NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 405

12 June 1963
DDC Availability Notice

Qualified requesters may obtain copies of this report from the Defense Documentation Center for Scientific and Technical Information, Arlington Hall Station, Arlington 12, Virginia.

Destruction Notice

Destroy; do not return.
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-405

by

Hubert D. Bagley
Novella S. Billions

Department of the Army Project No. 1-B-2-79191-D-678
Army Materiel Command Structure Code No. 5292.12.127

AEROPHYSICS BRANCH
PHYSICAL SCIENCES LABORATORY
DIRECTORATE OF RESEARCH AND DEVELOPMENT
U. S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama
ABSTRACT

This report presents the atmospheric environment for the flight of PERSHING Missile-405, which was launched on 4 March 1963, at 2000 EST, from the Atlantic Missile Range, Cape Canaveral, Florida. The general synoptic situation for the flight area, surface observations at launch time, and upper air conditions as measured by rawinsondes released as close to missile launch time as possible are given. High altitude wind data over the launch area as determined from a meteorological rocket flight are also presented.

Relative deviations of thermodynamic quantities from the Patrick Air Force Base Annual Reference Atmosphere are presented in graphical form for easy reference.
TABLE OF CONTENTS

I. INTRODUCTION ..

II. PRESENTATION AND DISCUSSION OF DATA
 A. Source of Data
 B. Methods of Computation and Presentation
 C. General Synoptic Situation at Missile Firing
 Time ..
 D. Surface Weather Observations
 E. Upper Air Observations

III. CONCLUSIONS ..
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Surface Weather Map at 1800Z, 4 March 1963, 0700 Pre-T.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Surface Weather Map at 0600Z, 5 March 1963, 0500 Post-T.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>500-Millibar Height Map at 0000Z, 5 March 1963, 0100 Pre-T.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Range Direction Wind Components (W_x), Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Wind Speed, Meteorological Rocket Measured, Cape Canaveral, Florida.</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Temperature Lapse Rate, Cape Canaveral, Florida.</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>16. Relative Humidity, Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>17. Index of Refraction, Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>18. Reference Annual Atmosphere, Patrick Air Force Base, Florida</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>19. Absolute Deviation of the Index of Refraction from the Patrick Air Force Base Reference Annual Atmosphere</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>
SYMBOLS, UNUSUAL TERMS AND NON-STANDARD ABBREVIATIONS

- C - degree Celsius
- K - degree Kelvin or absolute
- kg - kilogram
- kp - kilopond - kilogram force
- km - kilometer
- m - meter
- mb - millibar
- mps or m/sec - meters per second
- T-O or T-Time - missile launch time
- n - index of refraction
- W_S-N - meridional wind component
- W_W-E - zonal wind component
- W_X - range direction wind component relative to missile flight path
- W_Z - cross-range wind component relative to missile flight path
- T* - virtual temperature
- e* - virtual-potential temperature
- GCT or Z - Greenwich civil time

Standard - refers to the Patrick Air Force Base (PAFB) Reference Annual Atmosphere
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-405

I. INTRODUCTION

This report presents the more important portions of available atmospheric information pertinent to the missile flight at 2000 EST on 4 March 1963, from Cape Canaveral, Florida. Surface and upper air observations were made as close to missile launch time as possible at the launch site and downrange at Grand Bahama Island and Eleuthera.

Rocket measured winds were determined from radar track of a LOKI II meteorological rocket flight provided by the PAFB Air Weather Service in support of PERSHING Missile-405.

This information is presented to document in detail the atmospheric conditions prevailing at time of missile launch and to provide supporting material for specific atmospheric investigations in connection with missile design and/or missile flight-mechanical performance studies.

II. PRESENTATION AND DISCUSSION OF DATA

A. Source of Data

The general synoptic situation was taken from weather maps made by the U. S. Weather Bureau on missile firing date (Figs. 1, 2, and 3) and from data furnished by the Patrick Air Force Base Weather station.

Surface and upper air observations were made at the Cape Canaveral launch site and downrange stations under the supervision of the U. S. Air Force. These observations were made as close to the missile launch time as possible.

A LOKI II meteorological rocket furnished by the U. S. Air Force was fired in support of Pershing Missile-405.

B. Methods of Computation and Presentation

Wind speed and direction, temperature, pressure, and relative humidity are measured by rawinsondes. Thermodynamic quantities are computed from the rawinsonde data by use of the hydrostatic equation and its modifications as given in the Smithsonian Meteorological Tables (Ref. 1). Thermodynamic values are then determined for each 250 meters of altitude above sea level by interpolation.
Wind data are also interpolated at 250 meter intervals of altitude using the altitude references computed from the hydrostatic equation. Rawinsonde wind data are considered unreliable at high altitudes and low elevation angles (less than 10°). Wind shears are computed for each 250 meter interval of altitude from the rawinsonde data.

The meteorological rocket winds were determined by the method described by Gray (Ref. 2).

Temperatures are fitted by logarithmic interpolation between the ceiling of the rawinsonde temperature curve and the ARDC temperature curve of 9.5°C (282.66K) at the 1 mb pressure height. Tabulated ARDC temperatures are used above the 1 mb pressure level and density is computed as before.

The index of refraction is computed by use of the formula given in "Analysis of Refractive Index Errors", by Epstein (Ref. 3).

The rawinsonde measured atmospheric parameters are compared to the Patrick Air Force Base Reference Atmosphere (Ref. 4), by subtracting the reference atmosphere values from the rawinsonde values at corresponding altitudes.

C. General Synoptic Situation

1. Pressure Distribution and Frontal Systems

The surface weather map, at 1800Z on 4 March, showed a high pressure cell in the Atlantic Ocean near 35°N 65°W. A ridge extended southwestward from this cell across Florida into the Gulf of Mexico. Barometric pressure was relatively high over Florida and the downrange area. At 0100Z on 5 March, the pressure was 1022.4 mb at PAFB. At the same time it was 1023.4 mb at GBI and 1022.8 mb at Eleuthera. A stationary front extended from near Washington, D. C. southwestward to a low pressure center in southeastern Missouri thence southwestward as a cold front through central Texas. Scattered altocumulus clouds were over the Cape, and broken altocumulus with lower scattered cumulus clouds were reported at GBI. It was clear at Eleuthera. Surface winds were southeasterly 4 to 5 mps at the Cape, easterly southeast 4 to 6 mps at GBI, and easterly with gusts to 13 mps at Eleuthera.

The upper air chart for the 500 mb pressure level showed a high pressure area over south Florida and Cuba with westerly wind flow. A deep trough was over Colorado, New Mexico, and Arizona.

D. Surface Weather Observations

This information is given on page 3.
Surface Weather Observations

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
<th>Date</th>
<th>Temperature °C</th>
<th>Relative Humidity %</th>
<th>Pressure mb</th>
<th>Wind</th>
<th>Clouds and Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape</td>
<td>0058</td>
<td>5 March</td>
<td>20.0</td>
<td>91</td>
<td>1022.4</td>
<td>SE 5.1</td>
<td>1 - AC</td>
</tr>
<tr>
<td>GBI</td>
<td>0100</td>
<td>5 March</td>
<td>22.2</td>
<td>83</td>
<td>1023.4</td>
<td>ESE 5.7</td>
<td>2 - CU</td>
</tr>
<tr>
<td>Eleuthera</td>
<td>0100</td>
<td>5 March</td>
<td>22.8</td>
<td>78</td>
<td>1022.8</td>
<td>E 9.8 + 12.9</td>
<td>Clear</td>
</tr>
</tbody>
</table>
Schedule of Upper Air Observations

<table>
<thead>
<tr>
<th>Location</th>
<th>Starting Time</th>
<th>Date</th>
<th>Duration of obs</th>
<th>Maximum Wind</th>
<th>Maximum Altitude</th>
<th>Location</th>
<th>Starting Time</th>
<th>Date</th>
<th>Duration of obs</th>
<th>Maximum Wind</th>
<th>Maximum Altitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cape (Rawinsonde)</td>
<td>0124</td>
<td>0024</td>
<td>5 March</td>
<td>117.5</td>
<td>WSW</td>
<td>29.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GBI (Rawinsonde)</td>
<td>2348</td>
<td>-0.12</td>
<td>4 March</td>
<td>114.5</td>
<td>NW</td>
<td>33.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eleuthera (Rawinsonde)</td>
<td>0100</td>
<td>0000</td>
<td>5 March</td>
<td>122.5</td>
<td>NW</td>
<td>34.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cape (LOMI II Meteorological Rocket)</td>
<td>0200</td>
<td>0100</td>
<td>5 March</td>
<td>13.0</td>
<td>WSW</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
E. Upper Air Observations

1. Schedule of Upper Air Observations

 This information is given on page 4.

2. Wind Data

 Winds at Cape Canaveral were southeasterly at the surface and started veering just above the surface to become westsouthwesterly by 5 km altitude. From 5 km to 20 km altitude winds were west to westnorthwest and were light and variable above 20 km altitude. The maximum speed was 34 m/sec from the westnorthwest at 14.5 km altitude (Figs. 4 and 5).

 Winds at GBI were eastsoutheast at the surface and veered with altitude to become westerly by 5 km. Eleuthera had an easterly surface wind. At 3.5 km the wind at Eleuthera had backed to north-easterly, but veered to westnorthwesterly by 5 km. Above 5 km winds at both GBI and Eleuthera were similar in direction to those at the Cape. The maximum wind speed was 31 m/sec from the northwest at GBI, and was 26 m/sec from the northwest at Eleuthera.

 The range direction and cross-range wind components are shown in Figures 6 and 7. The maximum range direction component at Cape Canaveral was a tailwind of 30 m/sec at 14.5 km altitude. At GBI, the maximum range direction component was a tailwind of 31 m/sec at 13 km altitude, and at Eleuthera was a tailwind of 25 m/sec at 13 km altitude. The maximum cross-range component at the Cape was a wind from the right of 17 m/sec at 9 km altitude. Maximum cross-range component at GBI was 11 m/sec from the right at 8.75 km, and was 11 m/sec from the left at 27.75 km at Eleuthera.

 Rawinsonde measured wind shears for the Cape, GBI and Eleuthera are shown in Figure 8.

 The time and space relations between the missile track and launch site rawinsonde are shown in Figure 9.

 Wind data computed from radar data for the meteorological rocket flight are shown in Figures 10 and 11. The maximum reliable wind speed was 60 m/sec from the westsouthwest at 56 km altitude.

3. Thermodynamic Quantities

 Rawinsonde measured ambient temperatures for Cape Canaveral and downrange at GBI and Eleuthera are shown in Figure 12. Relative deviations of temperature, pressure, and density from the PAFB reference annual atmosphere are shown in Figure 13. The launch
site and downrange temperatures showed less than 2 percent departure from normal from the surface to 15 km. Above 15 km, temperatures at the Cape and at both the downrange stations decreased to reach the greatest departure from standard between 17 km and 19 km altitude. At the Cape, the greatest temperature deviation was 4.4 percent below standard at 17.25 km. Greatest deviation at GBI was 4.6 percent below standard at 18 km, and was 5.7 percent below standard at 18 km altitude for Eleuthera.

Pressure at the Cape and at both the downrange stations was above standard from the surface through 16 km altitude. The pressure then decreased and was below standard from 19 km altitude to termination of data. Maximum pressure deviation was at Eleuthera where it was 3.3 percent below standard at 30 km altitude.

Density deviations (Fig. 14) at the Cape and the downrange stations were within 2 percent of the standard to 12 km altitude. The density increased above 12 km and maximum deviation for Cape Canaveral occurred at 17.25 km where it was 4.4 percent above standard. Maximum deviation at GBI was 5.4 percent above standard at 18 km and was 6.3 percent above standard at 18 km for Eleuthera.

The relative humidity (Fig. 16) at Cape Canaveral was near standard at the surface where the reading of 87 percent of saturation was the maximum recorded for the sounding. It decreased rapidly from 2 to 2.75 km. From 3 km to 15 km, the relative humidity fluctuated as the instrument ascended through several moist air layers. Relative humidity at GBI and Eleuthera had approximately the same average values as those for the Cape, but more homogeneous moisture distribution caused less variation of relative humidity with altitude.

The index of refraction (Fig. 17) at the Cape and both the downrange stations showed the greatest departure from standard (Fig. 19) between 2 km and 3 km altitude. At the Cape, it was \((n-1)10^6 = 24.1\) units below standard at 2.75 km altitude. Maximum departure at GBI was \((n-1)10^6 = 13.4\) units below standard at 3 km altitude and was \((n-1)10^6 = 24.0\) units below standard at 2.5 km altitude for Eleuthera.

III. CONCLUSIONS

Scattered altocumulus clouds were over the Cape area at launch time. Surface winds were southeasterly at 5.1 m/sec. Freezing level was 4300 meters altitude.
Fig. 1. SURFACE WEATHER MAP AT 1800Z, 4 MARCH 1963, 0700 PRE-T
Fig. 3. 5-MILLIBAR HEIGHT MAP AT 0000Z, 5 MARCH 1963, 0100 Pre-T
Fig. 14. Rawinsonde measured wind speed, Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera.
Cape Canaveral, Florida
Grand Bahama Island
Eleuthera

Fig. 5. Rawinsonde measured wind direction, Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera
Fig. 6. RANGE DIRECTION WIND COMPONENTS (w_x), F-405
CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA
Fig. 7. CROSS-RANGE WIND COMPONENTS (V_2), CAPE P-405
Cape Canaveral, Florida, Grand Bahama Island, and Eleuthera
Cape Canaveral, Florida
Grand Bahama Island
Eleuthera

Fig. 8. RAWINSONDE MEASURED WIND SHEARS, CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA
Direction of Rawinsonde Balloon from Missile Path
Distance between Missile Path and Rawinsonde Balloon
Rawinsonde Balloon Time minus Missile Time

Fig. 9. SPACE AND TIME RELATION BETWEEN MISSILE AND T-O RAWINSONDE
Fig. 10. WIND SPEED, METEOROLOGICAL ROCKET MEASURED, CAPE CANAVERAL, FLORIDA
Fig. 11. WIND DIRECTION, METEOROLOGICAL ROCKET MEASURED, CAPE CANAVERAL, FLORIDA
Fig. 12. AMBIENT TEMPERATURE, CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA
Fig. 15 Relative Deviations of Temperature, Pressure, and Density from the Patrick Air Force Base Reference Annual Atmosphere.

- Cape Canaveral
- Grand Bahama Island
- Eleuthera
Fig. 14. VIRTUAL-POTENTIAL TEMPERATURE, CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA
Fig. 16. RELATIVE HUMIDITY, CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA.
Fig. 17. INDEX OF REFRACTION, CAPE CANAVERAL, FLORIDA, GRAND BAHAMA ISLAND, AND ELEUTHERA
Cape Canaveral, Florida
- - - Grand Bahama Island
+-- +-- Eleuthera

ATMOSPHERIC PARAMETER CHART No. 6

ABSOLUTE DEVIATION OF THE INDEX OF REFRACTION FROM THE PATRICK AIR FORCE BASE REFERENCE ANNUAL ATMOSPHERE

Fig. 19
REFERENCES

APPROVAL

DR. OSKAR M. ESSENWANGER
Chief, Aerophysics Branch

JOHN F. HALLOWES, JR.
Director, Physical Sciences Laboratory
DISTRIBUTION

Commanding Officer
Detachment No. 11, 4th Weather Group
PAB Weather Station, Florida

Commanding General
USASRD
Ft. Monmouth, New Jersey
ATTN: Mr. M. Lowenthal
 Mr. A. Arnold

Commander
Air Force Cambridge Research Lab
L. G. Hanscom Field
ATTN: Mr. N. Sissenwine

Chief, U. S. Weather Bureau
Washington 25, D. C.
ATTN: Dr. H. E. Landsberg
 Dir. of Climatology

Commanding General
U. S. Army White Sands Missile Range, New Mexico
ATTN: Missile Geophysics Division
 Mr. H. Thompson
 Mr. W. Webb

Commanding General
U. S. Army Materiel Command
Washington 25, D. C.
ATTN: ARMED-RS-RS-A, Mr. Copeland

Chief, Air Defense Division
Office, Chief of Research and Development
Department of the Army
The Pentagon, Room 3E 371
Washington 25, D. C.
ATTN: Dr. Lemons
 Mrs. F. Whedon

The Atlantic Missile Range
Army Field Office
U. S. Army Missile Command
Patrick Air Force Base, Florida
ATTN: AMSMI-O
DISTRIBUTION (Concluded)

Air Weather Service
Directorate of Climatology
Suitland, Maryland
ATTN: Mr. W. Spreen

Commanding General
Army Electronics Research and Development Activity
Fort Huachuca, Arizona
ATTN: Chief, Meteorology Dept.

International Space Corporation
P.O. Box 395
Melbourne, Florida
ATTN: Dr. D. D. Woodbridge

NASA, George C. Marshall Space Flight Center
ATTN: M-ABEO-G, Mr. Vaughan

AMSMI-R
- RG
 Director
 Miss Elrod
 Mr. Conard
 Mr. Clugston
- RK
- RB (5)
- RR
 Mr. Hallowes
 Mrs. Billions (2)
 Dr. Essenwanger
 Mr. Mumford
 Mr. Bagley
 Mr. Dudel
 Mrs. Wheeler (2)
- RAP

AMCPM-PE-ETO

Defense Documentation Center for
Scientific and Technical Information
Arlington Hall Station
Arlington, Virginia (10)
UNCLASSIFIED

1. Pershing—Atmospheric environment
2. Pershing—Meteorological factors
3. Pershing—Wind effects
4. Pershing 405
5. Rawinsonde data
6. Wind—Measurement

I. Bagley, Hubert D.
II. Billions, Novella S.

DISTRIBUTION: Copies obtainable from DDC, Arlington Hall Station, Arlington 12, Virginia.

UNCLASSIFIED

1. Pershing—Atmospheric environment
2. Pershing—Meteorological factors
3. Pershing—Wind effects
4. Pershing 405
5. Rawinsonde data
6. Wind—Measurement

I. Bagley, Hubert D.
II. Billions, Novella S.

DISTRIBUTION: Copies obtainable from DDC, Arlington Hall Station, Arlington 12, Virginia.