TECHNICAL MEMORANDUM
(TM Series)

DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

This document was produced by SDC in performance of contract AF 19(628)-1648, Space Systems Division Program, for Space Systems Division, AFSC.

"Indian Ocean Station" Buffer (IOSB)

Milestone 4

by

R. C. Wise

12 June 1963

Approved

J. A. Kneemeyer

The views, conclusions or recommendations expressed in this document do not necessarily reflect the official views or policies of agencies of the United States Government.

Permission to quote from this document or to reproduce it, wholly or in part, should be obtained in advance from the System Development Corporation.

Although this document contains no classified information it has not been cleared for open publication by the Department of Defense. Open publication, wholly or in part, is prohibited without the prior approval of the System Development Corporation.
<table>
<thead>
<tr>
<th>Modified Pages</th>
<th>Notes and Filing Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>ERRATA* Delete section 2.2.1.5.3</td>
</tr>
<tr>
<td>19</td>
<td>ERRATA* Change section 2.2.1.5.4 to 2.2.1.4.3</td>
</tr>
<tr>
<td>20</td>
<td>ERRATA* Change section 2.2.1.5.5 to 2.2.1.4.4</td>
</tr>
<tr>
<td>25</td>
<td>ERRATA* Delete partial paragraph on top of page, up to section 2.2.2</td>
</tr>
<tr>
<td>27</td>
<td>ERRATA* Section 2.2.3 - Delete last sentence</td>
</tr>
<tr>
<td>29</td>
<td>Remove page 29 dated 20 May 1963 Insert page 29 dated 12 June 1963</td>
</tr>
<tr>
<td>30</td>
<td>Remove page 30 dated 20 May 1963 Insert page 30 dated 12 June 1963</td>
</tr>
<tr>
<td>32</td>
<td>ERRATA* Section 2.2.4.8 - Change **9 to **11</td>
</tr>
<tr>
<td>35</td>
<td>ERRATA* Section 3.2.2.2 - Add the following sentence at the end of the paragraph: "SPREFX will suppress all messages for the T & C computer except Antenna Pointing (#25)."</td>
</tr>
</tbody>
</table>
| 36 | ERRATA* Section 3.2.3.2 - Change the fifth sentence to read as follows: "On the first pass, it will have SPUN punch out new antenna pointing messages for the T & C computer, and on the second pass all new messages for the TIM computer."

*ERRATAS are pen and ink changes
Modified Pages

36
38
40
40A, 40B, 40C
41 & 42
B-1

Notes and Filing Instructions

ERRATA* Section 3.2.3.2 - Change the next to last sentence to read as follows: "The last message punched for each group of messages will be a "Prepass Transmission Finished" message.

ERRATA* Section 3.3.3.7 - Change **9 to **11

Remove page 40 dated 20 May 1963
Insert page 40 dated 12 June 1963
Add pages 40A, 40B, 40C

Remove pages 41 and 42 dated 20 May 1963
Insert pages 41 and 42 dated 12 June 1963

ERRATA* Section 2.1.2 - Change title to read "Real Time Near Message".

* ERRATAS are pen and ink changes
Word 6 VVVV
7 RRRR
8 RRRR
9 TT System time to begin operation in binary.
10 TTTT
11 GGGG Duration of operation in seconds. (Will be zero for vehicle site can see but not scheduled to look at.)
12 GGGG

Words 5-12 may be repeated six more times.

A single schedule message covering a single time span may be sent to the station to update, override, or supplement a previous schedule.

2.2.1.4.5 Telemetry Mode Messages

2.2.1.4.5.1 Pre-Flight Telemetry Mode Specification (FM/FM)

Word 1 7777
2 SS27
3 27NN
4 AAVV A's = Telemetry type (1 = FM/FM).
 VVVV
6 MMMM M's = Mode number in octal.
7 PPPP P's = Patchboard ID; three 4-bit BCD characters.
8 FFFF F's = Number of frames per second in octal.
9 WWWW W's = Number of words per frame.
10 QQQQ Q's = Number of frames per master frame in octal.
11 IIII Bit 11 = 1 process this identification.
 = 0 do not process this identification.
 10-9 type of point: 02, fixed format.
 03, events.
 8-0 Identification number.**

** Super commutated points are indicated by identical Identification Numbers in sequential entries.
12 LLLL L's = location in octal of first word in core relative to the frame.
13 DDDD D's = the number which must be added to the L's to obtain the second word address.
14 CCCC C's = the compression algorithm number.
15 XXXX X's are parameters required by the algorithm.
16 XXXX If C is 1, Algorithm #1 ("Step Function") is indicated and Word 15, bits 11-9, decommutator number.
 7-0, noise limit.
 16, absolute value of step threshold, in octal, greater than noise level.
 17, if bit 11 = 1, tenth second accuracy required; otherwise zero.
 18, zero
 If C is 2, Algorithm #2 ("Steady State Function") is indicated and
 Word 15, bits 11-9, decommutator number.
 7-0, noise limit.
 16, high limit in octal.
 17, low limit in octal.
 18, number of seconds in report period as a power of 2.
 If C is 3, Algorithm #3 ("Smoothing Function") is indicated and
 Word 15, bits 11-9, decommutator number.
 7-0, high limit
 16, low limit.
 17, number of seconds in report period as a power of 2.
 18, zero.
 If C is 4, Algorithm #4 ("Switch Setting - Unequal Increments") is indicated and
 Word 15, bits 11-9, decommutator number.
 7-0, 1st non-zero level (highest).
 16, 2nd non-zero level.
 17, 3rd non-zero level.
 18, 4th non-zero level (lowest).
 If C is 5, Algorithm #5 ("Switch Setting - Equal Increments") is indicated and
 Word 15, bits 11-9, decommutator number.
 7-0, high limit in octal.
 16, low limit in octal.
 17, number of increments between high and low limits (1-10).
 18, zero.
 If C is 6, Algorithm #6 ("Meter") is indicated and
 Word 15, bits 11-9, decommutator number.
 7-0, high level.
 16, low level.
 17, number of repeated bits in meter readout message.
Words 11-18 may be repeated up to five times.

Word 19:

n CKSM

The first mode specification message will be as it appears above. All succeeding mode specification messages within a mode will not have Words 7-10.

2.2.1.4.5.2 Prepass Telemetry Mode Selection and Modification Message (FM/FM).

Word 1 7777
2 SS30
3 30NN
4 AAVV A's = telemetry type; 1 = FM/FM.
5 VVVV
6 RRRR
7 RRRR
8 MPPP
9 PPPP P's = patchboard number.
10 If there are no changes to be made to the basic mode information, Word 10 will be a checksum. If there are changes, the eight words of the preflight message (Words 11-18) will be sent for each change.

This message will always be sent prepass to tell the tracking station what mode is desired by the STA.

2.2.1.4.5.3 Real Time Telemetry Mode Selection and Modification Message (FM/FM).

Word 1 7777
2 SS32
3 32NN
4 MPPP
5 If no change to basic mode information, Word 5 is checksum. If there are changes, the eight words of the preflight message (type #27), Words 11-18 will be sent for each change.

n+1 CKSM

2.2.1.4.5.4 PRE-FLIGHT TELEMETRY MODE SPECIFICATION MESSAGE (PCM).

Word 1 7777
2 SS27
3 27NN
4 AAVV A = telemetry type (3 = PCM)
5 VVVV
Five types of information are contained in the body of message No. 27:

a. Mode Structure Information
b. Print Headings
c. Processing table (TLMP1 to TLMP8)
d. Algorithm Calling Sequences
e. Table Look Up Data for Printing

The Mode Structure items are contained in the first message No. 27 for the mode and consist of the following 33 items:

<table>
<thead>
<tr>
<th>Item #</th>
<th>Item Tag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PAYADD</td>
<td>First bit address of payload sync.</td>
</tr>
<tr>
<td>2</td>
<td>STAADD</td>
<td>First bit address of status sync.</td>
</tr>
<tr>
<td>3</td>
<td>PAYLNG</td>
<td>Number of bits in payload sync.</td>
</tr>
<tr>
<td>4</td>
<td>STALNG</td>
<td>Number of bits in status sync.</td>
</tr>
<tr>
<td>5</td>
<td>PAYSYN</td>
<td>Payload sync pattern (11 bits/word, left justified to (2^{10}))</td>
</tr>
<tr>
<td>6</td>
<td>STASYN</td>
<td>Status sync pattern (11 bits/word, left justified to (2^{10}))</td>
</tr>
<tr>
<td>7</td>
<td>PAYERR</td>
<td>Number of errors allowed for payload sync search.</td>
</tr>
<tr>
<td>8</td>
<td>STAERR</td>
<td>Number of errors allowed for status sync search.</td>
</tr>
<tr>
<td>9</td>
<td>DTCALL</td>
<td>Nominal value of DTU calibration low value.</td>
</tr>
<tr>
<td>10</td>
<td>DTCA1H</td>
<td>Nominal value of DTU calibration high value.</td>
</tr>
<tr>
<td>11</td>
<td>SCCALL</td>
<td>Nominal value of signal conditioner calibration low value.</td>
</tr>
<tr>
<td>12</td>
<td>SCCALH</td>
<td>Nominal value of signal conditioner calibration high value.</td>
</tr>
<tr>
<td>13</td>
<td>CSPCAL</td>
<td>Nominal value of command status point calibration.</td>
</tr>
<tr>
<td>14</td>
<td>DTC1LT</td>
<td>Tolerance for DTU calibration low value.</td>
</tr>
<tr>
<td>15</td>
<td>DTC1HT</td>
<td>Tolerance for DTU calibration high value.</td>
</tr>
<tr>
<td>16</td>
<td>SCC1LT</td>
<td>Tolerance for signal conditioner low value.</td>
</tr>
<tr>
<td>17</td>
<td>SCC1HT</td>
<td>Tolerance for signal conditioner high value.</td>
</tr>
<tr>
<td>18</td>
<td>CSPCLT</td>
<td>Tolerance for command status calibration point.</td>
</tr>
<tr>
<td>19</td>
<td>DTADD</td>
<td>First bit address of DTU calibration low.</td>
</tr>
<tr>
<td>20</td>
<td>DTAD1H</td>
<td>First bit address of DTU calibration high.</td>
</tr>
<tr>
<td>21</td>
<td>SCADD</td>
<td>First bit address of signal conditioner low.</td>
</tr>
<tr>
<td>Item #</td>
<td>Item Tag</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>22</td>
<td>SCADDH</td>
<td>First bit address of signal conditioner calibration high.</td>
</tr>
<tr>
<td>23</td>
<td>CSPADD</td>
<td>First bit address of command status point calibration.</td>
</tr>
<tr>
<td>24</td>
<td>DTFRLM</td>
<td>Frame number of DTU calibration low.</td>
</tr>
<tr>
<td>25</td>
<td>DTFRMH</td>
<td>Frame number of DTU calibration high.</td>
</tr>
<tr>
<td>26</td>
<td>SCFRML</td>
<td>Frame number of signal conditioner low.</td>
</tr>
<tr>
<td>27</td>
<td>SCFRMH</td>
<td>Frame number of signal conditioner high.</td>
</tr>
<tr>
<td>28</td>
<td>CSPFRM</td>
<td>Frame number of command status point calibration.</td>
</tr>
<tr>
<td>29</td>
<td>FRMADD</td>
<td>First bit address of status frame word.</td>
</tr>
<tr>
<td>30</td>
<td>NOWRDS</td>
<td>Number of words of fixed format.</td>
</tr>
<tr>
<td>31</td>
<td>NIDNTS</td>
<td>Number of fixed format idents.</td>
</tr>
<tr>
<td>32</td>
<td>REPPER</td>
<td>Reporting period (power of 2)</td>
</tr>
<tr>
<td>33</td>
<td>CSPEND</td>
<td>Address of Algout CSP Block ending.</td>
</tr>
</tbody>
</table>

The Print Headings are in messages 2-4 and consist of 2-120 column-packed BCD print images.

The Processing Tables (TLMPO-8) are in messages 5-38 and consist of blocks of 200 entries corresponding to telemetry points to be processed. The description of TLMPO-8 follows.

<table>
<thead>
<tr>
<th>TLMPO</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>A = Process Bit</td>
<td>A = 1 Process Point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210-29</td>
<td>B = Type of Point</td>
<td>B = 0 Fixed Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 2 CSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>C = Dummy Point</td>
<td>C = 1 Do Not Process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-25</td>
<td>D = Calibration Info.</td>
<td>D = 0 No Normalization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 DTU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 2 SC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 4 CSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>E = Subcommutation Information</td>
<td>E = 0 Subcommutated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>= 1 Not Subcommutated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-20</td>
<td>F = Frame Number if Commutated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLMPI</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>211-28</td>
<td>A = Spare</td>
<td></td>
</tr>
<tr>
<td>27-20</td>
<td>B = First Bit Address of Point</td>
<td></td>
</tr>
</tbody>
</table>
TLMP2

A B

\[2^{11} - 2^5\] A = Number of bits

\[2^5 - 2^0\] B = Algorithm number

TLMP3

A

\[2^{11} - 2^0\] A = Relative address in ALGIN, algorithm input storage.

TLMP4

A

\[2^{11} - 2^0\] A = Relative address in ALGOUT, algorithm output storage.

TLMP5

A

\[2^{11} - 2^0\] A = Characters one and two of event.

= Starting column if fixed format.

TLMP6

A

\[2^{11} - 2^0\] A = Characters three and four of event.

= Number of columns if fixed format.

TLMP7

A

\[2^{11} - 2^0\] A = Characters five and six of event.

= Number of bits, if fixed format.

TLMP8

A

\[2^{11} - 2^0\] A = Relative address in print where table look up information is stored

ALGIN Algorithm Input Storage

The algorithm calling sequences are packed in messages 39-44 and contain the sequences described by the Algorithms.

PRINT Table Look Up Information

The Table Look Up Data are the BCD information contained in the Bird Buffer table, CNVRT, and are in messages 45 and on.
2.2.1.4.5 PREPASS TELEMETRY MODE SELECTION MESSAGE (PCM)

Word 1 7777
 2 SS32
 3 30NN
 4 AAVV A = Telemetry Type (3 = PCM)
 5 VVVV
 6 RRRR
 7 RRRR
 8 MMMM
 9 0000 Option number
 0 = Full frame or command summary
 1 = Suppressed frame or engineering status
 10 CKSM Checksum if no mode structure change
 or IIII Mode structure item number
 11
 12
 13
 14 XXXX
 15 XXXX Parameters as required
 16 XXXX
 17 XXXX
 18 CKSM

This format allows the Bird Buffer program to use the same card format and
message for FM/FM and PCM. Because of print format-related problems, real time
calling sequence modifications are not possible.

2.2.1.4.5.6 REAL TIME TELEMETRY MODE SELECTION MESSAGE (PCM)

Word 1 7777
 2 SS32
 3 3214
 4 MMMM
 5 IIII Mode structure item number
 6 0000 Option number
 7
 8
 9 XXXX
 10 XXXX Parameters as required
 11 XXXX
 12 XXXX
 13 CKSM

This format also allows complete Bird Buffer compatibility.
2.2.1.5.6 Latitude Crossing Message.

Word 1 7777
2 SS31
3 31NN
4 VV
5 VVVV
6 RRRR
7 RRRR
8 D PP D = bit 11. Bit 11 = 1 if crossing is North to South, bit 11 = 0 if crossing is South to North. PP is the number of grids used in this pass to determine crossing. PP ≤ 10.
9 GGGG Words 9 and 10 form a couplet. There are PP such couplets in a message. GGGG is a grid number ≤ 4094. If G's are the number of a warning grid, then bit 0 = 1 in Word 10 or C = 1. If G's are the number of a crossing grid, then bit 1 = 1 of Word 10 or C = 2. If G's are the number of a reporting grid only, then C will be zero. Bits 2-11 of Word 10 are not used.
10 C

NN+1 CKSM

This message will be sent to the site as part of the prepass data for a particular revolution. The latitude crossing report going from the remote station to the STC will be sent as a status message.
2.2.4.1 Initialize.

Cols. 1-4 **00 Identifies the card as an INITIALIZE card.

5-6 Blank Always blank.

7-10 VVVV Contains the vehicle number, in decimal.

11-12 Blank Always blank.

13-20 MM/DD/YY Contains the present month, day, and year; all decimal, and separated by slashes.

21-22 Blank Always blank.

23-24 AM or PM Usually indicates whether it is morning or afternoon when the INITIALIZE card is entered (see 2.1.6).

25-26 Blank Always blank.

27-28 PT or Blank Indicates whether a new Prepass Tape should be made up for this vehicle. If blank, a Prepass Tape exists. If PT, a new Prepass Tape should be made up (new vehicles only).

29-30 Blank Always blank.

31-32 SS Site number.

33-80 Ignore.

2.2.4.2 Transfer Prepass.

Cols. 1-4 **02 Identifies the card as a Transfer Prepass card.

5-6 Blank Always blank.

7-10 VVVV Vehicle number, in decimal.

11-12 Blank Always blank.
Cols 13-16 RRRR or Blank
May contain a revolution number or may be blank. If blank, all prepass data for the specified vehicle will be transferred. If a revolution number is specified, only prepass data for that revolution will be transferred.

17-18 Blank Always blank.

19-20 SS or Blank
May be blank or may contain a site number. If blank, all prepass data for the specified vehicle will be transferred. If Cols. 19-20 contain a site number, only prepass data for that site will be transferred.

21-80
These columns are ignored by the program and may be used for further card identification if desired.

2.2.4.3 Merge Tape
Cols. 1-4 **04 Identifies the card as a Merge Tape card.
5-6 Blank Always blank

2.2.4.4 Send Prepass
Cols. 1-4 **06 Punch all prepass data on a Bird Buffer 163 tape, which has not yet been sent.
5-6 Blank
7 T/Blank Blank = Punch paper tape
Blank = Write on Magnetic Tape No. 4.
9-10 Blank
11 R/Blank R is Rerun (send old prepass, 1 Rev only)
12, 13 Blank
14, 15 RRRR Used only if col 11 = R
16-80 Unused

2.2.4.5 Transfer Card Prepass
Cols. 1-4 **07 Indicates that card prepass data is to be merged on the Prepass Tape.
5-6 Blank Always blank
7-10 VVVV Vehicle number, in decimal.
either a visual header or a prepass message. SPUN will then extract the
data, format the header or message and punch the tape.

After each header or prepass message is output, SPUN will return control to
SPREPX.

3.4.3 Tape Contents. Each paper tape will contain prepass messages for
the TLM and for the T & C computers. Each set of messages designated for one
computer will be preceded by a visual header.

The information on the header will include the station number, the destination
computer (T & C or TLM), vehicle number, revolution number, and the time of
initial antenna pointing data (month/day/year/seconds).

The visual header will be followed by a Prepass Coming message. Each group of
messages (grouped by message code) including the Prepass Coming message will be
preceded by a visual representation of the two digit message code. A 77 will be
punched following the 15 blank frames associated with the last Prepass Ending
message for the T & C computer.

Blank frames will be used to separate individual messages and groups of mes-
sages as follows:

1. 15 frames - to precede and follow each visual tape header, and
to follow each Prepass Ending message.

2. 5 frames - to separate individual messages.

A graphic representation of the tape format is presented in Appendix C.

3.4.4 Method. Upon entry by SPREPX, if a visual header is requested, data
will be extracted by SPUN from communication cells, formatted into visual re-
presentations and punched on 5-level paper tape. After the header is punched,
the Prepass Coming message will be extracted, formatted into 5-bit words (4
data bits + odd parity) and output; control will then be returned to SPREPX.

If a visual header is not requested, SPUN will extract a message from a data
buffer, determine message length, and format each 12-bit word into three 5-bit
words (4 data bits & odd parity). The message will then be punched and control
returned to SPREPX.

An option will be provided to write the paper tape image on magnetic tape.

3.4.5 Interfaces. Communication cells used by SPUN must be preset with
vehicle number, revolution number, and time of initial antenna pointing data.

The data buffer set by SPREP should contain a valid message upon each entry to
SPUN.
3.5 Telemetry Processing Module

3.5.1 Name: STEPP - Telemetry Process and Print

3.5.2 Description:
The functions of the Telemetry Module are to accept telemetry data from the remote station, perform any legal conversions which are requested, and prepare a selected set of data for printout on the Data Analysis Printer and another set for printout on the Data Presentation Printer. The Telemetry Module will also prepare for printout any alarms or status messages generated by the telemetry computer at the remote station.

Processing of incoming messages will be handled in the following manner: The event portion of a telemetry report will be placed in an event buffer by the Executive Module (SXCON); the fixed format portion of a message will not be buffered but will be replaced by new fixed format each second. When the Telemetry Module is entered, it will check to see if there is a status or alarm message to be printed. If there is and it is less than twenty-three characters in length, it will be placed in the printer image beginning in the first column reserved for events; if it is twenty-three characters or more, it will replace the fixed format printout. After the status or alarm message is formatted or if there are no status and alarm messages, the Telemetry Module will begin processing the events. The first event will be placed in the column specified for events unless, (1) the event buffer has reached saturation, in which case events will replace fixed format or (2) there are more events than can be printed in one second, in which case events will replace the tracking data printout for that second. Events will be taken out of the event buffer sequentially and prepared for printout until all columns available on one of the printers have been used. Associated system time will be printed out at the beginning of each second and each time a new system time is reported by the remote station. The contents of an event printout will include a six character identification, the value, two characters of units and time in tenths of seconds or out-of-limits indication if reported by the compression algorithm. The value may be printed in octal, decimal, percent of band width, engineering units, switch setting with two settings or a level for multilevel functions.

Fixed format information will be processed in the order that it appears in the message. A particular item of information may appear on either or both the Data Analysis or Data Presentation printer in different columns but must be printed in the same manner: octal, decimal, percent of band width, engineering units, or switch settings. The Telemetry Module will make the required conversion and print the number of characters which have been allowed for the point.

For both fixed format and events the module will print an "N" for the value of the point whenever the tracking station sends a report of noise for that item.
3.5.3 Interfaces

Tables are required by the Telemetry Module containing information about the format of the telemetry report and information about how the Bird Buffer is to print the data. These tables may be supplied by a 1604 program. The detailed format of the tables is given below:

3.5.3.1 The TMPNT table has 6 blocks of N words. (N is the number of telemetry points to be processed in this mode.) The first register in TMPNT contains information about the point associated with identification number 1, the second register about point 2, etc. The information contained in the register is dependent upon whether the point being processed is fixed format or event.

<table>
<thead>
<tr>
<th>TMPNT 0</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 bits</td>
<td>4 bits</td>
<td>6 bits</td>
</tr>
</tbody>
</table>

A Indicates on which printers the data is to be printed; A = 10 for D/A; A = 01 for D/P.

B Indicates how data is to be printed; B = 001 for octal; B = 010 dec.%; B = 011 table lookup; B = 100 engineering units; B = 101 decimal; B = 110 BCD

C Is the number of compression algorithm used.

<table>
<thead>
<tr>
<th>TMPNT 1</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fixed format)</td>
<td>4 bits</td>
<td>8 bits</td>
</tr>
</tbody>
</table>

A Is a spare.

B Is the first column on the D/A printer for this point.

<table>
<thead>
<tr>
<th>TMPNT 2</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(fixed format)</td>
<td>4 bits</td>
<td>8 bits</td>
</tr>
</tbody>
</table>

A Is the number of columns allowed for this point.

B Is the first column on the D/P printer for this point.
12 June 1963

TMPNT 3
(fixed format)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 bits</td>
<td>4 bits</td>
<td>4 bits</td>
</tr>
</tbody>
</table>

A is the location of the first bit in the Telemetry Report (0-11).

B is a spare.

C is the number of bits.

For events, TMPNT 1, 2, and 3 are six characters of associated header to be printed with each event.

TMPNT 4

A

A is the address of the information in CNVRT needed to perform the conversion to engineering units.

TMPNT 5

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>6 bits</td>
</tr>
</tbody>
</table>

A, for \(ax + b \) conversions, equals the number of fractional characters in the answer which are to be printed after shifting and converting.

B, for \(ax + b \) conversions, equals the number of shifts of the 22-bit product of "a" times "x" necessary to correspond to the value of b.

A, for table look-up conversions, contains an indicator in Bit 11 which is set to 1 if each entry in the conversion table contains 6 four bit BCD digits. Bit 11 set to zero indicates that each module in the conversion table is expressed in 3 four bit BCD characters.

B, for table look-up conversions, indicates the number of right shifts to be made on the reported telemetry data prior to table look-up.

A, for octal conversions, as unused.

B, for octal conversions, indicates the number of right shifts to be performed on the reported telemetry data prior to conversion.

A and B of TMPNTS are not used for this type conversions.

TMPNT 6

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 bits</td>
<td>6 bits</td>
</tr>
</tbody>
</table>

A is the first legal Printer character for an event units label.

B is the second legal Printer character in the units label for events.
3.5.3.3 The CNVRT table contains the conversion factors necessary to perform conversions to engineering units. It will contain the constants A and B necessary to perform linear conversions $Ax + B$ and tables of four-bit BCD characters required to do nonlinear conversions.

3.5.3.4 Special Handling of Particular Algorithms.

a. For algorithm #20 (Max., Min., Avg.), the conversions specified in the table IMNT will be applied three times identically to the three input values.

b. For algorithm #21 (Do Nothing) a new line of telemetry will be started at the beginning of the next second.

c. Algorithms #22-31 will be handled compatibly with FM/FM algorithms #1-11.

3.5.4 Restrictions.

3.5.4.1 Telemetry items will be printed in percent of full-scale or engineering units with errors due to conversion accuracy not exceeding one percent.

3.5.4.2 A maximum of six characters of header will be printed with each event.

3.5.4.3 The number of conversions which can be done will be limited by the length of the CNVRT table and processing time.

3.5.5 Existing Subroutines Used. None.
3.6 VERIFY PAPER TAPE MODULE

3.6.1 Name: SPIN - Prepass Paper Tape Verifier

3.6.2 Description. The functions of the Verify Paper Tape Module are to read the prepass paper tape, check the parity of each frame of data, check that individual messages checksum to zero, and compare commanding messages with their redundant messages.

SPIN will be entered by the executive module upon the input of a VERIFY PAPER TAPE request card. SPIN will return to the executive upon completion of its functions, or upon recognizing an error on the paper tape.

The processing of the paper tape will be done in the following manner: SPIN will select the paper tape reader and search for the first message on the tape. The tape will then be read frame at a time, and the parity of each frame will be checked. When three frames have been read, they will be assembled into a 160A word and the word will be assigned to a message buffer. When the end of a message is signaled by a blank frame, the message in the buffer will be checksummed. This processing continues until a second occurrence of 15 stop codes.

3.6.3 Restrictions

1. The prepass paper tape must be in the reader.
2. The reader must be ready.
3. The reader must be set to read 5-level tape.

3.6.4 Use of Existing Subroutines. None

3.7 BIRD BUFFER/1604 COMMUNICATION MODULE

3.7.1 Name: Bird Buffer 1604/Communication Link - SIBSTC
3.7.2 Description: SIBBTC provides the IOSB 160A computer programs communication with a 1604 computer by means of a 1615 tape logic unit operating in the Satellite Mode. These operations will be performed by SIBBTC: Communicate with the 1604 via control messages, receive prepass messages for a specific vehicle from the 1604, and receive SCHOPS data from the 1604. All transfers will be core-to-core, using the direct transfer mode of the 1615. The three types of transfers are detailed below.

3.7.2.1 Prepass messages from the 1604 for a vehicle will consist of antenna pointing, commands, latitude crossing, and text information. SIBBTC will examine each block of the prepass message to determine whether that block is a command. Commands will be retransmitted to the 1604 for a bit-by-bit comparison with what was sent to the 160A. All other classes of prepass messages will be checksummed to determine correctness of transmission. Prepass information may be requested by two classes: for one pass (one vehicle), or all data for all revs (for one vehicle).

3.7.2.2 SCHOPS data will be sent by the 1604 to the Bird Buffer. The Bird Buffer will respond as to correctness of the data.

3.7.3 Interfaces. This section will be devoted to a discussion of program control, processing, and input, output parameters.

3.7.3.1 Program Control. The sequence of SIBBTC program operation commences when SIBBTC has been referenced by a return jump in the user program. SIBBTC will interrogate cell 0070 in bank 2 to determine its operation. Other direct cells specify vehicle number (V), revolution number (R), and station number (S).

<table>
<thead>
<tr>
<th>Cell 0070</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>resume contact</td>
</tr>
<tr>
<td>1</td>
<td>not used</td>
</tr>
<tr>
<td>2</td>
<td>not used</td>
</tr>
<tr>
<td>3</td>
<td>transfer SCHOPS</td>
</tr>
<tr>
<td>4</td>
<td>transfer prepass</td>
</tr>
</tbody>
</table>

If contact is to be initiated, SIBBTC will determine whether or not the 1604 has enabled interrupt. COPII sets Flag 1 when it cannot be interrupted; in this situation, SIBBTC notifies the operator and waits for the 1604 to clear Flag 1. When it finds Flag 1 cleared, an interrupt 1604 command will be executed. If, after 55 seconds, the 1604 does not respond to the interrupt by giving write control to the 160A, SIBBTC will exit back to the user program with an error flag set. (If the switch to the 1615 is open at the time of the interrupt attempt, a phantom resume will be generated and SIBBTC will exit to the user program with the same error flag set.) If contact is to be resumed, SIBBTC will assume that contact has been previously established, and it will enable receipt...
12 June 1963

DISTRIBUTION LIST

External

Space Systems Division
(Contracting Agency)
Major C. R. Bond (SSOCD)

6594th Aerospace Test Wing
(Contracting Agency)
Col. A. W. Dill (TWRD) (4)
Lt. Col. M. S. McDowell (TWRU)
TWACS (28)

PIR-E1 (Lockheed)
B. J. Jones
C. H. Finnie
H. F. Grover
H. R. Miller
C. D. Lawrence
461 Program Office
698EK Program Office

PIR-E2 (Philco)
J. A. Bean
J. A. Isaacs
R. Morrison
S. M. Stanley

PIR-E3 (LFE)
D. F. Criley
K. B. Williams (5)

PIR-E3 (Mellonics)
F. Druding

PIR-E5 (Aerospace)
F. M. Adair
R. D. Brandsberg
L. H. Garcia
G. J. Hansen
C. S. Hoff
L. J. Kreisberg
T. R. Parkin
E. E. Retzlaff
H. M. Reynolds
D. Saadeh
V. White

PIR-E7 (STL)
A. J. Carlson (2)
R. L. Mills

PIR-E4 (GE-Sunnyvale)
D. Alexander

PIR-E4 (GE-Box 8555)
J. S. Brainard
H. G. Klose
J. D. Selby

PIR-E4 (GE-3198 Chestnut)
J. F. Butler
H. D. Gilman

PIR-E4 (GE-Bethesda)
W. L. Massey

PIR-E4 (GE-Box 8661)
J. D. Rogers
<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
<th>Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>VORHAUS, A. H.</td>
<td>24076A</td>
<td>WINSOR, M. E.</td>
<td>22084</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAGNER, I. T.</td>
<td>24093</td>
<td>WINTER, J. E.</td>
<td>24115A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WARSHAWSKY, S. B.</td>
<td>24097</td>
<td>WISE, R. C.</td>
<td>22158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST, G. D.</td>
<td>SUNNYVALE</td>
<td>WONG, J. P.</td>
<td>SUNNYVALE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEST, G. P.</td>
<td>22116A</td>
<td>ZACHTE, S. A.</td>
<td>24086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILSON, G. D.</td>
<td>24124</td>
<td>ZUBRIS, C. J.</td>
<td>24075</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
12 June 1963

DISTRIBUTION LIST
Internal

AFCPL (5) 14059 KEY, C. D. 22083
ALLFREE, D. 24083 KINKEAD, R. L. 22155
ALPERIN, N. I. 22088B KNEEMEYER, J. A. 22153A
ARMSTRONG, E. 24123 KNIGHT, R. D. 22119
BERNARDS, R. M. SUNNYVALE KOLBO, L. A. 22079
BIGGAR, D. A. 24118A KOSTINER, M. 14056B
BILEK, R. W. 22101 KRALIAN, R. P. 14039
BLACK, H. 14039 KRISTENSEN, K. SUNNYVALE
BRENTON, L. R. 24103B LACHAPELLE, F. J. 22156
BURIUS, R. F. 22082 LAVINE, J. 24091
BURLAND, R. M. SUNNYVALE KOLBO, L. A. 22079
BUSCH, R. E. 22101 LEWIS, H. L. 22095
CHAMPAIGN, M. E. 22091A LITTLE, J. L. 24090A
CHIODINI, C. M. 24082B LONG, F. 22078
CIACCIA, B. G. 24090B MADRID, G. A. 23014
CLINE, B. J. 24129 MAHON, G. A. 24089
COGLEY, J. L. 22122 MARIONI, J. D. 24076B
CONGER, L. 24082 MARSHALL, R. D. 22099
COOLEY, P. R. 24081 MARTIN, W. P. 24129
COURT, T. D. 24086B MCEWAN, J. C. 22083
DANT, G. B. 24086B MICHAELSON, S. A. 14039
DECUIR, L. E. 24053A MILANESI, J. J. 22078
DERANGO, W. C. 24094A MUNSON, J. B. 22096A
DIXON, G. W. 25026 MYERS, G. L. 14056A
DISSE, R. J. 22082 NELSON, P. A. 24075
DOBRSUKY, W. B. 22150 NG, J. 22148
ELLIS, R. C. 22131A NGOU, L. 22148
EMIGH, G. A. 14039 PADGETT, L. A. 24108
ERICKSEN, S. R. 22113 PATIN, O. E. SUNNYVALE
FELKINS, J. 24097 PERRY, G. H. 24034
FOSTER, G. A. 14039 POLK, T. W. 24115B
FRANKS, M. A. 24122 PRUETT, B. R. 22157
FREY, C. R. 23110 REILLY, D. F. 24121
FRIEDEN, H. J. 23013 REMSTAD, C. L. 25030
GARDNER, S. A. 22160 RUSSELL, R. S. 14054
GREENWALD, I. D. 22116B SCHOLZ, J. W. 14039
GRIFFITH, E. L. 22157 SCOTT, R. J. 24110
HAAKE, J. W. 22088A SEACAT, C. M. SUNNYVALE
HARRIS, E. D. 24081 SHAPIRO, R. S. 24114
HENLEY, D. E. 22094B SKELTON, R. H. 22087
HILL, C. L. 22161 SOLOMON, J. D. 23007
HILLS, C. L. 23110 SPEER, N. J. 24085
HOLZMAN, H. J. 24033 STONE, E. S. 24058B
HOUPTON, W. H. 24065B SWEENEY, M. J. 25030
HOYT, R. L. 24103 TABER, W. E. 22155
IMEL, L. E. 14039 TENVANT, T. C. 27029
KASTAMA, P. T. 23007 TESTERMAN, W. D. 14039
KAYSER, F. M. 24109 THOMPSON, J. W. 24082A
KEDDY, J. R. 24105 TOTSCHER, R. A. 24118B
System Development Corporation,
Santa Monica, California
"INDIAN OCEAN STATION" BUFFER (IOSC)
MILESTONE 4.
Scientific rept., TM-1245/000/00A,
(Contract AF 19(628)-1548, Space
Systems Division Program, for Space
Systems Division, AFSC).

DESCRIPTORS: Programming (Computers).
Satellite Networks.

Presents change pages for TM-1245/000/00,
"Indian Ocean Station Buffer (IOSB)
Milestone 4", by R. C. Wise, dated
20 May 1963.