The rather expensive buffer requirements in a system with a slow
multiplier are obviated by assigning the system a more expensive
multiplier, a fast multiplier such as that in the strap-down com-
puter fabricated during Phase II of the program. The fast mul-
tiplier yields real performance improvement and is therefore
appropriate in the GP-QDDA system with input processing
capability obtained by share of the whole word multiplier unit.

QDDA With Input Processing Capability - The extra multi-transfer
bit length required for input processing can be implemented, in
contrast to the previously discussed design approach by modal
action of the QDDA, without significantly adding to the transfer
hardware of the plain QDDA not designed to have the proposed
modal action. This result is the general consequence of the mech-
anization of the QDDA with several multi-bit transfer units. This
set of multi-transfer units can be moded to achieve longer word
multiplier by modal logic of modest complexity. No timing prob-
lem exists in bringing in pre-processed inputs to the QDPU or
distributing outputs since the allocation ot each QDPU is pro-
grammable. The inclusion of this programmable input processing
feature in the QDDA will enable the QDDA to handle any one of the
word set of input processing problems with accuracy consistent
with that of existing sensors associated with each application.

The use of the fast multiplier of a GP-QDDA system will probably
not be necessary from the standpoint of input processing word
length requirement until design breakthroughs in sensor accuracy

are made some time in the future.



4.2 COMMUNICATION AND PROGRAMMARBILITY OF WHOLE WORD INPUT
PROCESSING IN THE GP-QDDA SYSTEM - Programmability of GP and QDDA
resolves most problems of implementing programmable input processing.
Those programmability problems which do occur are for the GP-QDDA system
which effects input processing using the whole word multiplier of the GP.

These problems are associated with input pre-processing and extrapolation
operations, which may be implemented in relatively simple parallel processing
loops, to achieve high precision integration algorithm, at maximum real itera-
tion rate of input processing, yet leaving adequate processing time for ordinary

GP operation.

The problem of designing the pre-processing and extrapolation processor loops
is complicated by the requirement to handle any of a wide variety of input proc-
essor applications involving different numbers of inputs, and different numbers
of operations on each input. The input processing routine, which is executed in
N <2K word times*, is blended together with the residual GP program in such
manner that up to one-fourth of all word times are allocated to the input proc-
essing. This is accomplished as follows: The normal procedures of GP
programming are employed, the input processor routine is programmed at the
start, then (4 - 2K - Nj) words of ordinary GP program, then the input proc-
essor routine, and s0 on until the entire GP program is complete. The pre-
processing loop makes available a particular pre-processed input at a given
word time at modulo 2K. Assuming the number of inputs is £ 4, then input
accumulation and partial extrapolation quantities can be updated and stored in
six circulating lines of two words on a drum which make available without
delay the pre-processed inputs for subsequent processing by the fast multiplier

SHere k is the least integer such that 2k is greater than the number of words
in the input processing routine.
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of the GP. During each input processing phase the multiplier outputs are fed
directly to the extrapolator unit. In consequence of the relatively long period
until updating of the next input processing, which is more than four times the
input processing period, the extrapolator unit need not be constrained to have
its contents available on short notice. Assuming that the shortest routine
encountered in input processing applications is eight word times, then the
extrapolation unit may take 32 word times without presenting a timing prob-
lem, an amenable relationship for input processings of < 32 word routines
(strap-down calculations have a 27 word routine). The extrapolator has three
32 word circulating lines which ha--e simple logic for extrapolator processing
in the same manner as the strap-down processor. The programming structure
of the GP may be retained in this system by adding an input processing state
counter, which during input processing periods, signals the transfer of pre-
processed inputs to, and extrapolator inputs from, the fast multiplier rather
than according to address. The extrapolator unit has outputs which are in-
crements used for updating the final outputs of the input processing operation.
The problem of updating and communicating the final input processing outputs
may be resolved by mechanizing special parallel updating logic for 32 words
of the rapid access memory. The increment quantity outputs from the
extrapolator are associated with these 32 words and automatically update these
words in fixed order during proper state of the input processing counter. A
GP computer with state of the art word rates can be given input processing
capability with complete adequacy at 100t0200 it/sec and yet retain more than
75 percent of computation capacity for ordinary GP operation.

4.3 COMMUNICATION AND STORAGE MODIFICATIONS OF QDDA FOR
PROGRAMMABLE INPUT PROCESSING CAPABILITY - The programmable
QDDA with 2M bit transfer for each of the two parallel channels obtainable

by modal switching of pairs of M bit transfer units during the first w word times
(w £ 16) generates multi-increment outputs of 2M bits representing first
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differences. According to mechanization of register memory by cores or
drum there must be provision for the added communication requirements of
64M bits. Core registers require increased communication wiring, and
drum registers require additional rapid access memory bits (both by a count
of 64M). For M = 4 the QDDA is capable of all input processing functions in-
cluding strap-down navigation with accuracy consistent with state of the art
sensors. A multi-increment QDDA with 128 QDPU ordinarily requiring

512 bits of core memory for the drum register case, requires 768 bits for
programmable input processing capability in 16 QDPU with eight bit transfer,
and with a minimum of 112 QDPU with four bit transfer for the remaining
computation task of the mission.
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CHAPTER V

EVALUATION OF AUXILIARY DDA DESIGN
AND COMPUTATION FEATURES

5.0 INTRODUCTION - A number of possible design features of DDA which
generally effect programming ease, computation versatility and capacity in
substantial but limited degree, are described and evaluated. As will be seen
the more valuable of these auxiliary features are incorporated in the full scale
computer system design which is the major product of this study. The design

features evaluated are:
1. Va‘iable (Programmable) Word Length

2. Output and Multi-Input Scaling Programmability (of the
type Z‘K. K Integral)

3. Multi-Input Quantization
4, Decision Operation

5. Communication Programmability

*
6. Derivary Communication

7. Servo Operation
Also, a number of pertinent computation features are analyzed.

5.1 VARIABLE (PROGRAMMABLE) WORD LENGTH - Different portions of
the computation program generally have markedly different accuracy require-
ments and involve éompuution variables with markedly different maximum
rates. A computer with variable word length can be programmed to handle
these computations with a substantial net saving in program bit length, com-
pared to that of a DDA with fixed word length (in which portions of a majority

#See First Phase Technical Documentary Report, pp 15-19.



of the registers are not used). Depending on the application the resultant
iteration rate of the variable word length DDA may be 30 to 75 percent greater
than that of the fixed word length DDA. It has been found in programming a
DDA with incomplete communication (one integrator not being capable of pick-
ing up outputs of any chosen integrator, but perhaps any one of half the total
set) that full exploitation of variable word length for increased iteration rate
is not generally possible, and that perhaps half the gain is realized. There
are other design conditions which can reduce the full advantage somewhat,
such as minimum word length imposed when parallel lines on a drum are used
for storage of information. Onthe whole, mechanization for variable word
length and concomitant advantages of input and output scaling are among the
cheapest significant gains in computation capability of a sophisticated

incremental computer.

$.2 OUTPUT AND MULTI-INPUT SCALING PROGRAMMA BILITY -

DDA computation accuracy is highest when the maximum output rate of the R
register approaches unity. It is therefore of very real value to be able to
adjust the general order of magnitude of computation variables by scaling in

a simple manner which does not require scaling integrators. Since in a delay
line containing a binary number an added k bit delay is equivalent to a 2k

scale change, the mechanism for achieving input and output scale changes is
relatively simple. Output scaling has, from the standpoint of accuracy of the
output, only one best scale, however, since there would be occasions when
input scaling cannot be arranged to do the whole 2k scaling of variables it can
have some practical value in cases where the input scaling range is limited.
For variable word length DDA the output scaling is free. Since a single output
can be required at a number of inputs with different scales it is clear that
adequate 2k scaling cannot be done simply with output scaling but also requires
input scaling. The degree and kind of input scaling capability can have sub-
stantial effect on the ultimate computation capacity obtained through increased
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programming versatility (up to a sharp limit). However, mechanization com-
plexity could be the negative factor. Programming versatility for most
applications essentially reaches the upper limit by providing for about five
independent inputs to a register with independent scales. A scaling range of
2° to 2° does not make all programs directly programmable but with program-
ming ingenuity most problems may be programmed within this degree of flex-
ibility without loss of program efficiency or computation accuracy. The
mechanization of multi -input pickup and accumulation which directly uses the
delay-scale property is simplest if all inputs have a different scale since, for
single increment communication only one adder is required. The capability
of handling two inputs of the same scale (and afterwards inputs of at most two
of the same scale) appears, however, necessary as well as sufficient for

adequate programming flexibility.

The operation of input accumulation for y registers must be carried out con-
tinuously to the end of the word (in order to accomplish full updating with
possible non-zero carry to the most significant end of the register). Thus a
DDA with more than one y register must have individual updating arithmetic
units for each y register. Two parallel DDA computers with equal computa-
tion capacity, but with a different number of y registers, involve different
costs in providing required updating arithmetic units. For a given level of
computation capacity, the fewer the number of y registers the better. The
second feature of multi-input processing associated with algorithm is dis-

cussed in the next section.

5.3 MULTI-INPUT QUANTIZATION FOR SINGLE OR MULTI-TRANSFER -
A DDA may be designed to have multi-input programmability of (independent
variable) AX registers (used for single or multi-transfer control). The design
problem of providing for multi-inputs to \X registers differs from that for

y registers in an important way. A difference arises from the general fact



that AX registers may be short as a result of few bit multi-transfer (in the case
of simplest transfer mechanization the amount shorter may be the transferred
y word length). Inputs are necessarily scaled to be consistent with limited
transfer capability. Since AX registers are short their full updating could be
executed usually in a fraction of a word time, implying that a single updating
arithmetic unit can, in principle, (by serial sub-word operation) update several
AX registers in a computer designed to execute a number of transfer operations
in parallel. In this respect updating 4X registers may be economical in a DDA
with sophisticated processing capability. A second feature of multi-input
processing for a register is the requirement for a quantization operation i.e.,
roundoff operation. In the case of AX variables the limited multi-transfer
capability provided for by the mechanization requires that accumulated inputs
when used for transfer control be rounded off. In the case of y variables the
phasing of transfer start (depending on mechanization) in effecting integration
algorithm may require a roundoff operation in generating transferred variables.
Roundoff operations must be selected to remove bias. For ternary or ordinary
multi-inc rement communication the subsignificant register quantity for multi-
inputs subjected to roundoff may be initialized (at one-half) in the conventional
manner for a ternary R register. The extreme shortness of multi-input regis-
ters requires that a further refinement be mechanized since such a register is
biased to the extent of 2-N-1 parts of the maximum content where 2°N ig the
scale of the lowest scale input. Using the sophisticated roundoff operation
(simply) mechanized in the strap-down processor for input accumulator outputs

to the multiplier, the bias is removed.

5.4 DECISION OPERATIONS - The essential decision capabilities recognized
for DDA design are accepted here as well as elaborations important for extended
DDA application. Their implementation in the full scale computer system with a

remarkably new processing structure is described in Chapters X and X1



5.5 COMMUNICATION PROGRAMMABILITY - Program versatility of a DDA
is reduced if the level of communication programmability is not sufficiently
high (despite use of ingenuity by the experienced programmer). A computer for
a full aerospace mission may require more than four or five times the program
of a computer for a primarily airborne inertial navigation function. Moreover,
the majority of aerospace program subroutines may require a high degree of
intercommunication. This would appear to imply that a computer for a full
aerospace mission should have a higher degree of communication program-
mability than the conventional DDA. It will be shown in later chapters that the
design approach developed for the full scale aerospace computer with multi-
increment computation leads to a reduced number of computer outputs (by a
factor of tvo) which are single increment rather than multi-increment. Conse-
quently the mechanization required to make outputs available for rapid access
as inputs is not only simpler than that of a multi-increment DDA but also sim-
pler than that of single increment DDA. A net advantage in simplicity of total
communication structure for full communication of the full scale aerospace
computer, relative to the conventional DDA with equal program, is retained
after further taking into account that three (or four) input variables rather than
two input variables are allocated component input variables, and that the total
number which must be provided is comfortably the same (six). Communication
structure for partial communication, such as using z lines on a drum, appears
somewhat simpler for the conventional DDA but inflicts a program capacity
reduction which is significant especially for a variable word length DDA. In the
case of a sophisticated incremental computer where outputs are collected in a
rapid access memory, and selected by drum stored input selection words,
certainly if some cramping in drum storage of input selection word set appeared
economical, a certain fraction of the total number of words in the set for the
generalized integrator could be shortened without appreciable communication

loss. Since adequate storage space (assuming drum memory), is available



because of a provision for a set of short registers, the latter need not be re-

sorted to in the proposed aerospace computer.

5.6 DERIVARY COMMUNICATION - A new type of communication (termed
derivary) using the tex;nary set +1, -1, -0 was proposed during Phase 1 as a
means of communicating second difference information for higher order
integration without actualiy increasing the bits communicated. Since second
order algorithms involve the factor one-third it was seen that this factor
(unamenable to delay-scale mechanization) could be effectively made on second
differences by counting modulo three and communicating in binary + or - when
the first difference ternary is zero. The primary value of second order
algorithm has been shown, however, to arise in high frequency variable
computation with multi-increment accuracy, the latter because roundoff
effects are reduced to below second order algorithm magnitude levels. The
derivary communication concept can be applied (if required accuracy warrants)
to a multi-increment computer of the revolutionary type discussed in latter
chapters and which uses second difference communication of ternary type.

In this case the utilization of the information space when the increment is
zero provided by + and - selection, may communicate second differences with

scale one-third for the integration algorithm.

5.7 PHILOSOPHY OF INTEGRATION AND QUOTIENT ALGORITHM PROC-
ESSES IN RELATION TO SERVO ACTION IN GENERAL DDA COMPUTATION -
An investigation was initiated to evaluate the degree of generality solely® of
incremental integration and quotient algorithm processes alone, for computa-
tion tasks other than slewing typically assigned to an incremental computer, and
tasks envisioned in future applications. The conventional DDA with codable

servo operation is the excepted case in point, for the general impression has

*Decision functions however being incorporated in non-analytical processes
of switching.
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existed on the part of many that high precision is obtainable in some computa-
tions using implicit computation with servo loops*. At this point, the relation-
ship of general servo mechanism function to direct computation function is one
formative basis in evaluating the alternative designs. Generally, the direct
computation function if precisely executed leads to accurate results, but if
subject to inexact execution through integration algorithm error or roundoff
error, it can lead to inaccurate non-selfcorrecting results. In general, the
servo mechanism function is ideal to insure the reduction of large induced
errors, assuming the errors have some magnitude bounds, but this is accom-
plished at the price of tolerating a certain range or dead zone of error inherent
to servomechanism action. The largest computation execution errors in whole
word incremental computations are typically those of integration algorithms.
Conventional DDA design is such that roundoff error is equally as important

as integration algorithm error. With the exception of applications basically
requiring decision modes, simulations have shown that high precision is
uniformly attained in sophisticated DDA systems, without servo elements,

thus avoiding limitations in computation accuracy implied by servo mechanism
computation. A special error source of the servo despite multi-input -caltng-
is the effective lag produced by chance superposition of '"1''s. Though this

lag source is reduced by reducing scale to extremely small values the result

is noisy servo action.

5.8 WHOLE WORD DERIVATIVE COMPUTATION IN A DDA WHICH IS LAG
FREE - A variable x is updated in a DDA with single or few bit increments Ax
which represent the true derivative of x. An application may require a com-
puter output of a whole word represemntation of the derivative % in which case

the Ax form is inadequate from the standpoint of accuracy.

*Systems of integrators involving at least one operational integrator, i.e.
servo.
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The conventional methods of generating a whole word % are based on linear
smoothing methods involving pure integration and in addition alternatively
using a servo element. The general impression that the former method

must involve error as a result of a lag for band iimited inputs is the result

of use of unsophisticated smoothing computations, and will be shown to be a
false one. Thus in effect it will also be shown that there is no natural limita-
tion of integration methods in a DDA of this type. The importance of lag
effects in a computer output variable cannot be overstated, as for ex-
ample, in the applications to craft control where instability can result. Thus,
in general, it is better to tolerate a higher noise level than a lag in a variable
in certain critical cases. Through design effecting higher iteration rate and
multi-increment computation, the noise level is greatly reduced. Thus

the development of a lag free derivative computation complements overall
performance improvement for such applications. There are applications in
which the rates of variation of derivative variables tothe output are so pro-
nounced that the freeness of lag implied by system requirements must be such
that a locally quadratic H can be transmitted without lag in contrast to the less
demanding case of a locally linear :°c. Consider an attack on this demanding
problem through analysis using continuous linear smoothing theory. Con-

ventional first order smoothing is given by

t
g - f K, “KE- S an (v-1)

o
which may be shown for % = (x) + (x) tto introduce a lag of time
0 o
1/K in the x generated. Computation of unlagged x(t) through use of past
history properties at time % in the case where no smoothing is required would

be possible by Taylor series, thus

. ' ]
%0 = %X+ Koo (- w0+ K AL (v-2)



Where smoothing is obviously required over a wide range of times this
suggests a general computation form which is unlagged for locally quadratic

-}
X, namely

t
& 000 9
%= f[?c (x) + 2(x) (t - )+ x (a.)-‘ﬁ—‘-zl‘)-]g (t - x) dx (V-3)

where the weighting function g must satisfy

fg(x)dx:l
o

since substituting for the truncated Taylor series, X (t) yields

+ ®

I
?z: g:t)g(t-")d’l=?t(t) g (x) dx (V-4)

=
and we require % (t) = X (t). The actual information available is & x (»),
hence the linear smoothing form will be expressed in terms of x (*) by trans-

formation obtained by successive integration by parts, namely

+
f{g(t- ) -—-[(t - n) gt - x)-— S——-g(t - x)]]} & dn (V-5)

Consider the selection of g (x) = Ke-Kx for the weighing function in the second

order lag free computation form.

It is shown by direct differentiation of the terms in the integrand for this case

that

+
;=fKe-K(t =" [3 - 3K(t - %) + -"—'1‘-2-‘—)-’ta ]S’: dn (V-6)
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The DDA will effect the computation by solving the differential equation
obtained from the integral form. To obtain the computation in a set of first
order differential equations each one of which is effected by a single integra-
tion, differentiate the integral form of x as follows

+
f ean [-3!( + K2(t - x)] ?:du] (Vv-7)

dfd ¥ Kt o Kt d
E[d—t(xe ) - 3Kxe ] = 37[

to obtain the relation

Ny
~ +
%[(ﬁ‘% + K& - 3&))3" = -3K%%eXt 4 K2 f,“"x‘,"du

(V-8)
' A
denoting v s -:z[%:- + K& - 3!(?:] (V-9)
L *
and using , % = K[e Kl MRy, (V-10)
dv 2 a0
*® = K[?&-Sx-v] (V-11)
d‘?: ~
& . kfa-2] (v-12)

o
From the definition v a third differential equation is obtained. Thus x can
be computed with three integrators each solving one of the differential equa-

tions

g."; - k[2-%] (V-13)
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dv °
rrll xr-sﬁ-v (V-14)

E
dx ¥ o
at - Klv-x+ 3x] (V-15)
which in difference equation form are approximated by
o °
A&,“') = (K'r)[Axu - x"_“'] (V-16)
a(v, ") = (K')[t' - 34x, - "n-x"] (V-17)
Y °
M?tu') = (KT) v, T-x _ T+ “"u] (Vv -18)

e

)
which with refined algorithm yield a lag fr=e whole word derivative x. The
price of removing lags in the derivative estimate is some increase in noise.

It may be shown that the factor of increase relative to the first order computa~
tion is given by

1
+ ) F
4 le (V-19)

1

" Noises o =2K(t-x) i

g K e dn 2
a®

~ 2

~ ~
Thus the noise error of % is twice that of ?&, a surprisingly small increase in

view of removal of the much more critical lag effects.




CHAPTER VIl

DEVELOPMENT OF SERIAL-PARALLEL DDA MECHANIZATIONS WITH
HIGH DUTY FACTORS WHICH ARE CAPABLE OF QUOTIENT ALGORITHM
WITH DERIVED (SINGLE INCREMENT) TERNARY AND LATER
DEVELOPED MULTI-INCREMENT COMPUTATION

6.0 INTRODUCTION - The demanding computation capability requirements
for aerospace applications established in application studies and computer
type computation capability analyses (See Chapter XI) demonstrated that two
types of computatior (a) input processing and (b) quotient operations in
internal computation present overwhelming computation tasks for conventional
DDA mechanization. * The necessity for and the nature of special design
features for type (a) was established in Phase I of the study. The full sig-
nificance of type (b) was not evolved until Phase II during which aerospace
applications were analyzed in a detailed study and it was established that
there were severe accuracy limitations of conventional DDA mechanizations
in executing quotient type computations which incontrovertibly occur in
aerospace applications. The accuracy limitations were demonstrated in both
analyses and simulations. The historical role of quotient type computations
is discussed more fully in the next section. The conclusion based on analysis
and simulation was that an aerospace computer for a full mission must have
radically different mechanization for even internal computations in conse-
quence of quotient computation requirements. As will be seen, the ultimate
design developed for a full scale computer system which executes input pro-
cessing and internal computations together in a highly efficient mechanization
did not reflect an overall mechanisation complexity substantially greater than
that required for input processing. As a result the developments in increased

* At conventional or relatively high iteration rates.
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internal computation capability made possible by highly unconventional pro-
cessings developed in the chapter on multi-increment QDDA are essentially
gains without genuine overall mechanization cost given input processing is
established to be necessary. In the analye.:3s of this chapter the balance of
factors of computation capability and mechanization complexity are examined
in detail for the internal computation. The analysis is carried out for the
most part as for a separate computer leading to an optimized design of such
a subsystem. Since many of the mechanization (rather than computation)
factors leading to the design arecompatible with optimized input processin~
subsystem design, the development leads to a full scale fully integrated com-
puter system actually much more efficient than either of the subsystems
comprising it. Analyses of this chapter have the goal of developing internal
computation mechanizations of high duty factor i. e., the percent of time of
fulluse of basic arithmetric capability, as one part of the full scale computer

development,

6.1 TIHE HISTORICAL AND FUTURE ROLE OF DIVISION ALGORITHM DDA
IN AIRBORNE AND AEROSPACE APPLICATIONS - This report documents-

the many factors implying that a DDA have division algorithm for full aerospace
mission, To see the historical role of the algor.ithm selection rational con-
sider the airborne applications for low speed aircraft. The convention.! DDA
for real time computation does not have division algorithm despite the fact

that the design technique**has been known since 1954 for binary DDA vith
division algorithm, A partial explanation derives from the fact that the
majority of airborne DDA computers are designed {or conventional airborne

pure inertial navigation of low speed craft with limited altitude range., The

*See Computation Capability Analysis (Chapter X); and mechanization analyscs
applying to computer applications requiring parallel processing capability.

*%§, Cray, Remington Rand
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only occurrence of a computation formally involving divigion in the pertinent
equations involves division by radial distance from earth center. For limited
altitude range of the craft the division may be avoided by a numerical ap-
proximation* of acceptable accuracy for typical pure inertial navigation appli-
cations of the past. Now that doppler radar has been developed to enable high
accuracy long term navigation for low speed craft it should be pointed out that
lack of division algorithm in DDA for conventional airborne navigation will be
recognized as unfortunate since in the damping a division calculation is in-
volved in transformation of doppler velocities from craft to inertial coordinates
which involves relatively high frequency variables and in consequence makes
division by integration or servo processes unacceptably inaccurate. **Before
discussing the applications other than low velocity craft navigation which quite
clearly require division algorithm, consider what the hardware and perform-
ance trade off is for conventional airborne navigation with conventional and
division algorithm (where division is not formally required). Division algo-
rithm and single increment communication imply with drum memory, in the
most elementary case, one additional channel (say from four or five to five
or six channels) for storage of the divisor (in which case digital processing
unit iteration rate equals word rate). Also an additional transfer unit and
modest amount of overflow logic must be used; communication lines must be
elaborated slightly. While little increase in computer size results in the
drum memory case the logical complexity is somewhat increased. Consider
now the value (which we point out exists) of division algorithm in a computer
used for the hypothesized application in which division is not required at all.

# Not good for aerospace missiles

*%xSee doppler damping program and computation analysis studies
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One of the more frequent uses* of division algorithm in any application is that
of whole word scaling which occurs in programming 25 or 30 percent as often
as general integration. Since division algorithm provides parallel generation
of genera' integration and whole word scaling, an average increase in com-
putation capacity of 25 to 30 percent results in applications where division is
not formally required. One reason this reasonably priced modest increase
in performance has not been chosen where division is not required is probably
the trend toward ternary communication and computation (with twice binary
precision). No ternary division algorithm was known#*# until developed in this
contract study. There is also the congideration that a parallel (two integra-
tions per word time) DDA with or without division algorithm requires only
one additional channel over the elaborated DDA for R register in the drum
memory case to double computation capacity where no division is required.
Taking into account that doppler damping inertial navigation requires division
the modest increase in complexity in a DDA with ternary division algorithm
is seen to offer a substantial auxiliary increase in computation capacity apart
from the single really essential division operation. It is therefore concluded
that the long term navigator using doppler damping for low speed craft should
in future systems have a DDA with ternary division algorithm (or, as will be
seen, have digital Stieltjes algorithm developed in Chapter IX).

Aerospace applications very definitely require division algorithm for inertial
navigation at near orbital velocities because the variation of radial distance
from earth center which is prominent as the divisor in the navigation equations

is substantial and has relatively rapid change. A host of other computations

% The operation Kdx is accomplished by/division by —c‘-i-x—:—l
2" K

*%To our knowledge
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such as orbital coordinate to earth coordinate computations and re-entry

computations definitely require precision division algorithm,

6.2 HISTORICAL DEVELOPMENTS IN BINARY DIVISION ALGORITHM
DESIGN TECHNIQUES AND THE PURPOSE FOR THE DEVELOPMENT OF

A TERNARY DIVISION ALGORITHM COMPUTER - In a previous incremental
computer dulgn.. a basic processing unit or generalized DDA "integrator" was
devised which could binary increment a reciprocal in one-word time in a com-
puter, with binary communication. There is an equivalent of the R register

of the conventional integrator in the modified basic processing unit. One major
difference between this previous unit and the one developed in this study is in
the nature of the R register. Whereas the former employed a double length R
register whicl had to be stored in rapid access memory at a considerable in-
crease in machine complexity, the presently conceived device has a single
word R register as does the conventional R register of anintegrator which may be
stored cheaply along with other register quantities on a drum. The binary
computation feature must also be considered a limitation since (though binary
is the cheapest in mechanization) computations in binary are subject to the
"phase" effect associated with the representation of sero with a stream of
alternating +1 and -1 values; also the resolution obtainable in binary com-
putation is one-half that obtained in ternary computation. For these reasons
the trend in conventional airborne computers without quotient algorithm is
toward ternary design. Becsuse quotient computation is basically more
sensitive to roundoff error than other incremental computations, though less
00 in a quotient algorithm machine than a conventional DDA, it is expected

*g, Cray, Remington Rand, Contract No. AF 33 (038-23287).



that a ternary quotient algorithm computer would have much higher accuracy
than the binary quotient algorithm computer. A binary stream of information,
lacking precise representation of zero does not appear to generalize directly to a
whole word binary number (despite the nomenclature) as indicated by adding

bits to the short word communicated. Thus the development of multi-increment
quotient algorithm for DDA type computers for higher levels of accuracy and
rate handling capability does not appear to be a direct step from the binary
quotient algorithm. A novel development in rate handling capability but not in
accuracy was however demonstrated in an incremental computer which utilized

a "variable" increment. Here a several bit word communicated represents a
binary number of magnitude Z.K where K, integral, is defined by the word.
Clearly a very wide range of rates can be handled for a sufficiently large range
of K., However, the accuracy of representation of any rate is nevertheless that
of binary single increment. Basic arithmetic accuracy can be obtained only by
pure multi-increment or a combination of multi-increment and variable increment.
Effort in this study was therefore made in the direction of developing ternary
quotient algorithm since the further development of multi-increment quotient
computation appeared to be a generalization which later analyses could fully

exploit.
6.3 DEVELOPMENT OF TERNARY QUOTIENT ALGORITHM

A. General Incremental Computation of Quotient Without Explicit
Division Operations - The arithmetic unit of a DDA is capable of



transfer operations (single or multi-increment multiplications) but
not of direct division. The quotient algorithm must consist of an
incremental computation directly involving only addition, subtrac-
tion and multiplication. While approximate numerical incremental
quotient algorithms have been known since 1954, it is believed that
the first algorithms generally good to second order accuracy are
those derived in the chapters presenting developments in the sencral
theory of incremental computation. Since the analytical develop-
ments there hypothesize the form (to within algorithm refinements
for high accuracy) of the arithmetic process used in earlier mech-
anizations, it may be informative to present a more brief heuristic
(and less general) discussion of a quotient process. The general
features of R register inputs will be delineated. Consider the re-

ciprocal computation
8=1/1 (vVi-1)
by incremental processes. Since
de = -dI/T (Vi-2)
and division is to be avoided, the alternative form

de = -8.9dl (V1-3)

is one direct incremental relation capable of DDA computation
provided two integrators are used. Double integration incrementa-
tion requires essentially two word times one for each serial sum-
mation, whether by ordinary DDA integrators or by a single ela-
borated unit with two summation registers and a single R register
for output generation. Such a quotient algorithm unit of this direct

type:
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1. Requires two word times per incrementation.

2. Involves a single R register rather than two as in an ordinary
DDA, and should obtain some reduction in roundoff error

effects.

Congider now an approach which requires one word time per in-

crementation. The alternative difference form

0=1486 + 8 a1 (Vi-4)
n n n-1 n

is exact for ® = 1/1,
n n

Since the object is to compute 60:. and unless the equation were
solved for Aen which involves division by In' a preknowledge of the
answer is needed to satisfy the equation. Before resolving this
apparent difficulty consider the practical method of holding a
quantity to a minimum absolute value over periods of time. The
classical approach of residue retention in this case would ap-
parently imply computation of an R (register) quantity given by

R =R +1 48 + 0 A1
a n n

n-1 a-1""mn * (VI-5)
The choice of Aon which holds Rn to 2 minimum absolute value is
the estimate of the reciprocal increment used. Consider the case
of binary representation of Aen. Since only two possible values of
AOn are acceptable for computation the problem of holding Rn to
minimum value under these conditions can be approached by as-
suming in two separate calculations of Rn that AOn = +] and

Aen + -1. The lesser Rn which results indicates which AOn is the
preferable choice. In an ordinary DDA the R register value is

pertinent, after overflow, in judging the roundoff error. Since

*where on is the nth output from the R register. In this particular

X = 00
case, O n
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nothing happens from the time after overflow to the next iteration
incrementation the value of R just prior to the next incremental
operation may be considered the pertinent one. In the division
process ifno effort were made to get the R register in the ideal
state during the iteration considered, but rather to simply deter-
mine the best choice of AC)'l which is made to be the overflow, then
the adjustment to get the R register into the proper state can be
made just prior to incrementation without palpable effect in the
results computed. Note, that for Ru-l {corrected as explained
above) the R register would contain (introducing & pseudo variable
Ru.):

.
Rn *R.t 'n-l“u (V1-6)

provided Inglonwonnot.ddod. !R: >0and In>0tlun.
certainly, AC)ll s =] would make aa smaller in abgolute valus than
80, = +1. Ingenersl 80 = -og ”a g I is the proper choice
and may be formed with simple logic using n: and 1. Having the
correct AOn the R register can be corrected for the term In° 40 n
just prior to the next iteration to obtain (with relabeling so as to
consider the next iterationss the nth)

R -R‘l¢!

a-1 " Raop * 1188, (V1-7)

The final arithmetic operation (actually carried out at the same
time) s the addition of On. “u’ hence the actual (rather than
minimal residual) ie

. *
R*Rat LN L +ha “n-l (V1-8)

|

*Wheve 1 is the algorithm form of the divisor term in the formal residue
incrementhtion formula.
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where 80_ selection as A0 = -sg R;‘ . 5g I _, insures that the
effective residue of the residue retention method is minimal

despite the fact that a pseudo residue actually appears in the R
register. The actual incremental computation of the R register
value stated above does not involve the output AOn, but only the
previous output resolving the "horse before the cart' implications
described earlier in this description. Economical mechanizations
without rapid access memory for R registers are obtainable be-
cause of this fact. The basis for precise numerical incrementa-
tion formulae for more general computations involving division are
developed in the chapter on general numerical incremental com-
putation. When variables in the computation process are fed back,
the formal relations stated imply the knowledge of outputs before-
hand in the same way as in the above analysis. The formulae must
be converted to practicable form in the same manner ag in the ex-
ample. The formulae Gerived there formally apply to whole numbers
but may be applied to any given approximate number representation
with the usual type of roundoff error introductions which in principle
can be reduced somewhat in effect by special processing alterations.

6.4 TERNARY QUOTIENT ALGORITHM - The principle difference in binary
and ternary quotient algorithm lies in the overflow criterion. The preceding
description shows that the essence of overflow criterion is the selection of
that one output of the set of allowed outputs for the communication type which
minimises the formal residue (rather than the actual value in the R register)
associated with the principle of residue retention. Ternary communication
allows three outputs +!, =1, 0. The value zero is the best choice when the

"
$Where L, is the algorithm form of the divisor term in the formal residue
{incrementation formuls.
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n n
2
case an output of absolute value unity would leave the formal residue greater

I
| = |zl| since®* in this

absolute value of the R register is less than |

in absolute value than before. Thus the ternary overflow criterion may be

stated analytically in somewhat more general form as
e __7 * T
80 = sgRIsgl u (2 Inn|> xlxnl) (VI-9)

where K = 2, Kk integral, and 4 () = 1 for £true, g {f) = 0 for f false,

The special device, the quotient differential processing unit (QDPU) with
ternary output, introduces a decision process markedly different from that
of natural overflow of an R register, yet one capable of realization. Several
test calculations were performed by hand for short runs. In each case the
result was correct at each iteration to within the resolution of the registers
(1/2 bit), and the R register equivalent had RMS deviation from null con-
sistent with that estimated using the roundoff theory of a normal R register.
From the analytical standpoint there is no process in the unit's action which
appears to imply more roundoff error than in normal R register action (on

the contrary in the sense stated below).

The problem of evaluating the implications of the quotient differential pro-
cessing unit (QDPU) type design in aerospace computers has been investi-
gated in several stages with resulting generalization of the QDPU. The
ultimate value of a unit capable of incrementing a wider variety of functions
or functionale lies in the benefits of:

A. Alternative incressed itemation zatmand/er computer computadion
.cupauity,

$Where 7. is the algorithm form of the divigor term in the formal residue
incrementation formula.
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B. Roundoff error reduction through reduction of the number of R
register error sources involved in any sub-routine (as well ag
the increased resolution and decreased algorithm error implied

by (A) for any given application).

The generalized QDPU overflow rule has several interesting properties which
give insight into the nature of roundoff error associated with the R register
for binary and ternary action. Regarding the contents of the R register (which
is the uncommunicated residue of desired output) as an error, the conventional
roundoff analysis implies that overall performance in time for a broad ensem-
ble of computations is measured by the range of the possible R register values.
The generalized QDPU overflow rule has an overflow parameter which with
different selections, produces overflow of digparate types including binary,
ternary, blends thereof and an odd variation. From an arithmetic operation
standpoint, the overflow of R register from ccnceptual pre-overflow state is
chosen to have the sign of the arithmetic value represented (except for a divi-
sion action where the sign is reversed by a negative divisor)the difference
between binary and ternary action being that ternary calls for a zero output
where doing so reduces the resultant error (relative to not doing lo).. From
the standpoint of the generalized overflow rule, the overflow parameter de-
termines the specific situation for zero output, (for binary, never) and in
general, for any overflow types according as the overflow R register arith-
metic value is less in magnitude than the overflow parameter. It may be
shown that the parameter value for pure ternary implies the most narrow
range of R register values; thus ternary is optimum for a statistical overflow
process with single increment output. Let it be granted that the test ensemble
involves the occurrence of all intermediate values between the natural ex-
tremes since such can be the case for a sufficiently small Y register quantity,
For a hypothesized R register value slightly less in absolute value than the
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overflow parameter (for which no overflow occurs), the extreme error evi-
dently is at least as large as K-(the case where output is never zero, binary
where K = 0, being trivially included). In a host of y variable situations, in-
cluding the case where y is very small, the absolute value after overflow of

1 is (1 - K+) for K+< 1. The overall maximum error for all K satisfies
€-G(K,1-KhY~G(K 1-K) (VI-10)

where G (x, y) is the ireatct of x and y values, since overflow during com-
putation following the start of the R register at an intermediate value prevents
leaving the range assuming |yl < 1. The value of K which minimizes ¢ is
readily seen to be K = 1/2 for which ¢ = 1/2. This is the ternary case
(variation about the initial setting of K register at 1/2 being 1/2 since R
extremes are 0 and 17 ). The binary case is equivalently that for K = 0 for
which ¢ = 1 showing that binary has twice the residue range of ternary, the
latter being optimum for single increment overflow. The QDPU, as previously
reported, has the ternary action. In the division mode, the roundoff error

of the output is effectively increased relative to the actual register range

in proportion to the reciprocal of the scaled divisor register quantity.

6.5 MECHANIZATION FACTORS IMPLYING PARALLEL COMPUTATION
CAPABILITY IN A RECIPROCAL OR QUOTIENT ALGORITHM COMPUTER -
The mechanisation relations of computers with parallel computation capability
and quotient computation capability are delineated without loss of implication
by considering a computer which has the most elementary capability for a
division process in one word time, which may be called a reciprocal algo-
rithm computer.

Figure 6-1 shows the minimal register array enabling single increment re-

ciprocal computation in ons word time.
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Figure 6-1. Register Array for Divigion in One Word Time

Two transfer operations are required for reciprocal incrementation. The
cost of reciprocal algorithm is somewhat less than that of a conventional
parallel DDA with two outputs indicated by the fact that there is one instead
of two R registers. Consider performance of the elementary reciprocal
algorithm DDA compared to the parallel DDA for several different types of
computations found in important aerospace applications. Typically the
number of divisions called for is small (but their accuracy has overall im-
portance). The number of scaling operations is considerable, say 20 to 30
percent of the total program set. The quotient algorithm computer can
carry out a whole word scaled integration in one word time, which as in the
case of reciprocal calculation is a’speed performance equal to that of the
parallel DDA; of course the reciprocal algorithm enabdbles greatly improved
accuracy in reciprocal calculation. However, this effective speed perform-
ance is obtained during only about 35 percent of the program since 65 percent
of some programs, in applications such as navigation, typically consist of
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isolated integrations for which the reciprocal algorithm computer is no

faster than one DDA integrator. During these computations the parallel DDA
costing little more operates twice as efficiently. On the basis of these
considerations a serial reciprocal or quotient algorithm computer is relatively
inefficient in certain applications such as navigation. To obtain an efficient
mechanization for a computer capable of precision reciprocal calculation the
computer should also be capable of parallel (2 output) computation. Such a
computer is obtained by making transfer operations programmable. Such a
computer is capable of 45 to 50 percent greater speed for applications in-
volving navigation.

6.6 INCREMENTAL CALCULATIONS ENABLED BY A THREE-TRANSFERS-
TO-R-REGISTER MECHANIZATION = A basic processing unit with two trans-
fers per iteration can be designed to do at least the work of two DDA integrators
in all cases provided it is capable of two outputs. A single output unit capable
of reciprocal calculation or a whole word scaled integration as a result of a
computation routine structure in applications such as navigation is found to be
necessarily allocated a large portion of simple integrations for which the DDA
integrator equivalent i{s only one. The two output device involves some extra
mechanization costs associated with another R-register, and the requirement
of at least three inputs, and serial - perallel programmable mode capability.
Three or four transfers periteration unit with higher integrator equivalents
have these requirements and not substantially more, apart from increased
arithmetic complexity. Quotient incrementation of Q = U/V based on the
relation

du - Qdv
v

Q = (Vi-11)

involves design for three transfers per iteration. Consider the more general
computation
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aq = P4A +qdB (VI-12)

v

where p, q, v are whole word variables of the form (co +01A + 0B + asp

+0,q + agv) and a'n {(n21{) and are expressible in the form Z-Kn. An ordinary
DDA requires more than 4 word times to execute (VI-12), The form of

(VI-12) includes the most prevalent semi-complicated computation forms
making up such computation applications as inertial navigation, atmospheric
re-entry, and missile guidance. Vector computations involving scaling or
common divisor often involve this form. A two transfer mechanization requires
two QDPU to perform the calculation. The three or four transfer mechaniza-
tion has versatility in function generation which is very impressive for the one
QDPU case. The first class of computations requiring only one QDPU is of

the form 2
o x +8 +8s x° + 8 (VI-13)

Q-= 2g +t8,x ¢ty

Where a, are whole word quantities, ’n are of the form Z-Kn. Thus, for

- - - .
various choices of constants QDPU can generate x/y, (x ! +y l) ! . A

second class of computation is

0 (Vi-14)

=
Va +a, x+0gy +8, xy + 8y x* +8,y°

For various choices of constants the QDPU can generate ¥ x, ¥ xy, V¥ + y¥,
the last being useful for polar coordinate transformation. A third clase of

computation is the solution of a quadratic (the root being determined by initial
conditions),

o.e'+g(c.+!‘x+8.y)+[0~x*%“"“‘Y (VI-15)

+Bgxy +B8ex + 8gy°)

*The latter function used heavily in statistics for variance updating, has
potential applications in adaptive control.
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Adaptive missile control system studies of missile atmosphere
re-entry problems relating to skin temperature involve quadratic
solution computation. A fourth class of computation is x_

where K = Z-k. Related to this capability is that of generating

a cubic function with whole word coefficients {(output scale factor,
not whole word), such as the aerodynamic fit functions used in
craft control in re-entry. The inverse capability of solving a
cubic is possible for a certain class with one variable coefficient.

Any of these operations can be updated in one word time.

6.7 FURTHER DIGITAL PROCESSING UNIT FUNCTIONAL STUDIES
BASED ON PROPERTIES OF ELEMENTARY COMPUTATIONS PREVALENT
IN AIRBORNE AND AEROSPACE APPLICATIONS - Preliminary investiga-
tions of QDPU* capabilities hypothesizing alternative closely related designs
were carried out in order to deduce heuristically a notion of the natural or
basic computation unit implied as a result of application computation struc-
tures (as deduced from application surveys) and relative complexities of a

range of mechanization structures.

A possible definition for a basic operation to be executed by' the QDPU, is
any operation within the broad set of computation applications in sufficient
abundance that a real total saving in computation time and gain in accuracy
would result, if that operation could be consistently executed in one word
time (or effectively one-half word time) by hardware of acceptable cost
capable of likewise doing so for all other basic operations. The key to

efficient design is a generalizsed basic processing unit capable of executing

*Quotient Differential Processing Unit.
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relatively complicated operations in one word time.* be able to execute the
major portion of its operations, which are the simplest operations (princi-
pally integration or next in simplicity, whole word scaled integration), at
more than conventional word time rates, The unit of more than minimal
complexity and more than minimal computation capability must have parallel
independent integrations capability to be efficient™ in terms of duty factor.
Accepting parallel mode essentiality in the QDPU, a further and very im-
portant basic operation of parallel processing type was shown to exist as
determined in a survey of aerospace application computations. On2 of the
most frequent computations in aerospace programs is vector resolution and
rotation in two and three dimensions. A basic operation associated with
these calculations is the two dimensional resolution. Given a variable A,
compute the projection of A on axis x and y, given Cx, Cx direction cosines,

namely,
Ax 2 A Cx (Vi-1o)
A = AC
y y
A serial DDA requires four integrators to update Ax. Ay. Note that only
three whole word variables are involved just as in the other QDPU basic

modes previously reported. The ODPU capable of executing the incrementa-

tions in parallel

dA_ = C _dA + AdC
x x x
{(V1-17)

dA C dA + AdC
Yy Yy Yy

* Here operating rate is alluded to. Actually, precision level increases re-
sulting from reduced roundoff error in themselves justify design of unit with
more complex basic operation associated with only one R register (round off
error source).

** See Chapter 1l
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in one word time is not significantly more complex than the less versatile
QDPU with the same input capability and register count but only three trans-
fer units. To see the application of the generalized QDPU in three dimen-

sional problems, consider first the polar to rectangular coordinate calculation

r cos § cos x

®
"

y = rcos@sinx VI-18)

z = reind

given sin §, cos §, sin x, cos x and r. In this example, the generalized

QDPU updates x, y, z with 100 percent efficiency as indicated in Figure 6-2.

d(cos 9) d(r cosd) d cos x d&
dr

dz d sinx d
d(ein o) > Y.

Figure 6-2, QDPU Program Diagram for Updating x,
Y. and z with 100 Percent Efficiency
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Thiis mechanization accomplishes in two word times the computations tor
which previous mechanizations required from 4 to 8 word times, An
example of the proposed QDDA speed performance, relative to other existing
DDA computers, is a t.pical program for a toss hombing problem chosen to
illustrate the capability of an earlier mactine, The example is «<peciall
favorablc to the earlier machine because few isolated integrations are called
for as in the more important case of navigation computations for which the
QDDA however maintains the same efficiency (sce Chapter X). The QDDA
program is diagramed in Figure 6-3. Two more conventional serial DDA

performances are summarized for the following computation subroutine:

A PORTION OF THE PROGRAM DIAGRAM
FOR THE TOSS BOMBING PROBLEM

%"r' +Hcoo(l-2)-wr(liu(l-2)
sin A = D

Dcos A + (%g"“l'ﬂ)'in(l-z)

V-e-wr cos (A-z)

(Vi-19)

Ts

INPUTS: V., w_. L. D, H

CALCULATE: sin A
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SPEED PERFORMANCE SPELD FACTOR
QDDA - 7 words/fteration ;diagram}- 200%
(Inertial QDDA Operation Structure)

Variable Increment DOA with Quotient Algorithm i00%

14 words/iteration

Conventional Serial DDA - 29 words/iteration (estiinated) 48%

(This does not reflect equivalent speed increase due to the unique QDDA

higher order ternary algorithm, but only hardware iteration rate.)

Relative accuracy performance is effected by the iteration rate as well as
integration algorithm. The later developed QDDA multi-increment compu-
tation and also higher order integration algorithm of QDPU described in the
chapter on QDDA algorithm and round-off operation raises equivalent itera-
tion rate to an additional level h.gher than indicated above for existing in-
cremental computers. In terms of hardware iteration rate alone it is

noted in the example program that the QDDA with stated operation features pre-
sents almost the same step over the variable increment DOA that the latter
computer presents over conventional serial DDA, In navigation computation the
step forward is et greater. Itisimportant to evaluate the relation of an one
example program tothe larger setof applicationprograms, especiall for the aero-
s;-acc case explored in conriderable detail inChapter XI. A, previourly reported,
certain important applications, most notably inertial navigation, imply
somewhat different relative performances of the various computer types as

a result of more frequent occurrence in their routines of certain basic
operations. In the extreme case (no pure example of which is believed

likely to be found*) where pure non-additive integrations in the routine

*Nor at all in the ODDA as seen later, since input processing may use a
double precision mode with 100% duty factor,
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predominate over all others, the variable increment DDA because of a lack of
parallel computation ability, sould perform oni- 20 percent faster (rather than
108 percent faster, as in the previous example) than a serial DDA, the 20 per-
cent gain being primaril, ascribed to its whole-word scaling capability. Ir this
extreme (conceptual) case the QDDAoperation as stated in this first analysis
wou!d perform 140 percent faster (in later analysis of multi-increment QDDA
the performance is 180 percent faster* for this extreme conceptual case)

than a serial DDA (instead of 316 percent faster as in the previous example)
again considering iteration rate alone. At the other end of the spectrum of
application computations in which coordinate, vector, and tensor transforma-
tion routines pred¢ minate, the QDDA, because of the resolver mode, has four
times the speed of a serial DDA (and still about twice the speed of the variable
increment DDA,) On these bases, the toss bombing program described above,
is considcred to give a fairly accuract {or slightl, conservativé indication of
QDDA pure program specd performance on the basis of stated operation

features relative to previously designed variable increment DDA performance,

It is also important to gauge performances relative to serial DDA, especially
for the inertial navigation application. An airborne navigation system de-
veloped at Litton Industries and designed for minimum overall complexity
was chosen for the preliminary evaluation (the program length is probably
only 25 percent of the length required for a full aerospace mission). A
QDDA program was derived for minimal complexity inertial navigation

which involves only 16 QDPU and (with the conservative 200 kc clock rate)
could achieve an itr ration rate of as high as 625 iter/sec. A serial DDA
requires 54 integrators and at best, for this clock rate, would have an iter-
ation rate of 200 iter/sec. Had the DDA been allocated such calculations as

arc sin, etc., instead of the GP, the comparison would be much improved

*But with programmable double precision.
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for QDDA. The general results of these preliminary studies were con-
sidered sufficiently encouraging to make more detailed studies in the direc-

tion of developing a computer for a full aerospace mission.

6.8 FURTHER STUDIES OF PROGRAMMABLE TRANSFER FEATURES
AND REGISTER REQUIREMENTS FOR A BASIC DIFFERENTIAL PROC-
ESSING UNIT CAPABLE OF DIVISION WHICH HAS MAXIMUM DUTY
FACTOR - Four major factors imply the DDA design approach of developing

a differential processing unit consisting of a combined integrator ensemble with

serial-parallel processing features:

1. Precision division computation is required for aerospace applications
(for missiles of near orbital velocity and wide altitude range), imply-

ing several transfer actions within the basic unit cycle.

v

Parallel transfer capability without parallel output capabilities, the
latter costing little more, limits processing rate for applications such

as navigation.

3. Demand for a high computation capability, as a result of the large aero-

space computation programs and high precision requirements.

4. The full scale computer system with simplest mechanization that is
capable of input processing and internal computation functions has a
single arithmetic module which is time shared for these functions.

The minimum level of complexity for the input processing implies
overall low cost mechanization of the combined integrator ensumble with
serial parallel processing features of complexity up to that required

for input processing.

One useful measure of the efficiency of a differential processing unit is the
duty factor i, e., percent of full time employment, during execution of a

computation program, of available arithmetic capability toward a useful
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end. It will be assumed that all mechanization features which do not limit
processing versatility or duty factor are optimized. The appropriateness
of a differential processing unit, with a high duty factor in a DDA system
tailored to the application, is the degree of match between the computation
capability available and that demanded by the application, since realizing a
high dut& factor as the assumed design goal implies minimum mechanization
cost for the computation capacity obtained. It was decided that quotient
algorithm is required for the aerospace application, and, associated with
these requ.rements, parallel computation design for high duty factor in the
broad set of computations. A quotient differential processing unit, QDPU,
should be capable of two outputs and probably not more., Restricting con-
sideration to two output devices, the problem of attaining high duty factor
with the simplest mechanization involves investigation of such features as
the number of input variables (each input variable being the swu.i of several
outputs of a QDPU or external input) involved in transfer operations and, in
addition, the number of y registers. The number of transfer units determines
an upper limit on computation capacity which must match the application,
Studies in single increment QDPU's consider two to four transfer designs,
two being the minimum for precision reciprocal computation. The number
of input variables involved in transfer operations necessary to enable high
duty factor depends on the nature of program computations. Airborne and
aerospace calculations typically involve vector and coordinate transforma-
tions. which are composed of elementary operations, pairs of triples of
which have a common variable. It will be shown that provisions for three
input variables, each of which may be the sum of several outputs, is gen-
erally necessary and adequate to exploit the arithmetic capability of a QDPU
designed to execute up to four transfer operations. There is minor mechani-
zation cost in providing for selecting the communication of four inputs (as-

suming the same total of component inputs to the QDPU) in the case of rapid

Vi-28



access stored outputs, but the additional cost for component variables suin-
mation, uantization, storage for residue retention, and the programmable
selection for transfer operation, are significant. The fact that three input
variables enable high duty factor for a four transfer QDPU, as well as for u
two transfer QDPU, is favorable for the more powerful associated computer.
Another closely related consequence of the type of cornputations for airborne
and aerospace applications is that both three and four transfer QDPU's can
have high duty factor with a mechanization with three y registers. Of
course, the two transfer QDPU must have two y registers for reeiprocal
calculation, and cannot use more than two y registers with two transfer
capability, Component inputs forming an input variable must be quanti+cd
with residue retention registers for good accuracy. These registers arc
referred to as § registers. For single increment computation they must be
four to seven bits in length for flexible scaling, wheieas tor multi-increment ti e
computation must be seven to ten bits in length, Therefore,the, are gen~rall
cheaper in storage costs than y and R registers unless stored in separate
drum channels, one to a word time. In this case considerable storage space
is either wasted or available for other purposes. The extra space can be
used for inputs address, as in the drum storage case the § registers do not
basically have expensive storage. Multi-input quantizat.on operations in
generating 6 registers residues and ;juantized variables can be mechan.zed

econoinically using time shared arithmetic subunits.

6.9 MECHANIZATION SIMPLIFICATIONS RELATIVE CONVENTIONAL
PARALLEL DDA WHICH EFFECT TIMF SHARING WITHOUT RATE LOSS
IN MULTI-REGISTER SYSTEMS WITH MANY TRANSFERS PER WORD
TIME - The increased computation capacity of systems with many transfers
per word time has been considered by many to be proportionately paid for
by increased mechanization requirements. This concept is reflected in the

eventual integration of internal computation with input orocessing the latter
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alone requiring a set complexity level. It should also be independently con-
cluded that a DDA with many transfers per word time without time shared
input processing may have surprisingly efficient mechanization by incor-
porating certain time sharing features which do not imply iteration rate loss.
The element of mechanization cost in proportion to the number of transfers
effected per word time basically required by application and bit rate is only
one part of overall cost, and certainly if it were the only added cost for
several transfer capability (single bit), would make the overall cost of the
more powerful computer only fractionally somewhat more costly than a con-
ventional programmable DDA. The particular mechanism chosen for com-
munication to the QDPU is simpler than conventional DDA, of large program
capacity because output number is reduced by one half in the QDPU relative
to conventional DDA,

The costs of providing input selection of accessible outputs and multi= input
quantization per word time mechanization with modal versatility would
appear on first inspection to imply proportionate cost with computation
capability. Closer analysis reveals that these costs are not nearly of such
degree, provided there is full exploitation in design of basic input operation
characteristics. Adequate scaling flexibility is provided by multi-input
registers which are less than one-half to one-fourth the length of the y and

R registers, This implies that a single arithmetic mechanism for the multi-
input quantization operation can, by time sharing, produce juantized inputs
of two to four in number, thereby costing little more in flip-flops than in the
single transfer DDA, provided in the case a few words of rather cheap core
storage is available. A significant saving results in channel count using

drum storage results.
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Consider the y and Ax allocation for several-input, several-transfer
mechanizations with a high level of transfer versatility obtained by
programmable mode design, Programmable Ax allocation to transfer
units for y variables is effected by a program bit storage in flip-flops
during the word time in the four transfer per word time QDDA, The
allocation would appear at first count to require eight flip-flops for
arithmetic operation, ten flip-flops for channel storage, and up to ten
flip-flops for transfer modality, However, using a time shared multi-
input quantization register and only two channels for Ax data storage,
the inputs designated by a seyen bit address are selected from a core
memory, the quantization register contents after computation com-
pletion, (1/2 to 1/4 word time), may be put, after word split, to form
residue which is restored and transfer bit (or bits) used in arithmetic
operation of that QDPU, It is estimated that application of this design
technique for a four transfer unit reduces flip-flop requirements relative to
the proportionate hardware approach from 28 flip-flops to five flip-
flops and 20 cores (the latter being relatively cheap).

6,10 HEJRISTIC COMMENTARY ON COMPUTER DESIGN - As
stated by Claude Shannon* in a heuristic analysis of desirable com-
puter attributes, the human brain is a suitable computing system
supplied by nature that, in our state of advancement in the computing
field, offers much for enlightenment in computer design. While most
facts are unknown regarding brain operation, he states it is clear that
the brain has extensive parallel operation features. In reflecting on
this advice and statement of fact, the comments of other authorities
in the field of psychology are believed pertinent, While undoubt-
edly neuron action has mega-parallelity, the flows of what

*Litton Consultant
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may be said to constitute individual thoughts may not be in such
degree. Indeed, psychologists state that the healthy brain can
carry no more than three simultaneous continuous thought
processes, and most healthy brains (of equally intelligent indi-
viduals) can carry only two. It is perhaps a surprising coincidence
that the basic operations, which most frequently occur in computa-
tions, have a level of complexity and interoperation correlation
that leads to greatest efficiency in mechanization with a comparable
degree of parallelity found in human thought processes. The QDDA
mechanization developed exhibits a close parallelism to the human
brain. Each operation element (one word time of computation)
possesses the ability to carry on two simple and parallel opera-~
tions simultaneously or, alternatively, to execute a single complex
operation, thus utilizsing its computation capabilities maximally at
all times.
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CHAPTER V11

NEW CONCEPTS OF MULTI-INCREMENT COMPUTATION AND
DEVELOPMENT OF A MULTI-INCREMENT GENERAL (QUOTIENT)
ALGORITHM COMPUTER WITH SECOND DIFFERENCE
OUTPUTS HAVING SIMPLIFIED COMMUNICATION

7.0 INTRODUCTION - The need for multi-increment computation* in cer-
tain portions of airborne and aerospace computation programs has been
established in extensive studies during the program. In Phase I the concept
of using different computation techniques on routines with markedly different
computation requirements was given form in the classification of input proc-
essing and internal computation types. In Phase II it was established that
aerospace computations require division capability which presents another
type of computation requirement. Internal computations were classified as
those with the more readily met computation requirements, which by the
nature of application programs tend to constitute the major portion of pro-
gram operations count. The goal of developing a full scale programmable
computer capable of executing all types of computations, a computer which
has moderate mechanization requirements, was seen to imply the design ap-
proach of modal operation with extensive time ~haring of arithmetic and
communication hardware. Time sharing implies some price in program
capacity for the internal computations in particular. Therefore an in-
creased computation sophistication is implied for internal computations in

a computer using time sharing (for mechanization simplicity) relative to one
without time sharing. Since input processing requires multi-increment
computation implying the presence in the computer of a many bit transfer
mechanism, the possible best selection of several bit increment computa-

tion for internal computation was considered emminent. The integration of

*Or single increment computation at ultra high iteration rate which implies
corresponding hardware costs with state of the art hardware.
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input processing into the computer system in an efficient manner also implied
that data storage and communication channels be similar or analogous to that
of a conventional DDA. Therefore investigations were launched in the field of
multi-increment DDA design in the direction of several bit increment compu-
tation (as well as the whole word increment computation demonstrated in the
strap-down processor), Precision quotient algorithm was considered essen-
tial for the final computer developed.

7.1 LIMITATIONS OF STATE OF THE ART COMPUTER DESIGN

TECHNIQUES IN MULTI-INCREMENT, VARIABLE INCREMENT

AND QUOTIENT COMPUTATION -

A, General Design Factors - The historical motivation for single or
few bit rather than many bit increment computer design clearly
stems from the desire for simplified computer mechanization
associated with costs for communication and multi-transfer
{multiplication). Generally the less the increme nt size the less
the attainable precision so that the application determines the
tolerable minimum increment bit length. It will be shown later
in this chapter that the general impression regarding inherently
increased communication costs in a multi-increment computer
is incorrect.

B. Variable Increment Computation Limitations - Variable
increment computation techniques, employ single transfer
and call for, at any time during operation, effective communi-
cation of a single binary increment of variable scale; the scale
of the output is ZK. K integral is communicated as a several
bit word which changes as the required output rate dictates.

A single transfer computer in Stieltjes integration opera-
tions or product commpptations cannot approach the accuracy

of a multi-transfer computer whether variable or constant scale
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communication is used or not. In variable increment computation,
when output rates lay in a general range of magnitude, the com-
munications are single bit magnitude with a constant scale, and
can have no greater accuracy than a single increment computer
during that period. The overall performance of a variable incre-
ment computation is expected to be somewhat superior to single
increment computation provided the periods of maximum rate
change of outputs is short. The rate handling capability, in a
sense, is the major asset of the variable increment computation.
Multi-increment computation generally provides both rate handling
and precision capability, the latter being much lower in variable
increment. The communication requirements of variable incre-
ment present a significant additional cost relative to single incre-
ment DDA. Those for variable increment are comparable to the
costs for direct > 4-bit multi-increment communication. This
study shows how the superior multi-increment computation may be
mechanizedina form using single increment communication which is

markedly cheaper than that of existing variable increment computers.

Mul.i-Increment Computation with Quotient Algorithm - The
desirable feature of quotient algorithm appeared to present a
stumbling block in the development of multi-increment computa-
tion. It is deduced that the development of variable increment
wdas an ¢ffort to walk around rather than remove the apparent
stumbling block. Apart from lack of design techniques, the major
problems in multi-increment design arise from the cost of com-
munication and multi-transfer. The development during this
study of design techniques to accomplish multi-increment quotient
algorithm computation, and further to hold communication costs

to thuse comparable to single increment computation (and less
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than variable increment), eliminates two problems. The cost of
multi-transfer mechanization for internal computation in a com-
puter, capable of input processing, is shown to be minimal in a

time sharing design.

D. Initial Problems in Developing Design Techniques for Multi-
Increment Computation with Division Algorithm - The technical
design problem of multi-increment computation with division
algorithm in a computer, in which only transfer operations are
executed, stems from the nature of output generation from the
DDA integrator (or generalised differential processing unit).
Conventional single increment DDA integrator outputs are gen-
erated by natural overflow, i.e. the propagation of a carry from
the most significant bit position of the integrator. Previous
analyses” in multi-increment computation without division algo-
rithm, showed that natural overflow is not appropriate in multi-
increment computation. The output should be generated by one
of the alternative round off techniques. The design approach is
based on the preservation of the relationship of pre- and post-
overflow difference equaling output magnitude as is normally
attained by natural overflow. The development of more sophisti-
cated algorithms is expedited by anslyzing output criterions and
R register adjustments for outputs. The fundamental difference
in single increment computation be’ veen (1) incrementing a vari-
able and (2) ircrementing a variable and dividing by a whole word
variable, in an incremental computsr capable only of transfer
operations, may be described in terms of constant unit and

*Analysis by J. Campeau at Litton Industries in 1957.
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variable whole word scale factors. The output criterion for

(1) might be described abstractly as calling for an output if the
subtraction or addition of unit (scale relative to full register
value) would, in the case of binary or in ternary, reduce the
absolute value of the number in the R register (relative to the
original value for ternary). For (2), the output criterion calls
for an output if the subtraction or addition of the whole word
{divisor) variable {or Z+K times it if desired) would reduce the
absolute value of the number left in the R register; the output

for (2), if non-zero, is %1 in scale chosen for the output which
may be chosen ZK time s that of another choice without making

the output determination in « binary computer more difficult
(effected by relative delay). Variable increment computation

can be obtained by mechanizing choice of scale ZK for comparison
(according to variable rate, if desired for maximum rate handling).
Mechanization of output criterion for binary merely requires
using the sign of the R register and the divisor. In ternary, the
mechanization is the same except for a modification to have zero
output if the R register contains less than haif the divisor, as
determined by two parallel computations of sum and difference.

In principle, the output criterion for the multi-increment case

can be determined by many parallel test computations for each
possible alternative of output, with the number of test computa-
tions being > (4’.M+ l) for M bit increment. Evidently the number
of adders required to perform such a direct test approach is un-
acceptable. An indirect design approach which leads to relatively
simple mechanization is developed in a later section. The sec-
ond problem, which is correcting R register for each output

(since overflow is not natural), appears in the first quotient
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algorithm computer in 1954 where it is deduced rapid access
registers were used for correction for (a posteriori) deduced
outputs. The quotient algorithms developed here are amenable to
drum register storage for economy, since deduced outputs may
be fedback at the next iteration to correct the R register during
the next operation simultaneous with the normal operations of

that cycle.

7.2 FEAGSIBILITY OF SINGLE INCREMENT COMMUNICATION FOR A
MULTI-INCREMENT DDA COMPUTING BAND LIMITED VARIABLES -~ The
prevailing impression exists in the computer field that a multi-increment DDA
must have multi-increment communication in order to have multi-increment
accuracy. Certainly it is true that the integrator or generalized basic proc-
essing unit must have the information regarding multi-increment changes in
order to have the precision. The question,then,is really whether the informa-
tion is available without direct multi-increment communication. A well known
principle of information theory is that information transmission rate may be
low for band limited variables as compared to that for high frequency vari-
ables. Thus, if the internal computations (which are generally lower fre-
quency than those input processing) have sufficiently low frequency relative
iteration rate, then some level of multi-increment accuracy may be possible
using single increment communication of the right kind , Since DDA compu-
tations are generally considered based on high degree of analyticity (apart
from interruptions of analyticity, which can often be handled using decision
modes or, if necessary, GP supervision) it is expected that most variables

in a DDA program are band limited. The most elementary condition for
simplified communication is that the variables, represented by the communi-
cated increments, change not more than a certain amount per iteration i.e.
for properly scaled variables represented by M bit increment that do
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not change by more than 2™M fraction in one iteration. Certainly if M is
sufficiently small the physical properties of the variable permit this assump-
tion, just as the scaling assumed on a physical basis holds for the total in-
crement. Consider a sinusoid of frequency f being computed at iteration
interval 7 with multi-increment accurecy. The increment may have the

form
Ax = A sin (25frn+f) (VII-1)
The change in Ax per iteration is
A% x ~2% {7 A cos (2% frn+) (VI1I-2)
The maximum values are Ax = Aand
max
(a’x)

A'xmax = 27frA, hence we hachA-x—)-"-'-“ = 2¥fr (vII-3)
max

Most variables in aerospace computations are significantly less than 0. ! cps
hence a computer at 150 iter/sec with single increment communication and
having many bit transfer capability could be scaled to actually realize a

multi-increment accuracy consistent with

A% 1 r
max < < 2
- - Vii-4
Ax 230 ( )

namely, 7 bit increment accuracy with single increment communication.
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Suppose that 3 bit multi-transfer is mechanized, then the maximum frequency

sinusoid consistent with single increment communication is

2
f max = ! °x = 1 Z-a
2wy Ox 2% (VI1-5)

At 150 iter/sec, as for internal computation, f max ~ 3 cps. At 600 iter/sec
for 6 bit increment computation, using 2 bit increment communication as for
input processing, f max = 6 cps. The maximum frequencies apply to general
variables, whose major component have the stated maximum frequency. For
minor components of perhaps higher frequency, the reciprocal of the rela-
tive fraction of full amplitude of the component affects allowable frequency in
direct proportion. The highest frequency variables, such as in air data or
strapdown applications, have major components at <0. 5 cps and perhaps
some minor components at relativelv high frequencies. While simplified
communication appears possible for input processing, the relatively small
number of communications required does not require use of the simplified
communication technique. Rather, the internal computations characterized
by a gross number of communications, resulting from the typically large
program, may properly use the simplified communication with significant
saving and also generally be programmed for the full accuracy possible by a
several bit transfer capability on the generally low frequency variables
assigned.

7.3 ALGEBRA OF SCALING OF A MULTI-INCREMENT QDDA WITH SEC-
OND DIFFERENCE OUTPUTS OF THE QDPU - All DDA mechanizations
involve register storage and communication of information representing
physical quantities (or problem quantities in a simulation computer) that are
subjected to arithmetic operations of variable updating and transfer (condi-
tional accumulation to R registers). Interpreting any full register of any
fixed length, as having a machine arithmetic value of 1, a given register,
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having the purpose of storing a given quantity X, has an associated physical
scale Sp(x) , which is chosen for overall most accurate computation consis-
tent with machine operation constraints. In addition, to the quotient algorithm
(developed for ternary communication) the computer evolved during the latter
portion of the study generates (1) second difference outputs (rather than first
difference as in all existing DDA's) (2) utilizes in each QDPU additional
registers (first difference storage) for accumulation of ternary communica-
tions (single increment and sign), and (3) utilizes multi-increment updating
and transfer operations (3 bit or 6 bit). The design features, (1) and (2),
which are major new design features, are chosen for overflow mechanization
and communication hardware simplicity in achieving (3), the latter having
been widely discussed in the DDA field, but not, to our knowledge, materi-
alized in a ccmputer. An algebra of scaling the muiti-transfer QDDA was
derived not only for the basic purpose of programming application compu-
tations, but also for the exploration of the implications of general oper-
ation for optimized design. The choice of definition of machine numbers,
where registers contain maximum machine values of 1, makes the y register
and independent variable register closely analogous to a single increment,
single transfer DDA where a fraction instead of a £]1, 0 is added to a y regis-
ter with the same scale factor, and a product of a fraction instead of %1,

0 with an integrand quantity representing the independent variable increment
evolves the R register increment with the same scale factor. The more
general case of a programmable scale factor for transferred quantities was
analyzed to better coordinate the several transfer actions in a QDPU (only
one transfer takes place in a conventional DDA). Scaling of the QDPU outputs
(second differences) for accumulation in first increment registers is a func-
tion of the overflow mechanism which has been developed and the optimal
system performance choice for the physical variable represented, which is
consistent with the single increment communication and transfer bit length
mechanized,
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Analysis will use the following general symbology,

r(x) is the machine number in the register
associated with physical variable x where
full register is considered to contain 1"

S is the scale of x in the register i, e., the physical
magnitude of x for which the register contains + 1~

Then in general x = S’Er (x).

Analysis is assisted by attributing to contents of the R register the repre-
sentation of a physical quantity R, in whichcase R = SR . *(R) where r(R)
is the R register contents. Analysis of multi-increment computation with
2nd difference output where a division process is executed, may be simpli-
fied by representing the updating of R in terms of the sum of normal trans-
fers associated with one or more integration processes A In ,» and the
transfer associated with division (by v) in which case

R =R +Al -v AoD (V1I-6)

n n-1 n 0=l n .

The quantity AOIZl being the updated first difference of outputs after feedback
as distinguished from AOn » which is the updated first difference including
present output. Thus Aon = AJ': +A4%9_ . The computation to be executed

o
is

a0 = %& (V1I-7)
n
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In terms of machine register contents and physical scales we have

TR ) =Sy fR__)+S, . FAL)-S S, rlv ). r(80°) (vi-8)

sR R n-1
Transfers associated with integration will be executed to have the same scale

as the R register, hence SAI 2 SR and
MR )= xR )+ rAl)-Krlv_ )r(a0 ) (V11-9)

where

K =svsl.ﬂls
AF

The quotient algorithm developed does not involve direct ''overflow" but
rather an ' output' according to criterion with the effect in computation of
overflow being produced by feedback of **output.” Scaling of output, which
depends on the output mechanism, is elucidated as follows: For the feature
of ternary output where zero is the output (when minimum error is achieved
by doing so) the latter would be appropriate {without residue retention) if

v &%} v lla%o
&l -v l‘on-l| <J—&+—‘!' = lﬂit-gl (VII-10)

n n-

for &° On chosen non-zero. With the desirable computation feature of residue

Al
- lvn-llzl onl <0

retention, output is zero if
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Regarding machine outputs as +1, -1, or 0 in the convention of ternary, the
outputs are regarded as contained in single bit register (not including sign).
Then

A*0
n

S¢o
where r(# On) = +1, -1, or 0. For A*O hypothesized non-zero, for applica-

r(A'On)I (VII-11)

tion in the output criterion inequality,

= ]

r(a® o)

hence, the test inequality is
|
n

Expressed entirely in register quantities and scales involved, the test
inequality is

Va-1| S0 <© (VII-12)

2

r(Ru) I -Ke

®v, )| <O (Vi1-13)

where

K® = 82°0 v .Q'OSV
b | 81

The output criterion, in terms of register and physical scale quantities is

.K‘iﬂvn-l

providing SR. Sv >0, and taking u to be the unit step function. Assuming
r (4°0) is added to r (A0) according to the relation

r(s°0_) = Sgn(r(Rn)) sgn(r(v, _,))u(|r(Rn) ) (Vii-14)

Ar(a0)=2"" z(s%0) (VI1-15)
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multiply both sides by S iAiQ_ obtain
48" Sa%8 °

- =g sA 9 2 -
a(a8) = 27° Gapg - 4%8 (VII-16)
hence sa%e = 2°° sae (VII-17)

Then the constants K and K* for R register incrementation and output genera-

tion are seen to be related by

* -8 Sv8A® -8

K =2
sAI

Summarizing the R register incrementation and output generation equations,

=2 'K (Vil-18)

we have
r(Rn) = r(Ru_l) + r(AIn) -K r(vn_l) r(AGn)

r(8°@ )= ogn (s(R_))egn (z(v, D u (r(Rn) 27°k '("n-l)l) (V11-19)

where

Ks= SVSACISAI

assuming $ >0, S4 0 >0 (the latter since Sa 0 = Sg)

To elucidate transfer relationships consider the case where Aln = 7 . X
where 7 is the integration algorithm modified y of same scale and where y is
scaled unity in r(y). Then

Al = r(y) r(aX) SaX (VIi1-20)

and S“ = sAX = § (vii-21)

VII-13



Suppose v is also stored with unit scale and SA O has the same scale as Ax,

namely SAO =S ThenK = %);_(S_A_:g = 1 and the R register incrementation
ax

equation in this case is

r(ln) = r(Rn_l) +8 [r(;) r(Axn) -r (vn_l) r(A6 nD)] (VI1-22)

with output criterion
(ViI-23)

r(a%0) = sgn(r(R _)) sgn (r(v_ ) l(,r(lln) I-Z"Ir(vn-l)D
The transfer operation for integration and division operations are identical ex-

cept for sign in this case, for any choice of scale of 84* O provided the output
criterion is adjusted so that s satisfies

Sa%e = 2"%- g (VII-24)

Actually, for A® 9 to have a single increment representation satisfying a choice
of SA® @ the physical variable 4*® must be known to be rate limited to the ex-
tent that a fractional change in A @ in one iteration does not exceed 2™ °.

7.3 GENERAL (QUOTIENT) ALGORITHM FOR THE QDD*A. BASED ON
THE NUMERICAL COMPUTATION ANALYSIS - The analysis of Chapter II
led to the quotient algorithm for whole word computation in which outputs
8°0_are second differences generated using the calculation®

-V -V st .

R =R _,+P ax -v 80 -V, 88, (V1I-25)

where (") means a variable is algorithm modified and where the desired
calculation is

ar -
20 = (n_ml’-“:-"- (VII-26)
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Consider along with this computation the more general computation (readily
obtained by generalizing the analysis of Chapter II),

R =Rt PnAxn tqp8Y, - vnAeu-vn-

n ne

3 -
1A On (V11-27)

where the outputs A® On are second differences and

nr + qd
When v = ] this computation reduces to
-~ -~ - ? -
Rn = Rn-l + pnAx‘ +q 8y, (Aon + A en) (V1I-29)
where
as = (7 +qd (V11-30)
n (n -1)r pdx + qdy

In mechanization for multi-increment computation the later computation re-
quires two multi-transfer units for parallel operation (one for ;nun and one
for ?iuAyu) and one single transfer for “’n +4A® on) as will be discussed later.
The same multi-transfer unit requirements hold for the quotient algorithm
first stated.

The application studies of Chapter XI show that the calculations

nr pdx Vi
Aon * (n=1l)r v (Vi1-31)
nr
AOn = h-l)’pdx*fqdy (V1I-32)

include the majority of basic calculations desired in an incremental computer.
The fact that multi -transfer unit requirements in parallel computation are the
same for the two calculation types, implies that a basic unit which can be pro-
grammed for either operation can be efficient most of the time during the
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computation cycle in executing a typical application program, since the
arithmetic capability of the unit is fully used most of the time. The first
stated algorithm can be put in the form

R =R, +B 8x +V ["(“u +8 en)]+ ov 420 (VII-33)

in which the total multi-transfer and single transfer requirements are the
same as the sum of integrals algorithm. A unit which is prograuimblo for
both the operations of form

~ -~ .
R =R _ +p ox +7V 8y+ [—(Aon +4 on)] (VII-34)

and the above has the basic computation capability discussed. The general
theory calls for integration algorithm of component terms (indicated by (~ )]
which depends purely on the lagged or unlagged nature of the variable, for
which

~

(), = (), -1/280 ) -1/125*( ) Unlagged Variable (VII-35)

(), = () +1/280) + 5/128°( ), Lagged Variable (V1I-36)

On the basis of a limited number of simulations the approximation of second
order algorithm by

~

)y =0), - 1/28¢ ) Unlagged Variable (VI1-37)
(), = (), +1/280 ) +1/28°( )  Lagged Variable (VI11-38)
is proposed.

The integration algorithm programming of the two forms of computation con-
sidered is therefore identical®. The programming of assignment of independent

#The term A;'n 2% n * of second order,is replaced by Avnb' o,
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variables for multi-transfer may be considered identical in the two calculation
types if [:- 48 + A? 9) is included in the set of programmable independent varia-
bles for multi-transfer. Note that,either Ay # -(Aﬂn + A.On)]‘ in which case
[- (Aen + A en)] should be single transferred,or

Ly = [-(Aﬂn + A'On)] (V1I-39)

in which case av, - 4%6 n should be single transferred. It may be deduced
that a generalized unit capable of both calculation types is programmable
within the framework of that required for the sum of integral calculation type,
adding somewhat to diode requirements but not {flip flop requirements. In
the two output QDD®A, the valuable added facility for three multi-transfers
to R1 and one rulti-transfer to R, (a modified allocation of multi-transfer
units) does not affect the mechanization structure for transfers involving fed -

back output.

7.3 QDDPA DESIGN FOR INPUT PROCESSING - INTERNAL COMPUTATION
TASKS OF FULL AEROSPACE MISSION - The computation task for a full
aerospace mission involves capability of executing input processing as well

as internal computation. A QDDPA designed solely for several bit increment
computation has a degree of input processing capability determined primarily
by chosen multi-increment bit length and parallel computation features. Anal-
ysis of Chapter X indicates that internal computation requires no more than
several bit increment computation at even the modest iteration rates imposed
by large program and considerable time shared operation for input processing.
In a practical sense then, it is wasteful to mechanize more than three-bit
computation for internal computation. We seek to apply the concepts of
Chapter IV to the developments following it. The mechanization requirements
for input processing are very different from those for internal computation

at all but very high iteration rates for input processing assuming intermediate
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rate for internal computation. A time shared design for input processing at
high iteration rate, chosen for mechanization economy, meets accuracy re-
quirements (with several bit increment computation) provided the input pro-
cessing program is very small so that the high iteration rate can be achieved
without imposing intolerably low iteration rate for internal computation. In
view of the considerable numbers of routines of character intermediate be-
tween input processing and internal computation (such as air data computa-
tions), which are not practical at high iteration rate, the ability to handle a
number of demanding computations at intermediate iteration rate has real
value. Two new approaches have been investigated in achieving the total set
of appropriate computation sophistications in a single computer so that itera-
tion rate (and accuracy) is maximum for a given level of mechanisation com-
plexity. The first approach is introduced in Chapter IV and further discussed
in Chapter VIII, namely, the double/single precision computation capability
in which two 3-bit increment multipliers capable of parallel computations at
twice the rate of serial computation may, by programming, also act at designated
word times as a six-bit multiplier for "double” precision (as required at
intermediate iteration rates, for example, in air data calculations). Withthis
design feature, demanding calculations (usually comprising only a small part
of the total program but too numerous to be included in high rate input pro-
cessing) may be executed with required precision without slowing down the
rate of internal computation in the same computation loop, which has program
extent for full aerospace mission in cestain cases of hundreds of integrators.
The second new arithmetic unit design approach derived in Chapter XIlI,
should act be regarded as essential to efficient QppP A design. The approach
utilizes however, the basic organisation features of the QDD® A with second
difference computation. The design presented in Chapter XIII requires that
inputs be single increment second differences. In applications where this is
consistent with scaling the derived multiplier, the l)z multiplier, (having
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approximately the complexity of a 3-bit increment multiplier) canactasa

many -bit increment multiplier For example, an analytic fraction such as

sin wt can be computed in lO-bit increment stepe{for w = 2 ) and one part
in one million accuracy using the Dz multiplier. For aerospace applications,
however, certain problems are anticipated in exploiting the principle on which
the DZ multiplier design is based. Here the major application of system value
would be input processing, however, the digital analog form of inputs for
pulse stream converters and the noise and rate character make the predica-
tion of single increment second differences of sufficiently fine resolution un-
certain. The nature of high rate incremental pulse stream input information
representing first differences itself leads to two-bit second differences by any
direct conversion method for constant rates. The approach of forcing the in-
troduction to the digital computer of single-bit second differences (by a spe-
cially designed servo type preprocessing unit) presents the introduction of
non-linear lag effects which can introduce significant errors degrading effec-

tive computation algorithm.

Two fundamental approaches to exploiting the principle of the p? multiplier

in real time computers with sensed inputs are presented. One calls for the
design of a hybrid multiplier which is partly conventional for lower significant
increment bits and similar to l)z operation for the remaining increment bits.
Provided input signal and noise are scaled correctly, then a two-bit or three-
bit second difference input could be computed without preprocessing. The

D?' multiplier does not generalize directly for two-bit second differences in

a mechanization of practical value. The second approach to exploiting the
principle of the Dz multiplier is the generation of second differences

by second-differencing of whole word sampled values. A sampler

unit of sufficient word length will generate single-increment second
differences of given resolution, provided the input to the sampler is consistent
with their scale. For a significant increase in resolution over that of a
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conventional 3 -bit multiplier of the same cost as the D2 multiplier, the
sampler word length must be typically of >> 16 bits ® >. 04 x l.O"4 since, for
example, at 100 iter sec. (intermediate rate) the QDD? A with conventional
multiplier can compute with 10-4 resolution on typical high rate inputs where
second differencing of inputs requires 2 additional bits to eliminate round off
generation of non-single bit second differences inputs. With the double pre-
cision feature, which couples two conventional multipliers, a resolution of
10'5 is assured at intermediate iteration rate and 1.0"'6 high rate loop. Exist-
ing sensors and transducers for real time computation with voltage or current
sampling typically have resolution of < 10 -4 and shaft encoder conversion

4 to 10-6. Therefore the D2 multiplier offers possible

hardware saving in arithmetic unit complexity on the basis of input character-

with resolutions of 10~

istics, primarily, when coupled with encoder converters. More specifically,
a significant gain would probably be effected only with ultra high precision
angle measuring devices such as the Microsyn for star tracking systems. As
a result of the trend to single telescope systems, the measurement of stellar
intercepts are discontinuous from one star to the other. These intercepts
represent first differences in navigation error correction computations,
therefore, the second differences are discontinuous. This presents another
problem in utilizing the Dz multiplier (but not the conventional multiplier) in
the apparently most attractive area of application. The cost of forming sec-
ond differences is comparable to the difference in cost between a 3-bit and
5-bit conventional multiplier. The considerations of reliability of operation
in systems subject to high frequency electrical transients serve to limit the
Dz multiplier application. All of the factors imply effective loss of resolution
of the sensor in Dz multiplier computation by a factor of 2 to 3.

Where input processing is a fundamental computation task in the application,
the firmest basis of system design in the light of this is use ¢f the single/
double precision arithmetic unit or & cenventiomal multiplier / p multiplier
combination in double precision for input processing calculations.
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CHAPTER VIII

TYPES OF PROGRAMMABLE MODAL ACTION OF THE FULL SCALE
INCREMENTAL COMPUTER IMPLIED BY COMPUTATION TASK
AND MECHANIZATION FACTORS

8.0 PURPOSE OF PROGRAMMABLE MODAL ACTION - The major factor
in the selection of a particular programmable modal action is the quantitative
computation capability attained for a given level of mechanization complexity
implied in doing so. The underlying prerequisites for system task, including
input processing and internal computation (analyzed throughout major portions
of this report) are assumed here, and analyzed in relation to the underlying
hardware characteristics. This makes the total set of these functions pos-
sible by modal action of arithmetic module and internal communication

processes of the basic differential processing unit, the QDPU.
8.1 ARITHMETIC MODULE MODES

A. General Factors Implying Arithmetic Module Modes - Consider
the general relations of a computer with arithmetic modal features
to conventional computers. If we consider lack of continuous full
use of arithmetic capabilities of given hardware in a computer a
design deficiency, then a clear deficiency of contemporary incre-
mental and general purpose computer designs exists. The defi-
ciency stems from their processing rate and precision inflexibility
for subroutines presenting different types of computation demands.
For example, while the G. P. is designed to carry out a computa-
tion at fixed rate with an accuracy of 1078, a computation requir-
ing only 10-4 accuracy can be carried out at no higher rate. A
computer with the same arithmetic complexity could be designed
to achieve twice the processing rate for such routines. But since

the other portions of computation task require the higher accuracy,
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the conventional rationaleistoaccept the loss of efficiency.
Actually, since the typical application requires few high accuracy
or difficult computations and a majority of low accuracy or easy
computations, the loss through functional inflexibility is generally
large. The historical lack of problem attack on this design defect
has two partial explanations with regard to design philosphy:

1. The widespread impression of the fundamentality of the arith-
metic unit; i. ¢., that tampering with it indesign efforts except

as a unit cannot be done.

2. The possibility of modal or switching action costing more to
implement than the savings gained.

Actually, in answer to (1), the fact that double precision can be
programmed in a G. P. (though with inordinate processing rate
loss) for 10.16
that a ZM bit accuracy multiplier is no more fundamental than
two individual M bit accuracy multipliers. With regard to (2), it
is shown in later analysis that the double /single precision pro-
grammability in the QDD.A costs little more than a flip-flop while

doubling effective processing rate in lower accuracy computations.

» for example, instead of 1078 accuracy, shows

Using conventional parallel design principles to equal this rate, the
hardware cost would be nearly anorder of magnitude higher than by
the arithmetic modal design.

In the QDD‘Atho advantages of modal arithmetic action are exploited
in a natural and efficient manner because the external communica-
tion structure between QDPU and external inputs is complete and
adequate for double precision as well as single precision compu-
tation. The modal operation of pairing several bit transfer units
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to act as a many bit transfer device has been evaluated for both
conventional multiplier unit designs and the new 4* multiplier
developed in the chapter on logical design. In reference to the
drum memory case, the transfer for the added significant bits of
the independent variable sslectively stored in the double preéioion
mode in a flip-flop already present is properly scaled by several
bit time delays. These delays are obtained by selective feed in
of bits to flip-flops for the second single precision transfer. A
coupling of one conventional B bit transfer and Dz multiplier (of
the same complexity which often acts as a 4 or 5 bit multiplier)
is described in the following paragraphs.

Transfer Operation in Double Precision Mode by Coupling of
Conventional Multiplier and the Developed Dz Multiplier - The
conventional multi-transfer mechanization for AX which is 4

bits (including sign) and the developed Dz multiplier have essen-
tially the same flip-flop requirements. When the second difference
A® X is known to have a sufficiently small maximum the D? multi-
plier can act as a many bit multiplier; e¢. g., a sinusoid of fre-
quency f, constant angular rate, can be computed with Dz multi-
plier at iteration rate (IF), with A*X of log, (IR/2n{) bits not
including sign, hence at 100 iter/sec,a . 125 cps sinusoid can be
computed with an 8 bit AX (including sign) as compared to the con-
ventional 4 bit AX multiplier of about the same complexity. Input
processing presents insurmountable granularity problems to a
conventional DDA, and except at very high iteration rates also to
a several bit increment DDA. Thus,in input processing,the value
of many bit increment computation is evident. A programmable

double precision mode has the value of meeting this need for
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demanding computation routines. This makes possible double
rate computation for the majority of computations which are not
so demanding but largely make up the bulky program for full
aerospace mission. Input processing, especially at low rate, is
characterized by comparatively large 4® X max/AX max ratio. The
large ratio implies that the Dz multiplier may be dependent upon
attaining in the worst case only several bit increment computation.
Double precision mechanization studies show that the two Dz multi -
pliers do not readily couple to increase resolution by more than
one bit. On the other hand, a conventional 3 bit increment and

D’ multiplier can be coupled to allow for 4 bit increment in A* X,
increasing the multi -increment precision of a double precision
mode by a factor ot 16. Consider the representation of a many

bit AX in terms of truncated and residue components:

Axu . Ax’l‘ * AxR
n n

Ax,r
n

Y CITT wx
SNEEEEREL n
11

4 bit residue case
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For a A°X which is known expressible as a 4 bit residue, it

is seen:

2 - a2
A X = & xR (vli-1)
n
Updating of Axn is:
]
Axn +1 2 Axn + A xn
\?
= I:Ax,r + AxR:l 27X (V1O-2)
n n n
3
z Ax,r +[AXR +LXR:|
n n n
A single carry Cu results in adding residues, hence:
2
AXR +4 XR = AXR + Cn+l (VIII-3)
u n ntl
Thus, the equality:
X, [ X+ cnﬂ] +OX (VII-4)
n n+l

Where the integrand is y and the algorithm corrected quantity
involved in transfer is ‘y'.thon:
vty [Ax'l' * cnﬂ] tysXe (via-5)
n n+l

is to be transfered for double precision. A conventional 3 bit multi-

. The D® multiplier can transfer
n+l

plier can transfer y axp
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~ 2 ~
Yy Axanﬂ The D™ multiplier can transfer y [AXTn + Cn +1]

employing Cu + in the same manner as A’y in single precision
mode. The conventional and IJz operate as a coupled double pre-
cision multiplier by programming integrands to be idontica.l and
delaying start of the Dz multiplier by 4 bit times. The latter is
effected using the 8§ update mechanization in which certain 8
quantities, being updated before others (with savings in channel
and arithmetic requirements), are stored in the communication
core memory (total core count 10 to 12 words). The time of
drawing out the core stored 8 quantities differs in double precision
from that of single precision by ¢ bit times.

8.2 INTERNAL COMMUNICATION MODES OF THE BASIC PROCESSING
UNIT (QDPU) - The evaluation of the QDPU internal communication modal
design approach is more complicated than the obviously powerful arithmaetic
modal design approach analysed in the preceding paragraphs. Evaluation
should be relative to conventional parallel DDA designs since only a parallel
processing unit can match the QDPU in computation capability, the level of
which is established as necessary for pertinent applications. Since the QDPU
carries out several operations together using internal communication (within
the QDPU rather than QDDA as a whole) while a parallel DDA integrator does
aot (within the DDA integrator but rather within the DDA as a whole), the de-
gree of overall external commuaication is expected to be less. In application
programming analyses, the number of external ocutputs (counted once) com-
municated is at most one-half that of a parallel DDA with comparable program
capacity (but much lower computation capacity then the QDDA); aleo, though
less useful it is found that input sinks selecting outputs is at moet three-
quarters that of the DDA. Rapid access (core) memory for communication is
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reduced by one-half on this basis, and another factor of one-half or more
using the new second difference communication developed in the chapter on
multi -increment computation, with communication selection requirements
for full communication reduced by more than one-third. Thus, substantial
hardware savings are made possible by internal communication processes of
the QDPU and serve to compensate the modest cost of these modal features.
A second important hardware saving made possible by internal communication
modality is the saving in the number of registers. For pertinent comparison,
the parallel DDA without division algorithm, requires; with drum memory,
three extra channels (for register information) and associated read write up-
date logic, or with core memory, over one hundred and fifty words more of

core memory.

Because of the large gaine in computation capability made possible by reduced
R-register count and quotient algorithm in the QDDA, a conventional parallel
DDA with actually matched computation capability would require a higher
iteration rate obtained by further parallelity and further cost than indicated
above.

8.3 DECISION OPERATIONS IN THE MECHANIZATION OF MULTI-

INCREMENT QDDA WITH SECOND DIFFERENCE COMMUNICATION

A, Introduction - R is essential that the QDDA have the decision capa-
bilities of the conventional DDA in order that supervision by G. P.
be nil or held to a minimum in decision modified calculations. As
a result of the special features of second difference communication
the decision mode design problem is quite different than in a con-
ventional DDA, though, of course, the fundamental approaches in
generating decision modified functions must be used. In the con-
ventional DDA, conditional cutoff of an integration with respect
to time is readily produced by replacing time by decision function
(programmed as integrator input for independant variable). In
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the QDDA the decision function cannot be regarded as a normal
input since the latter is generally a second difference, not

directly used in maulti-transfers. Secondly, if the multi-
transfers to R were conditionally cut off as possibléina -
conventional integrator, the output cutoff does not cut off inte-
gration in the QDDA since the QDDA outputs are second differences.
Despite the problems indicated by these initial observations a de-
cision capability was designed into the QDDA which on balance
actually increased the "integrator' equivalent of the QDPU relative to
conventional DDA ov.or the estimates previously based on contin-
uous operations. The modest hardware requirement to accomplish

the decision features is comparable to that in the conventional DDA.

Decision Command Generation Parallel with Input Processing -

The generation of a decision command function of the simplest

type requires only wwe DDA integretsrin In erder (0 retafda ROPU
equivalent to four plus DDA\ integretsye), the decision command func-
tions sve best generated in QDPU, whiclk'-s9e assared-thetir pesformung
a substantial task in generating some other computation for out-

put of the parallel channel., Since decision command signals are
generated by eulipuiiting the sign of a y register clearly no multi-
transfer action is used. This suggested the QDPU in aninputpro-
cessing mode which,in generating the sum of two multi-increments
of double precision,utilizse the entire instantaneous arithmetic
capability of the computer. Clearly,if the decision command func-
tion of the simplest type is generated in parallel with input process-
ing calculations the integrator equivalent has increased by one "inte-
grator." Sinceinput processing gensrally involves at most two
internal computsr generated inputs (and two external inputs) the
programming of a test function as & fiisd tappeti igpesitbieiin



normal programming structure. The test function x becomes de
foliowed by normal § programming structure. The test function

x becomes de followed by normal & register and y register up-
dating where in the simplest decision type y was initialized at

X which then leads to decision function output D of D = 1 when
x> xo. D= 0 when X <Xo. Since input processing is executed at
high rate, and internal computation at moderate rate, test varia-
ble dzx actually enters the high rate loop at the low rate. Consider
for example, the case where the rate ratio satisfactory for input
processing is 4 (though in double precision the use of intermediate
rate is more typical). In this case, the effective scaling of dzx to
x is increased by 4 since dx updates x at 4 times the rate of the
internal computation loop. The decision command variable gener-
ated at high rate is used only one fast iteration out of four in the
internal computation loop. The multi-iteration rate feature causes
no difficulty in generating decision command signals for internal
computation or input processing. The operation is essentially
free in the simplest decision comyhiand type because the processing
rate is unchanged when full arithmetic capability is devoted to
input processing.

Input processing and decision command operations are executed
in parallel when a decision command operation is required in the
program code of the QDPU. Since the decision generation does not
need feedback to the ‘b register as required by the algorithm for
multi-increment computation with second difference communica-
tion, which is used in input processing (and internal computation),
the ”b register is available for use in input processing. The input
program code has two bits which determine the 8 register in
which is placed an input of given address in rapid access com-
munication memory. Since, normally, only three 3 registers
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have programmed inputs the normal code can select an input to -
bb with elaboration of the code. In the case of input processing,
this fourth input register has definite utility because input pro-
cessing can call for, on occasion, the combination of disparate
variable pairs in(usually)pure integration processes. In the case
of internal processing, the extensive programming studies show
that only three input § registers are required for essentially full
versatility. Since the 5m register is required for algorithm pur-
poses, a saving of one channel results together with the input
arithmetic requirements. The latter comment presumes that no
additional arithmetic requirement is necessary. The bm register,
during input processing, is applicable only if a single input is al-
lowed. In navigation equations and thrust cutoff, this limitation
presents no difficulty. Actually, if programing limitations were
encountered the unused >utput mechanism of the decision channel
to accomplish multl -input capability to ‘m without cost in flip-
flops would be relatively simple.

Decision Response Modes - Upon absorption of decision command
signals in the QDPU, decision action of conditional transfer takes
place using simple logical "and" operations. Absorption of de-
cision command signale into the QDPU has a simple mechanization
which obtains highly efficient QDPU operation. The total number
of analytic variables (as distinguished from decision variables)
which are concomitantly absorbable is reduced only one, from
eight to seven, while what is most important, the analytic varia-
bles may be collected in all three registers. When the QDPU has
decision programmiag bits (two in number) indicating it is to have

action in one of several alternative decision modes, the address of



inputs to the 6m register determines whether one of two or more
variables is to be treated as a decision variable, the remainder
to be treated in the normal manner for analytic variables in up-
dating the 6m register. The decision command bit D is then used
as the conditioning variable for any of the several alternative con-
ditional transfers of 6m contents to Ym' T2 registers. All condi-
tional operations obtainable in conventional DDA may be obtained
by conditional transfers:

1. 6m oy unless D = 0, which enables function limiting.

2. Gm to y, unless D = 0, and unconditional transfer to Gm.
which enablees cutoff of updating of a variable with respect

to one of its components.
3. Gmtoymi!Ds 1, -émtoymitl)-o.

4 3y, o transfer to R according as D = ] or 0, enadbling
wign control.

The fact that any one of the simply mechanized decision response
modes conditions the otherwise ordinary fully programmable
action of the QDPU implies an integrator equivalent of the unit
that is greater than the average during such modes. Examples of
programming the QDPU in decision modes for doppler damping
and thrust-cut applications are analysed in the chapter on appli-
cation programming and evaluation of the QDDA.

8.4 MULTI-ITERATION RATE FOR INPUT PROCESSING AND INTERNAL
COMPUTATIONS - The development during this contract study of an arith-
metic module, capable of alternating the work load between input processing
(double precision) and internal computation (single precision), enables a
marked savings in hardware by time sharing. The basic computation
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requirements of input processing and internal computation may imply not only
different multi-transfer requirements, but in certain critical input processing
applications may imply different iteration rates. The QDDA can be pro-
grammed to obtain single and double precision as desired. To obtain efficient
different iteration rates for the two types of calculation for a drum memory
computer, the appropriate allocation of read and write heads and some
switching logic is required. Input processing calculations which require a
relatively high iteration rate derive this requirement not only from the high
frequency character of the computer inputs, but also from a high computa-
tion error sensitivity where high accuracy is required. In general, compu-
tation error sensitivity stems from computation routine metastability or long
term instability; i. e., the accumulative rather than damped error response.
Because metastability and instability stem from a feedback character of the
calculations, it is generally true that a sensitive input processing calculation
is essentially isolated in generation from internal computations, which in
essence simply utilize the results of the former. Evidently, a sensitive input
processing, requiring a relatively high iteration rate M times that of the
internal computation need for acceptable accuracy, probably only communi-
cates with the latter at the lower iteration rate with instantaneous rather

than accumulated outputs. Thus, in cases where the QDDA has a multi-
iteration rate input processing-internal processing operation, the communi-
cation setup between one and the other processings probably could be chosen,
with a modest hardware saving, to use the same rapid access memory setup
as at equal rates (though with program scale changes of inputs from input
processing QDPU in internal computation). However, performance is
assured by supplementing the communication rapid accecss memory by a half
dozen 4 bit core registers for accumulating outputs of i1 put processing in a
high rate loop. A QDDA with drum memory can be set up for the multi-
iteration rates by alternating print instructions to write heads, spaced M
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ratio of delays from read heads, while alternating QDDA modal action at

half the lesser delay interval of that of input processing and internal com-

putation lines.

8,5 MODAL TYPES SUMMARY - The following modal types discussed in

detail in previous paragraphs are developed for the full scale computer:

AO

C.

Iteration rate mode is either high or intermediate accordingly
as the QDPU number is < 14 or > 14. Input processing is pre-
sumed to involve< 14 QDPU (consistent with application study).

Arithmetic mode is single or double precision for any QDPU
according to the arithmetic mode programming bit., Generally,
input processing uses double precision at high iteration rate.
Certain error sensitive calculations such as sinusoid calculation
on external input angles may be computed with required precision

at intermediate rate using double precision.
Internal Communicaticn Modes of the QDPU

1. Transfer allocation modes are those selected in QDDA com-
putation programming studies and delinected in the pro-
gramming code analysis.

2. Decision command mode is automatic in one channel of
QDPU used also for input processing. Accordingly, as a
programmed variable exceeds a given constant (as deter-
mined by the sign of a given S-register), the output is the
decision command signal 1 or 0 used in decision response
modes. Up to 14 independent decision command signals

can be generated without cost in overall processing rate.

3. Decision response modes, according to the two decision

response programming bits, interpret two or more inputs
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to a given & register (6m register) as a decision signal or
normal variables input depending upon whether or not the
source was the second channel of the first 14 QDPU. The
updating is in normal fashion with normal variables and
the interpretation of the decision command signal (a2 norm-
ally programmed input) is according to programming bits,
and the decision response programming bits, of the QDPU
for which the actions are one of the following:

(a) Transfer Conditional Inhibition of 6m toy .. thus
enabling function limiting.

(b) Update Conditional Cutoff of om to y; and unconditional
update of Yin by ‘m'

(c) Transfer Conditional Sign Change of Gm toy. -



CHAPTER IX

DDA AND QDD’A SIMULA TIONS ON THE IBM 704
COMPUTER AND PRIMARY RESULTS

9.0 OBJECTIVES AND PRIMARY RESULTS ON THE DDA AND QDD’A
SIMULATION EFFORTS - Approximately one third (11 hours) of the total
allocated programming hours on the IBM 704 for the Phase Il effort was
utilized in simulations of ordinary and elaborated conventional ternary DDA
and of the QDD’A. The broad objective of this effort was to assist in the
development and evaluation of incremental computer designs for internal
computation. Internal computations account for the majority of the integrators
utilized in typical aerospace application programs, but generally do not
involve, in fullest measure, the special computation problems of input
processing explored during Phase 1. The full aerospace mission has
associated programs requiring a DDA with a capacity of several hundred
precision integrators, which implies that; while the individual internal
computation routine might not in all cases be challenging nevertheless the
overall computation task does challenge the most sophisticated existing

DDA computers.® The reduction of mechanization complexity in the com-
puter system designed to handle input processing and internal computation
was ultimately obtained through a single time shared basic processing unit
(generalized integrator), which basically implies a need for further increased
internal computation capacity (as the result of the time sharing feature).

The choice of specific simulation efforts in internal computer designis made most
efficient by concentrating effort on those types of internal computations that

occur in aerospace applications and that present the basic source of limitations of

*The goal of reducing GP computer mechanization requirements in a GP-DDA
system to a fraction of that required in previous aerospace systems requires
for internal computation a DDA of >250 integrator capacity.
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computation capacity of existing DDA computers. Aerospace applications
were shown to imply the capability of executing computations involving divi-
sion. The lack of sufficient quotient capability is one of the two basic limi-
tations of the conventional DDA. Division operations are generally recognized
to present severe accuracy limitations. The major previous real time applica-
tion of the DDA, airborne (pure) inertial navigation, has generally avoided
divisionaltogether by making programming use of the narrow altitude and
velocity range of the conventional aircraft. The lack of precision division
capability is becoming apparent in the latest airborne doppler damped inertial
navigation systems where long term navigation accuracy is sought. Precision
division capabilityis a major requirement in full asrospace applica-

tions. The second basic limitation of the conventional DDA in internal
computation is common to the fundamental limitation of input processing, as

it is directly related to rate limit and resolution limitations that generally
lower overall computation capacity and actually accentuate the division oper-
ation limitations as well as the other typical computations that are applications
of integration in the DDA. In recognition of these two basic limitations of exist-
ing DDA computers, the programming effort allocated to DDA and QDD?A simu-
lation studies was directed primarily toward investigations of division and
multi-increment DDA design techniques and their evaluation. Simulations of
sinusoids were also executed to complement efforts of phase one. The most
important simulation result of the overall effort was verification of the QDDA
multi-increment quotient algorithm developed during the second phase of the
program. A second result may potentially have value in slightly elaborated
conventional DDA, but could not be thoroughly simulation evaluated within the
scope of this effort. This result was a discovery of a technique for improved
digital Stieltjes integration. Realization of this technique could improve quo-
tient capability of a near conventional DDA. As an aerospace full mission

computation program executed largely by QDD’A implies a very large step in
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increased computation capacity in relation to existing DDA computers, the
major analytical development of design techniques for a multi-increment
quotient algorithm DDA was chosen as the primary simulation evaluation
program objective during the limited period prior to the required program-
ming effort for evaluation of the strap-down processor constructed during
Phase 2. This development occurred mid-course during Phase 2. Success-
ful simulation of the computer that has been referred to as the QDDA has

confirmed that a major breakthrough in DDA design technique was accomplished.

9.1 PROGRAM FOR SIMULATION OF DDA COMPUTATIONS AND THE
3
MODIFIED PROGRAM FOR QDD A COMPUTATIONS

A. Programming Approach - Simulation of computations in-
volving DDA integrator ensembles with elaborated DDA in-
tegrator designs involves programs that may be basically
closely related, but which, if not provided for in the pro-
gramming approach, are not readily altered from one simu-
lation to the next. To minimize the programming effort in
preparaiion for successive simulations, a program for gen-
eral integrator ensembles of DDA integrators with all the
alternative algorithm features was developed. Thus, a
single program modification card could supply the format
for the next simulation. When the latter QDDA was analytically
developed, the problem of programming for simulation eval-
uation was obviated by altering the DDA program to treat a set
of DDA integrators storagewise as a single QDDA and incorpo-

rating the several basic changes of operation.

B. Program Structure for Simulation of an Arbitrary Computation
by a System of DDA Integrators (with mixed Higher Order Algo-

rithms, Derivary Communication, Roundoff Reduction and
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Special Initialization Features) - A program structure was
developed for general DDA system simulations. The proces-
sing of a single DDA integrator and execution of its com-
munications through a single iteration of an arbitrary com-
putation can be completely defined in the following general

manner:
1. State a set of numbeis which define:
a. State of the integrator before processing

b. The incoming communications to the integrators for
that iteration.

r c. The special features of operation of that particular
integrator, namely, integration algorithm, roundoff

reduction features.

d. Identity of the other integrators to which the said

4 integrator communicates, and the type of utilization
by the integrator communicated to (i. e., integrand
and/or independent variable) and the sense of utili-

sation of these communications (i. e., direct or with

\ sign reversal).

2. Subject the set of numbers described in 1 to a subroutine
{called the integrator processing subroutine) which com-
putes (using 1a, 1b, and ic). a) the new integrator state,
then updates 1a; and b) the new integrator outputs, then
(using 1(d), updates 1(b) of the appropriate other integra-
tors. The subroutine will at its end replace the input com-
munication runs for "immediate use” (by then, already used)



with the input communication sums for " subsequent use’
{to be used at the next iteration, when further communi-
cations have been summed into it).

A program capable of carrying out an arbitrary computation

involving integrators is obtained as follows:

3.

Storage blocks, N in number, are allocated in the rapid

access memory. Each storage block contains informa-

tion of fa, 1b, ic, and id associated with a single inte-
grator. The initial values of the numbers in each stor-
age block are inserted in the rapid access memory prior
to simulation start by means of cards or tape.

After program start, the rapid access storage blocks are
updated during execution of the program (i.e., 1a and 1b)
numbers are updated in the manner indicated below.

The operations of 2 are incorporated in the integrator

processing subroutine.

Lists of the specific data types and operation of l and Il

are:
a. Integrator data storage block information:

(1) y-register content (whole word)

R-register content (whole word)

(2) Input communications summed in a space for
immediate iteration use and next subsequent

iteration use, respectively, for each quantity:

Independent variable communication total:
ist order for immediate use: TAX

ist order for subsequent use X
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(3)

(4)

2nd order for immediate use: IDy

2nd order for subsequent use: D,

Integrand variable communication total:

1st order for immediate use: Ly
ist order for subsequent use: tql
2nd order for immediate use: IDy
2nd order for subsequent use: IDy

At the end of integrator process the subsequent

sums replace the ''immediate use'' sums.

S: Integration Algorithm scale factor for lst

order term (whole word)

Sz Integration Algorithm scale factor for 2nd

order term (whole word)

Top Test number used in decision for overflow
inhibition and R-register reset to 1/2 (whole
word)

Fr “t. Fr 2nd {r=1, 2, 3, 4): Factor by which
associated communication is multiplied before

being sent to other integrator data block.

Crl". Crz“d (r=1, 2, 3, 4): Storage places (in
other integrator data blocks) for presently pro-
cessed integrator outpuis (1st, 2nd order terms)
to be sent appropriately for correct: {1) Integrator
{(2) Type of utilization to be made (integrand or in-
dependent variable) (3) Time of utilization (as soon
as the integrator is processed or in the subsequent

iteration).



The integrator processing subroutine carries out the

following operation:

(1) Y-register updating: Yn =Ygt Loy

n- n

(2) Integration algorithm updating of R-register with

overflow inhibitor test feature:

Reset R-register if Iynl Ty toR = 1/2

o1

Otherwise, c c

ARn¢=<yn+ S £ A,n+sg t‘t DJZAXn

cs
‘et

is added to R to obtain R *
n n

-1
R ® ™1, thentake R = R ® - |
n n n
R ®<.],thentake R =R ¢ + |
n n n

-4¢ R _*= 1, thentake R =R =&
n n n

(3) Overflow to be communicated as ist order terms:

If |yn| < TL,» then No overflow: On = 0

o)

Otherwise if:
R *> 1, then take O =1
n n

R *v-] thentake O = -1
n n

(4) Communicated 2nd order terms

= [
D * =zg&x " zoy

n n

(IX-1
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C.

(5) Scaling using F-factors:

ist 2nd

Fr on = Ax. AY; Fr ’ Dn. = Dxl DY (IX")

(6) Replace contents of input common for "immediate use'"

(already used) with contents of input common for " subse-

quent use."

Simulations of Reciprocal Calculation by Conventional and
Digital Stieltjes DDA and the QDDA

1. Program Features - It is generally recognized that a con-
ventional DDA executes reciprocal calculations (and more com-
plex operations involving division) with poor accuracy in com-
parison to most other computations. Alternative programs
employ integrators alone (no servo in Amble's method) in the
one case and the program for implicit calculation with inte-
grators anda servo in the other case. The alternative methods-
are recognized to result in different detailed error properites
but generally the same error magnitudes. The goal of this
study effort was the development of 4 precision computer.

The conclusion that servos involve inherent errors from lag
effects and servo mechanism properties led to placing pri-
mary study emphasis on integrator systems without the use of
servos. It will be seen that the primary error affects in re-
ciprocal calculation, as contrasted to other calculations,
result from imperfect digital Stieltjes integration algorithm.
The reciprocal calculation by a DDA provides a test calcula-
tion for the fundamental process of integration with respect to
a variable other than full rate where single transfer effects the

operation.



To evaluate conventional DDA with ordinary and elaborated
algorithms, short run tests were devised so as to be extra-
ordinarily severe. This was accomplished by generating
high frequency inputs with large amplitude excursions re-
quiring that integrator register lengths be v: ry short. The

test input function was, in all cases, of the form
In = A + B sin Oon (1X-5)

for which the DDA was allocated the task of computing 1/In-
For B = 0 the input function represents generally a partial
(less than full) rate. For general A, B the effects of oscilla-

tion could be evaluated.

The classical type* algorithm for reciprocal calculation may
be derived by either of two methods: (1) Exact numerical
difference relations (2) Numerical integration algorithm.
While all algebraic computations such as the reciprocal cal-
culation may be assigned an exact numerical difference re-
lation, differential equation solution computations are dir-
ectly analyzed in terms of numerical integration algorithms.
Algebraic equations when differentiated produce differential
equations which have algorithms for solution directly ana-
lyzed in terms of numerical integration algorithms. The
integration algorithm is therefore general in applicability to
algebraic and differential equation solution whereas the direct
difference relation approach is not. Any computation may be
executed using appropriately, for each integrator of the system,
a particular one of only two integration algorithms (both

occurring in the program). A computer which

*Based on numerical rather than digital processes.
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performs exact difference equation solutions and also the integra-
tion algorithms would formally require mechanization for four
programmable algorithms for second order accuracy. Consider
the exact difference relation for reciprocal calculation

Bn = l/ln as obtained in the two steps of differencing On In'

A(Gnln)= en_ Aln + In AO" =0 (IX-6)

1

and substituting 1 = 1/9n and solving for 4 @ to obtain

ﬁen z - an en_l Aln (IX-")

an exact difference relation. Next consider the differential of 81
d(sl) = 6dl +1d8 (IX-8)
in which substitute I = 1/6 and solve for d 8 to obtain

dd = - 8% dI (1X-9)

An exact difference is formally derived by integrating over an

interval from (n-1) Tton~7,

n?
A0 = 8dx (t) (IX-10)
" J.-x)r
where
t
x(t) = j‘ e d1
(n-1)y

Since ? is available only att = (n-1) T and before, the lag correc-
tion integration algorithms in virtual variables is appropriate,

hence to second order



1
2 = = — A2 -
en len_l + > cen-l + 13 A en-lIAxn (IX-11)
where
n't

bx =J‘ 8dl.
® Y(n-1)r

‘ The same consideration implies the computation of Axu by

. 1 5 .2
& = a -— [~ -— 2 -
X [ 1 Y28°%00 Y12 e,,-l] I (1X-12)

That the computation in terms of integration algorithm agrees
with the computation with exact difference relation to first order

is deduced by substituting 2x_ in the C 5n relation:

a - a _1_ 5 2 2 A
a 5, ° [vn-l + 3 Aen-l + 12 s} an] -ln (1X-13)

~
-

~ 8 ¢ Al =¢ ":n exact difference

If account is made for second order differences of virtual and

desired variables the agreement is good to second order.

The simulated DDA configuration for reciprocal calculation

is indicated in Figure 9-1.
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Integrator No. 1|

[+
R R Aﬂ

Figure 9-1. Schematic of Simulated DDA Reciprocal
Calculation

Programmable integration algorithm (apart from elaborations

developed) was of the form

Ax = [en + s}" AOn + s,h) A? an] Aln Integrator No. 1 (IX-14)

A0 = [9 + 5,020 + My E] 0 x Integrator No. 2 (IX-15)
n n n n

2. Initial Single Increment DDA Reciprocal Calculation Runs -
Initial runs simulated a conventional single increment DDA with
alternative integration algorithms of the classical form. The

reciprocal calculation to be executed was

p = 9.25 (1X-16)

n l -
0.50 + 32 sin (2 " n)

which in a single increment DDA may be carried out with
register lengths of five bits, at most, using Amble's method.

For a DDA iterating at 200 it/sec, the test calculation involves

IX-12



frequency components at about { cps. Initialization of R and y
registers was selected with alternative subsignificant biases to
test the effect of small perturbations. Algorithms tested were

the same for integrators no. 1 and 2 and included the cases

Run(1) S, = /2, Sz = 1—52- Second Order Algorithm

Run (2) S, = 1/2, Sa2 = 0 First Order Algorithm

Run (3) 8 = 0, S = 0 Lagged(Zero Order)Algorithm
Run (4)S, = 1, S = 1 Led (Zero Order) Algorithm

In these runs the communicated &4y was used as the algorithm
Ly directly and the derivary as & y. All runs (which were
checked for programming accuracy) demonstrated errors in
excess of the granularity in 500 iterations and errors of the
order of the variation of On in 2000 iterations. An approximate
graph of results and the desired computed function are pre-
sented in Figure 9-2, The general effect consistently ob-
served is an incorrect attenuation of the computed function
amplitude, The first three runs were executed first.

The first two runs have lag correction numerical integration
algorithms of second and first order accuray and, in a

whole word (rather than single increment) incremen-

tal computer, should yield accurate results. The fact that
large errors resulted is a consequence of the single transfer-
single increment mechanization simulated. Sinusoid com-
putations by single increment DDA yield good results with the
second order and first order algorithms (lag adjusted for
serial or parallel computation) and poor results for lagged or
led zero order algorithm. The DDA reciprocal calculation
results for Run 3 were somewhat poorer for the lagged al-

gorithm. Analysis of whole word computation of reciprocal

1X-13
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Figure 9-2. Simulated Conventional DDA Calculation of Reciprocal using Amble's ]
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Reciprocal using Amble's Method:
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St=.5 S2=5/12

Classically
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Algorithms
sl = 1' SE = l
1 1
O =0 *37¥7/85mz-°n

Yo=.50292997
Ro=.5
R6=.987306875
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calculations as well as simulation of single increment com-
putation indicates that lag will produce oscillation amplitude
attenuation for the reciprocal calculation with inputs having

an oscillatory component. The analysis of the whole word
computation case indicated that 4 perturbation of the ob-

served error magnitude could, for the selected type of input

to reciprocal calculation, be generated by a one-half itera-
tion lead. Run 4 was therefore selected to determine the
degree of improvement in the single increment DDA using

an incorrect numerical integration algorithm which should
compensate for another error source. Results showed slight
improvement but not of the degree called for on the numerical
computation basis. Runs were made with the same set of in-
tegration algorithms but with different initial R register set-
tings of Ro = 0.5and 0. 75 and slightly perturbed (subsignifi-
cant) initial y register values. Results were little changed in
the different runs. It was concluded that the error effects in
digital Stieltjes integration with single increment are not solely
compensatable by any limited modification of classical integra-
tion algorithm (mechanized in the conventional manner for DDA)
from that called for by theory, but rather require a more subtle
basis in mechanization that should be explored in greater detail.
That the error effects are attributed to the mechanics of
Stieltjes integration (independent variable not time) was a de-
duction, of course, based on the fact that other simulations of
single increment DDA which involved integrations with time
independent variable led to good results in all cases consistent
with the theory of numerical integration. Detailed study of the

micro-aspects of the runs were focused on the reason for the

IX-15



failure of transmission of integration algorithm terms.

3. Reciprocal Computation by DDA Integrator Setups Other
Than Amble's Method - The poor performance in reciprocal
calculation by conventional DDA with conventional integration
algorithms effected by typical mechanization approaches : timu-
lated the selection of a set of alternative integrator setups and
algorithms (the latter with Amble's method) for evaluation in

a parallel effort. Because promiling' rezults were obtained by
the concommitantly developed digital Stieltjes algorithm in
Amble's setup, the tvo alternative integrator ensembles then
being programmed wvere not thoroughly evaluated beyond a

single run. One of the approaches gave relatively good results
compared to Amble's method ith the same conventional
algorithm mechanics, but results were not comparable to Amble's
method with the new~ algorithm (later developed). It is possible
that if the new algorithm were adopted in this alternative compu-
tation for reciprocal calculations, results might be better than
with Amble's method i1. very much longer term operation than
that carried out ir evaluating the ne~ algorithm., The devised
alternative reciprocal computation methods and run parameters
are indicated in the diagrams on the next page. The second method,
which may be called the servoed Amble's method, was not pro-
grammed correctly, nor vas good choice of the parameter A
estimated on any quantitative basis. The concept of the cor-
rection term A (Odl + IdO), which should be zero when O = 1/1,
is that of servoing accomplished by integrators rather thun

operatio:-al integrators.
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Alternative reciprocal calculations consisting of the Square and Integrate

Method and Servoed Amble's Method are shown in Figures 9-3 and 9-4.

I=2 +—1—tin 2-%n

1# 2¢
R, i Ry
dl
—-s__| 9
-2

Figure 9-3. Alternative Reciprocal Calculations

Notation and s = 0, = 1/1

Differential do = -8dl
Equations a8 = 2040

Run Results: Mean absolute
error in 0 of 0. 08 after 1800
iterations (about 1/6 the error
rate in Ainble's method).

Integrations

Algorithms S
(Classically |S{
Mechanized)
Initial lc;ilto{yz
Values
ya
R.
Ra

0.5 83 = 1/12
-0.5, 83 =-1/12
.0.28-2"19
+0.50+ 2

0.50 - 2-1°

0.50 - 2~ !
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{2) Servoed Amble's Method

->—
14 2¢ Eid *
dl
] dv‘
(4 , o l 1/4
> 5 =
Figure 9-4. Servoed Amble's Method
Differential Equation: Integration ofst = +1/2, 8§ = +5/12
do = -0°dl -\ Algorithm ‘48 = +1/2, 8§ = +5/12
(Linear Servo term odJf + 1d0) (Classically s = -1/2, 83 = -1/12

Mechanized)

Initial Register o
Values ¢ g

ya = 0.52292997
A= 2

ys = 0.50292997
ys = 0.5
R, = 0.5
R = 0.5
Ry = 0.5

S
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Reciprocal Calculation by Single Increment DDA with Elabor-
ated Algorithm and Derivation of Digital Stieltjes Integration
Algorithms -

a. Initial Efforts in Algorithm Development - In the initial runs
of single increment DDA reciprocal calculation, an observed
lack of response to first (and higher) order integration
algorithm change in quantitative degree called for by the
theory of numerical integration was interpreted to mean a
lack of transmission to the output of the DDA integrator of
first (and higher) order algorithm terms. Both DDA integra-
tors in the reciprocal calculation by Amble's method are
assigned functions of what may be called digital Stieltjes
integration, the independent variables not being full rate.
The lack of algorithm transmission and the observation re-
garding calculation structure characteristic of conditional
transfer in Stieitjes integration served to assist the choice
of direction of the detailed examination of the initial simula-
tion runs. Error phenomena were highly magnified by the
choice of high frequency inputs. It was observed that dia-
phantine phasing of .y and _x variables in an integration

y £ x led to highly sporadic action in the transmission of
first order terms. While transmission may be sporadic,
causing noise like errors, the average transmitted value
would be expected,with proper digital ulgorithm, to correspond
to the correct whole word values. The ide.. of reducing the
degree of sporadic action by using A smoothed estimute of

1y was considered. A slowly changing smoothed value will

1X-'9
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be transferred any time a 4x is non-zero. A smoothing

calculation which is readily mechanized is

Ay =27 [“n . Ayn_l] + A'{vn_l (IX-17)

The Zy is used in the integration algorithm and is not used in
the y register. The correct numerical integration algorithm
(with S; = 1/2 and S3 = 5/12) together with the first order
term using Zy was selected for simulation., The only dif-
ference in the simulated DDA from that of run (1) was the
use of Ky. Simulation results indicated a modest improve-
ment over the least poor run (Run 4) of the initial simula-
tions, the magnitude of improvement being comparable to
the improvement of Run 4 over Run 1. The lack of really a
major improvement in using the R-was interpreted to imply
that the random element of error was not the primary error

source.

Derivation of Digital Stieltjes Integration Algorithms - As a
result of feedback (with one iteration delay) of outputs in
Amble's method, this method when applied to a whole word
incremental computer rather than DDA calls for the precise
application of numerical Stieltjes integration algorithm (in
essentially whole number incremental computation) in terms
of virtual variables (refer to Chapter IlIl) having the classical

form,

1 5
[yn +t3 Ay“ ‘13 A’yn] Ix (1X-18)

for second order accuracy. All simulation evidence for

(]

single increment DDA indicated that the basic error source



of the DDA computation must stem from inappropriateness

of the classical digital method of effecting the first (and
higher) order algorithm terms in the conventional (or class-
ical) manner of directly using the transmitted bit with half
weight to represent 1/2 Ayn in the algorithm. Since full

rate integration (Axn = At) is successful with this direct
representation for the first order term, the breakdown is
associated with the fact that Axn =0 f?t intervals in a pulse
stream representation of A.xn. Preliminary analysis (ex-
tended to include the complicating factor of feedback-induced-
lag at a later date) implied that a major error results in
algorithm r« alization by the conventional technique by not
taking into account that the transferred quantity effected when
a 'x ¥ 0 actually represents the integral increment over the
period since last transfer. On this basis the proper algor-
ithm for unlagged y variables to realize first order digital

Stieltjes integration is

n
1
["n"z' b Ayp] ax (IX-19)
p:n.
n+l

where n* is the iteration number of the preceding non-zero
x . as seen by inspecting the schematic in Figure 9-5 and

employing the trapezoidal rule,

In the reciprocal calculation,feedback of yinduces a lag of

one iteration which must be corrected for. The discussed
digital Stieltjes algorithm viewpoint calls for introducing

a lag (especially for low rate phases of 8x) which may be a
large number of iterations, as in the example of the schematic

being five iterations lag. Simulation evidence clearly showed
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n

that further lag introduction would be deleterious .see runs (1)

through (4) ' in reciprocal calculation performance, which appeared

to be contradictory to the principle of digital Stieltjes integration
described. Resolution of the apparent contradiction was seen to lie

in the detailed effects of the feedback of y delineated only by a precise
statement of the purpose and method of aigital representation, a degree
of freedom in assignment that is at the choice of the designer. This
statement and implications were not clearly resolved until a later date
but are presented in parallel with preliminary efforts so that simula-

tion results and theory may be correlated by the reader.
Analysis ot the source of the Stieltjes transfer error effect is based
on the difference between proper phasing of 8x used for y register

update.



(XY

1{ update with A x is assigned the role of bringing the value of x to

the instantaneously correct valueat a fixed time 8 T before, then if

dx, a single increment quantity, were programmed for transfer use
rather than y update (i.e. at another integrator), a4n inconsistent time
phase between transfer and y algorithm value is implied. This is be-
cause {x calls for transfer, typically, after a number of iterations in
which no transfer occurred, and it may be hypothesized that integrator
outputs sent directly to a y register update exactly for 8 7 before The
integrator output necessarily represents the integral increment over the
period since the last transfer displaced by 7. The proper first order
algorithm for the integral increment therefore is based on the y value
at the middle of the time interval since the last transfer displaced v T.
In the reciprocal calculation the y register receives inputs delayed one
iteration. For the case* 8 T = 1/2 T, mechanization and programming
are based on the criterion of making resolution 1/2 the least bit. For
the case 8T = 0 the updated quantity represents the true variable at that
instant. ln either case chosen for design purposes, and adhered to
consistently in design and programming, the value of 6T is less than
one iteration interval. Digital Stieltjes integration algorithm for y
undelayed (as by being fed Ay from a previous word time of the same
cycle) is therefore based on the total y change since last transfer

denoted.

*T = iteration interval.
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(Zay) =L =8yp, +1 (IX-20)

n

ot o

where n*'n is the iteration number of the last transfer (not the trans-~
th . .. .
fer of the present n  iteration if any). In this case the second order

digital Stieltjes integration algorithm for unlagged y variable is

a - Ly -+(Zay), -7 b (Z8y) ] Bx (1X-21)

n

where Yo' X, aTe virtual variables. In the case of y variable, lag-
ged as a result of computation of y during the last iteration cycle, a
new algorithm is derived as follows: (1) The above stated digital
Stieltjes integration formula is interpreted as being applicable with
properly modified estimates of Yo Ayn, wh.ch take into account
lagging effects. (2} The estimates of unlagged y, & y must take into
account the correlation of & x and 8y changes which, for example, in
reciprocal calculation, will be seen to be all important. Thus using

numerical extrapolation formulae such as

(yn) numerical lag corrected est. Ayn + Aayn (1X-22)

= +
Yn lagged

may be completely inadequate if a correlation of the time of Ax and
Ay changes exists, since the conventional algorithm implementation
technique is tacitly based on averaging effects for a total ensemble
rather than a correlated subset. To provide a basis for total en-
semble averaging, make use of the statement tha* the function con-
sisting of the arithmetic sum of &y changes which occurs in period
between 8 x # 0 occurrences may be phased without sensitivity to
correlated effects, rather reflecting the changes priman-ly of genuine

interest in y function represented. Thus, if Ay/ 0 occurred always



k iterations after Ox # 0, the sum of Ay over the Ax change cycle

can be the same number at all phases relative to the iteration at

Lx £ 0, and represent a constant rate of a represented variable. The
analogue of this criterion is filtering of an assigned frequency in a
finite memory filter by averaging over the period. The generality
with which effects of correlated times of Ax, Ay changes occur can
be removed and is tnen indicated as the generality with which digital
Stieltjes integration algorithms can be developed for various computa-
tion applications. In order to derive a lag correction algorithm from
the algorithm stated for the unlagged Ayn. Axn. there should ultim-
ately be taken into account that the latter has its firmest basis where
y is completely independent of x. In this case, the full ensemble
averaging, which gives basis to the generalization of classical con-
cepts of realization, firmly holds. Assume for the moment the ab-
stract situation that the next iteration results at n + 1 are known at the
nth iteration. Then the lag correction algorithm based on the algorithm
without y lag should ideally compute for approximate second order al-

gorithm (where second difference with 1/12 coefficient is neglected)

R M+1 s ?‘
= .3 - o= DY J
a1, [yne: ; p-znn'i'z AYP i3 ‘P.n .‘:z J &AXn neglected (1Xx.23)
Ideal "
Lag corrected
Algorithm n .1
- ¥n+B¥nei + AYneel -3 8&%p- 3 8Lave lox, ax-z4)
3 —p psn, p=n_ +2
R n+1 L]
= [ ¥ne+a¥n 1.y f;gn o SYP* i M{;‘n, 4Yp) . 8Xn (1X-25)
n n+2
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steps two and three involving identities including

n+l

b1 B, 8| Dy (1X-26)

n ¢
pSII '2

and the A( ) operation n sum is meant for 1 iteration difference,

not (n-n‘n) iterations.

The only unrealizable term is the last one {(of the third step).
Employing the principle of filtering of effects with period (n-n‘n)
iteration (where at n iteration a transfer is assumed to have

occurred), the approximation

n+1l n
Al T byp =« A| T byp (1X-27)
P= n¥* P= ne

n+2 nt+l

should hold in ensemble averaging to second order. In this case
the lag correction digital Stieltjes integration algorithm for ap-

proximate second order accuracy is

1
a = |y +oy, -- 2Av.; 3z 8(Z4y, (1X-28)

*
ntl Pnfis1 \P*2%,

should hold to the accuracy level of the algorithm for unlagged
yl. In evaluating the algorithm for unlagged y in the case where
Ax, Ay pulse stream phase correlation exists, it should be com-

mented that a certain degree of correlation would be presumed to

l'I'he second order term presents the same transmission problems by conven-
tional representation of Ayp as in full rate integration. A generalization of

use of derivary terms developed for the latter can in principle overcome this

n
problem, be effected by replacing A[ © Ay by z: D, where D
p= n p= n. +1
is derivary.
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be part of the proper representation of the variables. If a phasing

led to error, it might be proper to initialize the R register to shift
phase to better digital representation. The most important applica-
tions appear to involve feedback with delay for which the lag correction
digital Stieltjes derived should not introduce errors by virtue of the
lag itself.

Reciprocal Calculation Runs for Single Increment DDA with Digital
Stieltjes Integration Algorithm - The principles of digital Stieltjes
integration discussed in the preceding section were not fully reconciled
at the times of the simulationsof sigleincrement DDA. It was felt initially
that the quantity 3 Ay played an important algoritnm role

P*= lwn +1 ?
in the digital Stieltjes integration. Empirically and analytically, it
was determined that the error properties of conventional DDA could
be cancelled by further increasing lag correction. The combination

of these considerations led to simulations using the algorithm,

n
1 5
En+ 2 t’Ayn * 12 ==n"p‘t 1 DJ ox (1X-29)

for the lagged y variables (Dn being the derivary). Note that Am-
ble's method in a DDA implies that an input to each y register can
occur one iteration after transfer and no other time and only when
a transfer occurred in both integrators. Thus in Amble's method

the algorithm stated above is exactly

5 n
+ 1 z D Ax (IX-30)
P
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n
Using § Ay = A Y e

again, note that the lag correction
p-= n*n+l P ntl

digital Stieltjes integration algorithm derived in the preceding section
is

1 1
- y“+EAy"*n+1+3A

o ™M

Ay Ax  (I1X-31)
= n¥ P
n+l

Using the identity (where A ( ) operator on sum is a ] iteration dif-

n n
Al Ay ) =z Ay (IX-32)
p:n*n*l P P = n* P

and identifying Aayp with Dp the derivary, it is seen that the al-

ference)

gorithm simulated in reciprocal calculation is identical to the
analytically derived lag correction digital Stieltjes algorithm (in
which A%y is represented by D) to within approximately second
order accuracy. Runs were made for the two different input func-
tions, differing in degree of oscillatory component. The derivary
terms were omitted in the third run. Detailed parameter values
are presented on the next page, which also defines the smooth first
difference run made previously. Results were excellent, being a
fraction of an increment error over 2000 iterations using the digital
Stieltjes integration algorithm. A measure of assurance that the
results were not an accidental cancelling of error for a fortuitous
calculation is indicated by the consistent performance for two input
frequency characteristics. Longer runs would probably yield good

results, as no error buildup was detected.
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d. Final Simulation Runs of Reciprocal Calculations by Single

Increment DDA with Non-Classical

Algorithm.

(1) Smoothed First Difference Algorithm

Yo * ¢ 502924997 Input:
R = .5
o
R; = .487306875 First Differ. Smooth:
Algorithm:
I generated by addition Results:

-5
otA(:_lin '2 njtoanRe*
register apart from DDA

system

1

I= S (1X-33)

7 -5
2 +§ sin (2 n)

a(8y ) =27 by, -8y,

) ax

1

i2

vn+£_ b7 *-.J n (IX-34)

Average Error of .033 (1 pulse)
after 900 iterations (thereafter
increasing small improvement

over algorithms

(2) Digital Stieltjes Integration Algorithm

Initialization same as (1)

Input:

Results:

I= l (1X-35)

2 +21sin (2°%n)
[ ]

n
-y &
Yot =Y =, l-l:A.yni
2P*%he
n
z D, | Ax_ (1X-35)
PNl

Average Absolute Error .011
(1/3 pulse) in 2000 iterations.
Probably good in a much longer

run
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(3) Digital Stieltjes Integration Algorithm.

Initialization same as (1) Input: [ £ ————r 1 — (1X-40)
2 + T6 sin (2 1)

Algor and Results essentially

same as (2)
(4) Same as (3) vith the Second Order Terms Omitted.
Initialization same as (3) Results: Essentially same as (3)

Conventional DDA algorithms v.ith classical methods of realizing
first order terms had previously led to large effective first order
algorithm error. Thus a very large step in accuracy improvement
was obtained in removiug these effective first order algorithm
errors in recijrocal calculation by use of the new lag correction
digital Stieltjes integration algorithm. Since the run results were
essentially that called for by perfect computation within the reso-
1ition in all of the three runs, the fact that the omissi~n of the
second order terms in the last run made no difference in results
implies no general conclusion one way or another regarding 2nd
order algorithm terms in general compntation. In purallel with
this simulation effort directed toward evuluating and »ptimizing
single increment DDA, +as a demanding schcdule which included,
as well as the . reparation of strap-down computcr evaluation
tapes, the simulation evaluation of a revolutionary multi-increment
DDA with second diff.r -nc. communication. Inherent rate handling
capability and potential input processing capability of a multi-

of design of a full acrospace mission incremental computer; the
primary goal of the contract effort. Further desirable simulations

were not made of single increment DDA with the nev: algorithm.
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The ultimate value of a single increment DDA design capable
of division and Stieltjes integration of air data in conventional
airborne navigation systems (where associated accuracy re-
quirements are not high) is very great. Doppler damping of
improved accuracy would be possible without a special ana-
logue computer. Previous failures of conventional DDA in
such functions have been due not only to the single bit increment
design feature, but very significantly in inadequate algorithm.
A two bit increment DDA should be provided together with the
new digital Stieltjes algorithm in adapted form. Such a DDA
is entirely acceptable in cost for conventional airborne navi-
gation tasks, and provides two levels of improvement in air

data handling.

Reciprocal Calculation by the Multi-Increment QDD A With Single
Increment Communication - During the early intermediate period

of Phase 1l study, the design of a multi-increment computer
capable of division was analytically developed. The study was made
on the basis of concepts of second difference output and single in-
crement communication for band limited variables. Simulations

of single increment DDA with elaborated algorithm had indicated
that significant improvement, relative to the conventional DDA
algorithm case in computations involving Stieltjes integration, had
been developed. An analytical basis for the digital Stieltjes integra-
tion, including relatively sophisticated lag correction methods, had
not been clearly defined at that time. Overall, the implication of
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aerospace computer application studie~, « -iecuted Ln parallel
with these efforts, demonstrated that a full aerospace mission
computer system, in which the incrementul computer assumed
the major computation task, must have a significantly higher
computation capability than a single increment DDA could pos-
sibly attain. This conclusion was based on the assignment of
such tasks as thrust cut-off, strap-down computations, and air data
computations of re-entry, as sul:routines. All such computations
are individually possible in a set of single increment DDA com-
puters of very high iteration rate, tied into a single system. This
is an expensive mechanization approach for the computation

capability obtained.

Granting that input processing requires multi-increment compu-
tation, the mechanization advantages of time shared internal
computations imply that a degree of multi-increment bit length
for the latter less demanding computations is potentially avail-
able, and is called for in optimized design. A several bit incre-
ment internal computation not only removed bSasic elements of
marginality characterizing single increment DDA, but is basically
available in the time shared design of a computer which executes
input processing. The benefits of - 1otient algorithm had been
attained in efforts in the computer field in only single increment
computers, such as variable single increment. Benefits were
analytically shown possible with multi-increment mechanization
in a highly integrated system. The object of simulations was to

evaluate the quantitative performance of a mechanization derived



on the basis of the newly developed concepts of multi-increment
computation, with second difference communication for a compu-
tation involving the process of division by the basic unit developed.
For nondivision operations the structure of the mechanization in-
sures the accuracy of a multi-increment DDA. A major goal of
the simulation effort was to demonstrate the feasibility of multi-
increment computation with second difference output and communi-

cation in a concrete example of computation.

1. Programming the Basic Processing Unit (QDPU) of the QDD“A
with Approximate Second Order Algorithm - The basic trans-
fer action of the QDD"A is a generalization of the conventional
DDA, as several transfers to a single R register rather than
a single transfer are performed in one cycle of operation. The
basic integration algorithm operation effected in the conven-
tional DDA, by modifying y register quantities in accordance
with past values before transfer to the R register, is retained
in form,and considerable quantitative correspondence exists in the
QDDA transfers. One principle general difference in internal
operation,apart from output generation, when viewed as a
purely serial process, is that a single R register is used in-
stead of two (or three) R registers as in a conventional DDA.
Thus the more nearly conventional DDA computer program
used in preceding simulations could be modified with respect
to internal operation to simulate a QDDaA program by pro-
gramming changes which include the collection of transferred
quantities stored temporarily in their separate R registers
(modified so as to have no overflow action) and then placing
the resultant in the R register of the last integrator

associated with the R register of the QDPU. The
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analytically derived most elementary unit of the multi-
increment QDPU involves collection of two multi-transfers
and a single transfer (the latter serving to effect an algorithm
refinement for high accuracy). Thus the transfer action is
that of two multi-increment DDA integrators and one single
increment DDA integrator. A single multi-transfer unit and
one single transfer unit could execute the cycle of operation
for reciprocal calculation with the same cycle time (2 word
time) as in 2 conventionally conceived serial multi-increment
DDA provided with multi-increment communication. However,
to effect the identical processing as the QDPU, there would
have to be whole wor+ communication of R register quantities.
A second major difference in this QDPU operation is the out-
put criterion (for second difference outputs) which is not of
the natural overflow type. Hence the output criterion required
a special programming modification to replace the simulation
of natural overflow. The third basic processing modification
is that in the absorption of inputs. The input second differ-
ences are accumulated in separate (short) registers to form
firet differences which are then used as Ax, Ay quantities ina
conventional DDA integrator where the update y + Ay and trane-
fer ; Ax are executed. The nature of the simulation program
for conventional DDA makes this direct. A final minor pro-
gramming change is the replacement of second order terms of
the derivary type with the direct second order differences
communicated. It is clear that one of the many merite of
second difference communication is that second order algor-

ithm terms can be effected as simply as first order algorithm

'tcruu in a conventional DDA with first difference communication.



A programming of the elementary unit of the QDPU may be

expressed generally as having the form:

(l) Aau(s) = ;’n‘s) ‘xn(s’ + ARn(z) + ARn(l) (Ix-sa)
s @ L @, 2
A Rn“) = ‘;;n(l) ‘xn(l)
where ‘R L R (k) _ R‘k) s R (k) being contents of the ltth R register,
n n n-1 n
~ (k) _ (k) (k) , (k) (k) 2 (k)] Classical Inte-
Yn [’n €S 8y, s, 8Ty | ration (1X- 39)
Algorithm
Realization
or n
Y (x) _ y (x) | s (k) Loy (k) « S (k)‘t Azyk
n n 1 P 2 .
P=nn¢l P=nn+l (1X- 40)
‘by (k) Digital Stieltjes

n: + 1 | Integration Algorithm

*
where n, is the iteration at which the previous non-zero transfer occurred.

24 (3 ~ (2 ~2
@ 4% 0P8 . ggnr BRognG Bhu2|r 3l k|35 (IX- 41)

where ‘Zeuﬂk) is the kul ODPU output and

(r) (r) 2, (3k)
3) ‘xn = “n-! +48 ﬂn

(1X-42)

are update rules when the kth QDPU output is programmed to
be input to the rth integrator for x or cth integrator for vy,

or for external inputs.
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ax (¥ a1 ™ (1X-43)
n n

(m)

ay ! < a1 (1X-44)

{(m)

where external input A In enters QDPU.

2. Program for Reciprocal Calculation by the ODPU with
Approximate Second Order Algorithm - In Chapter II a
formal approximate second order numerical algorithm
for division processes by integration is derived. The
computation of the integral increment
2 p
AOn = | v ™ (IX-45)
(n-1)"
by second difference output is shown to involve the R
register computation

3 v aeP 4vn | ,2,D (1X-45)
‘Rh = pnaxn- vn“n - [vn-l 2 ]A 6n

where ;n . ?In are modified P, Vn quantities for integration

algorithm appropriate for lagged or unlagged quantities. The

reciprocal calculation

® = 1N
satisfies the differential equation
d. 2% gsl
1
hence the integral incrementof A On i
n'
a8 = | [-da (IX-47)
n oo 1
(n-1)
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which has the general form of the algorithm analysis, taking
p=-,q=1 x =1 HereV, xare unlagged since
inputs 41 and updating of I are chosen as unlagged. Since ©
is a feedback quantity the quantity p is lagged. Therefore the

appropriate integration algorithms are

~ ™~ 1 8 2 2
P, = - -On +3 A*n ‘D a On] (IX-48)
v o= [1-la1 -1 4% (IX-49)
n | n 2 " n 12 n
4Vn § 17
+ ST = In "1z Aln] {(1X-50)
the last relation entering as a first order accuracy term
adequate to obtain the approximate second order accuracy.
The analysis of Chapter II therefore calls for in reciprocal
calculation the programming according to the form stated in
the last section such that
T 1 5 2 -
‘Rl B _en *3 Aen "2 a en] .Aln]
ar, = [1.La1 -1 %) [y (IX-51)
2 | n 2 n 12 |
B 17 [ A2
‘RS = _In-l— Aln :‘ On

Azﬂn“) = u.an(s)'.n:l'nU (2 an(s)I-K \”rn| )

where the superscripts D are dropped from @ quantities which
are understood to be inputs rather than outputs. The output

criterion derived in Chapter VII for second difference out-

put is
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where

3) . g3 (1) (2) (3)
Rn Ru-l"'ARn +Aan +ARn

and ?rn is stated above and K selected for given scale of
second difference output.

Scaling and Input Generation for the QDPU in Reciprocal
Calculation Simulations - The input 4 ] was generated in the
same programming structure as in single increment DDA
simulations but with a quantization for multi-increment
rather than single increment. The calculations simulated

were § = 1/1 where

A + B sin Oon

forthe cases A=2, B=7/8and A= 3, Bs= 7/8 where
generally 90 = 2°%. For a QDPU with a single multi-transfer
unit that cycles in two word times, the first simulation cor-
responds to the same physical input tested in single increment
DDA (about 1 cps input for 200 iter/sec DDA). For the ODD’A
with two multi-transfer units for one channel of computation,
the simulation evaluates results for inputs with twice the
frequency tested for conventional DDA. The program for
generation of 4] inputs to the ODPU is essentially exterior

to the ODDA program structure. Multi-increment Al were
generated by R register action as in a DDA with multi-
increment output,in which whole word sl increments are
added to R with a bias-free multi-increment output criterion
being programmed. The inputs are expected to closely
simulate the accumulated inpute of a pulse stream input



device, where accumulation occurs over the iteration interval
of the QDDA. The maximum increment 4 I of physical input
I is < 2'5 part of full scale of Lfor both single and multi-
increment computation. As a result of the fact that the
second difference changes at most 2~ lo.it was possible to
simulate ODDA with single increment second difference
communication in a computation with 10 bit registers in-
stead of the short (5 bit) registers forced on a single trans-
fer DDA. The computed input was actually 00'1 81 computed
as five bit numbers * 1 in absolute value therefore having scale
of 2*5, The computed § I was programmed as independent
variable with unit scale and as y register update T with scale
272 x 2752277, the first factor taking into account I = 4
and the second taking into account physical scale; then 1 <I.
The "0 outputs of +1, -1 or 0 were programmed to update §
in a y register with scale 2~ 10; then |:|<| The computation
in machine variables was programmed wi th a machine scale

so that

P ' k-2 -
Rl+ R24 R3 = n[ In]
=(2) .
* In [’sAO A.n]

FO s, 0%,

has AR with 2° physical scale of AI and since T had phyncal
2
scale, the scales S 20 Sa .vere nccenaﬂly 569 =S, G = Z

(IX-53)

since T = 2721 and 82 0 has 2* yhylical scale, as follows from
the equation ?.5 = Z'Z S“ z”o. The output computation utilized

2
the same scale, hence K = 8A 'Y
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4. Initial ODPU Simulations - The initial simulation was
primarily intended to establish the analytically derived
principle of multi-increment computation with single in-
crement output and communication. After program de-
bugging was complete a successful run with algorithm

terms (classically mechanized l't and an order terms),

and input
sl(l) - % sz(l) - 122 (IX-54)
sl(?—) - % sz(?-’ . -l.f.,_ 1 = z+%-in(z'5n)

was executed in a 10, 000 iteration run. A peak error®

during the run was 0. 0073 (absslute average over 50 itera-

tion) in the computation involving increments < 0. 0325 per
iteration. Regarded as linear error growths, the improve-

ment over conventional DDA was a factor of 150 for serial
transfer ODPU. The contemplated CDPU would handle

twice the frequency input with the same performance. Note

that a second order term produced by the 1** order T term

of ’ R(” differs some what from the analytically derived algorithm.

The results would presumably have been improved somewhat, had the
intended algorithm been simulated. Second order terms

AR 304 8 R2) are shown in later simulations to not

significantly affect reciprocal calculation. The second run,

*Peak error in direct printout each 1000 iterations was 0.0047. The average
absolute error printout is questionable here and in third run.
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which will be described indicates that there may

be greater sensitivity in the ARB’ to terms of this order
of magnitude. The second run was primarily intended to
evaluate the importance of the * R3 term, the approximate

significance of which is deduced by the firstorder approximation.

A7 .17 in ‘25 ) -
AR, + 8R, = (%'z'%)(' 2 (1X-55)

differing from ARZ by use of (47 nt b z"n) instead of 8 °n.
Thus * RS primarily extrapolates 4 ® as an independent

variable iteration ahead. The second simulation program
differed from the first only in that °R3 = 0 (discard of

‘R3 term). In 1000 iterations the run with modification for
'83 = 0 showed an error of 0. 030, and thereafter degraded

to near full magnitude error in 3000 iterations. Since AR3

is a term of l't order, the omission of ‘R3 would be expected
to produce errors up to the magnitude comparable to 1
order algorithm error in a sinusoid calculation, as was found
to be the case in reciprocal calculation. A third simulation
had the purpose of testing a refinement in algorithm digital
realization based on generalization of the digital Stieltjes
aigoritam technique derived during phase 2 first for single
increment computaticn as then formulated. Conventionally
mechanized integration algorithm was seen to fail in algorithm
transmission for the cumulative period during which ‘x = 0
till Ax # 0, which is most pronounced in single increment
computation because of the high frequency of such periods.

A unified algorithm technique for general DDA computation

would incorporate this special action during the less frequent
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periods in which Ax = 0 to Ax # 0. It will be noted that
Amble's method with multi-increment quotient algorithm
computation would be expccted to retain in high degree, the
specific property that outputs be generated only when 8x # 0,
and further that,when generated,are delayed one iteration

in feedback. Thus the specific format programmedaccording
to the then formulated digital Stieltjes algorithm,is equi-
valent to the more general formulation.including lag cor-
rection digital Stieltjes integration algorithm derived in a
preceding section. The general order of magnitude of effect
expected by the refinement in multi-increment computation
would be a first order algorithm error effect reduced by a
factor of 2-2M*2, yhere M is multi-increment bit length,
according to the following argument which holds for only the
zero crossings of the desired variable (not the partial rate
of zeros in fraction representation, where a large value is
represented by the pulse stream). The frequency of zero
crossings of the (desired) numerical variables is, of course,
independent of M. The duration of 41 = 0 in digital repre-
sentation is proportional to 2-M*1, The 1** order integra-
tion algorithm integrand term magnitude is then proportional
to 2°M*1  The scale of effect in transfer yd x is the product
of these scales, hence the factor 2°2M+2 e qvaluation of
partial rate effects for large 8 x in single increment com-
putation is more involved. For M = 5,as in the CDPU
simulation the reduction of effect relative single increment
would be 1/256, assuming the major error effect occurs
around sero crossings of the desired variable. In the

pertinent calculation the error effects is a 2 x lO" error



increment per iteration for single increment and accordingly
is estimated as 0.8 x 10'6 for 5 bit increment computation.
In 10, 000 iterations an error of 0. 008 would be consistent
with this error model for digital Stieltjes integration effects,
in agreement with the error level determined in simulation
of the ODPU without the digital Stieltjes algorithm. The
third simulation incorporated the special digital Stieltjes
algorithm refinement just analyzed. A problem was pre-
sented in evaluation of results because of a probable error
in programming the sum of absolute errors over 50 iteration
intervals. The largest error in direct printout of a iteration
result was 0. 0047, recorded once each 1000 iterations. The
single sample errors showed essentially linear amplitude
growth. However,from the run start the printout of average
absolute error for 50 iteration ensembles was a 0.0078 near
start,growing to 0.0100. The latter appears to reflect a
programming error witha bias ina modified average error evaluation
routine. Assuming this to oe tae case,the digital Stieltjes
algorithm refinement reduced error somewhat (from 0. 0057
to 0. 0047) in the multi-increment computation, but not in
the degree hoped for. Perfect computation to within reso-
lution could yield & 0. 0005,

Simulations of Reciprocal Computation by the Multi-increment
QDPU With Second Order Algorithm and Modified Input
Functions - Preparation of a set of runs, simulating the
QDDZA alternative second order algorithms and two different
input functions was carried out in a purallel effort with that
for the first CDPU runs. Second order algorithms were
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programmed to correspond to a conventional realization of
individual algorithm terms but not also generalized digital
Stieltjes algorithm realization for multi-increment computa-
tion, as in the preceding runs, which had not been fully eval-
uated (as a result of a programming error in the average ab-
solute error estimate for ensembles of 50). These runs
served to evaluate the degree of algoriihm mechanization
simplification tolerable for reciprocal calculation as well as
performance improvement for a calculation with input, which
more closely matches the demands of typical application i.e.,
a less demanding calculation. The first of this set of runs
(the P
order algorithm, stated in an earlier section, and derived

on the basis of theory developed in Chapter II, that is to
within the level of approximate second order algorithm stated.

The simulated algorithm is defined by

of ODPU runs) evaluated the approximate second

s‘“’ . 2 sz(t) . 5/12 (1X-56)
() i (2)

S, = -/t s, = 0 Run 4(a), (b)
(3) (3

3l = -3/2 Sz 0

in hn “). ARn (2). ‘Ru (3) respectively, differing from the
derived slgorithm by 6 percent of a second order term (in
ARn (”). The labeling of runs 4(a) and (b) means runs for
the calculations.

L (a) (1X-57)

(2 + % sin 2~ su)




and

‘o= 7 1 o (b) (IX-58)
(3 + 3 sin 2 n)

respectively. The first calculation (a) involves © register
swinging from 2%- to% in the same time in (b) the ¢ register
swings from 17 3 corresponding to 2. 5 times the average

rate of change. Runs for comparison with runs 4(a), (b)

were
sl“) = 1/2 s,/ = o (I1X- 59)
sl(Z) = -2 5% = 0 Runs 5(a), (b)
s, = .12 s, = o

sV = s,V = 12 (1X- 60)
5,1 = .12 s, = -1/16 Runs 6(s), (b)
sl(” e -1 52(3) = 0

DBefore presenting results of these simulations, it is desirable
to indicate that the general algorithm form has equivalences
when 1% and Z“d order terms are mechanized in the con-
ventional manner. One of these equivalences involves Rl
and /R, such that since ¥ a1 = 41 420_ it follows that any
choice of 8,!!) and sl‘” such that (S, + sl(”) is unchanged

implies algorithm equivalence (in convention realizations).

Thus, for example Run 4 with 8,!") = 5/12, sl‘” . -3/2

(Mo 5. .2

is equivalent to a run with Sz 12 °
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(1) (3)
2 = 0, Sl

run with Sz(l) = 1/2, Sl(s) = -1, For Run 6 with Sz“) =1/2

For Run 5 with § s -1/2 is equivalent to a

and Sl(” = -] is equivalent to a run with Sz“) = 9/16,

S 3 = -17/16. As stated first, Run 5 simulates a QDPU

1
with two multi-transfers, one of which involves (" at Azﬁn)

as independant variable (by combining ’-Rz and -R Simu-

3)'
lated ODDzA and performance which agreed with the initial
runs in that greatest error occurs at the peak of ° values

and attenuates after peaks with only a gradual error drift

being generated permanently. All runs for calculation (a)

had errors within a factor of two of each other at the saite
iteration count. Near the peak “ values, Runs (4), (5), (6)

(a) led to peak errors of 0.010, except for Run 5(a), which was
printed out at one point closest to the maximum ° for which
error of -0.0180 at © = 0.89, and error of 0. 0078 at " = 0, 84,
were observed near the end of 10, 000 iteration run. It is
deduced that' more detailed printout would have showed that
average error over a £ cycle would be substantially under

the peak errors at the P peaks of 1/4 increment (peak) error

(3 bits of a 5 bit increment), perhapsbeing 1/8 increment
average error (2 bits of 5 bits increment). The less demanding
calculation, labled (b), showed for Runs (4), (5), (6) (b) a
similar closeness in comparative performance throughout run
periods, where essentially linear error growth was observed.
As expected, markedlybetter absolute performance resulted,
error drift (from initial biases) building up to about -0. 003



in each case, amounting to avout 1 percent of an increment
per iteration after 10, 000 iterations. The comparative 40
percent average rate of variation of the I function in calculation
(b) compared to (a) was more than matched by fractional im-
provement. The implications of simulation results which
showed closely similar performance for different second

order algorithms (mechanized by conventional identification

of communicated increments with increments of the true
variable, rather than use of digital Stieltjes identification,
meaning that substantial improvement in performance prob-
ably must be attained by the refinement of digital Stieltjes
algorithm. This conclusion is considered all the more perti-
nent for three bit increment computation instead of the five

bit increment computation simulated. A seventh run was made
with slight perturbations in initial condition of lo and Oo rela-
tive Run 4(a) to determine the degree of algorithm transmission
improvement by subsignificant biases (longer register length
with artificial word length). Thus Run 7(a) used

1= 1/2 3x2"1? (1X-61)

o = 1/2 - 3x2”1? (1X-62)

as a modification of Run 4(«). Run 7{a) was similar to Run
4(a) but had peak error of 0. 0087 instead of 0. 0100, amounting
to 2 13 percent improvement. The limited level of improve-
ment indicated that the digital Stieltjes refinement was still

the direction for any major improvement.
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In summary of overall QDD* A performance as compared to
conventional DDA, the error growth in reciprocal calculation

of 10°® per iteration displayed in five bit increment QDDA
simulations of calculation (a) as compared to 2 x 10°* per
iteration for conventional DDA, demonstrates a factor of 200
improvement in accuracy. The potential in this case is perhaps
1000 with digital Stieltjes algorithm refinement. The stated
comparison has been made for a two word time QDPU with

a single multi-transfer unit. A parallel QDPU (one word per
cycle) would be able to compute reciprocdl for inputs with

twice the frequency simulated with the same performance.

Simulations of Full Rate and Variable Rate Sinusoid Calculations
by Single Increment DDA with Elaborated Algorithm a..d the QDD2A -
The simulations during Phase 1l of full rate and variable rate sinu-

soid calculations by various DDA mechanizations had the objectives

of:

1.

Duplicating certain runs made during Phase 1 on the Alwac
computer in order to checkout programming during Phase 11
for the 704 computer, and verify previous results on Alwac
during Phase 1. The duplicated runs were full rate sinusoid
calculations. Evaluation of individual design features of the

derivary integrator of Phase 1 was desired.

Evaluation of error magnitudes and error correction in sinu-
soid calculation by conventional and elaborated DDA mechani-
zations where the independent variable is partial or variable

rate. Specifically to evaluate the digital Stieltjes integration



algorithm developed during Phase 1l as a result of reciprocal

calculation simulations.

Provided that the programming schedule for strap-down pro-
cessor evaluation permitted, to evaluate the QDDZA in multi-
increment sinusoid calculation: however this did not prove
possible. There was preliminary consideration of QDPU
single increment mode for sinusoid, but the system applica-
tion of the QDDZA for sinusoid generation was determined to
be best chosen for execution in m\.:lti-increment computation
as a result of sinusoid error seniitivity in relation to proces-
sing rate, resolution, and general precision, which is attained
completely within the mechanization structure of the proposed

QDPU developed on general computation function bases.

a. Simulation of full rate sinusoid calculation by conventional
and derivary DDA. Results of the full rate single incre-
ment sinusoid calculation simulations provided verifica-
tion of Phase 1 quantitative and comparative performance

of ‘conventional DDA and the DDA with derivary communica-

tion developed during Phase 1. Three innovations character-

ized the derivary integrator:

(1) The technique of subsignificant biases of y registers
for improved algorithm transmission, at the price of

increased register length with given granulatiry.

(2) The communication of second order terms in a digital
representation in which algorithm transmission is
improved. Derivaryand programmable algorithm

features in otherwise conventional DDA were
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simulated. Derivary uses the changes in the trans-
ferred quantity to the R register of communicating

integrator as involved in Phase 1.

(3) Overflow inhibitor technique which greatly reduces
roundoff error effects associated with low rate in-

tegrator output (as involved in Phase I).

The reported performance improvement was verified
iteration for iteration, but the relative improvement
accordable to the derivary innovation was not fully de-
termined. The value of the overflow inhibitor was veri-
fied repeatedly in these simulations. The value of sub-
significant biases was confirmed but a question of the
essentiality of the derivary terms was resolved to a
question of programming error in a late phase run. The
case in point was a run (made serially with two other
runs at the same 704 run appointment) which was sup-
posed to simulate the derivary integrator with an over-
flow inhibitor and subsignificant biases in which the de-
rivary communication was cut off. The run duplicated
iteration for iteration the results of the complete deriv-
ary integrator repeated in Phase I and Il. While for the
high frequency, sinusoid simulated this is not necessarily
impossible as a result of chance diaphantine relations
of R register value for the sinusoid amplitude, a pro-
gramming error of failing to cut off the derivary terms
is judged likely. The analytical implication that sub-
significant biases primarily offer the improved trans-

mission of second order terms rather than the first



order terms, which on analytical bases should be trans-
mitted, tends to indicate a programming error was made.
The specific simulation parameters and summarized re-

sults (the latter discussed above) are presented below:

Run 1] Repeat of run summarized on page 236 of the
Phase I report. Run results identical on 704 at
each iteration. Again the large reduction of fre-
quency shift from thé theoretical relative conven-

tional DDA.

Run 2 Repeat of run summarized on page 232 of the

Phase ] report. Results same on 704,

Run 3 Simulated DDA to repeat Run | identically except
for cutoff of derivary terms, Results identical to
Run ] iteration for iteration indicating possible

programming error.

The design implications for full rate integration by near
copventional integrators, if the results of Run 3 were cor-
rect, would be a DDA integrator with an overflow inhibitor
and subsignificant bias developed during Phase I but with-
out derivary communication. Apparently, register length
increase could be avoided by introducing a bias of 1,2 bit
(rather than smaller biases) in the y register, since it is
analytically observed that the only palpable purpose of the
bias is to assist transmission of the algorithm terms of
least magnitude which in first order algorithm is 1/2

bit (whereas in derivary second order algorithm it is much

smaller). Other simulations during Phase 1l of DDA and
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b.

QDD’ A do not clearly resolve the question of second

order integration since digital Stieltjes integration effects
in partial rate computations involve errors of magnitude
lying between first and second order effects. However,

in all cases, the use of second order terms either im-
proved results or made insignificant difference in results
{being masked by the large error effects alluded to).
Recommendations are that further runs be made to resolve
the question of relative significance of these component
design features (especially for the genralized forms of
these features in the important problem of multi-increment

computer design).

Uncompleted Programming of QDD A Sinusoid Calcula-
tion - Programming assignments were made for simula-
tion of multi-increment sinusoid calculation by the QDDA
in the event that the simulations could be successfully
completed before previously scheduled programming
efforts for strap-down processor evaluation., A first
program was laid out but was not successfully debugged
because adequate programmer time was not available.
The intent of the QDPU sinusoid runs was to establish

the level of accuracy in multi-increment computation with
and without overflow inhibitor action designed to be a gen-
eralization of the overflow inhibitor techaique developed
in Phase 1. Since QDPU reciprocal calculation does not
involve registers with null values, the play of error
factors for which the overflow inhibitor was developed

to overcome does not occur in reciprocal calculation,



The overflow inhibitor mechanization design will
require certain modifications to be a generalization for
multi-increment (from the single increment case).

The considerations in the development of the generaliza-
tion are similar to those in the generalization of digital
Stieltjes algorithm for single increment to multi-incre-
ment computation. The first runs contemplated for
overflow inhitor test were based on inhibition when the
least significant bit of y register is zero. The general
output criterion is modified to inhibit output until the
condition no longer e:lsts. In computing a full rate
sinusoid in a QDD?A it is possible to double register
length (M to 2ZM) of the sinusoid relative a single incre-
ment DDA yet retain single increment communication.
The mechanization price of multi-transfer operation
ranges from that of conventionla M bit multiplier to that
of a three bit increment multiplier in the D®* multiplier
developed in Chapter XIII, which is capable in this case of
a remarkable mechanization economy when M> 3 (and
second differences are single increment). Contemplations
were to first simulate the sinusoid for M = 5 case for
comparison with reciprocal calculation results which

had M = 5,

Simulations of Partial and Variable Rate Sinusoid Com-
putations by Single Increment DDA and Further Verifica-

tion of the New Digital Stieltjes Integration Algorithm.

The computation of sin I, cos 1 where the input is formed

by R register overflow with transfers of al = K‘ + l(‘ﬂlinoon).

was chosen for a study of partial and variable rate
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sinusoid computations of single increment DDA with
overflow inhibitor with and without digital Stieltjes al-
gorithm. The first two runs simulated a sinusoid cal-
culation with constant partial rate input K‘ =5/16, K, = 0
with four bit registers for sine and cosine with added
subsignificant bits and initialization and algorithm given

by:
Y, * .0078125 Yo © . 37890625 Initialization
Ro = , 50390625 Ro = , 4921875
Sitz , ? ...
! 5 817 % <5 Integration

R Algorithm
S = . 4167 & = -,08333

¢
T=2 Overflow Inhibitor

Magn. Criterion

Simulations were made for the two cases of not using and
of using the digital Stieltjes algorithm derived earlier in
this chapter. The first case simulates the derivary
integrator developed (during Phase I) for full rate calcu-
lations, while the latter simulates the new digital
Stieltjes integrator developed for general independent
variables. Results in the two cases are oxpnu.od as
peak average absolute error over ensembles of 50 itera-
tions of the larger of the computed sines and cosines

error values, summarised as follows:



Partial (Constant) Rate Simulations Results

Period: 4000 iterations 8000 iterations
Error of Derivary Integrator System . 082 (Run stopped)
Error of Digital Stieltjes Integrators System .020 022

Pulse size was . 0625 and exact stable calculation within
resolution would result in error 1/4 (. 0625) = .0156
error in the average absolute error. These results are
another confirmation of the value of the digital Stieltjes
algorithm for independent variables which are not

full rate.

A second set of simulations was programmed and run
for the purpose of evaluating the relative performance
of conventional and digital Stieltjes algorithm single
increment DDA for inputs characterized by modulated
partial rates. Programming errars were detected on
the basis of the exact solution used to evaluate the runs
which did not correspond to assigned solution; therefore
no useful results are available. The assigned runs were
for the same initial DDA conditions as the preceding

runs for pure partial rate modified for the new inputs:

a1 - 2™ (1X-63)
ar - 2" + 7/8 O(sin 27" n) (I1X-64)
a ln = zl‘ + 748(sin 27"n) (1X-é5:

Results of these simulations would be valuable in further
evaluating digital Stieltjes integration processes and
associated algorithms.
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CHAPTER X

QUANTITATIVE EVALUATION OF COMPUTATION AND RATE HANDLING
CAPABILITY OF DDA AND QDDA MECHANIZATIONS

10.0 GENERAL DISCUSSION OF QDDA COMPUTER MECHANIZATION
ALTERNATIVES FOR DIFFERENT COMPUTATION TASKS - The major problem
of quantitative evaluation of computation capacity, in relation to assumed incre-
mental computer mechanization features, was attacked. Before proceeding to
the quantitative evaluations, consider a number of heuristic aspects of design
associated with mechanization. The results of the computer application and
computation requirement study demonstrate that the various airborne and aero-
space application computations fall into two fairly distinct classes with respect
to their computation requirements (associated with their input processing and
internal computation requirements). The implication of this result is that the
incremental computer, assigned an overall computation task consisting of a
given set of computation routines all of which fall into the same distinct group,
should be evaluated for distinct mechanizations meeting the pertinent computa-
tion requirements to determine the most economical mechanization. For the
cage where the computation task includes computations of both distinct computa-
tion types, a deeper design problem is presented in mechanization optimization.
This problem is encountered in the development of a computing system for a
full aerospace mission requiring input processing capabilities. Thus, the
analysis here is a quantitative step in the ultimate quantitative function-mech-
anization analysis of computing systems for full mission. The computation re-
quirements which characterize the pertinent clagsification of the computation
types stem from the occurrence or non-occurrence of variables of the real-time
computation problem which vary per unit time in such great magnitude, in rela-

tion to required resolution, that special computer design features are required
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to mechanize a computer which can execute the computation task. The occur-
rence of variables of this type are said to present the rate handling problem to
DDA operation. The special computer design features which can obviate the
rate handling problem are relatively high computation iteration rate (as obtained
by processing efficiency and parallelity and/or high clock-rate) and/or multi-
increment computation. Computation tasks for a total mission which do not, in
the normal sense, present a rate handling problem, (computation quantity varia-
tion per unit time does not directly imply unacceptable resolution), are never-
theless typically characterized by another computer design problem of come
parable proportion to the rate handling problem. The second problem consists
of the twin problems of assuring ability to execute a program consisting of a
relatively large set of different computations, and that of long term computation
accuracy. Design features required to meet what may be called the computation
capability problem are: optimized algorithm and multi-increment computation
for precision; processing versatility and parallelity for efficiency; and high
fteration rate for problem scope and accuracy. Clearly, from the standpoint

of abstract processings (apart from mechanization costs), the design problems
of rate handling and computation capability may be solved together in the design
of a single computation ensemble. In the practical case where the level of
mechanization complexity is a priori assigned, there exist mechanization alter-
natives which enable handling computation tasks involving the problem of rate
handling capability in the one case, and in the other case the problem of computa-
tion capability (the latter in the sense of not including in the fullest degree the
problem of rate handling capability). The basic reason, in the case of incre-
mental computers, for the possibility of distinct mechanizations for best meeting
the distinct computation problems, lies in the relation of mechanization com-
plexity limitation and iteration rate for multi-increment computation in conjunc-
tion with the relation of iteration rate and computation capacity. A mechaniza-

tion of the more modest complexity level which achieves multi-increment
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computation does so only at reduced iteration rate (in consequence of increased
serialized operation) which in turn implies a source of reduced computation
capacity in considerable degree offsetting the associated ability to increase
accuracy which is implied by the selected multi-increment feature. For the
computation class presenting a computation capacity problem rather than a rate
handling problem, the allocation of hardware totaling the a priori level of mech-
anization complexity may be chosen to achieve increased processing capacity
while meeting readily attainable accuracy requirements of particular application
types, rather than simply the pure alternative aliocation to obtain multi-incre-
ment computation. On the other hand, computation tasks presenting the problem
of rate handling are executed with highest performance by allocating the a priori
level of mechanization complexity to multi-increment design in consequence of
the relatively large increase in rate handling capability implied by multi-incre-
ment computation relative to that attainable by regorting to a high degree of
processing parallelity. In consequence of the relations of mechanization com-
plexity, processing structure and computation accuracy discussed above (and
given quantitative description in the following section), a number of computer
types are defined and analyzed and evaluated for specific tasks occurring in
airborne and aecrospace applications. In particular the multi-increment QDD®A
involves all the design developments of the contract study and i{s capable of all
computation tasks investigated in the applications study. In consequence of a
degree of parallelized processing and the 3 bit transfer features, and input pro-
cessing capability with 6 bit increment is obtained by an economical modal
switching. Numerical evaluations for the latter are obtainable by the formulae
developed. Examples ,however, were confined to internal computation. While
certain modest computation tasks may be most economically mechanized in
alternative forms discussed above (actually based on the proposed computer)
and analyzed in the following pages, the many and varied total mission require-

ments can only be met by a computer on the level of sophistication of the pro-
posed parallized multi-increment QDDPA with input processing capability.
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10.1 FORMULAE FOR COMPUTER COMPUTATION CAPACITY AND RATE
HANDLING CAPABILITY IN TERMS OF MECHANIZATION FEATURES - The
programmable QDPU, which is a generalization of the DDA integrator, effects
according to specific mechanization features a given number of B bit multi-
transfers within the cycle of its action. The completion of which is followed
by the next processing by the same hardware logic according to the generally
modified program on different stored information with different inputs of what
may be called the next QDPU of the block. Depending on the specific design,

a type of average performance of the QDPU for an application or set of applica-
tions may be evaluated with respect to the average number of conventional DDA
integrators which would be required to program the same application or set of
applications; this average performance will be termed the average integrator

equivalent Nle of the QDPU. The conventional integrator requires one word

time to be processed whereas the QDPU may, according to chosen mechaniza-
tion require Nw word times. The average integrator equivalent per word time,
R= NI,/ Ny is the QDPU machine processing rate per word time of the QDDA®.
Actually, computer computation capacity is best measured by the number of
different integrators equivalent which can be processed with required accuracy
for a given application or set of applications. Hence, accuracy performance is
closely related to computation capacity. If the longest tolerable time interval
between processing the same QDPU (or DDA integrator is *Q {or ?D) such that
required accuracy is obtained, then the computation capacity C for QDDA and
conventional DDA is

N

l. . 'rQ
QDDA: C.=RerT /7 B e—— (x-”
Q Q' 'w N'. w

*Word time Ty will be taken to be determined by the same state of the art
hardware, the same for QDDA and conventional DDA.
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<o

DDA: C.=1. ¢Q/r = (X-2)

D w

The relative computation capacity of QDDA (relative conventional DDA without
programmable integration algorithm) is the ratio

N

I .
() Q
N_.rT. (x-3)

= CQICD- - o

c relative
The importance of state of the art word rate in determining the adequacy of a
computer, makes absolute computation capacity the important quantity. The
QDPU information storage and processing configuration developed during this
contract study has N, ~ 4.3. Mechanization complexity determines the
selected value of NW =1, 2, 3, 4. In the next section a table presents esti-
mates of iteration interval required for specified accuracy for a number of
applications and hypothesized computer types based on the theory of computer
error growth derived in this study. The above mentioned data were used in
computing the computation capacity of various computer types, and applications
for the stated word rate (obtained by state of the art hardware). These results

are shown as follows:
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Rate handling capability imu may be taken to be measured by the maximum
frequency f of variable which can be scaled with a given resolution R. Since
rate of change of the variable in one iteration time determines the maximum
resolution, the iteration rate of the computer is pertinent to rate handling
capability, as is the multi-increment level. Thus, the rate handling capa-
bility may be expressed in terme of the maximum frequency of sinusoid cal-
culable with given resolution which is

£ oax - @M. /2e7r (X-4)
where w = 27f. The iteration interval is actually determined by required com-
putation capacity for given mission accuracy requirement. However, consider
a more abstract formulation® of relative ‘mu of various computers which
simply assumes equal integrator equivalent count ignoring long term accuracy
performance (this abstraction ignores for example, the superior algorithm
accuracy of the QDDA relative conventional DDA). In the latter case

L5
-eM.n2 (X-5)
Relative Conventional Q
DDA

max

where TD/ TQ is taken now as relative iteration interval for the same intergrator

equivalent count assuming identical word rate of the hardware. In terms of the
previously defined variables of mechanization alternatives,

N

t 1

D._e (X-6)
'rQ N'

*In contract to computation capability as anslysed above, regarded as the
ultimate quantitative evaluation of computer performance, the rate handling
capability is regarded a heuristic quantity in this analysis.



hence, the QDDA has relative rate handling capability

) §
- = Mo (X-7)
Relative Conventional ™

DDA

which using NI < 4.3 implies:

e
Single increment QDD*A f = 4.3

with N. =] Relative DDA

3 bit increment QDD*A £ = 30. (QDD®A Single
with Nv = ] Relative DDA Precision Mode)
6 bit increment QDD®A [ § DDA = 135, (QDD® A Double
with N . ® 2 Relative Precision Mode)

assuming identical integrator equivalent count of both QDDA computers.

10.2 PRECISION LEVELS RESULTING FROM ALGORITHM OF QDDA AND
CONVENTIONAL DDA - The precision level at a given iteration rate is de-
termined by integration algorithm and roundoff mechanization. The errors
magnitudes produced are a function of iteration rate and period of operation.
The conventional DDA does not have programmable algorithm and suffers
thereby, in certain computations, integration algorithm errors of first order;
that is, the deviations which would result if trapesoidal, new y, old y iteration
algorithme were arbitrarily permuted throughout a computation. DDA com-
putations using servo modes introduce much larger errors by a factor f. where
f. is believed to be about 4. The QDDA having prograrnmable algorithm does not
have integration algorithm errors of firet order, but instead, errors of the
second order from fractional appreximation error 8 of the mechanization of

X-9



second order integration algorithm terms (for # = 0 the algorithm is good to
2™ order, for B = 1/2 the algorithm s good only to 1°¢ order). The quantita-
tive error levels resulting from integration algorithm mechanization which will
be typically encountered are

Conventional DDA: esl/2d 'rtl' (I. = 4 in servo mode, (X-8)
f, = 1 otherwise) )

QDDA: ¢ = bo® 1% (X-9)

where e s 2nf, {= frequency of computation variable

iteration interval between computation updating
t = time interval of operation
f = factor of error increase in servo modes of the DDA

Anocther kind of computation error is roundoff error. Conventional DDA com-
puters have both binary and ternarv mechanisations. The design trend is
toward ternary which hag one half the roundoff error (associated with R re-
gister content relative that of binary mechanization), and has the other
accuracy advantage of being relatively free of the "phase™ effects which occur
in binary computation (resulting from representation of zero in binary as the
alternating stream). Evaluation of QDD®A accuracy will be relative to the con-
ventional ternary DDA and hence tends to be conservative. A principle ad-
vantage of the QDD®A, with respect to roundeff effects, stems from the much
reduced number of roundoff error ssurces, especially those which contribute
the largest elements of error, and from the overflow inhibitor mechanism for
the single increment QDD® A and otherwise multi-increment computation. In
absolute count, the aumber of R registers in the QDDA is less than one-half
the count of the DDA for the same application. In the QDDA for operations
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not involving division the roundoff error is reduced by a factor of two so far as
R-register count. In operations involving division algorithm, the effective re-
duction of roundoff error is much larger since a DDA program effecting division
involves several integrators acting either as a servo loop subject to relatively
large errors compared to ordinary roundoff error, or acting as Stieltjes inte-
grators with integrand and independent variables subject to spasmodic error
effects comparable in magnitude to the phase error effects troublesome in a
binary DDA. In division modes (without servo), simulations of conventional
DDA show that errors are generated which have a behavior markedly similar
in magnitude to those produced by integration algorithm errors of first order;
hence, such is assumed in the quantitative estimates below. The absolute
magnitude of roundoff errors depends on scaling of the computations in all cases.
In general, the rate limit character of general DDA computation forces the
minimum granularity to be at least as large as that consistent with maximum
rate of change of the variable; hence, i% . Z-u is the minimum rms magni-
tude of roundoff associated with resolution for M bit increment (assuming a flat
distribution of error). Evidently, the high frequency variables of the computa-
tion task are the most subject to roundoff error, as is also true for integration
algorithm error. If for the moment we regard roundoff error as a kind of
noise effect in computations not involving division, the error growth factor is
deduced to be ¥'n = Vt/T, whereas in computations involving division in the
conventional DDA the error growth factor is n = t/v.

The attempt to explain roundoff error magnitude for the growth (not the resolu-
tion) term in the DDA by regarding instantaneous roundoff error as a random
independently distributed variable (such that the integral over n iterations of
instantaneous roundoff error has the rms value of ?:7!5 vn) is found to far over
estimate the error which actually occure. The reason is that the roundoff
errors forcing function series in time does not have genuine independent com-
ponent errors, but rather has the properfy that their sum over a period is of

X-11



the same order of magnitude as the typical component, a consequence of the
residue retention property of the R register. In a system of integrators, there
can occur growth of roundoff error in consequence of transient states of round-
off error during which the system sensitivity to error forcing function is first
in one sense and then the other in phase with the reversal (having resulted
from the correlative compensation effect) of the roundoff series sum which
leads to net error buildups, rather than cancellation over the subsequent period.
Thus, in sinusoid calculation the system sensitivity oscillates and when the
roundoff error forcing function has transient oscillatory components of the
same frequency as the sinusoid, a net error growth ensues despite the long
term cancellation of the sum of roundoff error forcing functions. Over much
longer periods, the unsteady length of the correlation period would produce
random long term phase cancellations implying a V't growth (where t is time)
in rms error. The largest resonance effect occurs near matched frequencies,
specifically when the y register has near null value, since the time interval

for correlative reversal of roundoff is stretched to approach that of the system
responsge (computation weighting function). As an exception, there may be, for
short registers, other periods of strong resonance by chance diaphantine rela-
tion of y register content such that R register tends to be biaged in one sense
for considerable periods. Scaling for maximum resolution presents the in-
stantaneous roundoff error of rms magnitude 2%% which is of the same order
of magnitude as the instantaneous increment of 1 8t order algorithm error.
Over long periods, growth of reundoff error may be associated with that of a
random nofse model in which error sensitivity occurs only during the near null

states of the y registers. The resulting formulation is approximately

¢ = (-295-3—)1}1 t o (X-10)
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where the first term is simply the resolution for optimum scaling. The round-
off error implied by this formula is consistent in magnitude with DDA sinusoid
simulation results during this program; its formulation is consistent with the
observation that sporadic roundoff effects occurred during null passes of the

y registers. The overflow inhibitor, developed during phase 1 of the contract
study, had the property of reducing the sporadic phenomenon by a factor of at
least 3, hence has been chosen as a design feature of the gingle increment

QDDA. The reduced R register count reduces the error another factor of two.

Summarizing, the roundoff error performance of QDDA and conventional

ternary DDA implied by above considerations the approximate relations are:

.. .7 wt
No division calculation: ¢ =573 1+ Tz (X-11)
Roundoff Error of N3 n/2
Conventional DDA

e . ®T
Division and servo calculation: ¢ = V3 {1+ \/-3'*]‘.()(- 12)

Single increment: ¢ = wT 1/1 +_l_ ot
verflow inhibitor: FIVE) 6 72 (X-13)
Roundoff Errors of
QDDA
M bit increment (M 2 3) e = %Z-M 1/! +%% {(X-14)

The total error, ‘ncluding integration algorithm and roundoff error, is (where
compenent errors actually enter as sum of squares, but to save space in later

analysis, are entered linearly without appreciable error for present purposes):

T § wt ot
Conventional DDA: € otal = T3 :\/l + 2 + 'J'Sot] Error in 1 order (X-15)

algorithm
i t
LA ,J ]l ot Programmable 1°*
?:1:::::“ Coml "3 | VT Vis® e order algorithm  (X-16)
or: L /



Division &k servo T

calculation: € otal = 303 (1 H 1, Viut] (X-17)
QDDA:

Single increment & wT 5 J—ET

overflow inhibitor:  Stotal ~ 23 | V! *E Wz * V3uh (X-18)

Multi-increment wr [ .-M+1 ’ 1 wt V3 X-19
(M bit): “total * V3| 2 tgaz T"'"] (X-19)

For typical programs of conventional DDA, variables which go through sub-
stantial variation during operating time have error magnitude of the order

iota = ""'mazTt £ (X-20)
1ppa .

The error in QDDA from integration algorithm is less than this by the factor

:;t in the single increment machine, and % in the multi-increment machine.
.

At very low frequencies the QDDA error is mainly roundoff error, typically

of the order wT - Z.M.l

The computation capacity is computed in terms of the minimum iteration
interval required to meet specified accuracy. For the QDDA, the pertinent
minimum {teration interval 7. is given approximately by the quadratic

Q
0= -c+ary + h‘o (X-21)
where G = J';' 2’“‘\’1 +%.. ﬁz-
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w3t
2(1+5 (M-1%)

the u function be O for single increment, 1 for multi-increment. The solution

to the quadratic,
- 1/ L. (X-22)
o " 28 [ e ]

where ¢, = 6% /48, is simplified in two ranges of specified accuracy separated
by ¢, where approximations hold based on (VT +x - 1) = %for e <<e, or
(VT +x- 1)~ Vxfor ¢ >> ¢, which relate physically to the predominance of
roundoff error or integration algorithm error. Thus

T, =

Q for ¢ <<e¢, Roundoff Predominant (X-23)

(] Integration Algorithm .
TQ ~‘J;‘°' €>>e, Predominant (X-24)

where

S [1esum-1')) 1,1
¢ 6.2 2M EL A

These relations for minimum iteration rate of the QDDA may be written in the

form
e. 2™y fore << g,
wT = (X-25)
1+ z : o (Roundoff Predominant)
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(X-26)

T ’ >>
(Integration Algorithm

Error Predominant)

where

€, —_— —
6.ZZM 3m + wt

_Desnpa-1’y 1 1)
The relation for minimum iteration rate of conventional serial DDA is

2¢
wt (X-27)

Wty =
A table of minimum required iteration rate®* for conventional DDA, 1, 2, 3, 4
bit increment QDDA, has been calculated for several markedly different appli-

cations.

% The values express requirements for accuracy independent of attainability
at state of the art bit rate.
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CHAPTER X1

MULTI-INCREMENT QDD? A PROGRAMS FOR IMPORTANT
APPLICATIONS AND PROGRAMMING EFFICIENCY EVALUATION

11.0 THE GENERAL LEVEL OF COMPUTER SOPHISTICATION
REQUIRED FOR FULL AEROSPACE MISSION - The general level of com-
putation capability and associated mechanization complexity required of a
computer for a full aerospace mission is determined by the program task
and state-of-the-art bit rate. The effort here is to evolve an incremental
computer in & GP-DDA computer system which takes over the bulk of the
computation tasks of the aerospace mission and leaves the remaining func-
tions to a low cost GP with slow multiplier.# The proposed approach is an
allocation of the computation tasks for a computer system of maximum
efficiency, based on the individual potentialities of the two computer types.
Evaluation during this study of the explicit computation programs for a full
(or almost full) asrospace mission, evolved in other contract efforts at
Litton Systems, Inc., demonstrates that an incremental computer system,
of the remarkable new type evolved in this contract study, must be capable
of carrying out a program (the extent of which is expressed in conventional
DDA integrators) for 400 to 500 DDA integrators if no branching is mech-
anized, and 250 DDA integrators with branching. Significant portions of
such a system require new levels of computation accuracy relative to ex-
isting DDA computers. Hence, efforts toward evolving serial-parallel
computer structure ofthe QDDA were concentrated on mechanisations
having a complexity intermediate between conventional DDA and an air-
borne GP computer. By virture of basic developments in multi-increment

computation and modal action of computer processing structure, significant

¢Early efforts in the aerospace computer field have apparently confined
consideration to computing systems in which a conventional DDA is not
capable of exscuting a substantial part of the program task and requires
a large GP with clock rate pressing the state-of-the-art.

XI-1



reductions in computer complexity for a given level of computation
capability were recognized as attainable. The system design task of
exploiting these potentialities for an incremental computer capable of
assuming the major tasks of a full aerospace mission involves a combination
of application programming and mechanization studies. The former are
given major emphasis in this chapter. The quantitative inalysio of compu-
tation capability as a function of design features of Chapter X and the pre-
ceding investigations of general input processing mechanizations require-
ments for state-of-the-art bit rates imply a computer with paired many-bit
transfer and double paired several-bit transfer mechanization alternatively

programmed in a time shared arithmetic structure.

Programmable modal action of the QDD® A was developed in closely parallel
investigations of, on the one hand, application computation requirements,
and on the other, development of digital processing and arithmetic modal
design features. In this chapter, explicit programs for important applica-
tions are developed and/or evaluated in order to evaluate the high compu-
tation capability of the product for its intended application. The discussion
stresses that application requirements are specifically met by basic oper-
ations. A preceding chapter presented a description of the digital proces-
sing and arithmetic modal design techniques which make the basic operations
possible in a computer of efficient hardware mechanization. Thus, here we
assume the programmability of modes of single and double precision, high
and intermediate iteration rate, (which make the general computations of
input processing and internal computation types possible with the same
array of flip-flops time shared and continuously fully worked) to achieve
maximum computation capability. In internal computation, where precision
is traded to achieve effectively high speed computation by computation oper-
ation sophistication, we assume the programmability of transfer and algori-

thm action defined by the QDD” A program code in Chapter XII.
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The major application for which QDD? A programmability is evaluated is
the full aerospace mission, including the many phases of guidance,
allowing for undetermined auxiliary functions of military context conceived
likely within the coming decade in order to provide a basis for assurance
that the latter expected aditional functions may be within the computation
capability of the computer(clearly beyond the capability of any existing
airborne incremental computer) when added to the already large guidance
and control program. Certain other computations are evaluated which

are known to challenge, or clearly exceed in certain respects, the capa-
bilities of conventional computers. Thus, the important computations for
doppler damping in airborne navigation are presented because satisfactory
damping accuracy is recently known to be unsatisfactory on the basis of
flight test (and also analysis of Chapter X). The reasons for this particular
failure stems from a combination of sinusoid generation inaccuracy for
rapidly changing craft angles and accuracy deficiency of division in the
conventional DDA. Clearly, certain military applications such as fire
control may present to an aerospace application of the future similar
computational demands as those of doppler damping and toss bombing.
Input processings for the case of strap-down computations and midcourse
guidance are analysed.

The relations of input processing and internal computation as computation
types (general concepts for which were developed during phase 1) shall be
delineated in terms of later developed modal design principles and mech-
anisation features. The sssence of input processing requirements is the
requirement for many-bit increment computation and high iteration rate,
in respective degrees to attain a required resultant capacity. The
developed mechanisation features for the many-bit increment computation
is programmable at high or intermediate iteration rate; the iteration rate
being assignable provided program total is not excessive. The mechanisa-
tion this obtaine is: (1) many-bit increment computation (double
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precision) at high rate to be selected for the most demanding routines;

(2) many-bit increment at intermediate rate for somewhat less demanding
routines, which it should be added, tend to be too long to be performed at
a very high rate; and (3) several-bit increment computation at high rate
for computations requiring rapid decision such as thrust cutoff after mid-
course guidance. The several-bit increment computation at very high
rate is entirely adequate for the best pulse stream transducers. Because
of increased parallel computation of the QDPU, over that in double preci-
sion mode, high iteration rate is made compatible with attaining a satis-
factory intermediate iteration rate due to reduced time sharing
requirements; (4) several-bit increment computation at intermediate
iteration rate for typical internal computations. The input processing
computations programmed and analysed in detail in this applications study
may be listed as follows:

Input Processing Programs

High Rate Single Precision:
(1) Thrust Cutoff: For full asrospace mission
(2) Strap-down: For full asrospace mission

Intermediate Rate Double Precision:

(1) Sine and cosine computations on Air Data Inpute exemplifies
re-entry, fire control, digital autopilot computation subroutines
(2) Doppler Damping of inertial systems: Enables long term airborne

navigation accuracy.

The problem of handling 90% to 1008 of the computer system (GP-DDA) task
in the incremental computer is the two-fold problem of: (1) computation
capability for well behaved functions, and (2) evolving decision mode
mechanisation and programming techniques for handling discontinuities

and singularities (the latter being usually a result of coordinate system),



The first part of this problem is resolved by the computer design
principles developed during phase Il and specifically by the QDD?A. The
second problem, allocation of effent to whichupalilimi®d withis e asape of
this study, deserves intense study. The preliminary study made of this
problem indicates that it is not insurmountable and can be eventually

achieved in relatively efficient mechanization.

11.1 QDD?A PROGRAM ANALYSES AND COMPUTER SYSTEM DESIGN
BASED ON COMPUTATION REQUIREMENTS FOR AEROSPACE GUIDANCE
AND CONTROL APPLICATIONS

A. INTRODUCTION - In order to assure that computer design
offered in satisfaction of this study contract implies a mech-
anization capable of serving the total requirements of an
orbital mission, the set of computations presented in “"Formu-
lation of Guidance and Control Equations, Their Mechanization
and Instrumentation" (October 1961) by W.J. Jacobi and
C.S. Bridge have been selected as the minimal computation
requirements thereof. The orbital mission is postulated to
have 8 modes:

1. Boost Phase

2. Coast to Apoges (Transfer Orbit)

3. Injection into Orbit

4. Orbit

5. Retrofire

6. Transfer Orbit

7. Re-entry (Development of Aerodynamic Forces)
8. Manuevering and Landing

X1-$



The computation requirements delineated 1n the pertinent paper

consider a guidance and control system comprised of the following:

1. Inertial Platform
2. Central Digital Computer
3. Environment Sensors and Buffers for Communication

with the Outside World

A central digital computer is presented minimal requirements for the
full mission as a result of assumption(1) above; thus, ititis assumed that
strap-down navigation (without inertial platform) is implemented, or if
functions other than guidance and control are to be implemented, then
the computer system must have a computation capacity in excess of that
implied in the pertinent paper. Major system output functions.for

guidance and control are:

1. Velocities in earth fixed and space fixed coordinates
2. Altitudes above earth's mean surface

3. Angles relative to local vertical

4. Angular position in earth fixed coordinates

5. Automatic flight control information

6. Energy management parameters

The multi-increment QDD’A is de signed to have a QDPU (quotient dif-
ferential processing unit as a generalization of the conventional DDA
integrator) capable of an unparalleled level of speed and precision in
performing elementary incremental computations such as multiplication,
vector resolution, division, " xi + yz. scaling, integration, sinusoid
generation, and other DDA computations implied in the above functions
(1) through (5) in an optimized mechanization derived by analyszing the
relations of elementary computation requirements and associated hard-
ware requirements., While the QDDzA design evolved is programmable

for any set of incremental computations, the specific program for (1)
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through (6) is largely blocked out for evaluation of the QDDZA computation

capacity, in relation to existing incremental computers, and for potential

application of QDDZA mechanization,

Miseile Velocity Computation with Scale Factor, Linear Drift
and Bias Error Correction of Inputs and Outputs of the Digital
Computer - In order to achieve the accuracy required, the
computer may be used to compensate for various scale factor,
linear drift, and bias errors of input sensors and computer
commanded transducers. An internal computation with input
processing supplied inputs may also be required to effect
scale factor changes. An inertial system with a physical
inertial platform employing accelerometers subject to known
individual errors is torqued to desired orientation by torquers
subject to known individual errors. Execution of the desired
error corrections may be shown possible carrying out the

following calculations:
)
AVx = AVy (SFx) + bylt {(X1-1)

L]
AVy = 8Vy (SFy) + byat

]
AVg = 4V, (SFg) + bght

Bdt = wedt (SFx) + byat

wylt (SFy) + byst

[
<

g

"

wgdt (SFg) + bgat

&
e
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where AV, o ;. Wy y,z Ot are input and output quantities
respectively. The conventional DDA requires 6 integrators

to effect the scale factor corrections and 6 integrators to
effect the drift corrections of accelerometer inputs and
angular rate outputs. Inthe QDD*A these corrections are
blended with velocity computations to effect a marked increase
in computation capacity. Before evolving the QDD® A program,
consider the nature of the velocity computation best suited to

incremental computation.

The velocity computation apart from scale factor, linear
drift, and bias correction of inputs and outputs is derived
from the general expression for acceleration in a rotating

coordinate system,
A = R + oXR + 20XR + aX(@XR) - g (X1-2)
where § {s the gravity vector. Substituting R = kR in the above

equation and breaking the resulting vector equation into its com-
pouents in the x, y, s directions yields:

Ag = oyR + 25 R + ©uu R + g, (X1-3)
Ay ® -axR - 2uxR + wyusR + gy (X1-4)
A = R- (o + ") R gg (X1-5)



These equations may be re-written in the following form suitable

for computation by the QDDA*,

nT nT nT
Input r “
V. =4 . Iv"""‘“ J _wvde- | L4t (XI-6)
 *n n-1) Y E (@) PV (@al) *
In nT ?T nT
p“t 13 .
V. = AV ¢+ J P 0V, dt - J P WV, 4t - f v 8,0 (X1-7)
Yn Ya (n-1) (a-1) (n-1)
nT nTt nT
Input
AV, = AV - I e OV, dt + I . ¥ det 1 I 1,.'dt (X1-8)
*a *  (a-1) Y (1) Y (n-1)

Interpreting Av&y + % the scale factor, linear drift and bias
[ ]

corrected input quantities generated from actual inputs, the
above equations and the correction equations presented previously
ar
OV, =8 +ou +bat- | ga (XI-9)
n (1)’

ar
2 A + A4 +D) - d {X1-10)
Yy Yy Y“ j 'Y ¢

AVy
(n-1)’

ar
[
&V, = 8\ ¢ 8u  +bat- | X (X1-11)
n (n-l)'

aBut which will be further slaborated for scale factor, linear drift
and bias correction of inputs and outputs.



where

A\ = (SF ) AV' - AJ' Vdjw dt
x x x z y
' .
MYn . (SF) oV A]' de.j w dt
)\ ' Vd lwad
Azn -(srz)sz-Aj J4 ] wdt

= Ajvyd jw.dt
bu =0 J‘ V.4 wadt
A rfvaiwd
M, = 8]V o

The scale and bilas corrected angular rates will also be computed
in parallel QDPU action,

N j wldt = 8 j'(sr;) wdt + Aj' b dt (XI-12)
[] a (] [} -

s juydt A I(Sl’y)wydt + A I bl dt (X1-13)

a ju;dt Y I(Sl"z)mzdt + 5]' bl dt (XI-14)

The quantities AV; — computer inputs. The quantities
1]

T
JP 8, y ldt are generated in another routine which is developed.
ey
(n-1)"
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The QDPU processing configuration for generation of
A X"n’ Af w;,dt is typical for these types of terms and is

shown in Figure 11-1.
Three QDPU generate A sz. A sz ' AZVz and & ¢ I wydt,
Al Iw;,dt. al [ widt given A Z“x ) Azuy. Aznz and 8° [, at,

Al fgy dt, & 2 f gz dt the latter being generated elsewhere.
The linear drifts are corrected by initial settings of the
proper '‘delta" registers of the QDPU. A conventional DDA
requires a word time to compute drift corrections typically
accomplished in a quantization integrator. The two scaling
operations do the work of two additional DDA integrators.

One of the cross product terms of the velocity computation is
alsc computed in the same QDPU (see the V, A f wg dt trans-
fer in Figure 11-1. Thus, the QDPU of the diagram does the
processing of 5 DDA integrators. As a result of there being
involved in the sub-routine only 2 R registers instead of 5 R
registers as in the conventional DDA, and as a result of
multi-increment computation accuracy instead of single
increment, the accuracy of computation of the QDPU is
greatly increased. Since 3 of the 6 cross product terms are
generated in the QDPU of the type in Figure 11-1, the re-
maining 3 must be computed elsewhere. By selecting 3
QDPU, programmaed to carry out computations involving other
Vx,y, s °F f ty, y, 9t terms the computation of all § terms

in such paurallel assignment can amount to a total of less than
1 QDPU. In summary, it is seen that velocity computation
and generation scaled-drift corrected inputs and outputs which
require 18 integrators in a conventional DDA are executed in
the QDDA with 3. 75 QDPU, the QDDA, in effect, executing the
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V'x External Input x
{ ‘ MT
A V'x A Ny A Particular
ST Mode of the
Programmable
SF QDPU for
Output Feedback x Multi-Incre-
a2\ ment Computa-
x AN ( I tion*
x
MT
(8% Ny + &P uy -A2(ggdt)
aAv,

’ Y

Initial
setting: b, Ve

.[ a,wty @

’ Output Feedback

Initial
setting: -Sl-"y * bt SF! )

y y
a7 w,d
J y

«*MT: Multi-transfer; ST: Single
Transfer

Az f w'\_ dt

xi-12 FMgure 11-1. QDPU Processing Schematic
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computation 4.8 times faster than the conventional DDA. The

flow diagram of the routine is presented in Figure 11-2.

Computation of Flight Path Angle, Velocity Relative to the
Fixed Pseudo Coordinate System, Radial Distance and Lift-
Drag Ratio Computation for Re-entry

1. Routines Investigated - One of the critical quantities that
must be known upon starting re-entry is the flight path
angle. The total velocity relative to the fixed pseudo

coordinate system is determined by

v=-Jvz:(vz+vz (XI-15)
x y z

These two calculations may be executed with high
efficiency in the parallel-multi-increment QDDA making
use of the d x +y computation capability of one of the
two parallel channels. Thus, the intermediate quantity

u given by

u = -VV zf v 2 (x1-16)
x y

V= (V. +u (XI-17)
as well as flight path angle computation.

The lift-drag ratio is another important quantity which
can be determined by either pure inertial means or by
air data measurements. The inertial method depends
upon measurements from body mounted accelerometers
and calculation of the true angle of attack. The equa-

tions required are as follows:



A sina - A cosa
t z

o Tx t (assumes 0 (X1 1¢)
L/D = -A cosa, -A sina angle of bank)
x t z t
where
a, = 6 -y (@ = elevation angle as read from
the inertial platform
y = flight path angle computed in

previous routine)

The A,, A, are whole word inputs to the digital com-
put‘er. QDD? A inputs may alternatively be mechanized as
Ay, A, directly or .dA,, dA, the latter formed by special
input differencing

Program for Mechanization With Double Integration

Mode - Intermediate phase investigations of prograns

for sub-routines for mechanization with a double integra-
tion mode were carried out for the pertinent calculations
to evaluate the special mode as well as general versatility
of the QDD*A. While portions of the program assuming
the donuble integration mode do not involve it, they arc
presented together because in the later studies in which
the special mode was discarded (on later evaluation of
merits and demerits) they : re most efficiently programmed
(and when the double precision mode was developed more
precisely computed) as a single coupled routine which
may be compared with resuits presented here. Assurrang
the double integration mode, a program for the calcula-
tions is presented in diagrams on the following two pages
with a detailed QDPU mode diagram presented on the
third page. The routine which requires a total of 29 DDA
integrators (in 29 word times) in a conventional DDA is

X1-1»



PROGRAM 1

A QDPU
MODAL PROCESSING FOR THE
LIFT-DRAG COMPUTATION

B(x Lay)
L R)
|
Az o MT :
—> Bat i i
|
|
L X | :
Mt § st :
a%¢ {
3y T A :
i I Output Feedback |
l'i y J
a2n r
—{ &n Ju—

- —— ———— —— — —

11
AX
MT MT
& (L/D
% (L/D)
6 Integrator Equivalent
in 1 Word Time

h
t
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3

executed by 6 QDPU (in 6 word times) implying | QDPU :
4 5/6 DDA integrators.

Program for Mechanization Without Double Integration
Modes - The QDPU program calculations and schematics
for mechanizations without double integration mode are
designated Program [l and presentea on the two pages
following Program [. It is seen that the work of 28 DDA
integrators is accomplished by 6 QDPU without double
integration mode hence | QDPU £ 4 2/3 DDA integrators.
This result and other subroutine analyses as well as two
other important considerations, led to the decision to
discard the double integration mode.

The sinusoid computation is one of the most error sensitive
of important DDA computations. With correct integration
algorithm the major limitation in accuracy stems from
roundoff error. Assuming 3 bit increment computation,

the level of accuracy attainable in sinusoid at intermediate
iteration rates on external input angles is certainly an
order of magnitude higher than attainable with a conven-
tional DDA with correct integration algorithm. Computa-
tion capability analysis places the improved performance,
however, as still one of the limits in overall system
performance. On development of the double precision
mode feature, it was seen that this limitation could be
removed without cost in integration rate. This assumes that
double integration mode is mechanized, since the sinusoid
requires 1 word time, at least, in a two output QDPU
without double integration capability. The final deter-
mining factor in the decision to not mechaniae a double
integration mode is that the word time of the QDPU

X111
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Program | Part B Mechanization With Double Integration (Assumed)
Multi-QDDA Computation of
Lift-Drag Ratio For Re-entry

Body Mounted Accelerometer Inputs

s ]
“t d” sin at dat d® cos at dat d(x dat)
- > —
Double Double
Integ. Integ.
dA, | Mode Mode
dA | '] - 2
d d*(L/D)
y > | I /I
3QDPU = 12 DDA Integrators
A_sin .t - A' cos ct
L/D = “A_cos@ —A sina
x t s t
is accomplished by multi-increment QDDA by calculation sets:
-1
da, = (do - dy) (x /9)
d -(L/D)d
. ) e )
d(s-cooatdAx-linatdAz. dn = linu'dAx-couctdAz.d(L/D)- y
(X1-20)
d sin at = cos & &t d sin llt ® cos ‘t &‘ dy = xdat + d¢
d cos .t = -sin a, &t d cos .t s -sin 't hl dx = -yd a ¢ dn

where x, y are defined as

x = Ax ein at - A' cos 0'

y = -Ax cos ct - Az sin Gl

Xl-19
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Program Il Mechanization Without Double Integration Mode
Re-entry Calculations: Flight Path Angle,
Total Velocity, Lift - Drag Ratio
(Multi-Increment, With Double Precision Mode)

(udu] =V dV ¢+ V 4v
x x Yy vy 3
fvdav] =V dV + V dV_ ¢+ V_dv
z z X x y y
au . (udu]
u
8
ude - V’ du
d‘y =
ve
d sin at = cos at ”t
Double Precision } 2
d cos @ = sin a, &t
d(A‘ -inct) = linqtdAx + A‘dl‘ma‘ .
d (Ax coact) = cos ‘t d A‘ + Ax d cos qt
d (A‘ sin at) s linllt d A' + A‘ d oinut .
d (Az cma') = cos a d A: + A. d cos “t
dL* - (L/p) ¢D+
7
av . [w‘n,v] _
28
2/3
1QDPV & 4 ' " DDA Integrators
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(which is programmable.) must be increased 50 to 100%
over the word length determining desired resolution.
Thus the double pracision mode, which requires only 10
to 15% longer word, actually equals the net performance
counting integrator equivalent and iteration rate together,

without further elaboration of the computer.

Geographic Coordinate Computation for Aerospace
Navigation and Evaluation: Sinusoid Computation Modes
for Alternative QDPU Designs

a) Non-Polar Flight

The primary navigation for the aerospace mission is
done in a pseudo-coordinate system for compatibility
of the outputs with desired orbital display quantities.
Some of the terms, however, such as gravitational
effects are functions of the geometric coordinates.

In addition, during the re-entry and landing phases it

is most convenient to calculate *‘geographic coordinates".
The “pseudo” coordinates make for ease of computation
in many of the navigation routines other than the
coordinate conversion. The computation involved in
coordinate conversion where flight very near the poles

is excluded may be discussed in terms of the explicit

form:
9 = arc lln[coc. sin 0 sin B ¢+ sin Y cos B ] (XI-21)
s A -arc cos [ S0-$cos 6
u cos §
® = geocentric longitude

A = geocentric longitude



Calculations:

Inputs:

¢‘: 9+ Ceoin 20

A x+é“"fodt

¢‘ = geographic latitude

x‘ = geographic longitude

The given d6, d¢, sin §, cos Yy more general case for flight
through the poles will be discussed after the simpler
computation programming problem is delineated and QDDA
programming performance stated in the next set of

schematics.

Complete Geographic Coordinate Calculations of the
Proposed QDPU (Multi-Increment, Without Double
Integration Mode) - Figure 11-3 shows the geographic
coordinates of the following calculations.

® = arc sin E:oo ¥ sin 0 sin By + sin ¥ cos 30] (X1-22)
A = )\ -arccos [M
n cos ¢

0‘ = ¢ + € oin20
X‘ = A ¢ I;Qlti» wheare O'. X‘ = geographic coordinates

d', d® cos 9, d® sin p (X1-23)
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Differential Relations used in each QDPU and DDA integrator equivalents:

sin Bod (cos ¥ sin 8) + cos Bo d sin¥

de = 5 DDA Integrators
cos ¢

d sin ¢

sin Bo d (cos p sin 6) + cos Bod sin §

cos Pdsind + sinddcos ¢
"1 ;=8

d (2% ¢cos 2¢) =

¢ 4 DDA Integrators

dcos ¢ = -sin¢do

d(cos $cos 8) = cosp dcos 8 +cos 0dcos®

> 4 DDA Integrators

d (cos P sin 6) cosP dsinf + sin 6 d cos ¥

dcos 0 z -sin0d @

2 DDA Integrators
dsin® = cos0ad6 f

duin(l-xn)s x dA A
g 5 DDA Integrators
dx . d(cos xcos @) - xd cos ¢
cos ¢ J
\
sin () - Xn)
> 4 DDA Integrators
t
dr =a+ [ Qd

6 QDPU =24 DDA Integrators
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1
2%d¢
d*(cos ¥ sin 6) de d%(2%¢ sin® 9) ’*
d? sin
&% cou ¢ Py i °°:,[’ A
-4 )
d*e d® cos 0 j d® (cos ¥ sin 0) d® cos ¢ a*x
2
TLog|o d)
d® oin 0 d® (cos p cos 8) d®sin(2-) )
hY
e o, [
L
a®sin(A=) de’

6 QDPU & 24 DDA Integratore

Figure 11-3. Complete Geograpaic Coordinate Calculations by the Proposed
QDPU Multi-Increment, Without Double Integration Mode
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6. Geographic Coordinates Calculation by the QDPU (Multi-
Increment Assuming a Double Integration Mode Not
Incorporated in the Final Design) - Figure 11-4 shows the

geographic coordinates of the following calculations.

Calculations:
® = arc sin (cos ¢ sin @ sin Bo + sin§ cos ﬂo) (X1-24)
A = A -arc si [con Y cos 6
= A c sin | ——" 0 (XI-25)

QDPU Operations (Expressed in single increments):

dcos ¢ = dIf cos ¢d ¢

d(cos psin0) = sin@ dcos p + cos yd sin b

dsin® = d[[ sin6d@
(d(cos pcos @) = cos@dcosp +cos Bdcos 0

sin ﬂo d (sin ¢/sin Bo)

¢ = cos ¢

cos § cos 0 d cos ¢
4 So8 $cos 0 . d(cos pcos 9) - cos 9

cos ¢ cos 9

dein(A-A) = d [[ sin(A-2)dr

- (c_ou_ezz)

cos ¢
oin (X - Xn)

1v

dx =

E
—Ar— ——A— A
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Calculations: ¢ =z arc sin E:oo Vein 0 sin ﬂo + sin Vcos ﬁo] (X1-26)
. cos Vcos @ (X1-27)
A Xu - 8%C CO8 [—-—-—-—“. ) ]
wheye O' s 9 ¢+ eoeinlf
X' = A+ j: 0 dt, 0.. X' = geographic coordinates
Inpute: d%0, d® cos % cos B, d® sin ¥ (x1-28)
T4 WT
» 2
4 d o
Double
s Integzation
d cos ¥ Mode
Ad‘ oin @ a’ (cos ¥ sin 0)
- W os Jod'ota =
49 slh 9) s6WT =S5 WT
; * E ® ein (A1)
% h 1 n
Double Double
Integration gration
Mode R Mode
d coe®
8
. 4 (cos Pcoe d/
&coe 4 (ces $ cos §) coc §) d
& ey
Sudb program Requirements: Relative Speed or Capacity:
Using QDDA ¢ WT 7] ]
Using DDA 19 WT 1008

Figure 11-¢. Geographic Coerdinates Calculation By The QDPU (Multi-
Increment and Assuming A Double Integration Mode Not

Incorporating in Final Design)
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Flight Over the Poles and the Longitude Discontinuity - One of
the most strongly felt factors in the application of incremental

computers in airborne and aerospace applications is the compu-

tation problems in handling variables with isolated discontinuities.

In a number of recent system developments within the field, in-
cluding a full aerospace mission computer with GP-DDA, the
impress of this factor has led to highly discriminated computa-
tion allocation to the DDA and such demanding assignment to the
GP section that only new hardware developments and in.reases
in GP computer complexity, aiready unwieidy, presented hope
of approximating computation requirements along that design
path. The basic reason for this impact of computer complexity
stems from the basic speed disadvantage of the GP relative to
the DDA as discussed in paragraph 11. 4D which presents and
analyzes the energy management computation program. That
the allocation to other than DDA is not inherent for all computa-
tions with isolated discontinuities, is shown in paragraph 11. 4G
where the important problem of doppler damping is shown
soluble with required accuracy by the QDD*A. That the alloca-
tion to other than DDA computations for flight over the pole,
and generally across a longitude discontinuity is not inherent,
will be discussed here. It should be noted that most isolated
discontinuities in real time computation present themselves not
so much as a result of inherent needs of computation, but as a
result of arbitrary choice of coordinates which are to be dis-
played, as for example, geographic coordinates. While it is
true that no fixed coordinate system can define path and motion
on aclosed surface without discontinuities, a non-fixed or condi-
tionally varying coordinate system defining the path and motion

can be free of important diecontinuities. Thus, a

coordinate system which is ideatical to geographic coordinates



in regions further than 30 miles from a pole, and conditiona;lly
varied within regions cléle to the pole, can be free of important
discontinuities, Such a coordinate system can serve as a prac-
tical geographic coordinate system since actually the value of pre-
cise coordinates is primarily away from the pole. Consider the

problem of the longitude discontinuity at +180° -180° for all lati.

" tudes; here the DDA would be required to compute longitude which

changes 360° almostinstantaneousily. The supervisionofthis change
in a DDA by GP is costly in programming; therefore, a DDA capable
of making this change itself without extensive programming has a
real advantage over any existing DDA. It is proposed that this
capability be implemented by a simple mechanization elaboration
{(not included in decision modes of Chapter XIl because of its recent
derivation). A new decision mode capable of accomplishing this ‘
within the structure of a ternary DDA and the QDDA has the output ot
sign and an amplitude bit communicated in the natural manner of an

arithmetic output. Here, the integrator or QDPU in this decision

mode puts out two bits of information, a Y register sign and most

" sigrificant bit rather than normal output according to natural

overflow or general {quotient) output criterion. The output in
this mode requires no arithmetic process for output, but simply
reads an already present register value and does not itself dis-
turb the pertinent Y register value at that iteration. Rather,
the output is a decision command output programmed to be an
output to the pertinent and any other desired integrator or .
QDPU. The decision command conveys that a step change of

2 given sign and fixed magnitude is to be made in the receiv-
ing y register. Thus, the longitude variable in a y register

puts out sign of longitude and an amplitude bit (1 if positive



or 0 if negative) when the magnitude exceeds 180°. Since
flight is continuous, the excess over 180° produced by the
last Ay becomes the correct change had the 360° step been
instantaneously subtracted at that iteration. Having program-
med accordingly, the output is an input additional to the lor;gi-
tude increment to the same y register. At the next iteration
after discontinuity crossing the decision response acts to sub-
tract or add | from the y register, mechanization for which is
available already by modal action of an unused single transfer
unit ordinarily required in general (quotient) algorithm com-
putation. Next, consider the more challenging design ar;d/or
programming problem of geographic coordinate computation
in which the poles are closely or directly passed and where
long term accuracy after passing the pole is the prime con-
sideration. Preliminary analysis indicating that a combination - |,
design modification and special programming of the problem |
appears promising. In this approach which may be called the
moving pole method, the coordinate system is effectively
modified only when /¢/>90° -¢ where € = 1/2°. The approach
appears particularly simple for orbital flight where the approxi-
mate minimum pass distance from the pole is essentially known.
Upon entering the pertinent polar region, as detec~téd by a de-
cision operation in the QDD?A, the modified coordinates are
formed by incremental shifting of the pole from that of true
geographic position through making increments of orbital in-
clination B in the formulae stated inthe preceding section.

For example, coordinates may be selected to have magnitude

equal to ordinarily computed increments of pseudo longitude

wdo latitude and longitude coordinates are orbital coordin-

“were perfect flight has zero pseudo latitude). Thus, as

=
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the missile approaches the true pole, the vertical pole of the
modified coordinates shifts away such that the minimum dis-
tance may be shown to be €//2, and as the missile leaves the
region then the virtual pole returns to the exact position of the
true pole. This proposed computation method assures long
term accuracy for orbital flight passing repeatedly over or
near the poles. The decision modes of a conventional DDA and
their counterpart in the QDDzA appear to provide adequate basis
for supervising the moving pole method, but with considerable
programming. The goal of developing an incremental computer
capable of performing complete aerospace guidance and control
functions now assigned to a GP-DDA system (see Chapter XIV)
implies that provision should be made to effect highly versatile
self- supervision without appreciable increase of total compu-
tation time. Thus the mechanization of a new decision com-
mand mode is proposed, namely, one which generates a bit
output, one bit being the sign of y in a y register. The other

is a "1" only when /\,'/<2°K . Mechanization of the arithmetic
part of this mode (which is a generalization of the decision
command mode part for computation of longitude across the
discontinuity) is straightforward. The cost of making K pro-
grammable has not been evaluated. Here, the quantity sin 6

is programmed as y and the decision command output is sent

to a QDPU where it acts as positive or negative full rate when
/y/<2'x. in the computation of cos 8, sin 8. Ideally, the net
change of 8 in the whole process is zero. This is only approxi-
mately assured provided the missile has constant velocity over
the 1° region. Thus, probably a more sophisticated choice of
functions than sin 0 is indicated. Another method involving
direct count down of all changes of Bshould be examined.
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Gravity, Angular and Angular Rates Computations, for

Aerospace Flight - The gravity computation for aerospace

flight requires precision division computation. The gravity

computations, angular aad angular rates, are determined

from the relations:

Yy
uxz-ll

V!
“Y R

R cos x
dR=dV
s

8, = 0-485g (%) * ¢ sin 20 cos B

yo R

5, - ,‘(i)' [1-1.454 (%_)2 € sin @]

g = 0.485 ..(2) * ¢ sin 20 sin B_

(X1-29)

(X1-30)

(XI-31)

(X1-32)

(X1-33)

(X1-34)

(X1-35)

(X1-36)

(X1-37)

The angular and angular rate calculation QDD’ A program

and QDPU integrator equipment (for 6, i, dw,) is sum-
marized on the following page and illustrated in Fig-

ure 11-5,



a’r
a% v, 2fw at )
>
d” cos¥
dR Store lin ¢ \ a? S‘w, dt
7 k ’
r-..
dz x
bome—q
|
1 :z ({1 ’.

VDoublc Precision Mode

3QDPU = 11DDA Integrators of Programming

Figure 11-5. Angular Rate Computation Program for the QDDA

v N
dfuxdt s -d = -afLat
> 1QDPU = 4DDA Integrators (X1-38)
df wedt » f— dt
i
d J'm,‘dg = Iﬂ’%ﬁ!‘__
> 1QDPU & SDDA Integrators (XI-39)
dfw_ de
s df X _
a0 d cos § 7
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where

X1.34

d cos 4 = -sinydy 1QDPU = 2DDA Integrators (X1-40)
d sin x = cos YdP Double
dR store Precision

The gravity computations are simplified by introducing the

variables w, v defined by

w = 1.454 ¢ V@ 8in? ¢

ol

then it may be shown

2
dgxo * gx:d T+ (Kpov® - 20) do (XI-41)
dgyo = tan Beodgyo (X1-42)
dgyo = dv - dt (XI-43)
2(.485) ¢ B 1. 454¢
8e 8e

The calculation may be executed in the QDDA by programming

the calculations:

Exo (Kxod?) W

da = (Kyo/2Kz0) }

1QDPU - 3IDDA Integrators (X1-44)

ds = ¢ (l(xod.‘)




2uwdv

da =
1QDPU = 6DDA Integrators (XI-45)
46 = 2gx dv
v
do = _ZC;:IR
1QDPU = 6DDA Integrators (X1-46)
de = vdv « (2/p,,) ¥

A schematic showing the programming of these gravity
calculations is shown in Figure 11-6. The gravity,

angular and angular rate, programs combined indicate
an average integrator equivalent of the QDPU of 4-1/3

including one double precision mode.
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Figure 11-6. Gravity Computation Program for the QDDA

(d®gy = tan Bodgy and &* (Kxg?) = Kx od'a done elsewhere
and not counted here for QDDA or DDA)

3QDPU s 15 DDA Integrators
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11-2. THRUST CUT-OFF CALCULATIONS BY THE QDDZA. AND THE
CONVENTIONAL COMPUTATIONS ALLOCATION APPROACH AND LIMITA-
TIONS - Perhaps one of the most crucial computer operations is control of
the rocket thrust termination. One previous analysis concluded a general
purpose computer was necessary for the allocation with full time devoted

to achieve accurate cut-off during the period when cut-off is imminent. *

The cut-off condition is D such that /D/<D° where D_ = 0.5 ft/sec say, and

D = K] VEx + K2 VEY + K3 VEZ (XI-47)

where VE, = Vp, - Vy

v v
Ey'P

y = Vy

VEy =Vp, - Vg
Vp() = desired cut-off velocities

V() = actual velocities

The quantities K; , 3 are updated at low rate. In order to limit the
duration of high rate (1000 to 2000 iter/sec) cut-off calculation, whichk

use essentially the full arithmetic capacity of the GP computer, a low

rate calculation of the same form as above but with Dy = 30 ft/sec has

been used to tura on the high rate calculation only when cut-off is imminent.
There are several implications of this conventional computation allocation
approach for GP-DDA computer systems with relatively slow DDA for
partial rather than full aerocspace mission: )

@A conceasionary approach in which craft control and other functions are
temporarily neglected.



A. The quantities Vy, y, ; change primarily with inertial velocity
increments (external inputs) during the cut-off decision
period, however, the gravity and coriolis velocity changes
internally generated at low rate have a granularity comparable
to or greater than the required net accuracy. A similar effect

of smaller magnitude holds for va Yo 2.

B. The interruption of the GP functions of auto-piloting, while the
missile is under very high acceleration, is required during the
cut-off decision making period implying the possibility of

serious loss of thrust control at the most critical time.

C. Any other functions, such as, telemetering or tracking in future -

aerospace programs would be interrupted at least momentarily.

11.3 SOURCES OF COMPUTATION IMPROVEMENT AND GENERAL QDD?A
PROPERTIES - Computer design and program allocation approaches which
may remove these limitations are as follows: Reduced granularity of
internally computed components of (Vp - V) . y. s Can be obtained with a
higher speed DDA. By taking advantage of the continuity of the rate of
change of these variables, extrapolation calculations by simple summation
(in essence assuming constant rate of change) can provide accurate values
during the cutoff decision period, even with low rate inputs to the high rate
loop. For a single increment DDA, it would appear, that considerable
additional programming would be required to generate a whole word or, at
least a several bit word representation, of rate of change. A several bit
increment DDA would nat require the additional programming slaboration.
The QDDA has natural cost free extrapolation capability in the high rate
loop when updated by outputs of the low rate loop.

The interruption of computation functions. for other than cut-off computations,
during the decision period is obviated by not doing the computations inthe GP
or (intermediate rate) internal incremental computationloop. The QDDA, in
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input processing mode, can execute the cut-off decision calculations without

any interruption whatsoever, and with at most an equivalent slow down ofthe

computer of 10 to 15%, most of which buys input processing capability in

addition to the thrust-cut-off operation.

11.4 PROGRAMMING THE QDDA FOR THRUST CUT-OFF NECISION
CALCULATIONS

A.

Multi-Iteration Loop Set-Up - For a state of the art word rate,
of 1.4 x 104 words/sec, the QDDA, designed to have 64 QDPU
(equivalent to > 250 DDA integrators of program count), could
have an iteration rate of 218 iter/sec, if no high rate input
processing were programmed. It ahigh rate loop tor thrust
cut-off is performed at 1400 iter/sec, the QDDA has a set of
write heads for 10 word lines. Two QDPU suffice for the
thrust cut-off calculation. The indicated set-up would enable
assignment of 4 other QDPU to other input processing functions
leaving 59 QDPU for internal computations at 109 iter/sec.

The program count for high rate input processing in asrospace
computations in the case where there are no strap-down compu-
tations may not require more than 2 to 6 QDPU. If more input
processing were required, the cost of ancther set of write
heads and a small amount of logic would be imposed.

Multi-Reration Rate QDDA Computations for thrust cut-off.
High iteration rate is required for thrust cut-off computations
to avoid launch velocity error after thrust cut-off. High itera-
tion rate is attainable at state ofthe art word rates only for very
short computation routines. Properties of rates of change of
the variables involved in thrust cut-off should be exploited to
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limit the high rate computation program to acceptable gize. In

the QDDA, the thrust cut computations are executed in a relatively
high rate input processing loop in which other input processing
functions may also be attained to the extent of high rate

thrust cut-off program compatibility. The quantities K], K2,

K3 are relativaly slowly changing. The velocity deviation for
thrust cut-off decision, Dy, is assumed constant. One of the K

quantities say K3 satisfies K3 >>0, hence consider the relation

D _Ki K2
—_ Vg +==Vp + = K3* Vi +Ko» + .
K, “K; 'Ex "R, 'By tVE, " K1*VE tK2*VE +VE, (XI-48)

as determining thrust cut-off according to the condition

D

D (]

—_— ] € = = D.® (X1-49)
K3 3 °

The variation of Dg/K3 in one slow iteration of the QDDA internal
computation loop is negligible insofar as the significant variation

in effective cut-off decision level which would result if the varia-
tion were neglected (instead of being 0, 5 ft/sec it might be

0. 501 ft/sec, adifference béing far finer than necessary resolutions).
With a view of eliminating computations of D (or D/K3) in more than
one place in the computer system,(to effect a program reduction),

a very precise computation is sought. The thruet cut-off program
switchinge may then be held to the number of thrust stages of the
mission. For high accuracy in a DDA computation of D (or D/K;)
the treatment of both K#* and Vg quantities as variables at the high
rate have an advantage. Programming the D* calculation in the
QDDZ2A will be outlined and shown to essentially obtain this advantage.
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Each of 2 QDPU are programmed to execute one of the two

parallel channels, a computation of form:
d (K#Vg) = Vg dk* + KedVp (XI-50)

using in each QDPU two § registers and two y registers. The
internal processing section computes d Ds, daK*. dald at the
intermediate rate (100 it/sec) and the QDPU in the high rate
loop picks these up effectively at the intermediate rate (0 being
communicated at intermediate intervals). A quantity dK* is
available with several bits resolution at high rate because of
the low rate of change of the K*. A 3 bit transfer QDDA mode
computes the K® quantities with full multi-increment accuracy
at high rate. Consider a dVp quantity which is composed of
both high and low rate quantities,

dvg = dVgL + dV] (XI1-51)

where dV] is accelerometer input at high rate and dVg; in-
cludes computed gravity and earth rate induced changes at low
rate. ComputingdVg and dVg, atthehighrate assures that Vi,
may be multi-increment and that d Vg; be consistent with this
scaling, when generated at low rate, in effect producing sub-
stantially the same outputs, as if generated at high rate. While
actual computation at high rate would generate a d Vg; com-
muaication at intermediate phases of the long iteration interval,
the lag free algorithm assumed in the low rate computation
should make the alternate communication streams sssentially
equivalent. In coaclusion, the computation of d (K®VE) in the
QDPU at high rate with the particular low rate communications
{e expected to have multi-increment accuracy at the high rate
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8o far as K*® and Vg are concerned. The accuracy effect of
the external input V; depends on a maximum accelerometer
pulse rate and sensor, transducer accuracies. Pulse rates

during the next 5 years are assumed under 10%/sec.

Having D or D* available at high accuracy, the question of im-
plementing decision for thrust cut-off in the best way is con-
siderea. At the 15g maximum thrust level the step size of D

is about 1/3 ft/sec at 1400 it/sec. If a decision for cut-off

type is the conventional which tests for
o] <o
(]

then D could be chosen 0. 25 ft/sec without chance of passing
over the decision region. The rms error using this criterion
is at least 0.25/v 3. 0.15 ft/sec assuming precise computation
of D. This inherent error appears to be entirely consistent
with state of the art system accuracy requirements. Note

that the step size of dV_, computed at low rate is determined by

L
the gravity magnitude of 1g and the low iteration rate. For

several low iteration rates the step size of dV L is:

IR Max Step Size of V|
15 it/sec 2.7 ft/sec
50 it/ sec 0. 64 ft/sec
100 it/ sec 0. 32 ft/sec



For 1 ft/sec error at launch as a maximum overall tolerance,it

is concluded that AV}, should be computed in a gingle increment
DDA at least at 70 to 100 it/sec. This exceeds the iteration

rate of a conventional DDA with the large program for a full
aerospace mission assuming state of the art:word rates. Three
bit increment QDDA computation with 2nd difference communcia-
tion could as a result of the high rate computation of dV;, compute
d®Vy (from which dVy, is obtained) at <15 it/sec in internal com-
putation and meet the accuracy requirements. Decision criterion
for thrust cutoff is

IDI‘DO‘

with the conventional decision mode (which generates a decision
command consisting of the sign of a quantity in y register). The
thrust cut-off is determined by the logical product of two decision
command gignale generated by programming inputs to y, and y,
reglsters in the DDA to form

) 4 B -D: + D* (X1-52)
va = +D* + D3 (X1-53)
Becaugse the QDPU can be programmed for arithmetic and
decision operations in parallel the two QDPU which compute
D* can algo generate the decision quantities for thrust cut-off.

The program and operation of the 2QDPU uged for thrust cut-off
‘computations are presented in the schematic of Figure 11-7.
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NOTE: (1)

(2)

Multi-increment dK,, dVE quantities (provided at low rate)

are used at high rate to obtain high rate accuracy.

Formal integrator equivalent, neglecting high rate computations,
with dVEL, dK quantities is 2QDPU = 6 DDA Int. An ordinary
DDA could not reduce granularity of dVEL. dK which have large
Frogram calculations without lowering iteration rate an un-

acceptable amount.

The QDDA performance, in the thrust cut-off function, is
estimated for a number of input processing iteration rates for
which additional input processing functions may be executed

(at the same rate) which have program lengths expressed in
DDA integrator count which total less than or equal to tabulated
values on the basis of internal computation at 100 iter/sec

with 5200 DDA integrator program count (assuming 1. 4 x 10°

words/sec):

Input Processing Iteration Thrust Cut-off Residual Input Processing

Rate RMS Error Programming Space
4500 iter/sec 0. 03 ft/sec 0
1400 0.15 12 to 17 DDA Integ
700 0.35 35to 44
400 0.60 60 to 80

15 g Thrust Acceleration assumed (for the 10g case lookat rows
with iteration rate 1.5 times higher for performance)
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The estimate of residual input processing program space
assumes { QDPU = 4 DDA Integ. in internal computation and
uses the formula (Word Rate) = (mlmp Proc) (NQ Residual I!tlp
Przoc) + (IR
QDPU.

p) where N__ is a number of

Int Comp) (NQInt Com Q

Assuming that the tolerable rms error in thrust cut-off is 0. 4
ft/sec, it is seen that, an extensive amount of additional input

processing is available at>700 it/sec for a 14, 000 word rate.

Strap-Down Computations in the High Rate Input Processing
Loop of the QDDA - Input processing for strap-down computa-
tions is obtainable at very high rate in the QDDaA using multi-
iteration rate time-sharing with internal computation. The
case considered is that for pulse stream transducers for the
rate gyros {maximum pulse rate 10*/sec) and state of the art
bit rates for the digital computer. Figures 11-8, 11-9 and
11-10 show that strap-down computations for inertial reference
(inertial velocities are obtainable with required precision in
internal computations using the strap-down computations) can
be programmed for multi-increment computation (single pre-
cision®) in 5 QDPU. At 1270 it/sec the input angular increment
is only 3 bits multi-increment hence single precision effected
by 3 bit or 4 bit multi-transfer is entirely adequate for state
of the art pulse stream transducers. Thrust cutoff calcula-
tions requiring 2 QDPU in the same input processing loop of 11

word time cycles add to input processing requirements which

‘Singlc precision is 3 bit increment computation in proposed
QDD A.
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Figure 11-10, Strap-Down Computation QDPU Program Type for
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total 7 QDPU. In time-sharing with internal computation this
yields 1270 it/sec input processing, 90 it/sec internal compu-
tation assuming, state of the art, 320, 000 bit hardware. Pro-
grammed internal operation of QDPU is of two types for strap-
down computations as indicated in the diagrams. External
inputs are drawn from the preprocessing loop which collects
pulses as a buffer, emitting accumulated angular increments
with fixed format to the QDDA where used as associated Ox of
each multi-transfer unit when the QDPU program instructs no

selection of 61, 62

. 63 register for Ox.

D. EvaluationofQDD®A For Computations of Energy Management
During Re-entry

1. Computation Structure and Comparison of GP and QDDA
Performance - The re-entry computation program (assuming
the unified control approach as formulated by Daniel
Dommasch) is very large (of the order of 250 DDA integra-
tors). Re-entry is the most critical phase of the entire
mission since the re-entry corridor is quite narrow due
to structural limitations and maximum allowable heat input
to the vehicle. The pitch acceleration command computa-
tion,essential to temperature control,involves decision
selection of functions involving division and square root
which are shown to be very efficiently generated in the

QDDA (analyzed {n Chapter XII). External inputs important
in the energy management computations,are pitch and roll
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angles, wall temperature and the time rate, and air density
and altitude. These quantities change at relatively high
rates during re-entry and present aninsurmountable compu-
tation problem to a conventional DDA in generating the
extensive vector transformations, spherical triangle solu-
tions, energy and aerodynamic computations of the
program, and the final command signal calculations.
Recent efforts in aerospace guidance and control have been
predicated on allocation of the bulk of these calculations

to the GP section. The copious supply of sin, cos, arc

sin, arc and arc tan calculations in the re-entry program,
each one of which requires 0.4 milliseconds in advanced GP with
fast multiplier and clock rate pressing the, state of the art,
are a contributing factor to the low iteration rate of the GP
program (10 iter/sec). The QDDA can increment these
functions in the indicated word times by executing the

indicated operations:

d sin D= cos 8 d0 Sinusoid

dcos@=gin 8648 ( Double Precision for Inputs) 1WT (XI-54)
4 (X1-55)
dé = L3 Arc oin x (X1-56)
1l- Single Precisi -i t 1WT -
x (Single Precision non-input) (XI-57)
2 -xdx
dj l-x
- U l1-x (X1-58)
e .-‘, = ] Arc Cos x (X1-59)
l-x (Single Precision non-input) 1 WT

-xdx

d'ﬁ-x "Jl-x
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dp = —9x (XI-60)

1+ xz } Arc tan x
(Single Precision non-input) 1 WT

d (1 +x°) = 2xdx (XI-61)

Without pressing, the state of the art, a word rate of 20, 000
words/sec, the QDDA can update any of these quantities in

0. 05 milliseconds which implies a speed advantage of a factor
of eight over the advanced GP. For operations involving
products the speed advantage can be deduced as follows.

The example GP has an operation rate {(for multiplication)

of about 60 usec. The QDDA on the average performs compu-
tations involving products with the capability of 4DDA
integrators per word time executing 2 product incremen-
tations in parallel. Thus for a 0. 05 millisecond word time the
average product time 25 psec implying a 2. 4 factor of rate
advantage for the QDDA for products. A conventional DDA
can add variables as integrands without cost in time but not
independant variables which require quantization. The QDD*A
does both without cost in computation time. The comparison
GP requires an operation time for add or subtract hence it is
just as slow as for multiplication. Assuming half the
operations in re-entry are add or subtract the net speed
advantage for add, subtract, multiplication is a factor of

4.8. Including the trigonometric performance the net speed
advantage in computations on continuous variables is a

factor of 5to 8 or say 6. 5. This estimate holds »nly for
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variables which are well defined throughout the desired
phase of operation. The problem, arising from singularity
and other discontinuity of variables is a most prominent
DDA programming and design problem. The approach of
allocating the bulk of real time computations to an incre-
mental computer offers the possibility of a mechanization
with simplified GP or special computing unit of reduced
complexity given the primary task of conditional whole
word communication and discontinuity handling functions.
Since in critical cases a singularity is the result of a co-
ordinate system, the occurrence of singularities is usually
at easily located points. Usually only one source of singu-
larity occurs within a given comparatively long time inter-
val.* Therefore, a simplified GP or special computing unit
of modest rate capability could devote, essentially, full
time to handling a single singularity effect in a program
branch. Certain DDA computations with discontinuities
can be handled ueing decision modes, specifically, includ-
ing those in which cognizance of the valuelsssness of a
singularity variable at the time of singularity is taken into
account by ignoring computed values; permanent error :s
avoided by special programming. A clearcut example of
this capability is given by the QDD*A doppler dampany
program presented in section X1l. Decision modes are
essentially free in proceseing time in the QDDA since full

*Doppler damping program analysis shows how the QDD’A can handie an
important problem in which this condition is not required.
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arithmetic capability (none being required in decision
modes) is utilized in parallel with decision operation.
While the scope of this study program has not permitted full
evaluation of all specific singularity problems which arise
in aerospace applications, it is believed that by careful
programming, utilizing the principles exemplified in the
doppler damping QDDA program, it may be possible to
obviate use of the GP for computations involving isolated
singularities. The extent of additional programming to
accomplish this result, if appreciable, would appear to be
<20 percent at most. A minor mechanization elaboration
for step changes as occurs in longitude can be implemented
by decision command for sign reversal of a y register
variable e. g. from +w to -w longitude. The major speed
advantage of the QDDA over GP is in this case retained

in the proposed system of reduced hardware complexity.

E. QDDaA Program For Total lsitch Acceleration Command In
Re-entry - The structural limitations and maximum allowable
heat input to the vehicle are critically determined by the total
pitch acceleration commanded by the digital computer during
re-entry. A unified control approach developed to guide the
missile to target point within these constraints involves a
total pitch acceleration command computation that uses
decision selection between two closely related command
alternatives. These command alternatives computations may

be expressed in the form
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(o]

0. =

e ® t.fx/n -x Where0<x<)\s=const (X1-62)

where the selection of sign is according to the test
F(t) <x

It will be shown that the QDPU is highly efficient in executing
the basic control function as a result of capability of parallel
divisions with common divisor in the single QDPU.

Introducing the uoutiouvd x/\ = r obtain,

S X . Yler-x) _y(er-x
Wt T x"ar-xar-x ,U‘#“, (X1-63)

-
The differential of § o« P8Y be shown to have the form

.o -atdx'd“.

(XI-64)
det . x =-1/A

where dU = dy & d(W)
dW = d (yR)

a-ufx’?

The calculation form for d.O; and d.O._ is seen to be obtained in
the common divisor form. Further, because of the natural
feedback of output, the only programmed inpute are x and u for
each calculation, which are the same. A single QDPU can
therefore generate '0; and 3. from x and u uesing the four

X1.57



transfer capability in single precision mode (3 bit multi-
increment in the proposed QDDA). The computation of W and

R is given by

drR - . Rdx (X1-65)
2x
dW = ydR + Rdy (XI-66)

Both of these calculations are executed together by one QDPU.
Selection of 0+ or '9'_ is provided by the ordinary decision com-
mand which, in the QDPU, is executed in parallel with a double
precision calculation because it is an essentially free operation.
The incrementation of 0+ and .O._ given x, u in one QDPU re-
quires one worc time, whereas 6 to 8 word times are required
by a conventional serial DDA. Even if executed in one word
time in parallel conventional single increment DDA, the result
would be orders of magnitude less accurate because of the
relatively high rates of change of x. The generation of R, W
given x, y by one QDPU in one word time has a 5 or 6 DDA
integrator equivalent. Figure 11-11 shows a schematic of the

QDPU program.

dR > d du du-

dx 3&

d dw du+t
2QDPU = 11 to 14 DDA Integrators 3

Figure 11-11. Schematic of the QDPU Program for Pitch Command During
Re-entry
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F. Challenging Airborne Digital Computer Routines and Possible

Aerospace Military Function Computations

1.

Introduction - A number of airborne computation tasks

are not successfully handled by conventional DDA

including:

Doppler damping in airborne inertial navigation.
This computation, which presents problems that
may prove important in aerospace applications is
analyzed in detail in the next section and pro-
grammed for the QDDZA as a subroutine in a full
aerospace mission computer. A computer
specially designed for airborne navigation alone
could be designed to meet state of the art accuracy
requirements by elaborating conventional DDA
with the developed digital Stieltjes integration

algorithm and 2 bit increment computation.

Toss Bombingand Fire Control - These computa-
tions require high rate variable computations with
modest to intermediate accuracy requirements over
short periods. Multi-increment computers
surpass the conventional DDA in rate handling
capability by variable (single) increment
computation, however, where more than
modest accuracy over short term is required,the
multi-increment ODDzA is clearly called for. The
toss bombing program presented in Chapter V1 ie
directly applicable to the multi-increment QDDZA
(by communicating second rather than first
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differences to the modified QDPU). The pro-
gramming of double precision mode in input
processing associated with earlier stages of toss
bombing computations would offer an additional
level of accuracy improvement. Fire control
computations involve computation requirements
similar to toss bombing bombing but.in certain
cases,could be much more demanding from the
standpoint of accuracy, therefore could require the

QDD?A.

c. Digital Autopilot and Replacement of Stable
Platform Analogue Computers - Mechanization
savings are possible by use of a digital computer
capable of handling such functions as autopilot
and stable platform leveling.

The possible aerospace military computation functions
are surmised as similar in computation structure and
computation requirement types to the challenging
airborne digital computation tasks enumerated above.
The requirements are expected to be more

demanding.

Most of the computation problems of the class of
computation routines discussed in this section are
similar to those in the doppler damping problem
analysed in the next section.



G. Doppler Damping Computations For Conventional Navigation
(Multi - Increment QDDA)

1. Introduction - The conventional DDA is at best marginal*
for that essential function in long term navigation
(> 2 hr): doppler damping. Reasons for low capability
in doppler damping in a DDA is (1) Damping is executed
using doppler velocities measured in rapidly changing
craft coordinates which must be transformed to inertial
coordinates (2) Operation is subject to periods of
valueless information (for damping) which can result in
large errors if damping is used when craft orientation
brings the resultant doppler beams to vertical orienta-
tion**, Several conventional computation approaches
using DDA -GP combinations have been found lacking.
They involve either:
{1) The approximation that craft orientation is on the
average approximately horizontal and can be assumed
so continuously (leading to pcor results in flight test),

or

(2) The supervision of the DDA by the general purpose
computer in error sensitive portions of the routine.
As the GP has a large program generally it turns
out that the iteration rate of the GP may be so low
that the GP supervised variables change excessively

between iterations making the supervision inadequate.

¢ Marginal in low accuracy navigation, inadequate in high accuracy navigation.

#eDgspite the fact that & conventional DDA has equivalent decision modes.
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The approach of GP supervising several times per GP
iteration reduces this inadequacy, but at a corres-
ponding price in programming length in an already
cramped system, or by further reducing GP iteration
rate. In the chapter on computation capability the
conventional DDA is shown to be lacking even when

dampking accuracy is assumedtobe substantially sacrificed.

The QDDA will be shown ideally suited to doppler damp-
ing in conventional navigation without GP supervision by
virtue of QDD*A features of:

(1) Multi-increment computation

(2) Relatively high iteration rate

(3) Decision modes enabling damping turn off and

pseudo variable computation (described below)
(4) Double precision mode for error sensitive

computations e. g. sinusoid.

The quantitative performance of the QDDA is given along
with conventional DDA in the referred to computation
capability analysis. The equations for doppler damping
which later will be put in form for QDDA computation
involve use of altimeter information to obtain vertical

velocity information.

2. Raw Equations for Doppler-Altimeter Deduced Inertial

Velocity « Two doppler beams in rigid craft coordinates

A - AX 2 Cy+ Bz (XI-67)
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where A= -ginx, B=gsinx cos v, C=cosxcosv
yield from the doppler radar transducer, the starboard
and port components
P (P, + P P=l E'_:P_) (X1-68)
4 At ! 4 At

from pulse rates P., Pp which are related to velocity

components
B
=2 = = AV—=+CV=—+BV- (XI-69)
At 2 x Yy z
Po 2
£ 2 uAv- - CV- + BV- (X1-70)
At 2 x Y z
hence
§= AV=- + BV—-, P=sCV~- (XI-71)
x 3 y

Craft to earth velocity vector transformation is
V_=V=cos 0 + V= sin § sin 0 + V= sin 0 cos § (XI-72)
x x y z

V =0 +V=cos § - V=gin $ (X1-73)
y y z

Vig=-VSaino

where Vz = :% » h baromatric altitude. Doppler-
altimeter  deduced velocities in computer inertial

coordinate ovientation,

+ V;cou Osinf + V;con #cos § (XI-78)

VxD = Vx cos_ - VY sin x (X1-75)

VYD - V,I cos_ + Vx sin x (X1-76)
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Computation Problems and Special Computation Methods

An important feature of the doppler damping equations is

that,for certain craft orientations (primarily pitch angle

up so that radar beam is vertical) the equations do not
yield a solution for horizontal velocity, The successful
use of a DDA in performing these compﬁtations clearly
requires that the DDA be capable of decision functions
as well as high rate handling capability. The specific
decision functions required are:

(1) Damping turnoff when craft orientation renders
doppler-altimeter deduced velocity unreliable.

(2) Pseudo variable computation in place of a variable
with unacceptable analytical properties for DDA
computation: i. ¢., the replacing of a variable with a
decision modified variable which is equal to desired
variable when the variable is used (during damping)
and when the variable is not used is a well behaved
variable for accurate DDA computation. Clearly,
the pseudo variable computation approach is a funda-
mental one in broadening the scope of DDA application.

The stated implicit form of the damping equations could in
principle be solved only by a DDA with servo mode. The
generally low accuracy performance of servo computation
is further degraded to unfeasibility for this application
because of the peculiar analytical character of the
calculations for certain craft orientations. The orienta-
tion sensitivity is revealed by the explicit form of the
equations stated:



dh (X1-77)

V; = P/C, Vz = - at
B
1 . S
V == -\ V +V-sinf + =caos § (X1-78)
x U ZB y B
1 S . .
V == -vYy +V- c¢-=1sin0sin$ (X1-79)
y u Zp Y B
where

A
u-dn9+§ cos O cos §

k-cono-%linOcm!

A
vaz sin @

gngcm'

r,-uinOco.l-r%conO
Note that u = 0 for cos §~ 1 when 0 = Qc is such that tan Ocaog.

a situation which can occur with relatively high frequency during
craft maneuver or bad weather. When the critical uitch angle Oc is
approximately taken by the craft two error effects degrade compu-

tation accuracy:
(1) Scaling of a reciprocal calculation if used is such that

granularity is unacceptable. Looseness of a servo loop,

if used in implicit calculation,degrades accuracy.

(2) The factors 1/. of variables of each of three independent
information sources (two doppler velocities and altimeter),
each subject to independent errors, cause unacceptabdle

noise amplification for ¥~ 0.
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In general, for a computer, a decision mode must cut off damping
in consequence of error effect (2). In order to prevent rate
limiting or servo loop instability, which can permanently
nullify the computation accuracy after a transition through

4 =0, it is necessary to either reset DDA computed variables
(expensive and usually inadequate), or compute in pseudo
variables (defined above). The QDD*A may always compute

in terms of amenable variables prc;vided 1/ may be available
Wwhen damping is on. The other variables require high rate
handling capability which the QDDA is designed to possess.
Generation of 1/ when damping is on does not require that

1/4 be generated when damping is off. Because the craft
orientation pattern is not a prioriknown certainly 4 must be
available with good accuracy at all times. These facts

together with the requirement of overcoming error effect (1)

suggest the computation of the variable 1/4* where

1/ue = 1/ Bzp
1/n By

choosing damping turn off when g < Ho where B, is an

appropriately chosen constant. It is seen that 1/u* = 1/

when damping is on hence no approximation is made during
periods of useful damping information. Appropriate “o
selection also ensures that no scaling problem is presented

in reciprocal computation. This type of computation used

in 1/#* computation might be called function limiting. The
QDDA has a function limiting mode which is highly efficient

in equivalent integrator performance because several other
operations may be performed in parallel. The hardware

cost of the mode is minor because the other parallel operations

are achieved in the normal QDDA program.
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QDDA Calculations Involving Decision Modes for the
Doppler Damping Case - The QDDA computations of the
primary feedbacks dDyx, y for doppler-altimeter damping
should include the following:

®
dDx = K,dCx (X1-80)
dDy = KidCy* (XI-81)
where

dc,"",y- dCx, y fu2uo0 . {daifuiuo
=

0 u<uo' 0 ifu<u,
(a Vxdt) -ao (Vx1dt)
dCx L a' (XI1-82)
dic. = (a Vydt) -ao (Vy1dt) (X1-83)
} 4 a*

the quantities Vx1dt, Vyrdt, being the inertial velocity
increments computed in the inertial navigation routine,
and adVy, MVY being the doppler-altimeter deduced
quantities of the damping routine formed by quantizing
component terms separately computed. Were computa-
tion precise,then when e = a, dex, y ® E’La’.z'ﬂ -
Vx, yxdt. The chosen computation procedure is pre-

ferred rather than computation

(2 Vx, ydt)

dCy, y" a® - Vg, yId' (X1-84)
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which requires less programming. This occurs because
any long term errors which develop in division, in the
chosen procedure, have the unimportant effect of changing
the damping constants slightly rather than destroying the
accuracy of doppler deduced error velocity as in the

simpler computation.

The QDPU has the capability of utilizing one decision
command signal (per word time). A marked input to the
6m register identifies the decision command signal D
{(where D = 1, 0) which then, according to programmed
decision mode of the QDPU, modifies transfer action of
bm register contents after the unmarked inputs to bm
have been used to update the Sm register. This readily
mechanized design feature accords especial efficiency to
the QDPU in the decision modes since otherwise normal
programmable inputs distributed to the three § registers
presents the maximal variables for operation, and other-
wise normal programmable transfer action retains full
operations versatility. The QDPU program schematics
for operations involving function limiting and signal cut-
off for the doppler damping application, are presented in
Figures 11-12 and 11-13 on the following pages. In this
example of function limiting, 2QDPU perform* the pr;:-
gram routine of 10DDA integrators (duplicated operations
in X, /a® calculation reducing DDA requirements from 14

to 10). In the case of signal cutoff operation, exemplified

¢In terms of hardware processing rate (actually the greater precision of
QDDA by multi-increment computation and algorithm amounts to an
additional speed advantage).
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in the second QDPU schematic, the efficiency would
probably be reduced somewhat from the latter performance
in certain other examples than doppler inertial damping.
The capability (and requirement inthis case) of whole word
drift correction called for external input, external output

quantities, leading to efficiency of 1QDPU for 5 DDA

integrators.
d’c
d@v_dt) R >
wr ¢
Program
Schematic ]

for Calculation

Involving '""I__.
Function Limitingl — — — o — o — =
{by conditional 8

transfer)

b—qn——————qrd

W

d*a
D

;—4 K,dC

K
S —— _-__z--_.r-_.._.

I| vyt |

Computation of Iy dC_ = K ° [(Cv‘dt) - .°<v"xdﬂ

«s

1 QDDU ® 7 DDA Integrators

Figure 11-12. Doppler Damping Without GP Supervision (Multi-Increment
QDPU Using Decision Mode)
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Inertial Setting bv

£ +8% -8% S, ] Ry |—-py

dvx

r Mv,‘dA LTS

L_Z

a® (KG)

Afavae

L Inertial Setting: bwy ' S

v

QDPU

Program
Schematic

for Calculation
Involving Signal
Cutoff {(by Condi
tional Transfer)

e i Sl M

Figure 11-13. Doppler Damping Without GP Supervision
{Multi -Increment QDPU using Decision

Mode)

Asz'ycm
——»

Computations: Doppler Damped System Velocity with Automatic Damping
Damping Turnoff on Decision: and Drift Rate Corrected

and Scaled Gvro Rate Signal Calculation.

NOTE: 2DDA Integrators equivalent accorded to whole word drift rate

" correction of input and output of the computer. Since in a conventional DDA, an

R register initial bias of an integrator generating the variable du merely

makes the quantity u biased it is seen that if u had drift error - b“t that an

extra DDA integrator is necessarv to generate the correction Obut. In the

QDDA, the correction is essentially free.
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In the decision mode, the first input to 6m register picked
up is used as a decision variable to modify transfer of 6m
content s formed by updating with the remaining inputs to
6m. The decision command variable is generated in the
parallel channel of input processing calculations since no
multi-transfer operations are required for decision nor

available in fully efficient input processing.

The K, dCy computation may be regarded as having only
the performance { QDPU ¥ 3 DDA Integrators since ina
DDA the quantity d(K; /a*) would be available in K, dcx
calculation. The subroutine is evaluated 2 QDPU £ 10 DDA

Integrator.

Single Precision and Double Precision Calculation Alloca-
tion - One of the most powerful features of the QDDA de-
sign is that it enables, according to the particular computa-
tion requirements of a calculation routine, the allocation of
appropriate computation capacity to meet those require-
ments. Analogous to the general purp.se computer, which
is capable of double precision programming, the proposed
incremental computer may use brute force where necessary
and not otherwise. Because the QDDA has been designed on
a more fundamental logical level than the conventional GP
it can achieve double precision by arithmetic unit trans-
formations rather than by data flow programming. Thus,
double precision is obtained with only a reduction factor of

2 in instantaneous processing rate, whereas in a GP the
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the reduction is 4 to 7*. In the particular problem of
doppler damping, analysis indicates that double precision
(input processing) is not necessary throughout the calcu-
lation because 0.2 percent accuracy is quite adequate.
Special subroutines, however, require double precision
which are error growth sensitive and which enter in the
computations in such manner that damping does not attenu-
ate error buildup. The sinusoid calculations on input
angles are the case in point and have been allocated double

precision.

6. Doppler Damping Program for QDDA Computation - The
doppler-altimeter deduced inertial velocity calculations
and a portion of the blended calculations for feedback and
inertial operations are summarized below in diffe rential
form. QDPU allocation is indicated and evaluated
relative to the conventional DDA (in cases where the relative
evaluation is deducible only by sets of QDPU, corrections

are interspersed to give the correct total evaluation).

*The design approach developed in this study could be applied to the design
of a GP with adaptable precision and maximal speed performance.
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bt
d (vxdjwydt) =d = [' vivieken ]djwydt 1QDPU = 5DDA  (XI-85)

Inertial Accel Bias Corrected Cutoff Integrators
dfw at = sF' 4 Ju_dt + b at (XI-86)
y y y y
External Output
(Gyro Torque)
Analogous for x~y, y-ex 1QDPU = 5DDA
Integrators
[(aVxdt) -ao (Vxpfi) 1QDPU = 7DDA
y— (X1-87)
dKiCk = Ky « Integrators
Analogous for x - y 1QDPU = 3DDA
Integrators
where | a(V -V )dt sdu +df_+v -[ooV dt]]
x x; x x x Xy (X1-88)

and V,‘I {s inertial velocity
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dBcc = So8 9d cos (OA;- lcou 6d cos ¢ (X1-89)
B

1QDPU = 5DDA
Integrators

(Pg#Ppy) dt
de, -cos ¢ | —— (XI1-90)

4At B/)

dBg = cos ¢d co-(OAj :inOd cos ¢ (X1-91)

B
1QDPU = 5DDA
Integrators

(Pt P,)dt
df =  gin [T&E)\LJ (X1-92)

d(V_cosx)=dV cosx+V dcos x
X X X

1QDPU = 4DDA Integrators (XI1-93)
d (Vy cos y) = cWy cos x + Vyd cos x

d(V_sinx) =dV _eginx +V od sinx
x x x

1QDPU = 4DDA Integrators (XI-94)
d (Vy sin x) = dVy‘ sin x + Vy'd sin x

cos0-B_ Jal?s v dt\\
L~cos cs] fn v.n( zp

dv =
x

wi>

fIWT = 3DDA Integ  (XI-95)

(P.+PP) de . (P.*Pp)dt

af

4AtB/\ 44tB/)
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. AS A
du = gin ¢ (dﬂy +dg ) +sin ed [ gV, (v, d)- Fan

y B B
1WT = 4DDA
al25 (v ay=25% v, (X1-96)
’B B B
sin ¢ [(P,-Pp)dt ]
T aren (XI-97)
1WT = 3DDA Integ
6 [(P,-P,)dt
d.ﬂy _ cos L(p, b) ) (XI-98)
44t ¢/
dsin® = cos® d¢ 1 Double Precisi (X1-99)
IWT = 2DDA Integ (_CUD:e Frecision) )
dcos® = «gin® d¢o Mode (xi- 100)
dsin® = cos® do (XI-101)
ouble Precision
IWT = 2DDA Integ Mode ) (XI- 102)

dcos® = -4in® 0

*
Calculation uses

9 QDPU in Single Precision ® 40 DDA Integrators
2 QDPU in Double Precision® 4 DDA Integrators

In terms of pure rate of routine processing possible, the result is ! QDPU =

4 DDA integrator multi-increment and double precision sinusoids raise

effective speed by a supplementary factor in excess of 8 i.e., =30 times

conventional DDA rate.

* The equivalents in DDA integrators is one of word times per operation
ignoring QDPU superiority in algorithm multi-increment and 8ouble precision.
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CHAPTER XII

PROGRAMMABLE TRANSFER OPERATIONS OF THE QDPU
AND QDPU PROGRAMMING CODE STUDIES

12,0 INTRODUCTION - The level of versatility of the QDPU, reflected
in the aerospace modal computation program studies of Chapter XI, requires
a certain minimal set of programmable transfer operations. A mechani-
zation can realize the minimal set in many equivalent ways as a result of

the equivalence of members of sets of like registers and of transfer units.

The problem of developing a programming code which implies efficient
mechanization involves attaining the minimal programmable set with a

code of acceptable storage and decode simplicity, Mode action of the QDPU
is effected by programming transfer operations and output criterions ac-
cording to a program code, which is stored in the auxiliary memory as-
sociated with each QDPU, A program code will be delineated which enables
programming all the transfer actions (each involving the 4 multi-transfer
and 5 single transfer units). Having formed a concept of the minimal re-
quired set of programmable sets of transfer actions, the problem of de-
termining a program code which may subsequently enable economical mech.
anization is investigated. The optimal code depends in considerable degree
on whether core or drum memory is used. Generally, however, the
factors which measure code optimality are the code length and decode
complexity. The minimal code length is about 9 bits presenting, in short
form, however, a more complex decode logic. On the other hand, the
same program expressed in code of length 16 to 20 bits can have relatively
simple decode logic but requires more flip flops. In the following analysis,
the primary objective is to define the minimal set of desired programmable
transfer operations of the QDPU, on which a code for minimum hardware

costs may be derived,

Xu-1



The programmable set will be expressed in a code of intermediate length
which may serve as a base for developing an equivalent code for the QDPU,
efficiently adapted to the mechanization type. Eachmulti-tr nsier unit, MT, and
singletransterunit, ST, must be assignedineach progranmed QDPU mode

action to have:

A. a register, the contents of which are transferred by the unit

(a b or y register).

B. a register, the contents of which determine degree and kind of

transfer, i.e. (independent variable) 0 register.

C. a register or registers to which the transfer unit results are
added (if added), i.e. R register (or for internal transfer) if

it were mechanized a y register.

The statement of the programmable set is facilitated by the register labeling
indicated in Figure 12-1. The identical function of the same register and
transfer types, that is 0 registers, y registers, R registers, multi-transfer
unitsor sinzle transfer units and assumption of complete programmability

of inputs implies that the same computation can in principle be effected in

a large number of equivalent programs of transfer actions. This indicates
the probable existence of a simplified program code for a subset of transfer

actions which call for all desired modes of computation of a perfectly

general code.

Before developing a simplified QDPU program code, consider the impli-
cations of complete programmability of transfer operations. Each of 4
multi-transfer units would have independent variable selections corre-
sponding to any one of 5 0 -register contents or full rate or zero rate, and
transfer variable selections for 3 y registers. The results can go to R;
or R, or R- and R:, which implies 252 alternatives. Each of 5 single

transfers would have independent variable selections corresponding to any
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of 50 - registers or full rate or zero rate. The results can go to any one

of 3 y-registers or to R; or Ry, which implies 175 alternatives.

Ry >
|
|

6 :
|

n }
|

] |
r-’[ a |
L e e
6m

Ym

T T Tt T "'
|_.47 bb :
|

Ys i
|

6. =
L
Ra

Figure 12-1. QDPU Register Labeling.

12.1 MULTI-TRANSFER AND QUOTIENT ALGORITHM MODE CODE -
The four muilti-transfer units are assigned y values which need not be pro-
grammable. The outputs of the multi-transfer units go either to Ry or Ry
registers. No loss of computation versatility results by requiring transfers
oty, and yn, to R, without programmability. The remaining trans-

fers of yy and Ym should go to Re or R, programmably. The case of Ym

is of use only in double precision mods; hence, it is called for in that

mode only.



Thus, the multi-transfer operations '1‘n update R registers Rn according to the
equations,

RY = MT; {yys ¢y Ry, ) (X11-1)

Ro% = MTy (y, . 8, RY ) (X11-2)

e 4 s .
(Ry or Ry ) = MT; (ya, Axe, (R, or Ry _ ) )accordingas M=1, 0 (XII-3)

e L L L
{R, or Rg) = MT, (ym, Axe, (R, or R,n_l) ) accordingas M =1, 0 (XII-4)

where m, M are multi-transfer unit programming bits, and Axn are programmed

independent variables which for a Axn may be §,, Gm. 83 or x where

0 for Ax, and Axs
xs= 6‘ for Ax, (if selected induces quotient algorithm)
6‘ for Ax, (if selected induces quotient algorithm)

All Ax selections are defined by 8 programming bits

4, d, 8; dp Bs ds A dy

Complete versatility of multi-transfer modes is obtained by the set of program -
ming bits

mM 4, d; 4 4y Oy do b4 do

These bits also determine certain actions not indicated by the R update equations:

A. Whenm = ], M = ] double precision mode in which all transfers to

R, occur.
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B. Whenm =1, M=z ], y, instead of y, is used in Ts;thereby, ob-
taining double precision of R, transfers while not using the y,

register for it.

C. Whenm =1, M = | the y, register is used for decision command

output of R, channel according to sign of y,.

D. When m = 0, M = 1 double precision with MT,, MT,, to R, and
MT,s, MT, to R, is called for (there being no decision command

mode in this case).

E. When 8x; = §,, quotient algorithm in R, and when 4x, = 8,

quotient algorithm in R,.

12.2 SINGLE TRANSFER, DECISION RESPONSE, AND INTEGRATION
ALGORITHM MODE CODE - The five single transfer units are used to update
y registers and R registers programmably. The update of y registers depends
on whether constants are desired in certain y registers or decision mode ac-

tion is sought.

The update of R registers with single transfer is automatic for 8,, 8, toR; R,
respectively if non-quotient algorithm (Ax, ¥ §,, Ax, = §,,) and if Ax, = 8, is

automatic for §, to R;.

The following equations indicate single transfer unit action according to re-
sponse and single transfer programming bits D, I,, L, L (it being understood
that the operations indicated other than single transfer and logical multiplica-
tion with decision command variable Dm serve merely the purpose of defining
applicable equations by substitutions of 1 or 0 for program bits):

1, 4R, +1; 4y, = ST, (S;) (X11-5)

by =D _OST, (I, 8, +8_T) (X1I-0)
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DAy, + DAdys = I3 « ST, (D + D&,) (X11-7)

AR, = 8T, (8a) if &x; = 8 (X11-8)

ARy = §Ts (8y,) if Ax, = 8y, (X11-9)

Integration algorithm for y, differs fromy,, Yen if an algorithm bit A is 1.
The first half of the series of QDPU has lagged algorithm unless A= 1 in
which case y, has unlagged algorithm. The second half the reverse inter-
pretation holds. A summary of single transfer programming bits is

DLLLA
not including 4, dy = 00, &¢ dg = 00 for ST, and STs.

12.3 SUMMARY OF QDPU PROGRAM MODE CODE - The total code is

mMbd 8pds Aeads 8,4 DL, L I A

totaling 15 bits.
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CHAPTER XIII

LOGICAL DESIGN INVESTIGATIONS OF SECOND DIFFERENCE INCREMENTAL
COMPUTERS WITH CONVENTIONAL AND GENERAL (QUOTIENT) ALGORITHM

13.0 INTRODUCTION - The new concepts of multi-increment computer
design with second difference computation, communication, and 8 registers,
developedin Chapter VIland verified in simulations describedin Chapter IX,
clearly present a wealth of new factors in logical design. The relatively high
resolution of first differences, implied by computation of second difference
singleincrements for the bulk of variables typically involvedin internal computa-
tion ratherthandirectinput processing, provides a basis for attaining new levels
of precision where communication structure may have the same simplicity as
the conventional DDA. The basic digital processing unit (generalized DDA
integrator qr DPU) is capable of multi-increment computation with general
{quotient) J(orithm for the first time and with remarkable digital processing
simplicity. The question arose as to what further digital processings, based
on second difference computation, appeared natural in logical design structure
of the basic digital processing unit granting some license initially in consis-
tency with system function. Results could then be adapted as basic design
techniques for portions of a full scale incremental computer system, with
potentially significant rewards in overall mechanization simplicity.

The first logical design effort was concentratad on the development of a
multi-transfer unit especially adapted to second difference inputs. If the
second difference is single increment, a derived multi-transfer unit which
may be called the D* multiplier, offers a mechanisation simplicity. This
compares to the simplicity of a conventional 3 bit multiplier, capable of an

M bitmulti-transfer, where only the scaling of the second difference input

for single increment limits the value of M. Such a unit in the DPU is capable,
for example, of serial computation of a sinusoid with time as the independent
variable with 20 bit resolution where steps are 10 bit increment. Conventional
design methods would require a multiplier of several times the mechanization
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complexity. In a simulation computer, in generation of analytic functions,
the D" multiplier provides remarkable economy. In aerospace applications
the D° multiplier (evaluated in Chapter V1l, paragraph 7, 3) presents limi-
tations in handling external inputs. Hybridization with the conventional
multiplier as appropriate restriction of application, should be a significant ad-
vance in multi-increment computer design technique. One generalization of
the D? multiplier, which may be called the PD? multiplier, is utilized in the
PDD® A computer (derived in paragraph 13.2). With only slight increase in
complexity over the D° multiplier, the PD° multiplier incrementation of a
product usually requiring two distinct multi-transfers, is possible under the
same conditions on computation variables as in the case of the o multiplier.
A conventional two transfer mechanization for product with the same speed

as the PD° multiplier has flip-flop requirements a factor Z_:_d_ = % times
greater complexity. A DPU with two D* multipliers, or two conventional
multipliers, is capable of exezuting the gcneral (quotient) algorithm. The

D' multiplier offers here the first discussed mechanization saving, provided
scaling of single increment second difference inputs is acceptable. The
second kind of basic logical design development in second difference compu-
tation is that of natural second difference overflow for non-division algorithm,
in which one register is deleted from the originally proposed mechanization.
The mechanization for natural overflow offers a saving relative to the mechani-
zation for general (quotient) algorithm in non-quotient operation. Only the
general (quotient) algorithm has been simulated and verified in simulation,
specifically for quotient operation, an operation which implies, because of
generality, a consistent operation in the less demanding non-quotient opera-
tion (where divisor is unity or a whole word constant). The new overflow
mechanization should be simulation evaluated to determine the level of

roundoff error implied by an apparently reduced residue retention.

The complete logical design of the pD*A incorporating the concepts of

second difference computation, communication and 8 registers for input
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accumulation together with the developments of the p* multiplier and natural
second difference overflow is presented to demonstrate the concrete mechani-
zation of these concepts. Finally, the configuration of a QDD‘a A capable of
full aerospace mission computations, including required input processing

and internal computations at new levels of accuracy, is presented. Estimates

of the flip-flop an.! diode requirements of the computers are presented in
Table 13-6,

13,1 THE DD’ A

A, Structure of pp’ A integrator - The structure of the pD’ A
integrator is suggested by the form of the second difference
of the numerical approximationI ydx. Assuming trapezoidal
integration,¥n + 1 = Z(xnﬂ) ] E(yl + Azx‘) Axi' where y; rep-
resetns the value of y at the beginning of the it_h_ step (so that
Y; is the initial value of y)» At the n_t_h step, the second dif-
ference of Zn is given in equation (13-1).
3 - -. R ] ® ] 8 -
8" 2n = Yoot .3 x +&x Ay +3(dx &y +&'x Ayn+ A" x &%y ). (13-1)
The term within parentheses is the first difference of Axnbyn.
so that (13-1) can be written as (13-2).
3 ] 1
Azn"’r’n* l‘xn’MnAyn’iM‘anyn)' (13-2)
These equations, and the assumption of two-or three-valued
second differences, permit the arithmetic part of the DD’ A

integrator to be mechanized as shown in Figure 13-1.
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dy Je—1y

| dydx dx*dy?

ﬂdb.dzy
dx

Figure 13-1. Arithmetic Mechanization of the DD* A Integrator

Xiil-4

For rectangular integration the term %d (dx dy) is not added

to r. Each indicated transfer is controlled by a second dif-
ferential (gencrated by some integrator), or is always adilitive,
so that cach transfer is simple, second differentials being

only +1, -1, or 0. The over-flow mechanism, producing d’ z,
is the same as that used in the DDA to produce a three-valued

dz.

pD* A Scaling Equations, = The structure of the DD* A integrator
1s further clarified by scaling considerations. The existence

of an X register is a convenient assumption. This is not a part
of the real integrator use of the X register but assists in the

proper scaling of X.



Let n, be the number of places in y, n; the number of places
in dy, ng the number of places in dx and n, the number of
places in X (in each case, excluding sign). Assume ny + nz =
ny +ny. This assumption is natural, and in product formation
in the DDA is necessary. Then the integrator, with the x

register added, has the form shown in Figure 13-2.

v
ng — n‘
dy j
dydx
dx
n

Figure 13-2. Integrator with the X Register Added
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Let Su, for any y-number u, be the scale factor of u, so that

the real value of the variable u is ZSu times the machine value

of u (this being bounded by 1 in absolute value), Let w (du),

for any differential du, be the numerical value of (du) in
Sdu max

real u-units, and let Sdu be such that 2~ w(du) = 1 u-unit;

let w(deu) and Sd°u be an analogously defined. Equations

(13-3) follow at once.

Sy + Sdy

=]
v
]

Sd°y - Sd- (XIII- 3)

3
"

na = Sd" x - Sdx

ng = Sx + Sdx

The proper alignment of the integrator registers requires
knowledge of the weights of (yth) max, (dy d® X) max and
{dx d’y) max, as these functions enter into the arithmetic

operations, These weights are given in equations (13-4).

(yd® x)max = 2SY. ;5% ,-(n3 4 ne)

2 Sv. Sx., -{ng + ng)
dy d° ¥max = 27" 2-m . 2" "2
(dy d' 9max ! (XIII-4)

Sx. ‘v, -(n; +
(dy cla y)max = 2 2-1 & Zs) 2 (n ns)

(v d’X) max is the numerical value of a full r register, which
gives the scale of d’ Z as in (13-5),

Sd"Z Sy + 3x - (n. + ),

W(d'Z). =2 =2 or

Sd® Z = ny + ng - (Sy + Sx). (X111-5)



(dy d®X) max = 2™, (y d? X) max, which assures that the
positioning of dy to permit its addition to y, as required by

its scale, is consistent with its positioning with respect to

dx dy, to permit the addition of dy d* X to the latter quantity.
That is, dy adds to y, m places from the most significant
end of y, and dy d? X adds to dx dy, n, places from the most
significant end of r. Similar relations hold for dx. This shows
that the alignment in Figure 13-2 gives a proper structure for
the arithmetic part of a DD* A integrator. This leads directly
to a mechanization in which each register is held in a channel,
on a drum, or in €Ores, the registers heing processed

serially.

Finally, from n; ¢ ng = ny + ng, (yd® X) max = (xd?y) max.
Although the X register is not a part of the simple DD*® A
integrator, the presence of the register is assumed in scal-

ing x, so that the uge of n, is meaningful.

Input Scaling. = The integrator must have a decoding segment
in addition to its integrating unit. The decoding segment per-

forms the sclection of those outputs which are its own inputs,

ty

and d'x. Secend differentials will now be treated as three-

and their fusion into three-valued second differentials, d

valued, rather than two-valued, to afford greater accuracy.
Two-valued second differentials, however, permit a very
significant simplification in machine design, and should be
used if consistent with accuracy requirements. The fact
that each integrator output is threc-valued does not assure
taat a d?y is also of this form, since there may be several
inputs to d?y. To cnable the input second differentials to
be represcnted in this simple way, the assumption is now

made that inputs to a d®y (or d®x) are scaled as follows:
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The first two appearing in the serial processing of the
integrator have the same scale. Those which appear there-
after are scaled upward by powers of 2 (the third input would
have twice the weight of each of the first two; the fourth, four
times this weight; the fifth, eight times, and so on. The in-
puts to d‘y (or d'x) now resemble a binary number, differing
in that the two least significant digits have equal weight, and
in that each digit mav be -1 as well as +1 or 0. The decoding
process for d‘y consgists of identifving the inputs to da* y, treat-
ing them collectivelv as a numt.er, and then adding this number
into an r register; the final three-valued carry resulting from

this additive process is dzy.

Inputs are selected for dzy from the two d° Z memory channels

Zyand Z3, by code marks held in an extern:sion of the y register.

T4e small register holding the residue of the additive process
is an extension of the dy register. Similar registers are
present for the decoding of d®x. The integrator word structure
is shown in Figure 13-3, along with the atz channels, whiclt

are shared bv all integrators.

r I dax codeJ

y d°y code
B dy ¢y residue |
E dydx I |
C dx [a“x residue |
Lz

Lz |

Figure 13-3. Integrator Word Structure
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Decision
Cummand Mo

Output Siga
ofy

;E: I a’y code
—-E: ' dy Ja°y residue |

Output Modes. - The integrator is completed by adding a set
of code marks in the last bit position to permit sign reversal
of the output, and to make use of u decision process. A mark
at this point in the dy register results in the qutput being set
to 1 or 0 depending on whether or not y is positive. A mark
in the y register results in the normal addition of the dy
register to y or its replacement by 0 depending on whether
the Z channels hold | or 0 at this point. In this way the sign
of y numbers may be used to effectively replace the y number
of the controlled integrator by a constant, in response to a
cut-off signul. The sign reversal mark is placed in the dx
register. An origin mark is also placed in the dxdy register

to distinguish one integrator, as the first.

The final form of the integrator, including an associated

marking channel, is given in Figure 13-4.

2 L r d:x code

OriginMark —fp | ) J dydx T ]

Sign
Reversal

L.
[+ ] 10]o0¢ ¢ 0] 0.000 1Joo- - -0 |

Figure 13-4. Final Form of the Integrator Including an

Associated Marking Channel
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E. Programming For DDA and DD? A. - The interconnection of
integrators required for a given computation in the DD? A is
identical to that required in DDA. The scaling equations
which must be satisfied are equations (13-3) and (13-5) of

13-1B.
F. Logical Equations for DD? A,

1. Memory Structure. - The logical equations will be derived
in terms of the word sturcture given in Figure 13-4, and
the memory structure shown in Figure 13-5. The read
flip-flops in the recirculating channels have the subscript
1" and the write flip-flops the subscript '2'; the r channel
is one bit shorter than the other channels, this bit being
added bv passage through Ajy; the channels in the mechani-

zation to be given do not recirculate.
Ay AsA,

& - | ] lBI r
@ v liLJ ﬁ y

Q _dy lﬁj E:] dy
¢  dydx Iﬁ [-l dydx

a1 ] ™
) 2N

§ Mark ] Mark
&L

W WN (N N N (N

L
7 1]
Q j

Figure 13-5. DD? A Memory Structure

2. Phases. - P; and P, are used to give the Decode and Inte-
grate phases of the integrator, as well as the Idle and Com-

pute controls, shown in Table 13-]. Decode passestoIntegrate
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TABLE 13-1

P, P:
0 Idle
0 1 Decode
1 1 Integrate

at P, P: F,; Integrate passes to Decode at P; F; Fz. Idle
is entered from integrate at the origin mark if the Stop-Go
hutton is down, and idle passes to Decode at the origin mark

if the Stop-Go button is up. The equations for P; and P, are:

SP, = B,P, F,

SP,= B F, F; D, Go
Zpas pz Fl Fa D‘ Stop

G. Decode - The decoding operation for d°y will be treated, that
for d*x being analogous. Code marks appear in B,, and the in-
puts in Z, and Z;. K, is used tu distinguish the first input from
those that follow, and Y, and Y, are the d°y flip-flops. The values
corresponding to the flip-flops states are as listed in Table 13-2.

TABLE 13-2
Y. Y. zZ, 2z

1 1
0 0o o0
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The first input is transferred to the d?y flip-flops, and thereafter
by the scaling assumption given in 13-1C. The value held in these
flip-flops is equal in weight to that of the next d®Z decoded. When
a code mark appears in B; the partially formed d'y in Y; and Y,
is added to the d°Z in Z, and Z;. If the sum is +2, 0 or-2 it is
passed on to the next code position, where the d® Z has double the
weight of the last. If the sum is 1 or -1, the residue bit in C; is
used. The appearance of a 1 in C; records a deficiency of 1 in
what was transmitted in Yy, and Y, the last time a sum of | or -1
occurred. This deficiency is removed by sending 2 or 0, respec-
tively; also, a 0 is written in the residue position., Ifa sum of ]
or -1 arises and the residue bit is a zero, 0Oor -2, respectively,
are transmitted and a 1 written in the residue position. The last

value held in Y; and Y, is d° y.

The terms of the logical equation related to Decode are given fcr
d*v and d°x; X; and X, are set to 1 at P, F, F, so that no d*x
code mark will result ina d°x of 1. The term "A-B" is defined
by A-B = AB+ AB. Also, Ts and Ts are used where these are

given by:

T =(2, W(Cy - 2:)+2Z; Y, (C, - Y2) ) + B,
Te =(Z, %) (Ey - Z,) +Z, X; (E; - X)) + A,
SK, = B, B, F,
ZK. =P, Fy Fp
(X1I1-7)

ZK. =P, F, F:

XIill-12



sY, = (K, By 2, +K, Y, Ts)

'
-0

zZY, F, F: +P, (K, B, Z, +K, Y, Ts)

n
8

SY. = P, (K; By 2, +K, T- C)
zY, = B, (K, B, Z; +K; T: C,)

SC,

f
e

P, (C, -2, -Y,)
2C; = P, P (Ex -Zy - Y,)
SX, = P, F, F, +P, (K; A, 2, +K; X; Ts)

X, (K A, Z, + Ky Xy Ts)

n
-

SX, = P, Fo +P, (Kg A, 22 +K, T E,)
ZX, = P, (K. A, Zy +K, Tg E,)
SE; = B, P; (E, - 2; - X;)

2E, = P, P, (E, - 2, - X;)

Integrate - The equations defining Integrate are given in this
section, and should be considered operation by operation.
The sign convention is to give non-negative numbers a sign
digit of zero. Q is the state P, (Fy + Fa).

1. dy + d®y
K, is used as the carry, and is settol at P, F, if Y; = 1.
The equations follow.
SK, =P, F, Y,

o (X111-8)
le =Pl F] Yt +pl (Y: 'cl)
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SE,

ZE,

SK.
ZK,
SB,

ZB,

Q(C, -K;) + P, F, F: C,

Q (G, -K,) + P, F;, F; C;

dx +d° x - The equations are similar to those of (1).

= -ﬁ) F; Xl
=P, F, X, + P.( X - E:)
(XIII-9)
=Q:. (E, -K;) + P, F), F;: E;
=Q, (E; -K,) + P. F. F, E,
y +dyv - Ka 13 used as the carry
= P. Ks B; C;
= pz Fx + P; !(1 ‘Bl C] (XIII-IO)

Q(& "B] 'C;) + P;F«. FaB;

s Q(& 'BL'C‘) + pl F-_FgE:

d®y dx + d*xdy + d°yd®x. - Subtraction is to be accom-
plished by complementation and addition. This means that
there must be an initial carry for each such compleinenta-
tion, that must absorb d®xd®v. If both d°x and d’y are -1,
there will be an initial carry of 3, so that a double carry
is needed. These two flip-flops are K, and K_, and their
states are defined in Table 13-3. They are set initially at

P, F,.



TABLE 13-3

s
z

0
1
2
3

- = o ©
- © = o

In the equations which follow, T,, T, and S, are given by:
Ty =% (C, -%) T- =Y, (E, - ¥;)ands; =T, - T. - K,.
SKy = PiFy (X, Ya(Xs - T2) + 1, X, X, + ¥, V. K,) - P.R(K: - Ty T.)

ZK, =P, F, F; + P K, (K: -T- T,)
(XIII-11)

SK, =§1 F, X; Rﬂ Y, -‘;2

ZK, =P, F, F, + P, K (K, (T, + T.) + T; T.)
S, is the sum dyd®x + dxd®y + d®yd®x, and is added to dx dy.
while ‘ls is added to r.

5. dxdy+S,

K. is the carry

Sk, =P, R¢S, D, SD; =Q(S; - D, -K)+P,F,F: D,
(X1l1-1)

ZKs = P.F,+P, X;5D, 2D, =Q (5, - D, -K.) + P, F,F; D,

6. r +dy dx + sign of S;. - As r passes from A; to A, dxdy is
added to r. In the addition of 1/2 §; to r, the sign digit of
S; is added at P, F) -f‘, when the sign of r is in A;. At the

same time, the sign digit is added to the second-last r digit

while passing from A; to A,. By virtue of the sign conven-
tion used, this procedure effects the addition of 1/2 S; to r.

K, is the carrv used.
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SK, = P, K, A, D,
ZK7 =I_"1 F1 + p, K,Xt -D‘.

SA; =P1 (A;-Dl'Kﬂ 'F"?as\’

ZA; =P, (&, - D, - K, - F, F; §). (X11-13)

rt+y d®*x +1/2'S,. - As r passes from A, to Ay, it adds
toyd®x and 1/2S,. Theterm Ty =S. (B. - Xz) (F, + F3)
is used for yd®x, as the latter does not add to r at P, F, F..

Algo, T, = §, (?‘, + 1-‘3) is used for 1/2 S,,as this does not
add to r at p; F) F;.

Ty and T, are first added using K, as the carry; S; is the
sum in this addition. S; and r are then added using K; as

the carry, with S; as the sum. S, is the new r digit except
at the sign position where S3 must be completed if overflow

(of either sign) occurs. The equations follow.

S: 8Ty -Ts - Ke

SKe =P, Fy Fp X, X, +P, K, T3 T,

ZKe =P, +P, K T, T,

SKo = P, K A, S, (XII1-14)
ZK. = P, F, +P, K A, §,

S3 =Ko - A¢ - S,



L; +L:

]

SAy = Py (S (Fy + F3) - Ay F, F;)

ZA3 = P; (51 (F, +1‘=3)~K3 F, F;)

If Ly and L, are the expressions for positive and negative

overflow. respectively, they are:

=Py F, P. (A; 53(Ky - A3) +(A; = S;) Ay Ko)

_ (X111-15)
=Py F, Fy (Az S53(Kg - A3) (A; - S3) A5 Ry).
Their sum, excluding impossible cases, is
=Ky -4 -4, 5. (XI11-16)

Output. - Code marks appearing in B; C, and E, affect
the output communicates to other integrators. If there are
no marks at this point the normal overflow given in the last
section is used. P; F, F, E, indicates sign reversal; P
F, F; C; requires that the sign of y repluce the nurmai
overflon, y z 0 be'ng sentas landy <0as 0, P; Fy F,
By Z; cause the normal overflow to be transmitted and P

F, Fag B, Z, force an output of zero.
Let 6 and Op represent the output as in Table 13-4, Then

TABLF 13-4

0, 0,

1 1 1
0 U
1 o -1
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0, and Op are defined as follows.

S0, =P: F; F: (B, C,(L: +L;) + B, 2, (L, +L,) +C, B.)

Z0, F (B, C.L,L.+B, 2z, L, L, +B, Z, +C, B,)

"
v
"

S0 =P. F, F: (L, E, + L. E,)

20, = P, F, F; (L, E, +L, E,) (XII-17)
9. Complete Logical Equations. - The unsimplified logical
equations are now listed.
T. = X (C, - X;) $. =T, - T: - K
T, = Y, (E; - ¥;) S:=Ts - T, - Ke
Ty =X, (B, - X:NF. -Fz) Sy =S, -4, - K
_ - (XIII-1n)
T4 =Sx (F: +F3) Q=P; (Fl +F2)

T, =(2, ¥, (C: - Z,) + Z, Y, (0, - ¥.) ) + B,
Te=(2: X: (E: - Z)+ Z. X, (E. - X.)) + A,
SK, =P, F, B, +P. F, Y.

ZK, =P, F, F; +P, F. Y, + P, (Y. -C.)
SK, =P, F, A. +P. F, X,

ZK; =P, F, F; +P, F. X, +P, (X. - E.)

SK. = P, K. B. C.

ZK. =P, F, +P, K, B, C,

SK; = P,E.(X, Y, (X; - ¥-)+ ¥, X, K. + X, YV, ¥.) + P, K, (K. - T. T-)
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ZK. = P1

SK- = P,

ZK-

"
W ol

-

SK,

ZK,

"
w ol

SKe = P.
ZK.

"
w ol

SKe = P,
ZK,

sY. =

] "
ol

b

ZY: =

[}
ol

SY,

ZY:

<

"
0w ‘ol

')

SX.

ol

ZXg =

SP-_ = Pg

ZP; = F-.

ZP, = P,

F, P, +P, K, (Ks - T, T3)

F‘l xl iﬂ Yl §2

F, Fo +P, K (K (T, +T5) + T, T3)
K S, D;

F, +P. K. §, D,

K. A, D,

F, +P, K, A, D,

F.F. X. X, +P, K. T- T,

+P, Ke Ts T¢

K A S,

F, +P, K A §;

(K. B. 2, +K. Y, T:)

F, F, +P, (K. B. Z. +K. Y, T:)
(K, B, 2, +K: T- C:)

(K. B: Z; +K, T- C,)

Fy, Fp *l-’z (Ko A, 2. "’Kei: T:)
(K: A. Z. + K, X. T-)

P, P,
F,

F, F. D. Go

F. Fy D. Stop
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Z0.
S0,
Z0,
SA.
ZA,
SA-
ZA:
SB.
ZB.
SC-
ZC.
SD-
ZD.
SE,
ZE.
SF.

ZF,
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Wy om

>

A;
A.
B,

B.

S o

C
D,
b,

E,

- E;

Fo (A; Sz (Ko - As) +(A; - S3) Ag Ko)

Fo (A2 Sz (Ko - As) + (A, - Sz) A Ko

F, (B, C. (L, +Lp)+B. Z. (L, +L,) +C, B,

F. (B, C. L, L, +B, 2, L, L. +B, Z, +C, B.)
F,(L, E. +L. E,)

F, (L E, +L, E,)

+P, (P, A, +P, (A, -D, -K, -F, F, S.))

+P, (P, A, ~P, (A. -D. -K- -F. §,))

+P,. (P, A, +P, (Sa (F. +F,) - Ay F, F;))

+ P, (B, A; + P. (5. (F, + Fa) - Ay F, F.))

+P. (P. B. +Q(Ks - B, -C,)+P, F, F, B,)

tP. (P, B, +Q(Ks - B, -C,)+P, F, Fp B.)

+P. (P, (C. -2, -Y,)+Q(C. -K,) + P, F, F. C,)
+P. (P, (C, -2, -¥,)+Q(C. -K) +P, F, F, C.)
+P,(Q(S; -D. -K:)+P, F, F, D,)

+P, (Q(S: - D, -Ks)+ P, Fy F. D,)

+P.(P. (E: -2, -Y,)*Q(E, -K,)+P, Fy Fo E.)

+P, (P, (E. -2, -X,)+Q(E, -K,)+P; F, F, E.)



13.2 THE PDD®A AND QDD? A MECHANIZATIONS

A, Introduction - The DD?A described in the previous sections
was based on a computational process which provided a basic
improvement in rate-handling ability and accuracy with respect
to that of the DDA based on second difference computation.
Incremental computer designs which further exploit this basic
design approach to obtain increased processing efﬁciéncy and
computation precision are the PDD?A and QDD?A computers

described below.

B. PDD?A - If the computation involves a considerable number of
multiplications (vector resolutions), or if many constants appear
in the equations to be solved, a sixth register may be added to
the DD®A integrator. This will be the x register referred to
in 13-1B, and its presence will effect a reduction of the number

of integrators required in the sort of computation mentioned.

First, the generation of a product, x y, in a DD?®A is accomplished
by a double summation of its second difference. This second
difference, at the nth step of the process, is given in equation
13.6. Except for the coefficients, the right hand side of 13-49
differs from the right hand side of

2 3 ] 8, A8 <1
a? xy) =y, , lA' X tx 8%y +20X Ay +8 X by &'y 80X 'y 8°X (13-19)

equation (13-1) of 13-1A only by the presence of X+l a' Yo
With the x register available, this term may be added to r by
a transfer controlled by d®y. The output of the unit shown in
Figure 13-6 is the second differential of the product xy, and a
PDD?A is a machine consisting of such units. The decoding
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d’(xy)

procedure is the same as that in the DDA, and the scaling

equations are still (13-3) and (13-5) of 13-1B.

“—H ‘ * r Idax code
a°*x

[ y l d°y code

X,
| d

Yy
-times 2 idzx

Id y residue

| dy dx
dzy
r dx 1dax residue
day —P *"
X

Xlli-22

Figure 13-6. PDDZA Output of the Second
Differential Product of Xy.

Only one PDD? A unit is required for piroduct generation as
opposed to two DD?A units, and the use of a single r number

instead of two improves the accuracy of the computation.

The presence of the sixth register also permits the introduction
of scaling factors by a modification of the overflow mechanism.
Normally, the DD?A integrator output is developed by noting
whether the r number, after the addition of yd® x + dx dy +

1/2 d (dxdy), is more than 1/2 or less than -1/2. In the first case
the output is 1, in the second -1, »nd if neither case obtains
the output is 0; further, the output is subtracted from r to
yield the r number for the next step. This same process may
be carried out with respect to +u ‘2 instead of +1 2, whereu
is a constant held in the x register. The output will now
represent —d-—‘yuﬁ’—‘)— rather than d (ydx), and arbitrary scale

factors may be introduced in this way. The transfer of the x



number (u) to r is now controlled by -d°z, where d®z is the
integrator output on the last cycle, and dx does not add to the

x register.

Thus, the sixth register results in the saving of one DD’ A
integrator for each product generation, and of one DDA
integrator for each multiplication by a constant, when not an

integral power of 2.

Elementary QDD®A - The addition of a seventh register, as
well as a third input; yields a unit capable of quotient generation;

this unit is shown in Figure 13-7.

R Pru code

q B lﬁ code
dq d}q residue
times 2 ¢ 4%y
| dqdv__ d’q |
dv drv residue
d’q
v d’v code

Figure 13.7. Elementary QDD2A
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Here, d®u and d?v are inputs, and the function of the unit is to
produce the second differential of u/v. The unit forms d (qv-u)
in r and (qv-u) in R, where q is the machine value of the
quotient. The overflow, dzq. is generated with respect to
_iv/Z. as in the last section, ‘although v is now a variable; in
particular d°q = sgnR sgnv U (2/R/ - v /), where U is the
unit step function. The output is fed back negatively to alter

dy as required by qv-u, which reflects the error in q in

representing the true quotient.

A QDD?A is 2 machine generalized from the elementary QDD" A
vnit, By coding, such a unit can be used for product gen-

eration or scaled integration, as well as quotient generation.

A hardware estimate is given in the table below.

TABLE 13-5. HARDWARE ESTIMATE

Unit Section Diodes Flip/Flops Channcls
DD?A 2 1200 29
PDD?A 3.2 1350 34
QDD?A* 3.3 1600 40

*Elementary QDD° A
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D. Mechanization and Functional Features of the Proposed and

Alternate QDD2A Computers.

Register Configuration

R;
r—=== I |
|
| |
! r '
| |
' |
| AXAy |
| |
| |
I |
( [ [ |
L - o m 1 e — - —J

Three addi- Y,
tional &8 -
registers re-
quired if
core Y
. m

communi-
cation not
provided

Ys

6 6 6
a ] 2
Re

Registers present
only when the D
multiplier is used
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Processing capability (assuming state-of-the-art 400, 000

bit/sec) of Computer No. 1: Full Aerospace Mission DDA

Proposed:

Computer No.

A multi-iteration rate, multi-increment DDA
for full aerospace mission which is capable of

parallel computations with quotient algorithm.

Simultaneous thrust cutoff and strap-down
computations at 1600 iter/secin a program of

256 DDA integrators.

Single precision (3 bit increment), double

precision (6 bit) programmable.

2: Aerospace DDA (Reduced Task, i.e., No

High Rate Input Processing)

Proposed:

XIl-26

Where the DDA is not allocated thrust cutoff
and strap-down computations an appropriate
computer executes 2 300 DDA integrator program

at 213 iter/sec.

Quotient algorithm and single precision (bit
increment) double precision (6 bit) program-
mable using D®* multipliers and conventional

multipliers.
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CHAPTER X1V

THF FUTURE ROLE OF THE INCREMENTAL COMPUTER IN FULL SCALE
AE ROSPACE. COMPUTER SYSTEMS AND PROPOSED STUDY EFFORTS

14.0 LONG-TERM DESIGN GOALS AND REMAINING PROBLEMS IN
'l;HElR FULL ACHIEVEMENT - This contract study (see Chapter XV)
accomplishes the development of aerospace incremental computer design
techniques (exemplified in the QDD’ A) which ¢nable real time computation
of large programs by a computer mechanization of assigned complexity at
new levels of accuracy for variables having the degree of continuity ordi-
narily assigned to or considered feasible for DDA type commputers, The
ordinary concept of 4 GP-DDA system with a relatively complex costly GP
being required for a full acrospace mission actually resides in the fact
that certain real time computations involve system variables which are
only picce-wise continuous (apart from communication link data inputs
which arce assumned specially provided for), There had been a prevailing
concept of the inability of conventional incremental computer design, and
programming techniquesto handle all the problematic routines involving
variables with step changes and singularities implying only limited use of
the DDA, In contrast,it is proposcd here that the development of the appro-
priate incremental compiter design, and programming techniques can
essentially eliminate the GP, as such, in that a GP of the cost level

ordinarily assumed in full migsion acrospace applications is not required.

A conviction that the DDA techniques can be accomplished in an efficient
mechanization implics that a significant increase in computation capability
for given mechanization complexity will result in the overall computer
system.  An intermediate accomplishment would be the development of a
GP-DDA system in which the GP is highly simplified in mechanization and
with primarily low-rate supcrvisory capability over the DDA, T e latter

actually excceuting >95% to >99% of the computations{instead of 15% to 30%).
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As shown in paragraph 11, 4D, an incremental computer can have a speed
advantage over a conventional GP of 6 to | for the same bit rates,hence,
apart from ability to handle variables with discontinuities, the GP is not
only basically more costly, but also, slower than the incremental com-
puter. The degree, to which the GP can be simplified while retaining
ability to handle variables with discontinuities, is therefore the prime
question. That 100% handling of the piece-wise continuous variables,
which make up aerospace guidance and control computations, ie possible in
a hybridized incremental computer is given support by the analyses of

XI B 4b, C8,C6. The first two references present new techniques and
approaches to technique development for handling this problem while the
last two indicate basic application of conventional decision action efficiently
generalized to the QpD’ A.

The problematic computations involving isolated singularities are those
where high accuracy must be maintained over long term operation. These
computations typically involve singularities resulting from properties of
coordinate systems. In principle these computations are resolved directly
by better selection of a coordinate system. There are cases where this

is not permitted in the fullest sense, for example: geographic coordinates,
presenting discontinuity problems, are designated for display purposes
and are necessary for gravity computation, An incremental computer must
therefore be able to handle the geographic coordinate problem, when co-
ordinates differ significantly from the well defined coordinates of singu-
larities that required accuracy is maintained. It is believed that provided
this particular example problem can be overcome in a proposed studv

etfort, then the solution of any other problem is relatively straightforwazxd,

The secound class of design problems proposed for further study are those
of further unification by system and logical design analysis and DDA simu-

lation of the many computation algorithm and digital processing discoveries
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made during this contract effort., While quantitative computation analyses

and simulations demonstrate that the QDD* A is a remarkable step in com-

puter design, it is believed the refinement of the developed design tech-

niques, incorporated in the QDD A, can offer significant increases in

computation capability and reduction in mechanization complexity,

14.1 BRIEF SUMMARY OF PROPOSED STUDY EFFORTS

A,

Completion of Simulation Evaluation and Analysis of All

Developments of Phase Il and Proposed Analytical Efforts

Evaluation and comparison of alternative QDDA algorithms
Evaluaticn and comparison of alternative DDA algorithm
Digital Stieltjes algorithm for near conventional single
increment DDA and generalization to multi-increment
computers

Overflow inhibitor and pulse stream transducer

Evaluaticn of singularity, discontinuity pass programs of

adapted mechanizations

Logical Design Investigations

l-

4.

Optimized communication mechanization for large problem
incremental computers and GP-DDA with atrophied GP
Extension of multi-increment arithmetic unit design studies
for band limited variables

Programmable single, double precision modes involving
the D° multiplier

System evaluation and optimization by execution of modal
mechanizaiion, register, and arithmetic unit costs rela-
tions analysis for minimal hardware count at assigned

computation capability.
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Analytical Investigation of Improved Processing Complementation
Structure for GP and DDA in GP-DDA Computer System with
atrophied GP

1. Immediate goal is to make possible inherent but not fully
attained computation rate superiority of DDA over GP
(which is 4 or 6 to 1) in>95 percent of aerospace programs
without excessive supervision of DDA by GP

2. Ultimate goal of greatly reducing or essentially eliminating
the major GP hardware cost

3. Refine the quantitative computation capability formulations

of Phase Il in light of advances in digital Stieltjes integration

Further Analysis of the Pulse Stream Analog to Digital Con-
verter and Overflow Inhibitor for Improved Computation
Accuracy at Low Rate Phases of Inputs,



CHAPTER XV

BRIEF SUMMARY OF ACCOMPLISHMENTS OF THE

HSDDA STUDY EFFORT

15.0 DEVELOPMENT OF FULL SCALE INCREMENTAL COMPUTER
SYSTEM (QDD’ A) FOR FULL AEROSPACE MISSION

A.

D.

Total program includes: programmable input processing (for
simultaneous thrust cutoff and strap-down navigation) with multi-
increment accuracy (assuming modest clock rates) at 1600
iterations/sec, and internal computations at 100 iterations/sec

for a 256 DDA integrator program.

Communication hardware simpler than a conventional single

increment DDA of same capacity (an invention).

Computation with programmable single precision (3 bit) and

double precision (6 bit) transfer action (an invention).

Multi-increment quotient algorithm (an invention) for orbital

and re-entry computations.

The total program exceeds the computation capacity of four
3 bit increment DDA computers and executes 6 bit increment

computation programmably for error sensitive routines.

The total program, combined with a slow multiplier general
purpose computer, provides simpler system mechanization
than existing aerospace computers which generally have one-
half or less the computation capacity. A proposed QDDA
mechanization has a 12 word core memory for communication
and input absorption and 79 flip-flops (30 percent less than the

strap-down processor section constructed).
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The advantage over existing GP-DDA systems can be further increased
by proposed further studies directed toward utilizing the inherent but un-
realized computation superiority of DDA over GP in 90 percent of aero-

space prograrm routines.

15.1 DEVELOPMENT OF CONCEPTS FOR DESIGN OF MULTI-INCRE-
MENT COMPUTER WITH SIMPLIFIED MECHANIZATION - An epochal
breakthrough in multi-increment computer design has been made for the
incremental computation of the band limited variables which characterize
typical DDA computations. The DDA integrators (or generalized integrators)
have outputs which represent second differentials rather than first differ-
entials. The communication of second differentials is mechanized in the
manner of first differentials in a conventional DDA. Developments during

Phase II which have exploited the new concepts are:

A. Single increment communication for a multi-increment compu-

ter attaining a new level of communication mechanisation simplicity.

B. Quotient algorithm computation with multi-increment accuracy

not approximated by any previously existing DDA,
C. Simplified arithmetic unit design for multi-increment computation.

D. Second order integration algorithm realization in simplified mech-

anization,

15.2 DEVELOPMENT OF QUOTIENT ALGORITHM FOR MULTI-
INCREMENT COMPUTATION - All previous quotient algorithm computers
have been limited to basically single increment accuracy although this
increment might have a variable scale. The technical design problems
which have inhibited the development of a multi-incremernt algorithm

have been overcome. The newly developed algorithm has mechanization
cost comparable to that of variable increment algorithm whicl. is less

accurate.
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15.3 DEVELOPMENT OF A NEW MULTI-TRANSFER UNIT (THE D?
MULTIPLIER) WITH SIMPLIFIED MECHANIZATION { FOR COMPUTERS
WITH SECOND DIFFERENCE COMMUNICATION OF BAND LIMITED
VARIABLES)

A,

A breakthrough in incremental arithmetic unit capability for
given complexity has been made. Previously presumed inherent
complexity levels have been lowered for the important class of
band limnited variables typically involved ininternal computations

or programmed on simulation incremental computers.

The D* multiplier unit can perform product calculation with
higher accuracy than two conventional multiplier units for 3 bit
transfer but the new unit costs the same as a single one. The
D® multiplier unit can perform many bit increment computations
depending on the scaling properties of the variables; there are
example calculations in which the simple unit can exceed speed

and accuracy of a high performance general purpose computer.

15.4 A BREAKTHROUGH IN ACCURACY IN CONVENTIONAL TYPE
SINGLE INCREMENT DDA BY MODIFICATION TO EXECUTE A NEW
DIGITAL STIELTJES INTEGRATION ALGORITHM CONTAINS:

A.

Integration with respect to independent variables other than
time (Stieltjes integration) constitutes >75% of all DDA Compu-

tations including division, reciprocal, product, input processing.

Incorrect digital Stieltjes integration algorithm has been deter-
mined the major error source in single increment DDA in these

computations, including reciprocal calculation.

By modest elaboration in mechanization of the conventional

DDA new accuracy levels are attainable.
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D. Doppler damped inertial navigation by near conventional! DDA

is for the first time attainble.

15.5 PRELIMINARY DEVELOPMENT OF INCREMENTAL COMPUTERS
OF INTERMEDIATE COMPLEXITY FOR SPECIAL APPLICATIONS WHERE
NO INPUT PROCESSING IS REQUIRED.

A. Certain airborne and aerospace applications require relatively
high computation capability but do not require input processing
in the DDA though perhaps in the GP of a GP-DDA system. In
the se applications a simpler mechanization than the full scale
QDD A is feasible.

B. The design combination of D* multipliers and quotient algorithm
(the latter with programmable multi-and single-transfer) pro-
vides extraordinary computation features:

1. TwoD® multiplier units (costing the same as a 3 bit transfer
unit) can in many calculation routines do the work#* of six
DDA computers each with 3 bit (or in certain cases more)
increment accuracies.

2. Two D* multipliers and 2 single transfer units in other
prevalent computations routines can provide, in parallel

computation, the work of four DDA computers.

*The quotient algorithm has utility for whole word scaling as well as
division, in which case effective performances stated in (1) may be
reduced to that of three DDA computers.
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15.6 PRELIMINARY THEORY OF PULSE STREAM ANALOGUE TO
DIGITAL CONVERTER ERROR STRUCTURE AND DIGITAL STIELTJES
INTEGRATION FOR HIGH RATE INPUT PROCESSING BY A SINGLE

INCREMENT DDA

A. Preliminary analysis and simulation results for roundoff
reduction processes of overflow inhibition and digital
Stieltjes integration appear applicable to the pulse stream

transducer as well as single increment DDA systems.

B. Input processing algorithm based on these results for single
increment input processings can provide improved performance

with modest hardware modifications.
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