DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: The drawings, specifications, or other matter here recorded for any purpose other than in connection with a duty to the Government pursuant hereunder, the U.S. Government to make, use, or divulge any obligation hereunder, the U.S. Government's right to use the same, or any use supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any right or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies from ASTIA. Others will be expedited if placed through the librarian or other person designated to request documents from ASTIA.

ASTIA release to OTS is not authorized.
PERTEACH
(PERT Fundamentals, Volume II)
TECHNICAL DOCUMENTARY REPORT NO. ESD-TDR-63-198

OPERATIONAL APPLICATIONS LABORATORY
DEPUTY FOR TECHNOLOGY
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
L. G. Hanscom Fld., Bedford, Mass

(Prepared under contract AF19(628)-365 by the Equipment Division, Raytheon Co., Waltham, Mass)
NOTE: Instructions for this volume and all other volumes are to be found in Volume I.
ESD-TDR-63-198

PERTeach

ABSTRACT

This self-instructional course teaches the basic concepts and techniques of PERT (Program Evaluation Review Technique). The course consists of six volumes and is intended for use by Air Force managers. Presented in programmed-instruction format, the course allows the student to proceed at his own pace and to learn without the aid of an instructor.

PUBLICATION REVIEW AND APPROVAL

This Technical Documentary Report has been reviewed and is approved.

WALTER E. ORGANIST
Chief, Operator Performance Division
Operational Applications Laboratory

ANTHONY DEBONIS, Colonel, USAF
Director, Operational Applications Laboratory
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Latest Time</td>
<td>2-1</td>
</tr>
<tr>
<td>2</td>
<td>Fundamentals of Slack</td>
<td>2-58</td>
</tr>
<tr>
<td>3</td>
<td>Schedule Date</td>
<td>2-80</td>
</tr>
<tr>
<td>4</td>
<td>Positive and Negative Slack</td>
<td>2-103</td>
</tr>
<tr>
<td>5</td>
<td>PERT Probability</td>
<td>2-134</td>
</tr>
<tr>
<td>6</td>
<td>Review of PERT Fundamentals</td>
<td>2-195</td>
</tr>
<tr>
<td>7</td>
<td>Network Replanning and/or Simulation</td>
<td>2-215</td>
</tr>
</tbody>
</table>
Suppose you can expect that from your office it will take you exactly one-half hour to reach a train that starts at 5:00 p.m. To catch this train you can leave your office at 3:30 p.m., at a later time, 4:00 p.m., or at an even later time, 4:15 p.m. But unless you delay the train, you can leave your office at 3:30 p.m. at which you can leave your office.
Latest Time

Each event of a PERT network has a characteristic called its Latest Time, T_L.

There is a _______ ________, T_L, for each _______ of a PERT network.
The symbol for Latest Time is
The T_L of an event is the latest time at which it can take place without delaying occurrence of the network ending event beyond a specified time.

T_L is the symbol for __________.
Latest Time

The Accumulated Expected Time, T_E, of any event is the time at which the event can be expected to occur after the network beginning event has taken place. T_E is related only to the network beginning event.

The Latest Time, T_L, of any event is the latest time at which it can take place without delaying occurrence of the network ending event. T_L is related only to the network ending event.

The T_L value of any event (need not/must always) equal its T_E value.
Scheduling or contract requirements may specify the time or date when a network is to be completed; that is, when the network ending event is to take place. This specified time may differ from the Accumulated Expected Time, T_E, of the network ending event. Where no contractual or schedule dates for completion of the network exist, the Latest Times of its events are calculated with respect to the T_E of the network ending event.

For the remainder of this chapter we will assume that there are no contractual or scheduling requirements that specify when the network must be completed.
Assuming that there are no contractual or scheduling requirements, the T_L value of an event is calculated with respect to the T_E value of the network ending event. Then the Latest Time, T_L, of an event is the latest time it can take place without delaying occurrence of the ___________ ___________ beyond its T_E value.
network ending event

Assuming that there are no contractual or scheduling agreements, the Latest Time, \(T_L \), of all events are calculated with respect to the \(T_E \) of the network ending event. Therefore, before \(T_L \) values can be calculated, the \(T_E \) of the network ending event must be known.

Suppose the \(T_E \) of a network ending event is 61.0 weeks. Then, the \(T_L \) of any event is the latest time it can take place without delaying occurrence of the \(T_E \) beyond ___ weeks.
network ending event beyond 61.0 weeks.

The T_L of an event is the latest time it can take place without delaying the network ending event beyond its T_E value. Any delay in occurrence of the network ending event itself will make it take place later than its T_E value.

Therefore the ______ value of the network ending event must equal its ______ value.
The TL of a network ending event equals the previously determined TE value of this event.

If the TE value of a network ending event is 61.0 weeks, its value equals weeks.
For any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e value of the activity. Start T_L calculations at the network ending event.

In the network below, event no. 8 is the ending event of activity 7-8 as well as the network ending event. Event no. 7 is the beginning event of activity 7-8 as well as the ending event of activity 6-7. Assume T_E of event no. 8 equals 61 weeks.

Following the above rule, T_L of event no. 7 equals (51-9) or 52 and the T_L of event no. 6 equals (52-11) or 41.

The T_L of event no. 5 is _____. The T_L of event no. 4 is _____.

![Network Diagram]

$$T_L = 61 \text{ (SET EQUAL TO } T_E \text{ OF NETWORK ENDING EVENT NO 8)}$$
TL of event no. 5 is 40.
TL of event no. 4 is 27.
In the network below, the T_L of event no. 5 is 40. Adding the t_e of activity 5-8 (21) to 40 gives 61, the T_L of event no. 8. If event no. 5 occurs at any time later than 40, adding 21 to it will make event no. 8 occur at a time ________ (earlier/ later) than its T_L value.

Thus 40 is the ________ at which event no. 5 can take place without delaying the occurrence of the network ending event, no. 8, beyond 61.
Always start T_L calculations at the network event.

For any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e of the activity.

In the network shown below:

T_L of event no. 14 = __

T_L of event no. 13 = __

T_L of event no. 12 = __

$T_L = 39$ (set equal to t_e of network ending event)
ending

\[T_L \text{ of event no. } 14 = 34 \]
\[T_L \text{ of event no. } 15 = 25 \]
\[T_L \text{ of event no. } 12 = 18 \]
In the network shown:

TL of event no. 18 = 10
TL of event no. 17 = 9
TL of event no. 16 = 12
TL of event no. 15 = 20

SET EQUAL TO
TL of network at ENDING EVENT
Where an event is the beginning event for more than one activity, its T_L value is the smallest of all possible values.

In the section of network below, event no. 5 is the beginning event of activities 5-6 and 5-7. One possible value of the T_L for event no. 5 is 16. This is obtained by subtracting 9, the t_e of activity 5-6 from 25, the T_L of event no. 6. The other possible value, obtained in similar manner with activity 5-7, is (34-14) or 20.

Since 16 is smaller than 20, the T_L of event no. 5 is ___.
The T_L of event no. 5 is 16.
In the section of network below, event no. 5 is the beginning event of activities 5-6, 5-7 and 5-8.

The TL of event no. 5 is _._._._.
The T_L of event no. 5 is 20.
The TL of a beginning event that starts more than one activity must be the smallest of all possible values. Otherwise, some events which are to occur after the given event will take place at times later than their calculated TL values.

In the network below, the possible TL values of event no. 5 are 16 and 20. If 20 is used as the TL value, and we add to it the t_e (14) of activity 5-6, then we allow event no. 7 to occur at a time no later than its TL value, 34. However, adding the t_e (9) of activity 5-6 to 20 will force event no. 6 to occur at 29, a time later than its TL value, 25.

If 16 is used as the TL value of event no. 5, adding 16 to 9 (t_e of activity 5-6) permits event no. 7 to occur no later than its TL value. Also adding 16 to 14 (t_e of activity 5-7) allows event no. 7 to take place before its TL value.

Suppose the TL of event no. 7 were 42 instead of 34, as in the sketch — would that change the TL of event no. 5?

Your Answer
A. Yes
B. No.

Turn to page 2-26.
Your Answer: A. Yes

Wrong. If the increased T_L of event no. 7 is 42, subtracting from it the t_e of activity 5-7 gives (42-14) or 28. The T_L of event no. 6 remains unchanged at 25. Subtracting the t_e of activity 5-6 from this leave 16.

Remember that the T_L of an event must be the smallest of possible values.

Return to page 2-25, review the information, then select the correct answer.
Your Answer: A. Yes

Wrong. If the increased T_L of event no. 7 is 42, subtracting from it the t_e of activity 5-7 gives (42-14) or 28. The T_L of event no. 6 remains unchanged at 25.

Subtracting the t_e of activity 5-6 from the above leaves:

Remember that the T_L of an event must be the smallest of possible values.

Return to page 2-25, review the information, then select the correct answer.
Your Answer: B. No

Correct! Subtracting the $t_e (14)$ of activity 5-7 from the increased $T_L (42)$ of event no. 7 gives 28, a value greater than 16, the value obtained with event no. 6 and activity 5-6. The T_L of event no. 5 is the smaller of these two values and remains unchanged at 16.

Turn to next page.
For any activity, T_L of the event equals T_L of the event minus T_L of the activity.

Where an event is the beginning event for more than one activity, its T_L value is the (smallest/largest) of all possible T_L values.

2-28
For any activity, T_L of the beginning event equals T_L of the ending event minus t_e of the activity.

T_L is the smallest of all possible T_L values.
In the following network section:

TL of event no. 11 = TL of event no. 10 = TL of event no. 9 = 0

SET EQUAL TO TE

\[L = 43 \] OF NETWORK ENDING EVENT
T_L of event no. 11 = 36
T_L of event no. 10 = 39
T_L of event no. 9 = 31

\[T_L = 43 \text{ SET \equal \text{ TO } T_E \text{ OF NETWORK ENDING EVENT}} \]
We must know the T_L of the network ending event when we start all calculations of T_L values. The T_L of the network ending event is set equal to its T_E value.

Therefore before we start T_L calculations we must determine the ___ value of the __________ _____________.
When you determined the T_E of the network ending event to be 66.0 in Panel B you also found the T_E values of all other events of the network. However, when you found T_L values in the last few pages you did not know the T_E of any event except the network ending event, and in these examples the network beginning event was not even shown.

Except for the network ending event, the T_E of a given event (must be/is not) used to determine the T_L of the given event.
is not

To say that a given event has a T_L of 29.0 weeks means that the event must occur no later than 29.0 weeks after the network beginning event.

T_L is expressed as time elapsed after occurrence of the Network ________ Event but calculation of T_L starts at the Network ________ Event.
Turn to Panel C in the workbook and leave it exposed to view. For computation of T_L values in a complete network, a table like that of Panel C is convenient. To simplify later use of T_L values in this course, the events are arranged with the network beginning event at the top of the table and the network ending event at the bottom. Because T_L calculations start at the network ending event, we start at the bottom of the table and work up towards the top.

For these computations we assume that all activity t_e values are known and that the T_L of the network ending event (equal to its T_E value) has been determined by previous T_E calculations.

We will use the relation that for any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e of the activity. Also, if an event is the beginning event for more than one activity, its true T_L value is the smallest of all possible values.

$$T_L(\text{of beginning event}) = T_L(\text{of ending event}) - t_e(\text{of activity})$$
Start filling in the blanks in the table and network of Panel C in accordance with the following directions:

Step 1. In column labelled "Ending Event T_L" and in the bottom row, next to activity 4-5, write the known T_L of network ending event no. 5. This T_L is given in the network. Then subtract the t_e of activity 4-5 from the T_L of event no. 5. Write the result, a possible T_L of event no. 4, in the column labelled "Beginning Event Possible T_L".

Look at event no. 4 in the network. It is a beginning event for only one activity, 4-5. Therefore the possible T_L which you just calculated for event no. 4 must be its true T_L. Place a star beside this T_L value in the table.

Finally, write the T_L of event no. 4 in the box over event no. 4 in the network of Panel C.
Your Panel C should now look like this. If it doesn't correct it.

![Diagram of network with nodes and activities]

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>BEGIN. EVENT</th>
<th>ENDING EVENT</th>
<th>ACTIVITY T_L</th>
<th>ENDING EVENT T_L</th>
<th>BEGINNING EVENT POSSIBLE T_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 6</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 4</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>28</td>
<td>20*</td>
</tr>
</tbody>
</table>

* = TRUE T_L OF BEGINNING EVENT
Step 2. In Panel C, write the T_L of event no. 5 again in the Ending Event T_L column but this time in line with activity 2-5. Subtract the t_e of activity 2-5 from this T_L value. Write the result, a possible T_L of event no. 2, in the column labelled "Beginning Event Possible T_L.

Notice that event no. 2 is the beginning event for activity 2-4 as well as for activity 2-5. The possible T_L value you just calculated for event no. 2 applies only to activity 2-5. It may not be smaller than that for activity 2-4. Therefore, do not star this possible value yet and do not write it in the box over event no. 2 in the network.
Panel C now looks like this. If it doesn't, correct it.

```
   2
 / \
1   3
   /
  6
```

Table

<table>
<thead>
<tr>
<th>Activity</th>
<th>Begin Event</th>
<th>Ending Event</th>
<th>Activity t_a</th>
<th>Ending Event T_L</th>
<th>Beginning Event Possible T_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 6</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>STEP 1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>28</td>
<td>20*</td>
</tr>
</tbody>
</table>

* = TRUE T_L OF BEGINNING EVENT

2-40
Step 3: Event no. 4 is the ending event for activity 3-4. In step 1 you found for activity 4-5, that the TL of event no. 4 was 20. Write this value in the table of Panel C at the ending event TL for activity 3-4. Subtract the TL of beginning event no. 3 of activity 3-4.

Notice that event no. 3 is a beginning event for only activity 3-4. Therefore the possible TL value you just computed must be the true TL value for event no. 3. Place a star beside this TL value. Write this value in the box over event no. 3 in the network.
Your Panel C should look like this. Correct it if it doesn't.

\[
\begin{array}{c}
1 \\
\rightarrow \\
2 \\
\rightarrow 13 \\
\rightarrow 14 \\
\rightarrow 6 \\
3 \\
\rightarrow 7 \\
\rightarrow 20 \\
4 \\
\rightarrow 9 \\
5 \\
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{ACTIVITY} & \text{BEGIN EVENT} & \text{ENDING EVENT} & \text{ACTIVITY T_a} & \text{ENDING EVENT T_L} \\
\hline
\text{STEP 6} & 1 & 2 & 13 \\
\text{STEP 5} & 1 & 3 & 11 \\
\text{STEP 4} & 2 & 4 & 7 \\
\text{STEP 3} & 3 & 4 & 6 \\
\text{STEP 2} & 2 & 5 & 9 \\
\text{STEP 1} & 4 & 5 & 8 \\
\hline
\end{array}
\]

* = TRUE T_L OF BEGINNING EVENT

\[T_L = \text{OF NETWORK ENDING EVENT} \]
Step 4. Event no. 4 is the ending event for activity 2-4 and you found that the T_L of this event is 20. Write this value as the ending event T_L of the activity 2-4. Subtract the t_e of activity 2-4 from 20 and write the result as a possible T_L of beginning event no. 2 of activity 2-4.

Look at the table. There are now two possible T_L values for beginning event no. 2. One value applies to activity 2-4, the other to activity 2-5. The smaller of these two values is the true T_L of event no. 2. Place a star beside the true value. Write the true value in the box over event no. 2 of the network.
Your Panel C should look like this. Make any needed corrections.

![Diagram with numbered nodes and arrows showing network flow.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Begin Event</th>
<th>Ending Event</th>
<th>Activity TL</th>
<th>Ending Event TL</th>
<th>Beginning Event Possible TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 6</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>20</td>
<td>13*</td>
</tr>
<tr>
<td>STEP 3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>20</td>
<td>14*</td>
</tr>
<tr>
<td>STEP 2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>28</td>
<td>19 f</td>
</tr>
<tr>
<td>STEP 1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>23</td>
<td>20*</td>
</tr>
</tbody>
</table>

* = TRUE TL of Beginning Event

TL of Network Ending Event: 28
Step 5. Write the T_L of event no. 3 which you determined in step 3, as the ending event T_L of activity 1-3. Subtract the t_e of activity 1-3 from this value. Write the result as a possible T_L for beginning event no. 1 of activity 1-3.

Step 6. Write the T_L of event no. 2 determined in Step 4, as the ending event T_L of activity 1-2. Subtract the t_e of activity 1-2 from this T_L. Write the result as a possible T_L for beginning event no. 1 of activity 1-2.

The smaller of these two possible T_L values for event no. 1 is the true T_L value. Place a star beside the true value in the table. Write the true value in the box over event no. 1 in the network.
Congratulations! You have completed Panel C. It looks like this.

![Diagram with nodes and edges labeled with numbers and arrows indicating connections.]

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>BEGIN EVENT</th>
<th>ENDING EVENT</th>
<th>ACTIVITY</th>
<th>ENDING EVENT</th>
<th>POSSIBLE T_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP 6</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>13</td>
<td>0*</td>
</tr>
<tr>
<td>STEP 5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>STEP 4</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>20</td>
<td>13*</td>
</tr>
<tr>
<td>STEP 3</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>20</td>
<td>14*</td>
</tr>
<tr>
<td>STEP 2</td>
<td>2</td>
<td>5</td>
<td>9</td>
<td>28</td>
<td>19</td>
</tr>
<tr>
<td>STEP 1</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>28</td>
<td>20*</td>
</tr>
</tbody>
</table>

*= TRUE T_L OF BEGINNING EVENT

T_L OF NETWORK ENDING EVENT

smaller than
Now turn to Panel D and leave it exposed to view. Start computing the T_L values of this network, and fill in the table. Use the procedures you employed for Panel C. Refer to Panel C whenever you wish.

After you have completed step 7 of Panel D, turn to the next page.

Note. The network of Panel D is like that of Panel B. The T_E and T_L values of these two panels are used together later in this course.
After you have finished step 7 of Panel D, the completed part of the table should look like this. Make any necessary corrections.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Beginning Event</th>
<th>Ending Event</th>
<th>Activity Time</th>
<th>Ending Event TL</th>
<th>Beginning Event Possible TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 7</td>
<td>4</td>
<td>7</td>
<td>13.2</td>
<td>56.8</td>
<td>43.6</td>
</tr>
<tr>
<td>Step 6</td>
<td>5</td>
<td>7</td>
<td>14.0</td>
<td>56.8</td>
<td>42.8</td>
</tr>
<tr>
<td>Step 5</td>
<td>6</td>
<td>7</td>
<td>12.3</td>
<td>56.8</td>
<td>44.5*</td>
</tr>
<tr>
<td>Step 4</td>
<td>6</td>
<td>8</td>
<td>1.0</td>
<td>57.2</td>
<td>56.2</td>
</tr>
<tr>
<td>Step 3</td>
<td>5</td>
<td>9</td>
<td>30.8</td>
<td>66.0</td>
<td>35.2*</td>
</tr>
<tr>
<td>Step 2</td>
<td>7</td>
<td>9</td>
<td>9.2</td>
<td>66.0</td>
<td>56.8*</td>
</tr>
<tr>
<td>Step 1</td>
<td>8</td>
<td>9</td>
<td>8.8</td>
<td>66.0</td>
<td>57.2*</td>
</tr>
</tbody>
</table>

2-48
After you have finished step 7 of Panel D, the completed part of the network should look like this. Make any necessary corrections.

Complete the table and network of Panel D. Then turn to the next page.
After you have completed Panel D, the table should look like this. Make any necessary corrections, then turn to the next page.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Beginning Event</th>
<th>Ending Event</th>
<th>Activity (t_e)</th>
<th>Ending Event (T_L)</th>
<th>Beginning Event Possible (T_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 14</td>
<td>1</td>
<td>2</td>
<td>14.0</td>
<td>14.0</td>
<td>0.0 *</td>
</tr>
<tr>
<td>Step 13</td>
<td>1</td>
<td>3</td>
<td>11.3</td>
<td>17.4</td>
<td>6.1</td>
</tr>
<tr>
<td>Step 12</td>
<td>2</td>
<td>4</td>
<td>21.2</td>
<td>35.2</td>
<td>14.0 *</td>
</tr>
<tr>
<td>Step 11</td>
<td>3</td>
<td>4</td>
<td>15.3</td>
<td>35.2</td>
<td>19.9</td>
</tr>
<tr>
<td>Step 10</td>
<td>3</td>
<td>5</td>
<td>17.8</td>
<td>35.2</td>
<td>17.4 *</td>
</tr>
<tr>
<td>Step 9</td>
<td>4</td>
<td>5</td>
<td>0.0</td>
<td>35.2</td>
<td>35.2 *</td>
</tr>
<tr>
<td>Step 8</td>
<td>2</td>
<td>6</td>
<td>15.0</td>
<td>44.5</td>
<td>29.5</td>
</tr>
<tr>
<td>Step 7</td>
<td>4</td>
<td>7</td>
<td>13.2</td>
<td>56.8</td>
<td>43.6</td>
</tr>
<tr>
<td>Step 6</td>
<td>5</td>
<td>7</td>
<td>14.0</td>
<td>56.8</td>
<td>42.8</td>
</tr>
<tr>
<td>Step 5</td>
<td>6</td>
<td>7</td>
<td>12.3</td>
<td>56.8</td>
<td>44.5 *</td>
</tr>
<tr>
<td>Step 4</td>
<td>6</td>
<td>8</td>
<td>1.0</td>
<td>57.2</td>
<td>56.2</td>
</tr>
<tr>
<td>Step 3</td>
<td>5</td>
<td>9</td>
<td>30.8</td>
<td>66.0</td>
<td>35.2 *</td>
</tr>
<tr>
<td>Step 2</td>
<td>7</td>
<td>9</td>
<td>9.2</td>
<td>66.0</td>
<td>56.8 *</td>
</tr>
<tr>
<td>Step 1</td>
<td>8</td>
<td>9</td>
<td>8.8</td>
<td>66.0</td>
<td>57.2 *</td>
</tr>
</tbody>
</table>

2-50
After you have completed Panel D, your network should look like this. Make corrections if necessary.
TEST NO. 1

Circle the letter identifying the phrase which appears to be most nearly correct.

1. The critical path
 a) passes through every event of a network
 b) is the least time-consuming path of activities between the network beginning event and the network ending event
 c) is the most time-consuming path of activities between the network beginning event and the network ending event
 d) includes the single most time-consuming activity of the network.

2. Always start T_L calculations at the
 a) network ending event
 b) network beginning event
 c) middle of the network
 d) either the network ending event or the network beginning event.
3. T_L is the latest time that:

a) an event can take place without delaying occurrence of the network ending event

b) an activity can take place without delaying occurrence of the network ending event

c) an event can take place after occurrence of the network ending event

d) an activity can take place after occurrence of the network ending event.

4. For any activity, T_L of its beginning event equals:

a) T_L of its ending event plus t_o of the activity

b) T_L of its ending event minus t_o of the activity

c) T_L of its ending event plus T_E of the activity

d) T_L of its ending event minus T_E of the activity.
5. T_L for event no. 1 in the following network is:
 a) 15
 b) 16
 c) 8
 d) 12

6. In the network in question no. 5, the t_e of activity 1-3 changes from 8 to 1. T_L for event 1 is now:
 a) 16
 b) 12
 c) 15
 d) 5

If you had difficulty selecting the right answers, review Chapter 7 of Volume I and Chapter 1 of Volume II. Turn to the next page and continue the program.
Chapter 1

Summary

Each event of a PERT network has a characteristic called its Latest Time or T_L. The T_L of any event is the latest time it can take place without delaying occurrence of the network ending event. T_L is calculated (backwards, so to speak) from the network ending event.

The T_E of the network ending event must be known, however, before the T_L of an event can be determined.

For any activity, the T_L of its beginning event equals the T_L of its ending event minus the t_e value of the activity. Start T_L calculations at the network ending event.
In the above network, for example, by subtracting the t_e of activity 3-4 from the T_L of event no. 4, it is possible to arrive at a T_L for event no. 3 equal to 35.

Where an event is the beginning event for more than one activity, as is the case with event no. 1, above, its T_L value must be the smallest of all possible values - in order that later events may not occur after their latest times. By performing the necessary arithmetic, two T_L values for event no. 1 will be found, only one of which is acceptable; the smaller in this case 0 (zero). Event no. 1 must, therefore, begin without delay in order that the ending event may be finished in 50 weeks.
Slack is a characteristic of PERT networks that is of major importance because it focuses attention on the "time to spare" permitted for various events. Knowing the slack values which exist along different paths of activities allows management to make decisions concerning optimum use and allocation of resources.

In this chapter we are still assuming that there are no contractual or scheduling requirements that specify when the network must be completed. Under these circumstances the Latest Times of the events are calculated with respect to the T_E of the network ending event. Also the T_L of the network ending event equals its T_E value.
Each event of a PERT network has a characteristic called its Slack, \(S \). This is the difference between the \(T_L \) of the event and the \(T_E \) of the event.

Algebraically, \(T_L - T_E = \) ___.
In the network of panel D you found that the T_L of event no. 8 was 57.2 (66.0 - 8.8). For the same network as shown in Panel B you found that the T_E of event no. 8 was 30.0. As shown below, the difference between T_L and T_E is the Slack, S, of event no. 8. Thus $S = T_L - T_E$ and for event no. 8,

$S = 57.2 - 30 = 27.2$

$T_E = T_L = 66.0$ FOR NETWORK ENDING EVENT

$T_L = 57.2$

$T_E = 30.0$

$S = T_L - T_E$

$S = 57.2 - 30$

$S = 27.2$
S is the symbol for minus.

S equals minus.
Slack

\[S \text{ equals } T_L \text{ minus } T_E, \quad (S = T_L - T_E) \]

For a certain event \(T_L = 56 \), and \(T_E = 39 \).

Therefore, \(S = \) ___.
\[S = 17 \]

The amount of time between the \(T_L \) of an event and the \(T_E \) of an event is called the \underline{ } of the event.
"Time to spare" that exists between the time when an event must occur and the time it is expected to occur is called ________.
Now open the workbook to Panel E. The network drawn here is that used for Panels B and D. Over each event is the T_L value found in Panel D and the T_E value you found in Panel B. Calculate the Slack, S, for each event. Enter your results above each event of the network.

After you have completed your computations, turn to the next page.
The network你应该画成这样。做任何必要的修正，然后转到下一页。
In Panel E notice that several events have Slack values equal to zero. These events are numbered 1, __, __, __, and 9.
1, 2, 4, 5, and 9

Draw a line from event no. 1 to event no. 9 over the path of activities that include the events having $S = 0$. Then turn to next page.
\[S = T_L - T_E. \] If \(S = 0 \), then \(T_L - T_E = 0 \) or \(T_E = T_L \).

For an event where \(T_L = T_E \), there is no "time to spare" between the instant when the event must occur and the instant when the event is ______ to occur.
expected (or equivalent word).

The critical path of the network, the path of greatest time duration through the network, determines the time required to complete it. Any delay in occurrence of events on the critical path will delay completion of the network. Therefore, these events have minimum "time to spare"; that is, their Slack values must be the minimum values of the network.

In Panel E, the activity path 1-2-4-5-9 includes all those events having zero Slack. Since zero is the minimum Slack of this network, the activity path 1-2-4-5-9 should be the __________ path of the network.
Panel B uses the same network that is shown in Panel E.

As you will remember, in Panel B you found that the critical path, the activity path of greatest time through the network, was path 1-2-4-5-9.

In Panel E you found that the Path 1-2-4-5-9 includes all those events having minimum (zero) Slack.

Thus, we see that the critical path of this network actually is the activity path whose events have _______ Slack.
TEST NO. 2

Circle the letter identifying the phrase which appears to be most nearly correct.

1. Slack is:
 a) The amount of time remaining at each event to complete the project.
 b) The amount of time an event can be delayed without delaying the
 Network Ending Event.
 c) The expired time from the Network Beginning Event.
 d) None of the above.

2. The formula for slack is:
 a) $T_L + T_E$
 b) $T_E - T_L$
 c) $T_L - T_E$
 d) $t_e - T_L$
3. What is the slack for an event if the event T_L is 20 and the event T_E is 5?
 a) 20
 b) 15
 c) 10
 d) 5

4. Assuming no schedule date for the network ending event, the slack time of the events in the critical path are always:
 a) maximum values of the network.
 b) zero.
 c) different from each other.
 d) are always unequal.
5. In the network below, the critical path passes through events:

a) 1-3-5
b) 1-4-5
c) 1-2-5
d) 1-3-4-5

If you had difficulty selecting the correct answers, review Chapter 2.

Turn to the next page.
Chapter 2

Summary

Time to spare that exists between the time when an event must occur (T_L) and the time it is expected to occur (T_E) is called Slack (S). Knowing which events have time to spare, or slack, is crucial to the manager who makes decisions concerning optimum allocation of resources.

Algebraically, slack or $S = T_L - T_E$. In the network below, for example, all slack values have been determined.

![Network Diagram]

Notice that activity path 1-2-5 has the minimum slack (zero) in this network. This path with least time to spare is, conversely, the path of greatest time through the network – in other words, the critical path.
In chapters 1 and 2 we assumed there were no requirements specifying the calendar date when a network was to be completed. In that case, the latest time, T_L of the network ending event equals its Accumulated Expected Time, T_E.

The T_E of the network ending event can be considered the time expected to be required to accomplish the complete network. The T_L of the network ending event can be considered the time allowed to accomplish the network.

A Schedule Date, T_S, is a predetermined calendar date by which a given event is scheduled to occur. Usually Schedule Dates are applied only to network beginning and ending events.

In this chapter we assume there is a Schedule Date, T_S, specifying a calendar date by which the network is to be completed and another T_S specifying the date when it is to be started. The elapsed time corresponding to the difference between these two dates is the time allowed to accomplish the network. The T_L of the network ending event now equals this elapsed time. Setting dates on a project does not, however, modify the time required to accomplish it. Therefore the T_E of the network ending event is not affected by T_S values.
A predetermined calendar date by which an event is scheduled to occur is called the Schedule Date of the event and is symbolized by T_g.

An example of a Schedule Date is 19 September 1962. The calendar date, 23 April 1975, is another example of a ___________
In PERT terminology, Schedule Date, T_S, is a pre-determined calendar date.

The Accumulated Expected Time, T_E, of an event or its Latest Time, T_L, are not calendar dates. Instead they are elapsed times.

To compute T_E we start at the network beginning event. To compute T_L we start at the network ending event. However, both T_E and T_L are expressed as time (in weeks) that has elapsed since occurrence of the network beginning event.

To use Schedule Date, T_S, in conjunction with Accumulated Expected Time, T_E, or Latest Time, T_L, we must change the calendar date of T_S into an event measured from occurrence of the network beginning event.
The T_E and T_L of a given event are elapsed times measured from occurrence of the network beginning event. They are expressed in units and tenths of a 7-day week.

The elapsed time corresponding to the T_S of an event is also expressed in units and tenths of a ________ ________ ________ ________ ________ ________.
If T_{S2} is the Schedule Date of a given event and T_{S1} is the Schedule Date of the network beginning event, then the elapsed time corresponding to T_{S2} is expressed as the number and tenths of 7-day weeks between T_{S2} and T_{S1}.

To determine the number of weeks, find the number of days between T_{S2} and T_{S1}, then divide the result by seven.

Suppose T_{S1} is 15 May 1962 and T_{S2} is 11 October 1962. There are 31 days in May, 30 in June, 31 each in July and August, and 30 in September. The elapsed time between the above two calendar dates is 149 days. Dividing 149 by 7 gives 21.3 weeks as the elapsed time between 15 May 1962 and 11 October 1962.
Thirty days hath September,
April, June and November,
All the rest have 31,
Except February which has 28.
(Yes, we know - 29 in Leap Year.)

The network beginning event of a certain project is scheduled to occur on 1 July 1962 and the T_S of the network ending event is 15 February 1963. Expressed in units and tenths of a 7-day week, the elapsed time corresponding to the T_S of the network ending event is ____ weeks.
32.85 weeks

Suppose a network beginning event has a Schedule Date, T_G, of 1 January 1962 and the network ending event has a T_G of 1 January 1963. Then the elapsed time between these two T_G values is 52.0 weeks. The network ending event is allowed to occur at any time within these limits but the Latest Time at which it can occur within these limits must be 52.0 weeks after the network beginning event takes place. Thus the elapsed time between the T_G values of the network beginning and ending events equals the T_L, of the network event.
Suppose that a project represented by a PERT network must be started on 1 January 1962 and is scheduled to end on 8 January 1963. These are the T_S dates of the network beginning and ending events respectively. The elapsed time allowed for this project is 53 weeks. The Latest Time, T_L, of the network ending event must equal 53 weeks. If this event takes place after more than 53 weeks, it will occur after 8 January 1963. By summing the t_e values of the activity paths we find that the Accumulated Expected Time, T_E, of the network ending event is 48 weeks. This is the elapsed time expected to be required to accomplish the entire network. It is not related to the T_L or T_S values.

Later, through contract revisions, the Schedule Date of the network ending event is changed from 8 January 1963 to 22 January 1963.

The Latest Time, T_L, of the network ending event is now _____ weeks.

The Accumulated Expected Time, T_E, of the network ending event is now _____ weeks.
$T_L = 55$ weeks

$T_E = 48$ weeks
In the network below the T_S of the network beginning event is 1 January 1962 and the T_S of the network ending event is 24 December 1962.

The Latest Time, T_L, of the network ending event no. 5 is ____ weeks.

The Accumulated Expected Time, T_B, of network ending event no. 5 is ____ weeks.

For the network ending event, Slack, $S = T_L - T_B = ____$ weeks.
The T_E of a network ending event is 31 weeks.
The elapsed time corresponding to the T_S of the network ending event is 39 weeks.
The T_L of the network ending event is ___ weeks.
The S of the network ending event is ___ weeks.
Although Schedule Date, T_S, is commonly applied to network beginning and ending events, it should be remembered that T_S can apply to any event of a PERT network. In this case the elapsed time corresponding to the T_S of the event becomes the T_L of the event. This T_L value supersedes any other value that may be calculated.

Suppose the T_L of an event within a network is 27.0 weeks but that later a Schedule Date is imposed on this event. Assume the elapsed time corresponding to this date is 25.0 weeks after occurrence of the network beginning event. Then the T_L of this event becomes _______ weeks.
25 weeks

We calculate that the T_L of a given event is 17 weeks. Soon after the program starts, however, a Schedule Date is imposed on this event and the elapsed time corresponding to this date is 14 weeks. Then to calculate the Latest Times of events which occur before this event and which are on the same path of activities we use a T_L value of ___ weeks for the given event.
TEST NO. 3

Circle the letter identifying the phrase which appears to be most nearly correct.

1. T_s stands for:
 a) slack time.
 b) summary time.
 c) schedule date.
 d) estimated time.

2. T_{S1} is 1 January 1962, T_{S2} is 11 February 1962. Elapsed time between the two, expressed in units and tenths of a week, is:
 a) 4.5
 b) 6.0
 c) 8.4
 d) 10.0
3. \(T_{S1} \) is 1 July 1962, \(T_{S2} \) is 31 May 1963. Elapsed time, expressed in units and tenths of a week, is:
 a) 47.9
 b) 67.2
 c) 36.0
 d) 45.7

4. A certain network ending event is given a \(T_g \) value. The corresponding elapsed time is used in calculating:
 a) Accumulated Expected Time
 b) Estimated Time
 c) Expected Time
 d) Slack Time

5. \(T_g \) can be applied to:
 a) only an activity.
 b) either activities or events.
 c) only a network ending event.
 d) any event in a network.

If you had difficulty in selecting the correct answers, review Chapter 3. Now turn the page and continue the program.
Chapter 3

Summary

Both T_E and T_L are elapsed times, not calendar dates. T_S or the Schedule Date, on the other hand, is a predetermined calendar date by which an event is scheduled to occur.

To use T_S in conjunction with T_E or T_L, T_S must be changed into an elapsed time measured from occurrence of the network beginning event. T_S is expressed in units and tenths of seven-day weeks. If a T_S is assigned to an event, the corresponding elapsed time becomes the T_L of the event.

Suppose, for example, that T_{S1} (the Schedule Date of the network beginning event) is 15 May 1962, while T_{S2} (the Schedule Date of a particular given event) is 11 October 1962. The elapsed time between these two dates is 149 days divided by 7 or 21.3 weeks.
Slack is a PERT characteristic of major importance to a manager for it provides the replanning or allocation information on which he can base rational decisions. Slack takes account of other PERT concepts such as T_E, T_L, and T_S to point out the network areas having excesses or deficiencies of time.

For any event, Slack, S, equals its Latest Time, T_L, minus its Accumulated Expected Time, T_E. That is, $S = T_L - T_E$.

2-102
The T_E of an event represents the time expected to elapse before the event will take place. It is not dependent on T_L or the Schedule Date, T_S, the calendar date by which the event is to occur. On the other hand, the T_L of an event equals the elapsed time corresponding to the T_S of the event. T_L is the latest time the event can occur without delaying scheduled completion of the network. It is the time allowed for occurrence of the event. Obviously, the Slack of an event will be zero, positive, or negative, depending on whether T_L is equal to, greater than, or less than T_E.

If T_L and T_E are those of the network ending event, the value of S applies not only to this event but to all events on the critical path.

In this chapter we will explore the relation between Schedule Date of the network ending event and Slack, and we will consider some characteristics of Slack.
Open the workbook to Panel F. In this panel the same network is repeated three times, as Case 1, Case 2, and Case 3. We will work first only with Case 1.
Slack, $S = T_L - T_E$. When the T_L of a network ending event equals its T_E value, $S = 0$ for all events on the critical path. This common slack value is smaller than that for any event not on the critical path.

To prove this, consider Case 1 of Panel F. Here the network is to be started on 1 January 1962 and is to be completed by 6 May 1962, 18 weeks later. This elapsed time becomes the T_L of the network ending event. The greatest sum of activity t_e values along any path of activities between network beginning and ending events is 18 weeks, the T_E of the network ending event. Thus, $T_L = T_E$ for the network ending event, and its slack value is zero.

Compute the slack, S, for each event of Case 1.
In case 1, T of the network ending event equals its TE value.
In the network of Case 1 the critical path includes events numbered 1.

8. Draw a line over this activity path.

When the T of the network ending event equals its TE value, the Slack of each event on the critical path equals

The Slack value of events on the critical path is (greater) than those of events that are not on the critical path.
Events numbered 1, 2, 5, 8.

zero or 9

smaller

Refer to Case 1, Panel F.

If Schedule Dates for the beginning and ending events of a network result in a Slack of zero along the critical path, there is _______ (not/just) enough time allowed to complete the network on schedule.
Slack, \(S = T_L - T_E \). When the \(T_L \) of a network ending event is greater than its \(T_E \) value, the Slack values of events on the critical path are positive and equal to each other. This common Slack value is smaller than that of any event not on the critical path.

To prove this, consider Case 2 of Panel F. Here the network is to be started on 1 January 1962 and is to be completed by 27 May 1962, 21 weeks later. This elapsed time becomes the \(T_L \) of the network ending event. The \(T_E \) of the network ending event, 13 weeks, remains unchanged. Thus, in Case 2, \(T_L \) is greater than \(T_E \) for the network ending event.

Compute the Slack, \(S \), for each event of Case 2. Write your answers in the spaces above the corresponding events of the network.
Case 2 of your Panel P should look like this. Correct it if necessary.
In Case 2 the T_L of the network ending event is greater than its T_E value.

For the network of Case 2, the critical path includes events numbered 1, 6, 8. Draw a line over this activity path.

When the T_L of the network ending event is greater than its T_E value, the slack values of events on the critical path are _______ (positive/negative) and are _______.

The slack values of events on the critical path are _______ (larger/smaller) than those of events not on the critical path.
Events numbered 1, 2, 5, 8.
positive
equal to
smaller

Refer to Case 2, Panel F.

If Schedule Dates for the beginning and ending events of a network result in a positive Slack along the critical path, there is _______ (more/less) than enough time allowed to complete the network on schedule.
more

Slack, \(S = T_L - T_E \). If the \(T_L \) of a network is less than its \(T_E \) value, the slack values of events on the critical path are negative and equal to each other. The slack values of other events may be either positive or negative but the common negative value of those on the critical path is a greater negative number than that of any other event.

Consider Case 3 of Problem F. Here the network is to be started on 1 January 1962 and is to be completed by 8 April 1962. The elapsed time between these two dates, 14 weeks, becomes the \(T_L \) of the network ending event. The \(T_E \) of the network ending event, 18 weeks, remains unchanged. Thus, in Case 3, the \(T_L \) of the network ending event is less than its \(T_E \) value.

Compute the slack for each event of Case 3. Write your answers above the corresponding events of the network.
Case 3 of your Panel F should look like this. Correct it if necessary.

\[T_L = 14 \quad T_E = 9 \]

\[S = 4 \]

\[T_{31} = 5 \quad T_{32} = 2 \]

\[T_{14} = 1 \]

\[T_{67} = 5 \quad T_{69} = 2 \]

\[T_{73} = 3 \quad T_{98} = 14 \]

\[T_{87} = 10 \quad T_{89} = 16 \]

\[S = 4 \]

\[T_3 = 1 \text{ Jan 1962} \]

\[T_9 = 8 \text{ April 1962} \]
In Case 3 of Figure 2, the T_L of the network ending event is less than its T_E value.

For the network of Case 3, events on the critical path are numbered 1, 3, 8. Draw a line over this activity path.

If the T_L of the network ending event is less than its T_E value, the Slack values of events on the critical path are ________ (positive/negative) and are ________ (different from/equal to) each other.

The Slack values of events on the critical path are more ________ (positive/negative) than that of any other event.
Events numbered 1, 2, 5, 8.

negative

equal to
	negative

Refer to Case 3, Panel F.

If Schedule Dates for the beginning and ending events of a network result in a negative Slack along the critical path, there is (more/less) than enough time allowed to complete the program on schedule.
If the Slack of the critical path is negative, not enough time is being allowed to complete the network. Under these circumstances, or wherever the Slack of the critical path is unacceptable, it may be possible to replan the network in one or more of the following ways:

1. Change an activity path composed of series-connected activities into a series-parallel group of paths.
2. Change the resources applied to the critical path.
3. Change the scope of various activities.
In Case 1 of Panel F, the slack of the network beginning event, no. 1 is zero. This means that the event must occur (on/after) 1 January 1962 if the network ending event, no. 8, is to take place by 6 May 1962.
In Case 2, the slack of the network beginning event, no. 1, is 3 weeks. This means that the event may occur 3 weeks (before/after) 1 January 1962 and still have the network ending event occur by 27 May 1962.
In Case 3, the Slack of the network ending event is minus 4 weeks. This means that the network beginning event must occur 4 weeks (before/after) 1 January 1962 if the network ending event is to take place by 8 April 1962.
Look at the critical paths outlined in the three cases of Panel F. From these sketches we conclude that changing the T_L or T_S of the network ending event

(always/never) changes the critical path.
The events on any one activity path have the same value of Slack until that path intersects another.

For example, in Case 1 of Panel F, the Slack of events nos. 3 and 6, on activity path 1-3-6-8, is 3 weeks.

Similarly events nos. 4 and 7, on activity path 1-4-7-8, have a common Slack value of weeks.
The slack of an event \(n \) at the intersection of two or more activity paths is equal to the smallest possible value.

For example, event no. 1 of Case 2, Panel F, is at the intersection of three activity paths along which slack values are 3, 6, and 9 weeks, respectively. The slack of event no. 1 is the smallest of these, at 3 weeks. This result is not dependent on the fact that event no. 1 is a network beginning event.
The slack along the critical path is the maximum (minimum/maximum) possible in the network.
The Slack value along the critical path of a network is a measure of the "time to spare" for completion of the network. If two activity paths give the same value of \(T_F \) for the network ending event, both are called minimum paths.
The critical path of a network has minimum Slack and therefore is of major importance to a manager who bases decisions on PERT information. However, other activity paths having Slack values somewhat greater than that of the critical path must also be considered. Any network changes that decrease the elapsed time represented by the critical path or which increase the time represented by other activity paths may transform a non-critical path into a critical one.
In Case 3 of Panel F, $S = -4$ for the critical path 1-2-5-8. Suppose replanning reduces the t_e of activity 2-5 from 7 weeks to 3 weeks. This does not change the T_L of the network ending event because its T_S remains the same.

The T_E of the network ending event is now ____ weeks.
The critical path is now 1-2-5-8.
The Slack along the critical path is now ____ weeks.
The Slack of path 1-2-5-8 is now ____ weeks.
The E_F of the network ending event is now 15 weeks.
The critical path is now 1-3-6-8.
The Slack along the critical path is -1 week.
The Slack of path 4-2-5-8 is now zero weeks.

If your answer was incorrect:

a) check your computation.
b) remember that the critical path may change if e_i values are altered.
TEST NO. 4

Circle the letter identifying the phrase which appears to be most nearly correct.

1. When the T_L value of a network ending event is greater than its T_E value, the slack value of events on the critical path are:
 a) positive and unequal
 b) negative and equal
 c) positive and equal
 d) negative and unequal

2. If a critical path has negative slack, there is:
 a) insufficient time to complete the network on schedule
 b) more than enough time to complete the network on schedule
 c) exactly enough time to complete the network on schedule
 d) none of the above
3. The slack values of two activity paths are the same and this value is the minimum in the network. These paths are:
 a) non-critical paths
 b) critical paths
 c) slack paths
 d) none of the above

4. T_0 of a network ending event is 4 March 1963. The slack for this event is positive and equal to 3.0 weeks. Therefore, the event must occur no later than:
 a) 4 March 1963
 b) 25 March 1963
 c) 11 February 1963
 d) 7 March 1963

If you had difficulty selecting the right answers, review Chapter 4.
Chapter 4

Summary

The slack of an event will be zero, positive, or negative depending upon whether T_L is equal to, greater than, or less than T_E.

The slack value of events on the critical path is smaller than those of events not on the critical path.

If the slack of the critical path is negative, not enough time is being allowed to complete the network. Altering the T_L or T_S of the network ending event never changes the critical path.

The manager must pay attention to paths other than the critical one. Any network changes that decrease the elapsed time represented by the critical path or which increase the time represented by other activity paths may transform a non-critical path into a critical one.

Turn this page, turn the book around and continue the program on page 2-132.
In previous chapters we have been concerned with those aspects of PERT that tell a manager how long it should take to complete a project and whether there appears to be sufficient time to meet scheduled completion dates. However, all elapsed time information provided by a network contains inherent uncertainties. This is so because such information is primarily based on the three time estimates (Pessimistic Time, b, Most Likely Time, m, and Optimistic Time, a) required for each activity.

Such estimates involve varying degrees of uncertainty. Consequently, the Expected Activity Times \(t_e \) of the network activities, as well as the Accumulated Expected Times, \(T_E \) of the events, must also be uncertain.

This chapter is concerned with statistical measures of these uncertainties and the resulting probabilities that events, particularly the network ending event, will occur at the times calculated. To a manager this statistical information can be of interest. It tells him the odds of completing a group of activities or an entire network within the calculated expected time, and provides a measure of the risks involved in trying to meet a given schedule.
You will remember that for each activity, three time estimates are required. These are Optimistic Time, a, Most Likely Time, m, and Pessimistic Time, b. They are arranged over an activity as shown below.

```
  a   m   b
9 ----> 7 ----> 12 ----> 10
```

The time spread or span between Pessimistic Time, b, and Optimistic Time, a, is expressed by the quantity \[(b - a)/6\]. This quantity is called Activity Standard Deviation. The symbol for Activity Standard Deviation is the Greek letter "sigma", written \(\sigma\).

Symbolically \(\sigma = (b - a)/6\).

For activity 9-10 above: \(\sigma\) equals \((12 - 4)/6 = 1.3\).

If \(m\) is changed from 7 to any other value, say 5 or 9, the Activity Standard Deviation, \(\sigma\), would still be \((12 - 4)/6 = 1.3\).

The value of Most Likely Time, \(m\), _______ (always/never) affects the value of Activity Standard Deviation, \(\sigma\).
The symbol for Activity Standard Deviation is ________.

\[\frac{(b - a)}{6} = \]
The symbol for Activity Standard Deviation is σ.

$\frac{(b - a)}{6} = \sigma$.

σ is the symbol for \underline{_________} \underline{_________} \underline{_________}.

$\sigma = \underline{______} - \underline{______} / \underline{______}$
\(\sigma \) is the symbol for Activity Standard Deviation.

\[
\frac{b - a}{\sigma}
\]

For our purposes, the value of \(\sigma \) need be accurate to only the first decimal place. Thus, although we may calculate that \(\sigma = 2.33 \), we use the value 2.3.

Make calculations to two decimal places. If the digit in the second decimal place (the digit 8 in 1.28) is equal to or greater than 5, increase the digit in the first decimal place (the digit 2 in 1.28) by one and then discard the digit in the second decimal place. Thus 1.28 becomes 1.3.

If the digit in the second decimal place is less than 5, discard it without changing the rest of the number. Thus 1.24 becomes 1.2.

According to the above rules:

\[
\begin{align*}
2.16 &= \quad \quad 2.33 &= \quad \quad 2.66 &= \\
2.83 &= \quad \quad 9.85 &= \quad \quad 9.95 &=
\end{align*}
\]

2-137
2.16 = 2.2 2.33 = 2.3 2.66 = 2.7
2.83 = 2.8 9.85 = 9.9 9.95 = 10.0

For activity 3-4, σ =
For activity 7-3, σ =

2, 7, 13
3

4

2, 16, 24
7

8
For activity 3-4, \(\sigma = \frac{(13 - 2) \cdot 6}{6} = 11/6 \) or 1.8.

For activity 7-8, \(\sigma = \frac{(24 - 9) \cdot 6}{6} = 15/6 \) or 2.5.
Activity Standard Deviation, σ, is a measure of the spread between the Pessimistic and Optimistic Time estimates, b and a. However, the position of Most Likely Time, m, can vary appreciably between a and b among several activities. Consequently, Activity Standard Deviation, σ, has little useful significance as far as the activities themselves are concerned.

However, if we consider several activities connected in series, the different positions of the m values tend to cancel each other. In this case, the square root of the sum of the squares of Activity Standard Deviation gives the Standard Deviation of the event which terminates the series of activities. This is called Event Standard Deviation, σ_{TE}.

Because the Accumulated Expected Time, T_E, of an event is basically the result of a series of time estimates, rather than of a group of known values of time, there is some uncertainty associated with the calculated T_E value. Event Standard Deviation, σ_{TE}, is a valid statistical measure of this uncertainty, particularly if the event in question terminates a series of ten or more activities.

Knowing the Event Standard Deviation, σ_{TE}, of an event and its T_E value permits us to calculate the probability of accomplishing the event by any given Schedule Date, T_S.

2-140
Event Standard Deviation

The symbol for Event Standard Deviation is
Activity time estimates, a, m, and b, are expressed in units and tenths of a 7-day week. Expected Activity Time (t_e) as well as Accumulated Expected Time (T_E) and Latest Time (T_L) for events are also expressed in units and tenths of a 7-day week. Activity Standard Deviation (σ) and Event Standard Deviation (σ_{T_E}) are also expressed as _________ and _________ of a _________.
Activity Standard Deviation (σ) and Event Standard Deviation (σ_{TE}) are also expressed as units and tenths of a 7-day week.

For several activities connected in series, the square root of the sum of the squares of the Activity Standard Deviations, σ, equals the Event Standard Deviation, σ_{TE}, of the event terminating the series.

Expressed symbolically for the series of activities below,

\[
\sqrt{\sum \sigma_1^2 + \sigma_2^2 + \sigma_3^2} = \sigma_{TE} \text{ for event no. } ___.
\]

\[\sigma_{1-2} \quad \sigma_{2-3} \quad \sigma_{3-4}\]
\[
\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sigma_{TE} \text{ for event no. 4.}
\]

For several activities connected in series, the square root of the sum of the squares of the Activity Standard Deviations, \(\tau \), equals the Event Standard Deviation, \(\sigma_{TE} \), of the event terminating the series.

Symbolically, \(\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 + \ldots \text{ etc} = \}

of the event terminating the series of activities.
\[\sqrt{(a_1 - 2)^2 + (a_2 - 3)^2 + (a_3 - 4)^2 + \ldots} \]

Etc. \(\sigma_{IE} \) of the event terminating the series of activities.
For activities connected in series, as shown below:

\[\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sigma_{TE} \] for the event terminating the series.

In the example below, the Activity Standard Deviations, \(\sigma \), of the activities are respectively:

\(\sigma_{1-2} = (14 - 2)/6 = 2.0 \); \(\sigma_{2-3} = (7 - 1)/6 = 1.0 \); \(\sigma_{3-4} = (21 - 3)/6 = 3.0 \).

Squaring these values, \((\sigma_{1-2})^2 = 4 \); \((\sigma_{2-3})^2 = 1 \); \((\sigma_{3-4})^2 = 9 \).

Adding these squares, \(4 + 1 + 9 = 14 \).

The square root of \(14 = 3.7 \). (See Section 3, Square and Square Root Table, Panel G page 6-7 in your workbook).

Therefore, the Event Standard Deviation, \(\sigma_{TE} \), of event No. 4 is _______.

![Diagram](image-url)
The Event Standard Deviation, σ_{TE}, of event No. 4 is 3.7.

For the three activities connected in series below
σ_{TE} of event No. 4 =

![Diagram of activities](attachment:image.png)
\[\sigma_{TE} \text{ of event No. } 4 = 3.0. \]

If you got this answer, turn to the next frame. If not, read on.

\[
(b - a)/6 = \sigma \\
\sigma_{1-2} = (15 - 3)/6 = 12/6 = 2.0; \ (\sigma_{1-2})^2 = 4.0 \\
\sigma_{2-3} = (7 - 1)/6 = 6/6 = 1.0; \ (\sigma_{2-3})^2 = 1.0 \\
\sigma_{3-4} = (17 - 5)/6 = 12/6 = 2.0; \ (\sigma_{3-4})^2 = 4.0
\]

Thus, \((\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 = 9.\)

Taking the square root of both sides:

\[
\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sqrt{9} = 3 = \sigma_{TE}
\]
\(\sigma_{TE} \) of event No. 4 = 3.0.

If you got this answer, turn to the next frame. If not, read on.

\[\frac{b - a}{6} = \sigma \]

\[\sigma_{1-2} = \frac{15 - 3}{6} = \frac{12}{6} = 2.0; \quad (\sigma_{1-2})^2 = 4.0 \]

\[\sigma_{2-3} = \frac{7 - 1}{6} = \frac{6}{6} = 1.0; \quad (\sigma_{2-3})^2 = 1.0 \]

\[\sigma_{3-4} = \frac{17 - 5}{6} = \frac{12}{6} = 2.0; \quad (\sigma_{3-4})^2 = 4.0 \]

Thus, \((\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 = 9 \).

Taking the square root of both sides:

\[\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2} = \sqrt{9} = 3 = \sigma_{TE} \]
The Event Standard Deviation, σ_{TE}, of an event which terminates several activities connected in series equals the square root of the sum of the squares of the Activity Standard Deviations, σ. If this series of activities forms the critical path leading from the network beginning event to the network ending event, the Event Standard Deviation is that of the
The Event Standard Deviation, \(\sigma_{TE} \), of the network ending event is derived from the Activity Standard Deviations, \(\sigma \), of the _______ path.
The critical path of a certain network is shown below. The σ_{TE} of network ending event, No. 6, equals ________.
The σ_{TE} of network ending event, No. 6, equals 4.0.

If you got this answer, turn to the next page. If not, read on.

$$(b - a)/6 = \sigma$$

<table>
<thead>
<tr>
<th>Activity</th>
<th>σ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3-4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4-5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5-6</td>
<td>3</td>
<td>9</td>
</tr>
</tbody>
</table>

Square root of sum of $\sigma^2 = 4 = \sigma_{TE}$

Find your error, correct your answer, then turn to the next page.
Although the value of \(\sigma \) need only be calculated to the first decimal place for each activity, the square of \(\sigma (\sigma^2) \) should be calculated to the second decimal place when these squares are to be added. Also, \(\sigma_{TE} \), the square root of the resulting sum, need only be calculated to the first decimal place.

Section 3 of Panel G of the workbook is a table of useful square root and square values. Turn to it.
Example: For a certain critical path 1-2-3-4-5:

<table>
<thead>
<tr>
<th>Activity</th>
<th>σ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1.2</td>
<td>1.44</td>
</tr>
<tr>
<td>2-3</td>
<td>2.3</td>
<td>5.29</td>
</tr>
<tr>
<td>3-4</td>
<td>1.5</td>
<td>2.25</td>
</tr>
<tr>
<td>4-5</td>
<td>1.8</td>
<td>3.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.22</td>
</tr>
</tbody>
</table>

σ_{TE} of event no. 5 = the square root of 12.22. From section 3, Panel G, we see that the square root of 12.0, to the first decimal place, equals 3.5 and the square root of 13 is 3.6. Since we need only the first decimal place for σ_{TE}, the square root of 12.22 can be taken as 3.5. Consequently $\sigma_{TE} = 3.5$ for event no. 5.
In the above activity path σ_{TE} of event no. 5 equals _______.
The σ_{TE} of event no. 5 = 4.1.

If you got this answer, turn to the next page. If not, correct your answer, then read below.

<table>
<thead>
<tr>
<th>σ</th>
<th>Activity</th>
<th>$b-a$</th>
<th>x</th>
<th>$\frac{x^2}{\sigma}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>8.4</td>
<td>1.4</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>7.2</td>
<td>1.2</td>
<td>1.44</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>13.8</td>
<td>2.3</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>17.4</td>
<td>2.9</td>
<td>8.41</td>
<td></td>
</tr>
</tbody>
</table>

From section 3, Panel G, the square root of 17.0 is 4.1 and the square root of 13.0 is 4.2 to the first decimal place. The square root of 17.10 must equal 4.1. This is the value of σ_{TE} for event no. 5.
Knowing the T_E and σ_{TE} values of a network ending event permits us to calculate the probability of accomplishing this event, and thereby completing the network, by any given Schedule Date, T_S.

Together T_E and σ_{TE} define a probability curve whose shape approaches the normal distribution shown below, particularly if ten or more activities compose the critical path. The range extending from $-3\sigma_{TE}$ on the left of the mean value, T_E, to $+3\sigma_{TE}$ on the right of the T_E includes 99% of all the elapsed times at which it is possible for the event to occur. The vertical height of any point of the curve is a measure of the probability that the event will occur at the corresponding time of the horizontal axis. The area to the left of any vertical line is the probability that the event will occur on or before the corresponding time.
In effect the horizontal width of the probability curve, extending from $-3\sigma_{TE}$ to $+3\sigma_{TE}$, measures the uncertainty of the T_E value. As σ_{TE} becomes smaller, the horizontal width narrows and the more certain does T_E become; as σ_{TE} becomes larger, T_E becomes less certain.

For example, suppose the T_E of a network ending event equals 15 weeks and σ_{TE} for this event equals 1.0 week. Then there is a small probability that the network either may be completed in as little time as 12 weeks ($-3\sigma_{TE}$) or may require as long as 18 weeks ($+3\sigma_{TE}$). However, if σ_{TE} equals 2.0 weeks, it is possible for the network to be completed in 9 weeks or to require as long as 21 weeks.

As σ_{TE} becomes smaller, the possible difference of event occurrence from the T_E value becomes less; that is, the calculated value of T_E becomes more certain.
σ_{TE} is derived from a series of σ^2 values which in turn are dependent on the quantity $(b - a)/6$ for each of several activities.

To maximize the certainty of T_E for the network ending event, the quantity $(b - a)$, the difference between the Pessimistic Time, b, and the Optimistic Time, a, estimated for each activity, should be:

- **A.** As large as possible. 2-161
- **B.** As small as possible. 2-162

Turn to page
Your Answer: A. For each activity, \(b - a\) should be as large as possible to maximize the certainty of \(T_E\).

Sorry. Remember \(T_E\) becomes more certain as \(\sigma_{TE}\) becomes smaller. \(\sigma_{TE}\) is the square root of the sum of the \(\sigma^2\) values. This sum decreases as the Activity Standard Deviations (\(\sigma\)) take smaller values. Since each \(\sigma\) value equals \((b - a)/6\), you can see that only small values of \((b - a)\) will result in the desired small value of \(\sigma_{TE}\).

Return to page 2-160, review it, then select the right answer.
Your Answer: B. For each activity, \((b - a)\) should be as small as possible to maximize the certainty of \(T_E\).

Right! \(T_E\) becomes more certain as \(\sigma_{TE}\) becomes smaller. \(\sigma_{TE}\) equals the square root of the sum of the \(\sigma^2\) values, and \(\sigma = (b - a)/6\). Therefore, \(\sigma_{TE}\) will have the small value desired to maximize \(T_E\) certainty only if the \((b - a)\) values are themselves small.

It may not be possible to keep \((b - a)\) small in all cases, but at least \((b - a)\) values that appear abnormally large when compared to others of the network should be examined as possible errors in judgment.
If T_E and σ_T of an event (particularly a network ending event) are known, we can calculate the probability that the event will occur by its Latest Time, T_L. To do this we use the equation:

$$Z = \frac{T_L - T_E}{\sigma_T}$$

In this equation $T_L - T_E$ equals the Slack, S, of the event, as discussed previously. If a calendar Schedule Date, T_S, is assigned to the event, T_L is the elapsed time corresponding to this calendar date. If no Schedule Date is assigned, T_L is obtained by subtracting t_e values from the T_L of the network ending event. The T_L of the network ending event equals the elapsed time corresponding to its T_S calendar date. If no T_S is assigned to the network ending event, its T_L value equals its T_E value, the Accumulated Expected Time of the event.

In the formula $Z = \frac{T_L - T_E}{\sigma_T}$, Z is an estimate of probability that is used with panel G. Open the workbook to Panel G.
Section 1 of Panel G is to be used with ________ values of Z.

Section 2 of Panel G is to be used with ________ values of Z.

For either section $Z = \square$.

By means of this equation we determine the probability of an event occurring by its ________ (T_L/T_E) time.

When Z is negative T_L must be ________ (less/greater) than T_E.

When Z is positive T_L must be ________ (less/greater) than T_E.

2-164
positive

negative

\[Z = \frac{T_L - T_E}{\sigma T_E} \]

\[T_L \]

less

greater

2-165
In Panel C, values of Z are given to ________ (one/three) decimal place(s).

- \(Z = 1.1 \), Probability \(P = \) ________.
- \(Z = -1.1 \), Probability \(P = \) ________.
- \(Z = 0.5 \), \(P = \) ________.
- \(Z = -0.5 \), \(P = \) ________.
- \(Z = 2.3 \), \(P = \) ________.
- \(Z = -2.3 \), \(P = \) ________.
The value of Z need be calculated to only the first decimal place.
(See page 2-137 for a review of how to round off numbers to the first decimal place.)

Suppose that for a certain event, $T_L = 17.0$ weeks, $T_E = 13.5$ weeks, and $\sigma_{TE} = 2.0$ weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{17.0 - 13.5}{2.0} = \frac{3.5}{2} = 1.8$$

Z is positive. Therefore, we use Section 1 of Panel C. Here, next to $Z = 1.8$, we find the probability value 0.964. This means that there are 96.4 chances out of 100 that the event will be accomplished within 17.0 weeks after the network beginning event takes place.

Suppose $T_L = 15.5$ weeks, $T_E = 13.5$ weeks, and $\sigma_{TE} = 2.0$ weeks. The probability that the event will be accomplished within 15.5 weeks after the network beginning event occurs is ________.
Probability equals 0.841.

\[Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{15.5 - 13.5}{2.0} = \frac{2.0}{2.0} = 1.0 \]

In Section 1 of Panel G next to \(Z = 1.0 \) is the probability value 0.841.
For a certain event $T_L = 17.5$ weeks, $T_E = 19.1$ weeks, and $\sigma_{TE} = 1.2$ weeks.

\[Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{17.5 - 19.1}{1.2} = -1.3 \]

Z is negative. Therefore, we use section 2 of Panel C. Here next to

$Z = -1.3$, we find the probability value 0.097. There are 9.7 chances out of a

hundred of this event occurring within 17.5 weeks after the network beginning.

Suppose $T_L = 15.9$ weeks, $T_E = 18.2$ weeks, and $\sigma_{TE} = 2.6$ weeks. The

probability that the event will occur within 15.9 weeks after the network beginning
The probability that the event will occur within 15.9 weeks after the network beginning event is 0.184.

\[Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{15.9 - 18.2}{2.6} = \frac{-2.3}{2.6} = -0.88 = -0.9 \]

In Section 2 of Panel G next to \(Z = -0.9 \) is the probability value of 0.184.
Determine the probability for the following:

<table>
<thead>
<tr>
<th>Event T_L (weeks)</th>
<th>Event T_E (weeks)</th>
<th>Event σ_{TE} (weeks)</th>
<th>Probability of event occurring by its T_I time</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>17.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>23.6</td>
<td>19.7</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>15.5</td>
<td>16.9</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>14.7</td>
<td>17.0</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Event TL (weeks)</td>
<td>Event TE (weeks)</td>
<td>Event σTE (weeks)</td>
<td>Probability of event occurring by its TL time</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>18.3</td>
<td>17.3</td>
<td>1.4</td>
<td>0.758</td>
</tr>
<tr>
<td>23.6</td>
<td>19.7</td>
<td>2.1</td>
<td>0.971</td>
</tr>
<tr>
<td>15.5</td>
<td>16.9</td>
<td>1.7</td>
<td>0.212</td>
</tr>
<tr>
<td>14.7</td>
<td>17.0</td>
<td>1.3</td>
<td>0.036</td>
</tr>
</tbody>
</table>

Work on a certain project is to start on 1 January 1962, and the Schedule Date for its final event is 3 December 1962. The Accumulated Expected Time of the final event is 47.0 weeks, and its Event Standard Deviation, σTE, is 2.0 weeks. The probability that the network will be completed by 3 December 1962 is _______.
Probability equals 0.692

T_L corresponding to 3 December 1962 is 48 weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{48 - 47}{2} = 0.50$$

From Section I of Panel G
If $Z = 0.50$, then probability = 0.692.

If the T_L of a network ending event equals its T_E value, the probability that the network will be completed on time is _______.
Probability = \frac{0.500}{0.00}

\[Z = \frac{T_L - T_E}{\sigma_T} = \frac{0}{\sigma_T} = 0 \]

From Section 1, Panel G, if Z = 0, probability = 0.500.

Suppose a network is to start on 1 January 1962 and is scheduled to be completed by 10 December 1962. The T_E of the network ending event is 51.0 weeks, and its σ_T is 2.0 weeks. The probability that the network will be completed by 10 December 1962 is \[\boxed{} \]
Probability $^2 = 0.159$

T_L corresponding to 10 December 1962 is 49 weeks.

$$Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{49 - 51}{2.0} = -\frac{2}{2} = -1.0$$

From Section 2 of Panel G, when $Z = -1.0$ probability = 0.159.

\[
Z = \frac{T_L - T_E}{\sigma_{TE}} \quad \text{Slack, } S = T_L - T_E
\]

Therefore $Z =$ _____ divided by σ_{TE}
Z = \frac{\text{Slack (or } S\text{)}}{\sigma_{TE}}

Z = \frac{S}{\sigma_{TE}}
\[Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{-S}{\sigma_{TE}} \]. If, in this equation, \(T_L - T_E \) or \(S \) is expressed as a multiple of \(\sigma_{TE} \), we can see the effect of slack \((S = T_L - T_E) \) on the probability of accomplishing an event within the elapsed time corresponding to its \(T_L \) value. Suppose that for a certain event \(T_L = 15.0 \) weeks, \(T_E = 19.5 \) weeks, and \(\sigma_{TE} = 1.5 \) weeks. Then \(T_L - T_E = S = -4.5 \) weeks = \(-3\sigma_{TE}\).

\[Z = \frac{S}{\sigma_{TE}} = \frac{-3\sigma_{TE}}{\sigma_{TE}} = -3 \]

From Section 2 of Panel G the probability corresponding to \(Z = -3 \) is 0.001. This means that if \(T_L - T_E = -3\sigma_{TE} \), there is only one chance in 1000 that the event will be accomplished within 15.0 weeks.
Find the probability corresponding to each of the σ_{TE} multiples of slack shown below.

<table>
<thead>
<tr>
<th>S</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3\sigma_{TE}$</td>
<td>0.001</td>
</tr>
<tr>
<td>$-2\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>$-1\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>$0\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>$+1\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>$+2\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>$+3\sigma_{TE}$</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Probability</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>$-3\sigma T E$</td>
<td>0.001</td>
</tr>
<tr>
<td>$-2\sigma T E$</td>
<td>0.023</td>
</tr>
<tr>
<td>$-1\sigma T E$</td>
<td>0.159</td>
</tr>
<tr>
<td>$0\sigma T E$</td>
<td>0.500</td>
</tr>
<tr>
<td>$+1\sigma T E$</td>
<td>0.841</td>
</tr>
<tr>
<td>$+2\sigma T E$</td>
<td>0.977</td>
</tr>
<tr>
<td>$+3\sigma T E$</td>
<td>0.999</td>
</tr>
<tr>
<td>S</td>
<td>Probability</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>$-3\sigma_{TE}$</td>
<td>0.001</td>
</tr>
<tr>
<td>$-2\sigma_{TE}$</td>
<td>0.023</td>
</tr>
<tr>
<td>$-1\sigma_{TE}$</td>
<td>0.159</td>
</tr>
<tr>
<td>$0\sigma_{TE}$</td>
<td>0.500</td>
</tr>
<tr>
<td>$+1\sigma_{TE}$</td>
<td>0.841</td>
</tr>
<tr>
<td>$+2\sigma_{TE}$</td>
<td>0.977</td>
</tr>
<tr>
<td>$+3\sigma_{TE}$</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Assume that we are considering a network ending event. From this table we see that as S equals increasing and positive multiples of σ_{TE}, the probability of completing the network on schedule increases.

However experience shows that if Slack ($S = T_L - T_E$) is negative and exceeds $-1\sigma_{TE}$, you can be reasonably sure that completing the network on time will be a problem. And if Slack exceeds $-2\sigma_{TE}$ you can be darn sure there will be problems.

In short, if a manager thinks of the Slack of the network ending event in terms of the Event Standard Deviation, σ_{TE}, he has a measure of the probability that the network will be completed on schedule.
TEST NO. 5

Circle the letter identifying the answer which appears to be most nearly correct.

1. The formula for the activity standard deviation is:
 (a) $\sigma = (a-b)/6$
 (b) $\sigma = (b-m)/6$
 (c) $\sigma = (b-a)/6$
 (d) $\sigma = (m-a)/6$

2. In the network shown below what is σ for activity 1-2?
 (a) 6
 (b) 1
 (c) 5
 (d) 8

3. The event standard deviation for event 4 in the network shown in question 2 is:
 (a) 26.0
 (b) 18.2
 (c) 5.1
 (d) 10.3

2-182
4. If Z equals 0, probability equals:
 a) 0.001
 b) 0.999
 c) 0.341
 d) 0.500

5. The formula for \(\sigma_{TE} \) in the figure in question 2 is:
 a) \(\sigma_{TE} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_2^2 + (\sigma_3)^2} \)
 b) \(\sigma_{TE} = \sqrt{(\sigma_1 - \sigma_2 - \sigma_2)^2 + (\sigma_3)^2} \)
 c) \(\sigma_{TE} = \sqrt{\sigma_1^2 + (\sigma_2 - \sigma_2)^2 + (\sigma_3 - \sigma_3)^2} \)
 d) \(\sigma_{TE} = \sqrt{(\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2} \)

If you had difficulty selecting the right answers, review chapter 5.
Chapter 5

Summary

Because of the uncertainties associated with t_e and T_{E}, the manager must be concerned with the probabilities that events, particularly the network ending event, will occur at the times calculated. Statistical information can provide a measure of the risks involved in trying to meet a schedule.

The time span between pessimistic and optimistic time for each activity is expressed by $(b-a)/6$, a quantity called σ or Activity Standard Deviation. In the activity shown below, for example, $\sigma = 1.3$.

```
  a  m  b
  4  7  12
  ^  ———>
    10
```
The value of \(m \), Most Likely Time, never affects the value of \(\sigma \). The standard deviation of an event terminating a given activity path is called Event Standard Deviation or \(\sigma_{TE} \):

\[
\sigma_{TE} = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 \ldots \sigma_n^2}
\]

where \(\sigma_1, \sigma_2, \sigma_3 \), etc., are the standard deviations of the activities on the path.

As with the estimates on which they are based, \(\sigma \) and \(\sigma_{TE} \) are expressed in units and tenths of a 7-day week.

\(\sigma_{TE} \) of the network ending event is derived from the standard deviations of the activities on the critical path.

To calculate the probability that a given event will occur by a given \(T_S \), use the equation

\[
Z = \frac{T_L - T_E}{\sigma_{TE}}
\]

Here \(T_L \) is the elapsed time between the \(T_S \) of the given event and the \(T_S \) of the network beginning event where \(T_S - T_E \) is the slack of the event, and \(Z \) is a parameter of probability that is used with a normal probability table. Replace \(T_S \) by \(T_L \) if no \(T_S \) is specified.

2-185
The critical path of the PERT network for a small project is shown below, together with the three estimated times (in weeks) for each of the critical path activities. The project is to be started on 1 February 1962 and is scheduled to be completed by 30 June 1962. We are to determine the probability that the project will be completed on time.

Without involving any network characteristics we can immediately determine the T_L of the network ending event. The Schedule Date T_S of the network ending event is 30 June, 1962. The T_S of the network beginning event is 1 February, 1962. Therefore, the T_L of network ending event, no. 5, is _______ weeks.
The T_L of network ending event, no. 5, is 21.4 weeks.
If you obtained this answer turn to the next page. If not, read on.

Latest Time, T_L, is, in effect, the time allowed to complete the program. T_L is the elapsed time between Schedule Date, T_S, of the network ending event and T_S of the network beginning event. To determine T_L for our network ending event, no. 5, compute the number of days between the two T_S dates. Divide the result by 7 to express T_L in weeks.

<table>
<thead>
<tr>
<th>Month</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb</td>
<td>28</td>
</tr>
<tr>
<td>March</td>
<td>31</td>
</tr>
<tr>
<td>April</td>
<td>30</td>
</tr>
<tr>
<td>May</td>
<td>31</td>
</tr>
<tr>
<td>June</td>
<td>30</td>
</tr>
</tbody>
</table>

150 days. $150/7 = 21.4$ weeks

Correct your answer and then turn to the next page.
We have found that 21.4 weeks is the T_L of our network ending event. This is the elapsed time allowed to complete the project. Now we will find the elapsed time required for the work.

![Network Diagram](attachment:image.png)

$T_L = 21.4$ WEEKS

To find this total elapsed time, we must first determine the Expected Activity Time, t_e, for each activity.

The Expected Activity Time, t_e, for activity 1-2 is _______ weeks.
The Expected Activity Time, t_e, for activity 1-2 is 6.2 weeks.

If you obtained this answer turn to the next page. If not, correct your answer, then read the rest of this page.

$$T_L = 21.4 \text{ WEEKS}$$

$$t_e = \frac{a + 4m + b}{6}.$$ For activity 1-2, $t_e = \frac{2 + 24 + 11}{6} = 6.2$

If you wish to review Expected Activity Time, t_e, read chapter 4 of Volume I again. To review activity time estimates, read chapter 3 of Volume I.
For this critical path the Accumulated Expected Time, T_E, of event no. 5, the network ending event, equals _____ weeks.
The TE of event no. 5 equals 23.4 weeks.

If you obtained this answer, turn to page 2-195.

If not, correct your answer, then turn to page 2-193.
The T_E of the network ending event, no. 5, equals the sum of the t_e values of the activities composing the critical path. To find this T_E, complete the following table.

<table>
<thead>
<tr>
<th>Activity</th>
<th>t_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>6.2 weeks</td>
</tr>
<tr>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td></td>
</tr>
</tbody>
</table>

$= \text{sum of } t_e \text{ values} = T_E \text{ of event no. 5.}$

Now turn to page 2-194.
\[t_e = \frac{a + 4m + b}{6} = (a + 4 \cdot m + b)/6 \text{ for each activity.} \]

<table>
<thead>
<tr>
<th>Activity</th>
<th>(t_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>6.2 weeks = ((2 + 24 + 1)/6)</td>
</tr>
<tr>
<td>2-3</td>
<td>3.3 = ((1 + 12 + 7)/6)</td>
</tr>
<tr>
<td>3-4</td>
<td>4.2 = ((1 + 16 + 8)/6)</td>
</tr>
<tr>
<td>4-5</td>
<td>9.7 = ((4 + 36 + 18)/6)</td>
</tr>
</tbody>
</table>

The sum of these \(t_e \) values is 23.4 weeks, the \(T_E \) of network ending event no. 5.

To review Accumulated Expected Time, \(T_E \), read chapter 6 of Volume I again.
To review Critical Path, read chapter 7 of Volume I.

2-194
We have found that the T_L of event no. 5 is 21.4 weeks and that the T_E of this event is 23.4 weeks.

S, the slack of event no. 5 is ________ (positive/negative) and is equal to ________ weeks.
S, the Slack of event no. 5 is **negative** and is equal to **2.0** weeks.

\[S = -2.0 \text{ weeks} \]

If you obtained these answers turn to the next page. If not, correct your answers, then read the rest of this page.

Slack, \(S_i = T_{L_i} - T_{E_i} \).

For our example, \(S = 21.4 - 23.4 = -2.0 \)

To review Slack, read Chapters 2 and 4 again.
We must now determine the squares of the Activity Standard Deviations, \(\sigma \), in order to find the Event Standard Deviation \(\sigma_{TE} \) of event no. 5.

The square of the Activity Standard Deviation, \(\sigma \), for activity 1-2 equals \(\boxed{\text{---}} \).
The square of Activity Standard Deviation, \(\sigma \), for activity 1-2 equals 2.25.

If you obtained this answer, turn to the next page. If not, correct your answer, then read the rest of this page.

Activity Standard Deviation \(\sigma = (b - a)/6 \). For activity 1-2, \((b - a)/6 = 1.5 \).

The square of 1.5 is 2.25.

To review Activity Standard Deviation read pages 2-133 through 2-199.
$T_E = 23.4$ WEEKS
$S = -2$

For event no. 5 equals 3 weeks.
\(\sigma_{TE} \) for event no. 5 equals 3.2 weeks.

If you obtained this answer, turn to page 2-203.

If not, correct your answer then turn to page 2-201.
σ_{TE} for event no. 5 equals $\sqrt{(\sigma_{1-2})^2 + (\sigma_{2-3})^2 + (\sigma_{3-4})^2 + (\sigma_{4-5})^2}$.

To find σ_{TE}, complete the following table:

<table>
<thead>
<tr>
<th>Activity</th>
<th>$(b - a)/6$</th>
<th>σ</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>$(11-2)/6$</td>
<td>1.5</td>
<td>2.25</td>
</tr>
<tr>
<td>2-3</td>
<td>$(7-1)/6$</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>3-4</td>
<td>$(8-1)/6$</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>$(18-4)/6$</td>
<td>2.3</td>
<td></td>
</tr>
</tbody>
</table>

$$\sigma_{TE} = \sqrt{\text{sum of } \sigma^2} = \boxed{\text{______}}.$$
<table>
<thead>
<tr>
<th>Activity</th>
<th>σ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>2.25</td>
</tr>
<tr>
<td>2-3</td>
<td>1.00</td>
</tr>
<tr>
<td>3-4</td>
<td>1.44</td>
</tr>
<tr>
<td>4-5</td>
<td>5.29</td>
</tr>
</tbody>
</table>

\[
\frac{9.98}{5} = \text{sum of } \sigma^2
\]

For event no. 5, $\sigma_{TE} = \sqrt{\text{sum of } \sigma^2} = \sqrt{9.98} = 3.2$ weeks for event no. 5.

To review σ_{TE} read pages 2-140 through 2-162 again.
Having found σ_{TE} of event no. 5, we can now determine the probability that this event (and therefore the entire network) will be completed within the allowed 21.4 weeks.

The probability that the network will be completed within 21.4 weeks is _____.
The probability that the network will be completed within 21.4 weeks is 0.274. If you got this answer turn to the next page. If not correct your answer then read below.

\[Z = \frac{T_L - T_E}{\sigma_{TE}} = \frac{21.4 - 23.4}{3.16} = -0.6. \]

From Section 2 of Panel C, if \(Z = -0.6 \), then probability = 0.274.

To review Z and probability, read pages 2-163 through 2-183.
The chances of completing a network on schedule can be determined fairly well from the Slack value of the critical path, and can be calculated more precisely by means of probability computations. From this information management may decide that the risk of being late is too great or may, for other reasons, believe that a given completion date is unrealistic. In any of these cases, a PERT network may often be modified or "replanned" to improve the chances of completing the network within the time allowed.

Replanning is an area that illustrates the flexibility of the PERT system and which calls for managerial decision. There are only three types of action a manager may take to replan a network, but the type to be used depends on circumstances.
A network may be replanned by one or more of the following three methods:

1. Changing a chain of series-connected activities into a series-parallel arrangement.

2. Changing resources applied to activities.

3. Changing the scope of various activities, even eliminating activities as a last resort.

The three replanning procedures outlined above have one purpose in common. They are intended to:

Your Answer Turn to page
A. Increase the time allowed to complete 2-208
 the network.

B. Decrease the time required to complete 2-209
 the network.
Your Answer: A. Replanning procedures are intended to increase the time allowed to complete a network.

Wrong. If 50 weeks are allowed for a program that requires 57, changing the network affects the time required, not that allowed. The time allowed is physically independent of the time required. Read page 2-207 again and then select the correct answer.
Your Answer: B. Replanning procedures are intended to decrease the time required to complete a network.

Correct! Modification of PERT activities usually affects the time required to complete them. To improve the chances of meeting a given completion date, always try to reduce such time.
One method of reducing the time allowed is to transform a set of series connected activities into a series-parallel arrangement. The following elementary sketch shows how this is done. In case B, note that each activity of work keeps its beginning and ending events, and is joined to others by short constraining activities which maintain the necessary work sequence.
All t_e values written below the activities are in units and tenths of a week. In Case A, the activity path extending from "start receiver design" to "end environment test" is expected to require a total of ____ weeks. In Case B where the same activities now include a series-parallel arrangement, the maximum time between these same two events is expected to be ____ weeks.
Case A, 19 weeks
Case B, 12 weeks

One replanning method involves rearranging a chain of activities connected in series to include a _________ - _________ configuration.
Another replanning method that reduces the time required by a critical path is to increase the resources applied to various activities of this path. Such resources include manpower and equipment as well as space or capital that permit the use of more manpower and equipment. Overtime work is also a _______ that may be applied to many activities.
A convenient method of obtaining increased resources for activities of the critical path is to take some resources away from other activity paths that can afford to lose them. This may increase the time durations required for these paths but as long as such durations do not closely approximate that of the critical path, the procedure is useful.

Those activity paths which can afford to lose some resources have slack values \((T_L - T_E)\) much \(\text{greater/less}\) than that of the critical path.
greater

Remember, the critical path always has the smallest possible slack value.

Not all activities can be shortened in time by applying increased resources to them. An engineer may design new equipment based on new principles. The time required for this activity is not easily shortened. Activities involving chemical action usually cannot be speeded up appreciably.

We ________ (can/cannot) reduce the time required to make the drawings for a new system by using more draftsmen.

We ________ (can/cannot) easily reduce the time required for concrete to harden.
One method of replanning consists of increasing the resources applied to various activities of the critical path.

A third method of replanning to reduce the time required by the critical path is to decrease the scope of various critical path activities, if this is feasible. By reducing the work involved in an activity, we decrease the scope of the activity.

For example, an activity may be an environmental test involving operation of a unit under these different conditions: extreme cold, extreme heat, and severe vibration. By eliminating the vibration test we reduce the... required to accomplish the activity.
Sometimes the standards or quality assurance applying to a given activity are too high. Reducing such standards to lesser but still acceptable values is another way of reducing the work, time and _________ of the activity.
If you plan to reduce the critical path time by reducing the scope of some of its activities, you should also consider the possibility of eliminating such activities. Maximum reduction of activity scope may be elimination of the activity.

For example suppose environmental test is an appreciable activity of the critical path. If PERT calculations show there is little chance of meeting firm delivery dates, the possibility of eliminating environmental test for the first models of the equipment should be explored.
Increasing the resources applied to an activity of the critical path will reduce the three time estimates applying to this activity. These estimates you remember, are Optimistic Time, a, Most Likely Time, m, and Pessimistic Time, b. They determine the Expected Activity Time, t_e.

Reducing the scope of the activity also reduces the values of these three time estimates and will therefore __________ (decrease/increase) the Expected Activity Time, t_e.
decrease

Only after increasing the resources applied to an activity or decreasing the scope of the activity are we justified in changing the three time estimates of the activity.

Changing these estimates without such justification is not considered cricket. Experience has shown that these estimates, as first provided by responsible experts who will be involved in accomplishing the activities, are as reliable as any that may be obtained later. Pressure should never be applied to make responsible personnel change their estimates in order to reduce activity times. This only reduces the effectiveness and reliability of the PERT system.
Any of the three replanning methods should be used primarily to reduce the time required by the critical path, the activity path of maximum time through the network.

However there are always several activity paths leading from the network beginning event to the network ending event. The activity path that requires maximum time after the original critical path has been replanned becomes the new critical path and determines the time required to complete the network.

<table>
<thead>
<tr>
<th>Activity Path</th>
<th>Before Replanning</th>
<th>After Replanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39</td>
<td>33</td>
</tr>
<tr>
<td>B</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>C</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>D</td>
<td>35</td>
<td>35</td>
</tr>
</tbody>
</table>

Each Activity Path, A, B, C and D, extends from the network beginning event to the network ending event. Before replanning, Activity Path A is the critical path. After replanning, the critical path is Activity Path _._.
After replanning the critical path is Activity Path C. Activity Path C now requires maximum time, 37 weeks.

<table>
<thead>
<tr>
<th>Activity Path</th>
<th>Before Replanning</th>
<th>After Replanning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>43</td>
<td>38</td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>C</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>D</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

Each Activity Path, A, B, C and D, extends from the network beginning event to the network ending event. To shorten the time required to complete the network, the original critical path is replanned.

Such replanning shortens the time required to complete the network by

Your Answer:
A. 5 weeks
B. 3 weeks

Turn to Page
2-224

2-225

2-223
Your Answer: A. Replanning the original critical path shortens the time needed to complete the network by 5 weeks.

Sounds logical, but this is the wrong answer.

The original critical path is the one requiring the greatest time before replanning. This is Activity Path A which requires 43 weeks. Replanning this path reduces the time it requires to 38 weeks. The difference between these two values is 5 weeks. However after replanning, Activity Path A is not the path of maximum time through the network and therefore is not the critical path.

The time needed to accomplish the entire network always equals that required by the critical path. Therefore to find the time saved by replanning we subtract the critical path time after replanning from the critical path time before replanning.

Return to page 2-223 and select the right answer.
Your Answer: B. Replanning the original critical path shortens the time needed to complete the network by 3 weeks:

Right! The original critical path, Activity Path A is shortened from 43 weeks to 38 weeks by replanning. But after replanning, this path is no longer the critical path because Activity Path B requires a greater time, 40 weeks.

The time needed to accomplish a complete network always equals the time required by the critical path. Therefore to find the time saved by replanning we subtract the critical path time after replanning from the critical path time before replanning.
Replanning may reduce the time required by the original critical path to such an extent that some other activity path requires more time and therefore becomes the new critical path. Consequently when replanning, you must always keep track of those _________ _________ which may become _________ _________ after replanning.
The activity paths which may become critical paths after replanning of the original critical path can be identified by their slack values ($T_L - T_E$). The critical path always has less slack than any other activity path. Those activity paths whose slack values approximate that of the original critical path are the ones likely to become critical paths after replanning.

<table>
<thead>
<tr>
<th>Activity Path</th>
<th>Slack</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+1</td>
</tr>
<tr>
<td>B</td>
<td>-3</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
</tr>
<tr>
<td>E</td>
<td>-2</td>
</tr>
</tbody>
</table>

In the above table Activity Path ____ is now the critical path. If through replanning, the slack of this path becomes equal to -1, then the new critical path will be Activity Path ____.
Activity Path D is now the critical path.

After replanning, Activity Path B will be the new critical path if the slack of Activity Path D then equals -2, -1 or any other value more positive than -3.

A PERT network may be replanned in one or more of the following three ways:

1. By modifying a chain of activities connected only in series so that it contains a _______ - _______ configuration of activities.

2. By increasing the _______ applied to activities of the critical path.

3. By changing the _______ of one or more activities of the critical path.
1. series-parallel
 or
 parallel-series
2. resources
3. scope

When undertaking replanning procedures always keep an eye on those activity paths whose _____ values approximate that of the _____ path. After replanning, one of these paths may become the new _____.
When undertaking replanning procedures always keep an eye on those activity paths whose slack values approximate that of the critical path. After replanning, one of these paths may become the new critical path.

Simulation procedures are used to find the effects of replanning changes on the network characteristics. Simulation consists of determining the characteristics of a network which contains the proposed replanning changes. Usually the basic data (event identification and time estimates for each activity of the simulated network) are passed through the PERT computer. By means of such data processing we find the network critical path and slack values as well as the Accumulated Expected Time of the network ending event.

None of the results obtained with the network apply to the real network until the proposed changes have been adopted.
None of the results obtained with the simulated network apply to the real network until the proposed replanning changes have been adopted.

In using the computer for simulation, the same input forms are used as are used for filing actual reports. Caution must be exercised to prevent confusion between actual data and data used for ________.
Computer printout of simulated data must be clearly identified. To prevent any accidental mixup simulated data should not be kept together with actual network data. Simulated data should be kept in a _______ file.
separate
(or equivalent word)

Various possibilities and alternate procedures are provided by simulation. You as a manager must _______ which of these are to be adopted.
decide (or an equivalent word)

Any proposed changes in the network can be simulated. Simulation can provide new outlooks on the project, and may provide important network improvements. The flexibility and usefulness of PERT are enhanced by means of ________ procedures.
Presentation of alternatives by simulation is not a commitment. Simulation of alternatives must be carefully analyzed for the possibility of newly developed risks, or changes in the scope of the project.

Simulation is a vital aid in formulating a decision, but it is not a ________.
TEST NO. 6

1. The purpose of replanning is:
 a) to increase the time allowed to complete the network.
 b) to decrease the time required to complete the network.
 c) to change resources.
 d) to change activity paths.

2. To increase the probability of completing the network on time a manager may:
 a) change resources of an activity path.
 b) change a chain of critical path activities.
 c) change the scope of activities.
 d) do all of the above.
 e) do none of the above.

3. Which statement is most nearly correct?
 a) Only critical path proposed changes in a network can be simulated.
 b) Any proposed change in a network can be simulated.
 c) Only non-critical path proposed changes can be simulated.
 d) None of the above.