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Abstract

Approximate expressions for geodesic curves and the geodesic arc~lengths
are obtained by siraightforward methods which permit upper bounds of error to
be established analytically. The errors are typlcally less than 1.4 parts per
million, and even higher accuracy is possible with additional corrections,

Selected numerical examples are given, and calculated arc-lengths are
compared with values obtained with Andoyer's approximate formula,
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Parametric Formulas for Geodesic Curves
and Distances on a Slightly Oblate Earth

1, INTRODUCTION.

Hyperbolic Direction Finders at Very Low Frequencles combine relatively
high accuracy, © and operating ranges comparable to, and perhaps even larger
than, the earth's radius, It is therefore itmportant for computing lines of posi~
tion to inquire what allowance should be made for the fact that the earth is more
nearly an oblate spheroid than a true sphere, If it is assumed that the ""first-to~
arrive components of an electrowmagnetic pulse travel from the source to the
receiver by the shortest possible surface route, and if it is further assumed
that the velocity of propagation is constant along this path, then the problem
of computing ray trajectories and traveletimes {s equivalent to mathematically
calculating geodesics and geodesic arc-lengths,

As a result of the considerable attention which has been devoted to the geo=
desic problem, several rather elegant approximate solutions are already avall=
able, 2 In most cases, the accuracy of these solutions is high; but the limitas of
error are somewhat obscure.

The treatment in the following pages is straightforward to the point of being

(Author's manuscript approved for publication 8 April 1863)
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elementary; the condition for minimum path-length between two arbitrary points
on the spherold leads directly to a problem in the calculus of variations, which
ie then converted to a differential equation in spherical-polar coordinates & and ¢.
This equation s easily solved to a high degree of precision in terms of an "ad-
justed" co-latitude angle {, thus giving the equation of the geodesics in paramet-
ric form. Geodesic arc-lengths are also obtained in parametric form by approx-
imate integration along the geodesic curve., The analytic approximations used
are shown to be better than 1.4 parts in a million, and are thus more than ade-
quate for purposes of very long range radio location at the present state-of-the-
art, Furthermore, (he approximations are of such simple nature that if desired,
an even higher accuracy can be cbtained in numerical cases.

2. THE FIGURE OF THE EARTH, AND LATITUDE COMVERSION I'ORMULAS

Precision surveying and mapping techniques refer all latitudes and longitudes
to a reference spheroid which has been chosen to approximate the figure of the
earth, but whose placement and dimensions are to a certain extent arbitrary.
Such a frame of reference constitutes a geodetic ""datum". In the United States
the North American Datum of 1827 is employed in modern work. In other count-
ries other datums are used, but the problem of converting coordinates in one
datum to those in another {8 beyond the scope of these considerations, which
assume that the North American Datum is extendable over the whole earth, and
represents the shape of the earth with sufficient accuracy.

In this datum, the reference geoid is the "Clarke Spheroid" ‘of 1888 whose
dimensions are listed in Table I, 8 along with certain derived constants used in
the analysis to follow. .

In rectangular coordinates x, y, 2 the equation of the spheroid is

X + +2 ’1' (1)
e

where the minor axis of the spheroid is taken to coincide with the OZ axiz of
coordinates. In the corresponding polar-spherical coordinates (R, 6, ¢), the
equation is:




2 2
8in“6 cos”8 1
& a = (2)
a b2 R?
Hence,
a
1+ 8 cos“d

Table I. List of Constants

Semi Major Axis (a) = 8378.2064 km
Sem{ Minor Axis (b) = 8358. 5838 km
A =2a-bs=21,62286km

A _a-b,
a 5 0.00330008
+

o

2 = 6367, 3951 km

o Nl

= (. 99660002

2 .0.9932 3134

—_—
wlo

—

(%) 4 a0, 08650840

% = 1,0034016
(_g_)z = 1, 0088148

2
s B |
s = 2 1 = 0, 0068148
2
U s% %— = 0,0033200

Referring to Figure 1, the geodetic latitude of the point P is denoted ¥ .
(This symbol is not to be confused with ¢, the azimuthal angle in the polar co-
ordinate system.) The Y O Z plane cuts the spheroid in the ellipse
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whence it follows that

1 2 1 2
" - X e - cotyt
I 2

&lf

where ¥' is the geocentric latitude. But,

£ o tan(n/2+:)% < cot®

and hence

2’ a2
tan ¢ ‘-—ztan‘P' = =5 cot 6
b b

Also,
] 2
cos @ =
Va4 c:m:2 P4 b4
a2

sin 6 »
Vot + v? tan?e

1t follows from Eq. (3) that

{5)

(8)

(7)

(8)

(9

(10}
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Figure 1. Section of Spheroid by YZ Plane

In the analysis to follow, much use is madec of the parameter § defined by
the relation:

. gin 8

sin{ = =
Vi+8 cos?o

(11)

From this,

cos ¢ =41+sm—2—-4-”;%—5 (12)

and

(13)

tan § =W/1_+-8—_ ;ta.no
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The inverse relations are:

tan® = Y1+ 5 tant =%tan§ (14)

Yi+8
sin € {15)
Vi+8 sin? ¢

sin § =

cos §

cos ¢ = —mmmmomme— (18)
Vi +8 sin? 4

and, using Eq, (3},
R = —_ V! +8 sin2§ : b-"l +8 sin2§ amn
Vi+d :

Differentiating Eq. (14),

1_q8 . Yi+8 {18)
cosze dg coas2 4
and by Eq. (18),
daé Vi+8 a/b s
g - 1+Ssin2§ 1+851n2§

Finally it is often desirable to convert directly from { to ¢, and vice versa,
without using 8 . In view of Eqs. (7) and (14), the needed relations are:

tan P = %cot{ (20)




e

e

7 -
= (21)
cos P = az . . -
14+ 3-cot” ¢
b2
1
sin g = (22)
p%, 2
1 +55tan” §
a
The corresponding inverse relations are:
tanf = % cot (23)
1
cos £ = (24)
2
V 1485 cot® ¢
b
1
(23)

sinf =
p2, 2
L+ 5 tan" ¢
a

The two sets of equations are symmetric.
The qualitative nature of the angles § and 12'- - i8 illustrated in exaggerated
scale in Figure 2. It will be noted that either

6> §>12! - or 9 (28)

N
e
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3. THE DIFFERENTIAL EQUATION OF A GEODESIC, AND ITS SOLUTION

Consider a surface defined in spherical coordinates by the function
R = R (6 ). Then an arbitrary surface curve joining two points P1 and P2 on
the surface can be defined by specifying ¢ as a function of 8. The curvilinear
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Figure 2. Angles { and 7/2 - ¢ as Functions of 8
digtance S between P, and P, is then

P
s= [ 2?2140 (27)
Py

where

e (8’ %%) =\/(%%)2 &% e nt o (35)° (28)

It is now a problem in the Calculus of Variations to chose ¢ (6) so that S will
be a minimum, The desired function will be one of the extremals satisfying
the Euler condition, which, since I does not contain ¢ explicitly is simply:

(%ﬁ 3(’312) =0 (29)
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On integrating once,

-%#) = consatant (30)
2 (3

In view of Eq. (28), this becomes: |

2 2 d
JM_L__ = constant (31)

5) ¢ +R°+R%ain® 0 Ea ]

whence,

d
d {32)

where C ia a new constant. In order to geometrically interpret this constant,
a short digression is now appropriate.

In Figure 3 an elemental portion PIG of & geodesic from point P1 is shown,
The corresponding elemental components along the meridian and along the
minor ¢ircle aredesignated PIV and PIW respectively. The angle VPIG is desig-
nated B, and is the bearing angle which the geodesic makes with respect to
north. In the limit,

L
=

tan B = (33)

R

Now,

W = Rainf d¢

.V =VR2a6%+qan2

- -R.Ih +-!';2 (-%%)2 do )




R I

10

Figure 3, An Element of a Geodesic

In this, the negative root is chosen so that - d § , and hence plv , are positive,
It follows that:

sin @
tan B = - En ] (34)
vy (57)°
R
On making use of Eq. (32),
C " -
tanB = (35)

V(%,z smzo - c?
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= (36)
2
Vain2 § - C

the second step being a consequence of Eqs. (3) and (11), On re-arranging Eq.
(36), it will be found that

c? = ginCein’B (37)

In order to avoid ambiguities of sign, the convention will be adopted thai, at
the starting point P1 of the geodesic, the positive roots of all the radicals are to
be taken, It is then clear from Eq, (35) for example, that the sign of C is to be
taken to be the same as the sign of tan B,

It Beq is the bearing of the geodesic at { = 90° (that is, at the equator), it
follows that

C2 2

= gin“ B - (38a)
At the "turn-around” point of the geodesic {in B = 0)
c? = amPyy g (38b)
&

where gN,S represents the closest approach of the geodesic to the poles, and is
two valued, (For -% < Beq < 1_2r , the angles Beq and {y are equal.)

It is now seen that the constant C rather simply determines both the bearing
of the geodesic at the equator, and the closest approach to the poles.

Returning now to the differential Eq. (32), the next step is to change from the

variable 8 to the variable § [see Eq.{11)]. Then

CA
d¢ = - dg .(39)
sin § sinzc - ¢?




12

3
o
£
B
3
B

R
1A

where

1+Saln

l.+8 R de —g

{40)
1. dR\2
. /“(‘a‘ a—a)
1+Ssin2§

thanks to Eq. (19). Next, on differentiating Eq. (3) with respectto 6,

i s i, oA MEERAIN A

L dBR _ Bsinf cosé G
R df 2 o
1+ 8 cos“#
{41}
= -—8—- sin § cosl
Yi+3
in view of Eqgs. (15) and (16). Thus,
82 2 2
1+ sin“f cos”{
A 1+3 (42)
1+8ain?¢
Consider now the new quantity
A' & 1| -usin® 4 (43)
where
8 382 ;
u & - 25— (44) :
4
It may now be shown after some algebraic manipulation that :A
2

%
B
3

ol
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A. i (45)
where
o -
be G l1+8+6% ati-a] 262 (1-)- 83 (202 - 30+ 6) r
5 (48) ]
- 8t 33 _ U8 9 48 |
0% a( g - a) 8az(9-15¢::)~§-t§c1t2] *
i
in which for brevity, ;
o g2 ‘
@ = gin“ ¢ (4m , ,
L
Now, by Table I, !
8 = 0.0088148
and hence:
82~ 4,84415 x 10"
83~ 3.18400 x 107"
8%~ 215681 x 1079 (48)

85~ 1,4608x 107
86~ 1.00186x107%28

Hence it is clear that ¢ is very small, and that the error in substituting A' for A
will be approximately ¢ . it may be seen from Figure 4 that ¢ is everywhere
less than about 1,4 X 10-8. Thus, to a very high degree of precision Eq, (39) can
be written *

1-u sin2 ¢
dp =-C da¢ (49)
sin § sin2 ¢ - C2
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Figure 4. ¢ as a Function of §

It will be noted from Eq, (39) that 'Z:2 €1, Inspection of the denominator
of Eq, (48) shows that at least for C # 0, the geodesic canunot reach a latitude
higher than that corresponding to sin2 = c? since beyond this point the co~
efficient of d § becomes imaginary, {(See also Eq. (38b),) (f ¢ is to continue to
increase ""beyond" the "turn~around” point, the radical in Eq. (48) must change
sign at that point. If d 9/ d { and § were plotted for a procession of points
following along a gevdesic which starts at the point P1 in the Northern Hemi-~
sphere, and runs in a more or less North-Easterly direction, the result would
be similar to that depicted in Figure 5. There, stariing at Pl, £ is derreasing
and d ¢ / d { is negative and decreasing, going to "minus infinity" at the turn~
around point T, Thereafter § increases, while d ¢ / d § is positive and de~
creasing (upper branch in Figure 5). A minimum is reached at ¥ = % , and then
d ¢/ d ¥ goes to "plus infinity" at the second turning point, Ty, and so on,

bo ¢1 and ¢ | &re the coordinates of Pl' and @, § are the coordinates of a
running point P on the geodesic, lying between P, and Tl‘ {t follows from
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Figure 5. Derivative %—% as a Function of {

Eq. (49) that

¢ 1-usin®t

- s - C d 50
A = P o

and this will be a positive quantity. If P lies on the far side of the turning point
Tl' the corresponding equation is,

l-usin2 £ 1-usin2§

- % 1 — d C 2. a4
¢ ¢1 j:;, ain { Vslnzt-Cz o le sin § sin2§-C2 ¢

(51)
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where allowance was made for the change in sign of the radical. As might be
expected it turns out that the result of integrating Eq. (50), namely

4

C

¢-9, ® e cot ) ~Cu 3in~t o8 ¢ ,  (52)
1 Vi - c? Vi - o2

!

includes the second case as well, provided the functions gin'l are taken to have
their "principal values" in the first case (that is, §, <{ <T,), and the

next larger values in the region T, < §<T2, and so on. The asterisks are used
as a reminder to choose the correct range of the quantity so marked. To aveid

any possibility of confusion, reference may be made to Table II.

Table II. Ranges of 8in"*
g -1
Range of { Range of sin
Py to T, 0toa/2
Ty to T, n/2 to 3n/2
Tyto Ty 3m/2 to 51/2
Tgto T, 51/2 to Tn/2
ete. ete,

Note: Tl’ Tz, ’1‘3, ete, are the
successive "turn=around"
points of the geodesic,

Except in the cases C = 0, the longitude difference ¢ - ¢1 continually increases

as the running point P moves forward along the geodesic, the contributions of all

parts of the integral fg{ are of one sign, there being no poesibility of one part
1

cancelling, or tending to cancel, another. Under this condition it is justifiable
to conclude that the maximum error in ¢ « ¢1 . 18 less than 1.4 parts per
milllon, Thus, even if ¢ ~ th 1e as large as 180° , the error in ¢ = ¢1 is less
than 0,000252°, which at most would correspond to a positional error along a
parallel of 34 meters, Of course, if necessary, the integral in Eq, (50), for
example, could be broken up into sub-integrals and each corrected for the slight
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difference between A and Al, thus reducing the error to any desired limit,

Bq, (52) has an important simplification when the starting point P, of the
geodesic is on the ecuator, for then the value of the indefinite integral at € = { 1
vanishes, and

C
$-p, ® gin? (ﬁ cot() -Cu st (Vf‘%) (53)

In terms of the bearing angle B, &t P, (See Eq. (36) ):

q
% -1 % «1 fcos
$-¢, = sin " (tab }3&q cot § ) - u sin 13eq sin (é&é;) (54)%

Eqs. (62), (53), and (64) for the geodesic may now be interpreted geomet-
rically in terms of a reference sphere (Figure 8) on which the polar and azi-
muthal coordinates are { and ¢ respectively. In Figure 8, the point A is anti-
podal to Pl‘ and PIPJ'A is a great circle such that the angle Z PlP1 at P1 is
B, Let A¢1 be the azimuth of P! and £ the polar angle.

In the spherical triangle 2 PlP1 , the "sine law'' gives

sin Be sin ¥
sin A¢

ginf = (55)

7 being the angle P, 0 P} . The "cosine law" applied to the same triangle gives

cos £

siny = —eh— (56)
eq
and,
y = bint (%%_) (57)
eg

Eliminating sin ¥ from Eqs. (55) and (58), gives ,

*Equations {54) and (72) have been programmed for an IBM 1620 computer
by the AFCRL Technical Services Division under contract AF 18(828)-411,
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B
s
:
B

sin A¢1 = tan Beq cot & (68)

e

and,

ag¢l = dint

( tan Beq cot {) (59)

The geodesic, Eq. (54}, can now be written

9-¢, a9l - uysinB, (60)

q

The "map'' of the geodesic on the reference sphere may therefore be constructed

by drawing a great circle, and then reducing the azimuthal angle of each point on :
it by uy sin Be , where 7 is the angular measure of distance along the great
circle, In Figure 8 the broken line I-’l1=’1='2 represents the geodesic derived from
the great circle.

Any geodesic from P, {on the equator) with 0 <Be < % will intersect the

equator again at P2 which falls West of the antipodal point A by the small arc- =
distance N

oA & mu einB, {61)

q

(See Eq. (80).) The same geodesic, if continued through the southern hemisphere,
willby symmetry intersect the equator againadistance 27 u sin Beq , west of

P A
Pl' and s¢ on. Unless the exact value of 2 is a rational number, the geo- -

desic will never close on {tself but will congnue to "creep" round and round the
sphere. Figure 7 is intended to illustrate qualitatively the course of geodesic
from the equatorial point Pl as viewed from above the north pole of an earth
with an exaggerated degree of flattening. The dotted portions of the curves
represent parts of the geodesic in the southern hemisphere, The geocdesic may
be visualized as the curve generated by tightly winding a thread over the surface
of the (frictionless) spheroid, starting at Pl and passing through P2 .

In the special case C = 0 the geodesic starts out due North, and it is intuitive ‘
that it will follow a meridian. For this case, Eq. (53) correctly gives E

|

6-9, = 0
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Figure 8. The Reference Sphere

Another special case of interest is when P1 is on the equator, and C—» 1,
that is, the {nitial bearing approaches 90° which would take the curve on an east-
ward, equatorial course. In this case Eq. (53} is properly indeterminate, since
on the equator ¢ may have any value,

Finally, there is an interesting characteristic of the geodesics in the vigin-
ity of the point A antipodal to the equatorial starting point P,. By Eq. (61) it
will be seen that regardless of the equatorial bearing angle B eq’ the small

equatorial arc P2A (See Figure 7) can never exceed a value of approximately

7 u. This defines a sort of limiting point Lw such that the angular distance




I

20

Figure 7, Multi~-Turn Portion of a Geodesic

s

LyA=1mu (62)

and there is a similar point LE on the east of the antipodal point, If P2 is pre-
cisely at the antipodal point, the shortest route from PJ. to P2 is precisely over
a pole. If Py lies between Ly and A, or A and Ly, the shortest route is neither
polar nor equatorial, but is an arc lying in either the north or southern hemi-
spheres, However, if P2 lies anywhere on the equator ouiside the small arc

Lw A LE , the shortest route will be precisely along the equator itgelf,

4, ARC LENGTH ON A GEODESIC

The arc length along a geodesic between the starting point Pl and an arbi-
trary running point P will be found by performing the integration indicated in

e et A At
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Eq. (27), namely 1 3
P P
s= [ das = [ 1 ae (63)
P P '

_ :
1= (ﬁ)z + R + 2 ﬁu—ni (84)

2
-&2 Eli.n2 8-~ C2
8
2 2
R7 1l 4R
. 8 sin @ 1+(R dG) (65)
2
R
= sin® 6 - C?
a
Using Eq. (3)
R2 — 1

a 1+ 38 coa’d

and hence by Eq. (11)

2
E’-z- gin § = sin® £
8

On squaring Bq. (17) and multiplying by Eq. (15),

2 ——

2 a 2

R°sin g = '\/;4-8 sin® ¢
J1+8

et il i T it + A T

TR,

PRT I,
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On substituting, Eq. (85) becomes

/1+851n2§
I =a
1+8

(88)
Putting this in Eq. (63) and changing variable from 6 to §
4 A gin §
S = -a o dt (87)
& Vsin® £ - c?
where

0.

1+Ssin2§ / 1 2 a8
A= o ”(ﬁa—o) at

is precisely the same quantity already encountered in the previous section, (see
Eq. (40) ) where it was shown that it could be replaced by the quantity A' of Eq.
(43) with an error less than 1.4 parts per million.* (In Eq, (67) the minus sign

was chosen to give a positive value of S wh;n '\/sinz g - C2 is regarded
as starting out positive at { = Cl as in Section 3, and again changing sign at the
"turn-around" point.) Thua

4 (l-usinZC)sing

81 Vemle-c?

(68)

On making use of the identity:

*As mentioned previously in connection with the integral of Eq. (50), the range of
integration can be broken into segments for each of which a correction can be
applied for the slight difference between A and Al, thus obtaining an even more

precise approximation.
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1 - usin®t = l'_1-§(1+c2):]+%1 [1+c2-23m2§} ,  (69)
Eq. (68) becomes:
¢ int d¢
- 8in
S ®a 1-5(1+c2)]
[ ) : Vsmzc-cz
24l
(70)
¢ 1+C? - 2ain?e
. au e sinf di
2 f \/sinzg--_z5
£
. \ t
= g {l-§(1+C2)} :ln'l(:‘c’fc)-‘—z’cos{ sng-cz an
31

If the starting point of the geodesic is on the equator, 1° % , and the
indefinite integral vanishes at the lower limit, giving simply

’ cos § [
E sa[{l-%(1+C2)} Stn7! oo Eeest ‘\/sm"’g-@](m

In the last two equations, the asterisks (as before) are reminders to change
from "principal values" to the appropriate branch. In this connection it is noted
that {n the first Integral of Eq. {70), the integrand is essentially positive since at
the start, d £ is negative, and later when the radical changes sign, so also does
d § . In the second integral, the integrand

1+C%.2sin’ t

8 g sin § (73a)
‘\/ain§ t-C
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Figure 8. Qualitative Behavior of Integrand "'Q"

has a behavior of the type illustrated qualitatively in Figure 8. Starting at P1

on the equator, @ = -1 - c? . 'Then following along the geodesic Northerly
14¢?
2

and Easterly, @ increases to zero when sin = , and then approaches

+ = gg the turning point of the geodesic is reached. Here the radical changes

sign, and Q increases from - ®, and 80 on,

It follows from these considerations that f Q d { must have a be~
§1
havior somewhat as shown in Figure 9. Since when starting out along the geo-
desic from Py, d £ is negative, the integral at first increases, reaching a max-

2
imum when sin§ = L ; & , and then decreases to zero at the first turning
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Figure 9. Qualitative Behavior of _]§ Qd¢

1
point T, . Proceeding further along the geodesic, Q is negative and d { is pos-
2
itive, so that the integral goes negative, reaching a minimum when sin § = L ; ¢

It then increases through zero (when the geodesic crosses the equator) and so

on. Evidently then, the sign of the quantity ‘Wsm2 g - C2 is to be changed at
each reflection point. In Eq. (72) the factor cos § automatically takes care of
the sign change at the equator,

_qp co8 g
In Eq. (72), as already known from Section 3, the quantity sin 1( V_——>
2
1-C

is simply the arc P1 Pl (in radian measure), on the reference sphere, Figure 8,
The factors containing u are the "corrections applied to this great circle
distance to obtain S .

B
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The difference in the two routes ,

(s Lo -sin B, )%, (0gB, &7/2) (78)

@

Seq

can be as large as = 2" or about 33.96 km.

]

Shortest Distance Between Ordin&ry: Points on the Equator

For all pairs of points on the equator excluding those considered abo-re, it
is clear intuitively that

S=a(a ¢) (79)

where (A ¢ ; is the difference in longitude in radians. On setting
C = 1 in Eq. (72} an indeterminancy arises, but this can be avoided by regarding

the equatorial arc Ple (See Figure 10)as the limiting case of the geodesic arc
Plel , when thé point le moves approximately along the meridian NP2 Lo
approach P2 . Thus for the point le, the ¢ - value approaches 7/2, and so

does Beq , 80 that in the limit, Eq. (54) for the geodesic curve becomes:

oo Bt (3255 q) w in! (os )
e eq
= (1-u) sin"t (C—:sgs-ﬁs—> (80)

eq

Thus if §{ and Beq are varied so that

k = cos ¢
cos Beq (81)

L2
sin Beq by

is a constant, the point le will approach P,. Then since C2

PRECEDING PAGE BLANK

R v e
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Figure 10. Limiting Process for Two Points on the Equator

Eq. (38a), it follows from Eqs. (72) and (80) that

S—sa(l-u) sin! Kk =a(ag) (82)

and this is the same as Eq. (79), as expected.

5. NUMERICAL EXAMPLES

5.1, Meridian Quadrant

As a first example, the length of the meridian quadrant will be calculated
with the formula of Section 4, using the Bessel Spheroicl,4 for which the meridian
quadrant is 10,000,8557858 km, The semi-major and semi-minor axes are
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{eir

a = 6377,39715500 km

b = 6356,07896325 km

whence it follows that

3 : § = 0.00671p218

and

u = 0,0033428788,

By Eq, (74)

~ Te(y.Y
S = F (1=

= 10,000.84923 (83}

This differs from the correct value by only about 6,5 meters or about 8,5 parts
in ten~million,

5.2, Geodesic at B = 45° {rom Point on the Equator of Clarke Spherotd
For this

C = sgin Beq =

-

and Eq. (51) for the geodesic becomes:
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¢-9, = b (eot €) ~V—‘% 8in™t (VB cos ¢) (84)

-!
|
J
|

5.2.1. At the point where the geodesic reaches latitude ¢ = 60° beyond the

first turning point, this equation gives

¢ - ¢, = 144,7356° --= 135° (85)
1 vz

= 144,4120°

Latitude £ = 60° corresponds to geodetic latitude ¢ = 30.0843°, By Eq. (72)

s = a[ (1=-.,75u) gin'l(-‘-/-_;—) + % -‘/%-.12;] .

(-3
[0.9974575x135 . 0'00042375]

57,2957795

2,3506276 =

= 14,992 « 788 km

5.2.2. At the point where the geodesic reaches latitude { = 60° before the
first turning point, £q. (84) gives

® ~ ¢, ~ 35.2644° -2 45° (88)
1 .\[2‘

a 35,1585°

By Eq. (72)
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§ & a [(1-.75u)gm'1(;/_%) - % %-%]

0,0874575 X 45°

B oA [ 57.008779 - 0.00042375}

= a [o.78340129 - 0.00042375 ]

= 0,78208775 a
s 4993.992, km

§.2.3. Length of geodesic arc on the previous curve, between points where
¢ =80° (g = 30.0834° } is simply

14,092,788 ~ 4,803,092 = 9,868,786 km.

6. NOTE ON ANDOYER'S FORMULA

For celculating geodesic arc-lengths, use {8 often made of a formula due to
Andoyer,5 which, in the present notation, is

S = go+ 38 (87)

where ¢ is the great-circle distance between two points computed as if the
earth were a sphere; that is,

cos0 = sin p, sing, t cosp, cong, cos (9 ~¢,) (88)
and
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8s = p (sihyp + sing, ¥ - q (ein gy = sin¢2)2 (88)
p = a-b 38ing -0 (a0)
c052%
q & E_'é_é EM (91)
2 g :
sin” 5

For two pointe on the equator, Py g " 0, and §8 = 0, (The case
when ¢ = 7, for which p is infinite will be excluded from the present consider~
ation.) Then by Eq. (87),

S = a0 {92)

This is evidently the correct answer as far as the equatorial route between P1
and P, is concerned. However, as discussed in Section 4, if the longitude

¢Z of P2 is such that

[8+ 1] > oo+ 7 -w)] (03)

the sub-polar route is shorter than the equatorial route by the amount [ see
Eq. (78)] , '

Sq = 8 * T88 (1.3mB)? (94)

which can be almost ag much as 33,98 km, Thus in such cases, the Andoyer
Formula, while 8till giving & "geodesic distance”, gives the longer rather than
the shorter extremal, In view of these particular arcs of nearly 180° for which
Andoye_r‘a formulsa fails, it is of interest to compare the resulis of Andoyer's
formula with those obiained by the use of Eqs. (71) or (72) in Examples 5,2,
5.2.1, and 5.2.2. It will be seen that the agreement is excellent in the following

examples.
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6.1. Distance between

(¢ = 0,9, =0) and (g, = 144.4120°, @, = 30,0843),

33

This correeponds to Example 5.2, where it was found that S = 14,922,789

km. Now,

cos ¢

85 = (p-g) sinzxp

S~ acg+38

cos 30.0843° cos 144.,4120° = ~0,70387249
134,7224° = 2,351349 radians

3X0.7105245 = 2.1315735

3 (1-cosd) = 085183625

% (1+cos@) = 0,14816378

2

a-b .1310.?728- 2,351349 . . 82 1 sg33a100

a-b 2131573 + 2,351349 _ a<b
% ““0.85183625 - § 0+26285700

- Eél’smz 30.0843° (1.48333169 + 5.26285700)

-2l

~ 28228 (0,5012736)% 6.74508880

- 2,702 B25X0.2512752X8.74598869

-~ 4.,5815577

14,997,390 ~ 4,58 = 14,992,81 km,
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This is about 0.02 km longer than the value of Example 5,2, - °
6.2 Distance between (9, =0, 9, = 0) and (9, = 35.1565°, o, = 30.0843°)

This corresponds to Example 5.2.1.

Now,
cos 0 = cos 30.0843° cos 35;1565° = 0,8652888 X 0,8175822 ='0.70744472
0 = 44,9724° = 0,784918 ra.diané
3sinc = 3X0,7087660 = 2,120298
sinf € = L1 cos o) = 0.1462776

cos® g = % (1 + coso) = 0.8537224

. a-b 2120208 - 0784018 _ a-b
P 0.8537224 = 222 1.584188

a-b 2120208 + 0,784818 a=b ' "
1% 73 0.1462778 = S= 10,86086

85 = 220 gin? 30,0843° ( 1.564188 - 19,88098 )
- - 28228 4 5012736)% 18.20877
= - 2,702825 X 0,2512752 X 18,28677

= - 12.42630 km

Lt
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and
8 s ac + 88 = 5008.356 - 12,426 = 4983,930 km
This answer is slightly less (0.06 km) than that obtained in Example 5.2.1.

6.3 Distance between (¢, = 35.1565° ¢, » 30.0843°) and (9,=144,415.°,
P, = 30.0843°),

‘This corresponds to Example 5.2.2.
Now,

co8 ¢ = sin’ 30.0843° + cos” 30,0843° cos (144,4120° - 35,1585°)
= 0.2512752 + 0.7487247 cos ( 109.2555° )
= 0.,2512752 - 0.2465153
= 0.00435909
¢ = 80,7502° = 1,586436 radians
3einc = 3(0.9999005) = 2,999971,
= 4 (1-cos0) = 0.4078200,

] 1
cos”’3 = 3 (L+cosa) = 0,5021799,

aop 2000971, - 1.568436
P= 73 0.5021758, = 2.854825
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This value is only 0.011 km greater than the value found in Example 5.2.2.

3s

a-pb 2999971, +_}.585436
8 0.4978200,

= 9.172807
4p sin® 30,0843° = 218228 0 5 554625 x 02512752
7.754507 km

a0+ 85 = 0991.052 + 7.755 = 0088.807 km

T e i
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