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ABSTRACT

W_-.a shows that if the fundamental mode in a rectangular

wave guide undergoes a phase shift 2Awhen it encounters a

sloping shorted end, each evanescent mode of the near field at

the shorted end possesses a common phase angle (3vZ)

The equations which determine the relations between the phase

.. and the amplitudes A.of the evanescent modes are estab-
lished. The results suggested that andA are complicated

functions of the angle of slope. Some experimental work is

recommended if further progress is to be made.
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I. INTRODUCTION

This preliminary study considers the reflection of an incident wave

from the oblique shorted end of a rectangular waveguide (Fig. la). The

motivation for the investigation was prompted by the desire to obtain reflec-

tion and transmission coefficients for an oblique slab (Fig. 1c) having a

negative dielectric constant E A complex dielectric constant, E I is also

of interest since the slab would macroscopically represent a plasma. A

knowledge of reflection and transmission characteristics would be useful in

attempting to use microwaves for plasma diagnostics. A contained plasma

differs markedly from a uniform slab but the effects of obliquity are still of

interest.

It was surprising to find that, despite the wealth of papers on micro-

waveguide propagation, the discussion of oblique incidence appears to be

limited to plane EM waves. Indeed, an extensive library search failed to

disclose any reference to oblique reflections in waveguides.

Since it can be demonstrated that no combination of plane EM waves

obliquely incident on a slab or interface can be combined in such a way that

the boundary conditions at the walls of the waveguide are satisfied, it appears

that the effect of obliquity is to produce complicated mode conversion. To

examine this in more detail, we consider the problem shown in Fig. la rather

than that shown in Fig. lb.

This eliminates any transmitted waves. In fact, the principle conclu-

sion of this note is that all evanescent modes possess a common phase which,

in turn, determines a phase shift of the single allowed propagating mode.

This conclusion depends directly on the fact that energy is conserved in the

lossless guide and would not be correct when transmitted waves are present.
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Fig. 1. Oblique Interfaces in Rectangular Waveguides
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II. BASIC EQUATIONS

For the right-hand set of axes xyz, the origin of coordinates is such

that z = 0 locates the lower edge of the slab. The wave is incident from the
left and the waveguide dimensions a, b are chosen so that only the lowest

mode propagates. For the H or TE mode and a harmonic time factor
-i)t 0 0e , the wave incident in free space is represented by the electric and

magnetic field components

Ex = A sin qye1r

1 8Ex _r irzH -=x- - (A sin qye)y 1W 8z W11

1 E
H = BE x =L (A cos qye i l - )

z 1U41 By 1"L

where Maxwell's equations for free space reduce to V.H = V-2 = 0 and
VXE = iWH: VXfl = -iwe. The first two of these are identically satisfied.

The third equation was used to derive HyH z from E x . The last equation

reduces to the wave equation

+--+k E x=0azz  Z

22 2
where kz =

From the wave equation, q + r= k . For homogeneous isotropic

media, the field quantities B = RH and = are not required. The
requirement for a wave propagating to the right is r real and > 0. The

reflected wave field corresponds to r real and < 0.
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The boundary conditions on the walls of the guide reduce to E x = 0,

for y = 0, b, which can be satisfied by choosing qb = nw where n = 1.0 for

the lowest (H or TE ) mode

For any mode, qn= nwr/b and the corresponding wave number in the z

direction is:

2 nw 2 f2 f b
r= k 22 ( nZ

b

In the x direction, the guide dimension a is selected to allow only this mode

of operation. To maintain this mode requires that

1 < a =(Lk)2 <

in order that r is real. For n = 2, r becomes imaginary corresponding to

evanescent modes.

It is convenient to introduce the dimensionless length s = y/b = qy so

the incident wave field of unit amplitude is:

E = sin se
x

H = -- v a- i sin se
y I

H = coo se

z - -
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The reflected wave field is:

-iz 47r
E x = A sin ge

-i
H = A " sin se

-iz a-
H - A cos se

For higher evanescent fields, we have

E n =A sin nsex n

Hn= inT I - a A sin nsez 
y w Lb n

Hn= - A cos nse

The positive square root is to be used throughout and the sign of the

z term of the evanescent fields is determined by the requirement that the

fields decay to the left.

It remains to satisfy the boundary conditions on the shorted end which

reduce to E 0
Ex

for z = Ky , 0< y< b

H sin0 - H cos 0 = 0

z-5-
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where K = cos 0. At normal incidence, K = 0. The two boundary equations

become:

Ks T)oA s K 7-

0 = sin a(eMa - +Ale -iSa-- A

2

0 = iK sin sNI -
W

s (eiK ) A 1e-Ms -)

+K An sin nsl/ 7  eK5%/ c

2

+ [Cos s(eiKsl~ + 1 -iKsNra-T)

+E nAn cos nseKs1n ]

2

The second boundary equation is obtained by discarding the constant factor

-iir/bw L sin 0 and forming (H z - KH y) = 0. Differentiation of the first boundary

condition leads directly to the second boundary equation. For normal

incidence, K = 0 and all evanescent modes vanish. Both equations reduce to

1 + A1 = 0 so the reflection coefficient is simply A = -1.0 -e and the phase
10

of the reflected wave is 1800.

When there is oblique incidence, the absence of transmission in the

problem means that energy is conserved, and, consequently, far to the left,

the reflected amplitude continues to be 1. 0. The effect of the shorted end
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produces only a phase shift of the lowest reflected mode. It is convenient to

write this in the form

A i(-ZX) -2iXA1
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III. ANALYSIS OF THE PHASE

Rewriting the boundary equations with A 1 = -e- ZiX in the form

-sin s [ei Ms %a- - e-i (K s %a--+ 2X)] 2 A sin nse s~n -a

2

Mi sin s %-a- 1 i Ks %Fa-T- +e- i(K s 4-a + 2X)] Cos s[e M 5r- -e iKra-12)

0 0- o - 0 0 -o
A sin nsKJn 7 a e K5sIia+ nA cos nseKsI-

2 2

suggests the further reduction

-sin s(2ie'iX)[sin (Ksvra- 1 + X)] = An sin nseKs4 a
2

-iK sin s(2e'ix )r,- [cos (Ks 1 - 1 + X)] - cos s(2ie- i)[sin (Ks %/ -I + k)]

KsJ~~ ~ A-nsl Z eKl-
= An cos nse + iA sin nsK - e a

n n
2 2

The terms on the left of both equations represent the propagating modes and

the ratio of real to imaginary terms is tan k, independent of s. The complex

amplitudes of the evanescent modes An on the right must have the same

structure if the sum on the right is to equal the terms on the left of both

equations.
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It follows that every evanescent mode possesses the same direction.

Writing

A uiT Tr m-iX
A = pe + i2 - iX = -Pnie

n n

the boundary conditions reduce to

~KsJ -a
2 sin s sin (Ks Nr-1 + X) = pn sin nse

2

2 sin s(Kqa -1) cos (Ks.J - I + X) + 2 cos s sin (Ksr- I + X)

2 2K~Z asin nseKs NnF a + 0p n csneKs n-a
Ao ns

2 2

The interval 0 < s < 7r may be divided into n intervals and the above sums

truncated to construct n simultaneous equations for determining the amplitudes

Pn and the phase angle X. As n - cD, we approach a generally unsolvable set

of equations such that each pn is the ratio of two infinite determinants. The

structure of these determinants can be examined to lead to the same con-

clusion derived above--that all evanescent modes have the same phase angle
iT

but for a factor e . The result depends only on the fact that the elements of

the determinant are real for the evanescent modes while the elements of the

propagating modes are complex. To clarify this statement, the structure of

these equations can be used to show that

A =-iC

2 A + iB

A3 =-iDA3  A + i

etc.
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where tan X = B/A. Here we know only that A, B, C, D are real but this is

sufficient to determine that the phase of A2 , A3 ... ,P An is 0n where

tan 0n = A/B = cot X.

The simplest way to represent this result is in terms of the Argand-

type diagram shown in Fig. 2. Note that since some evanescent amplitudes

may be negative the phase is either (n/2)-X or (3r/Z)-k. The diagram also

generates the equation

-Pn = 2 sin X
2

It is not possible to determine by a physical argument which evanescent

mode has the phase (ir/2)-X or (31/2)-k, but preliminary calculations strongly

suggest that the phase angle is, in fact, (3I/Z)-k. In Fig. 2, this means all

vectors A are directed from A to B and is equivalent to the assumption thatn
the amplitudes pn are all positive. However, this assumption is not utilized

in the subsequent steps.

The removal of the phase angles leads to the two equations

2 sin s sin (Ksvra - 1+ X) = E pn sin nse K s

2

Z[Kq 1- sin s cos (Ks'JW- + X) + cos s sin (Ks 4 - 1 + X)]

o Pn [sin ns(K1rTT)+ n cos

2
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PHASE ANGLE FOR
ALL EVANESCENT MODES

REFLECTED WAVE AT
OBLIQUE INCIDENCE

B i- 2 INCIDENT
WAVE

REFLECTED WAVE AT
NORMAL INCIDENCE

Fig. 2. Phase Angles on the Unit Circle

All evanscent modes have phase angle (wt/Z) - X or (3w/2) - X
where 2) is the decrease in phase angle of the reflected mode
produced by the sloping shorted end.
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where all quantities are real. It is evident that pn' " are functions only of
K, a and we are left with the vastly more difficult problem of determining

these quantities. To remove the y dependence, we integrate the equations

with respect to s from 0 to Tr.

The integrated equations are:

2[sin X + sin (K-r-n-14 X)] p nn e
-_ - T.I-K( a "1) = 2 n + K (n C)

and

0 2 . [ 1 ) n K r r n a
n+K (n -cia)

to these we may add the relation

00

2 sin = E Pn
2

The left side of the section equation vanishes because E vanishes at the wall.
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IV. CONCLUDING COMMENTS

The three equations obtained represent the conclusions of this phase of

the study. As we wish to find X(K, a) and pn(K, a), it appears desirable to

conduct experiments with a number of waveguides of different degrees of

obliquity. This would determine directly the phase shift X as a function of

angle of obliquity 0 = cot 1 K for a given medium (a a fixed constant).

We may in this way obtain the clues needed to construct integral

representations that are capable of representing both members of the three

equations; that is, a knowledge of X(K) might indicate how to establish a

contour integral possessing residue terms that generate the sums and

uniquely determine all pn(K). It is difficult to see how to proceed without

such information because of the branch points n = L Nra that exist. It is

probable that each p n is an extremely complicated function of the parameters

n, K, a. The choice of particular numerical values for K or a does not

materially simplify the equations.

The results of the attempts made to date to solve the three equations

for X, pn as functions of K, a are not promising, but do suggest some helpful

hints. It appears desirable to deier further results or discussion of approxi-

mate procedures to a subsequent report.

This phase of the study may be summarized as follows: The effect of

obliquity at the shorted end of a waveguide produces a phase shift in the

single propagating E mode which is allowed by the guide dimensions. The

magnitude of the phase shift 2X is determined by the amplitudes of the

evanescent modes of the field near the sloping end. Both these amplitudes

and the phase shift are complicated functions of the angle of slope. All

evanescent modes possess the common phase angle, (3ir/2)-X.

L
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