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A STEREOGRAPHIC CO-ORDINATE SYSTEM FOR THE UTILIZATION

OF DATA FROM SEVERAL RADARS

I. INTRODUCTION

The utilization of information from several radars tracking the same target requires that the data of

slant range, azimuth, and height as reported by the various radars of the system be referenced to a common

origin of co-ordinates. Experience has shown that the data are best processed in the form of rectangular

co-ordinates. Therefore, it becomes necessary to determine a method of projecting the surface area of the

earth covered by the radar system onto a plane containing a set of rectangular co-ordinates in order that

the positions of, and data from, each radar may all be referenced to a common origin for the system.

Cartographers have devised many methods of projecting the earth onto a plane. Each was de-

veloped to satisfy various requirements of representation and navigation. For the problem at hand, the

choice of the best method of projection must be governed by the simplicity with which slant-range, azimuth,

and height data can be converted into rectangular co-ordinates relative to the radar and by the facility with

which these co-ordinates can be referenced to the origin of the master grid of co-ordinates for the system.

The accuracy of these processes will determine the accuracy in positioning a reported target relative to

the origin as well as the degree of displacement between the positions of a single target as reported by

several radars.

The problem has been separated into two aspects, conversion and transformation, not only for con-

venience in analysis but also because transformation is a separate problem unto itself, arising when it is

necessary to communicate the position of a target in one system of radars to another system. The two

aspects of the problem may be defined as follows:

(a) Conversion of the data of slant range, azimuth, and height to rectangular co-ordinates in a

plane with the radar as the origin.

(b) Transformation of the rectangular co-ordinates of a target in one plane into the rectangular

co-ordinates in another plane. The same method of projection must be applied to all radars within

a system, both for conversion and transformation. An exchange of information between systems

employing differing methods of projection is possible, but extremely complicated.

Reference 1 analyzes these problems for the gnomonic, stereographic, oblique Mercator, and

Lambert conformal conic methods of projection and concludes that, for most practical radar networks,
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considerations of simplicity and accuracy make the stereographic projection the most suitable for accom-

plishing the required conversions and transformations of coordinates. This conclusion is based on the

following considerations:

(a) The approximation

D = VN W -H2

to the conversion equalion,

where

D = the distance of the target from the radar measured in the plane of projection,

S = Slant range of target with respect to the radar, and

H - Target altitude,

yields the smallest possible maximum conversion error. This error is independent of the

extent of the network and of radar range; this is not true of the other methods of projection.

(b) The value of D is independent of the target's azimuth with respect to the radar.

(c) If Taylor expansions are used to approximate the transformation equations, the sum of the

maximum errors in conversion and transformation is less for the stereographic projection

than for the other methods investigated under most practical conditions.

(d) The accuracy of projection is independent of the geographic latitudes of the radars in

the network.

(e) Less and simpler equipment is required for exact solutions to the transformation equations

by means of analog or wired program computers if the stereographic projection is used.

It is the purpose of this report to develop the equations of the stereographic projection more fully than is

accomplished in reference 1. The equations will first be developed for a spherical earth and then modified

to take the earth's ellipticity into account.

The stereographic projection is made by placing a plane tangent to the surface of the earth and

projecting this surface onto this plane by lines drawn from the point diametrically opposite to the point of

tangency through the points on the earth's surface to be projected (see Figure 1). It is sometimes advan-

tageous to elevate the plane of projection; that is the projection is made onto a plane parallel to the

tangent plane.

References 2, 3 and 4 discuss the applications of the stereographic projection to cartography.
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II. THE TRANSFORMATION EQUATIONS

A. The Exact Transformation Equation

The transformation equation is derived in reference 1 and is given in complex notation by

wo + zI e-i/3

1-w z e - i 3  
Eq. 1

F
2

where

w = u + iv = the rectangular coordinates of the target with respect to the origin of coordinates,

wo = U0 + iv = 'Woe i( = the rectangular and polar coordinates, respectively, of the radar with

respect to the origin of coordinates,

Wo ,uo -ivo,

zI x +iy 1  
-De, the rectangular and polar coordinates, respectively, of the target

with respect to the radar,

F - 2E = the diameter of the spherical earth,

/3 = an angle which depends only on the coordinates of the radar with respect to the origin of coordi-

nates. (y and e are measured clockwise from the positive y-axis.)

wo and /3 are computed from the latitudes and longitudes of the radars and the center of coordinates

as follows:

sinAL cosL +i(sinL cosL o - cosL sinL o cosAX)wo =uo + ivo  2E 00Eq. 2
1 +sinL sinL o +cosLcosL o cosAX

tan (sinL o + sin L) sin(X-N,) Eq. 3
cosA X+ cosL o co s L +sinL sinL o cosAX

where

Lo, X0 = latitude and longitude, respectively, of the origin of coordinates

L, X = latitude and longitude, respectively, of the radar

AXX- No

/3 represents a rotation of the z I-plane with respect to the w-plane.. For longitudes west of Greenwich

this rotation is clockwise when /- Xo > o and counterclockwise when X- No < o. The direction of ro-

tation is reversed for longitudes east of Greenwich. The effect of this rotation is to make the axes of

the two planes more nearly parallel.
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Since /3 is a constant for any radar with respect to a particular origin of coordinates, the e 3 terms in

Eq. 1 can be eliminated either by changing the north orientation of the radar antenna or by adding a

constant to each azimuth. Eq. 1 then becomes

W + Z
W -w +  

E q. 4wo z

where zz ei/ =x+iy= Dei(2 -  /)

Expanding Eq.. 4 yields

wu(w o +z I V n

W+z)[1 + nn

"o % 2  w n-I zn -- n+1n-1 F n=1

n1 n+1 n F 0+( _£2 - Zn+l - zn+l

0 + 0 z 0.wo  , Won + " -won=o FIR n o F'2n

(W + F 0

S+ 0 F exp. i Eq.a

Equation 5a shows that for a particular radar, w is the vector sum of a number of terms whose ampli-

tudes are rapidly decreasing but are independent of the azimuthal angle 0. Separating Eq. 5a into its

real and imaginary parts, there results

u -o+ [ 1+( %\2 W n Dn+l

U nU0 +[o (FYN0 sin 6 + n ( -)J Eq. 5b

v v + [1+ )J no F2 - cos [ +n(-y. Eq. 5c

For some applications it is desirable to have exact expressions for u and v in closed form. This can

be achieved by multiplying the numerator and denominator of Eq. 4 by the conjugate of the denominator.
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The result is

(U. ~ 2 
- vO 2 ) x + 2uovoy + u0 (x 2 +,y2 )Eq a

1 + 2 + vo0y (u 02 + v 0
2)(X 2 + y 2)

vo+y+(v 0
2 - uo2 ) + 2uovox + v.(x 2 + y 2)

V Y F2  Eq. 6b

1 ~ (u0 2+ 2)(X 2 + y2)

These equations may also be expressed in the form

In sin y+DsinO+W0 D F sn 2 -)+ i

U V D D]Eq. 7&
+ I0os(y -6) --W.0

W cos y+ Dcos 6+ WD Wo cos(2y - ) +D cos y
V F 2  Eq. 7b

WoD r D1
1+ ck Icos 0)--

F2  FF~

The first and second order approuimations to Equations 5 are given below and the errors resulting from

these approximations evaluated.

B. First Order Approximation

+D. e + i(! -o 2 x )] )]E.

where D [~ + (-0)] D

U . uo + DIsin 0 Eq. 8b

V o v+ D' cos 0. Eq. Sc



The transformation error et is of the order of the next term of the series in Eq. 5

et - Eq. 8d

C. Second Order Approximation

w + + L I +F) exp KD 
- 2[+ -E.

Wo

where K - =-Y F constant for any particular radar

u = uo +D 1 sin 0 + K(D 1 ) 2 sin (2 0 -y.) Eq. 9b

v =vo +D cos 0 + K(D1) 2 cos(20+ y) Eq. 9c

W .2 D3  
Eq. 9d

D. The Transformation Equation for Elevated Planes of Projection

Let hr = the elevation of the plane of projection at the radar site

hc = the elevation of the plane of projection at the center of coordinates

then h
1 +

+ F

F
w = Eq. 10

1 - Wo z

(I+ )(I +-F ) F

The 1 + (W) 2 term in Eqs. 7, 8 and 9 now becomes

7hc

F W

S-C) hr F ,
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1i1. THE CONVERSION EQUATIONS

The conversion problem is that of expressing the quantity D which occurs in the transformation

equations as a function of the slant range S and the altitude H. It is useful to define a quantity R by

R -= (VI-). Eq. 11

If theplane ofprojection is elevated by a distance hr above the earth's surface, the conversion equation

for a spherical earth is given by

ht

D R 2E Eq. 12a

+ 1!
E T-[ 1 h-H RI

" hr -H _R2

R + _+ Eq. 12b
2E E 2

The fact that hr and H in Eq. 12b are of opposite sign indicates that the error resulting from approxi-

mations to D may be minimized by a judicious choice of hr. It is shown in reference I that if D is ap-

proximated by R, the maximum error is minimized when

1+ + H 1/3

h( J - 1 2 ME Eq. 13
r 2 2

where HM is the maximum altitude at which targets can be detected.

The error resulting from approximating D by R in Eq. 12b after setting hr IH
r

M 
H- is gienb

ec HM 2HR + R Eq. 14 a

4EBE

The maximum value of H is HM, and its minimum value is the height corresponding to the radar's

horizon. Setting H = HM in Eq. 14a yields

E.R 3 HM
& L R. Eq. 14b

It is shown in reference 1 that when the minimum value of H is used in Eq. 14a the result, over the

range of interest, is very nearly equal and opposite to that obtained for H - HM. Thus, cc varies
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between the limits

R3 _ HMR <HMR R 3  Eq. 14c
8- 4E c 4E 8ET

The maximum value of 1fcJ occurs at approximately

R 2 HME Eq. 15a

and is very nearly equal to

Iccl (max.) 1 i / q ~

ForHM = 10, ecl (max) is 0.073 n. mile at R = 151 n. miles.

It is shown in Appendix A that if the radar site is elevated by a distance HR above the earth, the plane

of projection should be elevated by

HM
hr = HR + . Eq. 16

This will increase the maximum conversion error by the factor

HR:
E
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IV. SUMMARY OF STEREOGRAPHIC PROJECTION ERRORS FOR A SPHERICAL EARTH

For a first order approximation to the transformation equations (Eqs. 8) the magnitude of the trans-

formation error is approximately Wo D 2/F 2. If D is approximated by R, the maximum conversion error is

given by Eq. 14 c, that is

- HMR - R 3

2F 2F 2

The total projection error is the sum of the transformation and conversion errors. Since D- R"-S this error

can be expressed as a function of W., S, and HM by

WoS 2  
I MS S

3

FepI (max) + 2F -0F Eq. 17

Figure 2 is a family of curves of Ip I (max.) versus S, with % as a parameter, HM = 10 and

HR = 0. The curve for Wo = 0 represents the conversion error, and the difference between this curve and

the curves for W. > 0 is the error resulting from a first order approximation to the transformation equations.

Figure 2 may be used to determine whether, for any particular combination of Wo and S, the error resulting

from a first order approximation exceeds a prescribed limit so that a higher order approximation becomes

necessary. For the range of values of Wo and S shown in Figure 2, the curve for Wo = 0 is also very nearly

equal to 1C.1 max. for a second order approximation.

An inspection of Eq. 17 shows that the maximum projection error for a radar network varies linearly

with the maximum value of W for that network. It is therefore desirable to choose the center of coordi-

nates for a network so as to minimize the distance between this center and the radar from which it is

furthest removed. The choice of hc, the elevation of the plane of projection at the center of coordinates,

allows a degree of freedom but no criterion for optimizing this choice seems to exist. It appears convenient

to let hc = 0.

.9.
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V. THE EFFECT OF THE EARTH'S ELLIPTICITY ON THE STEREOGRAPHIC PROJECTION

A. Mathematical Figure of the Earth

In calculating the positions of points on the earth, it is necessary to assume some mathematical

surface to represent the figure of the earth. The figure generally adopted is the oblate spheroid.

Such a figure is generated by rotating an ellipse about its minor axis.

In Figure 3, the equation of the ellipse shown, with major and minor semiaxes a and b, referred to

its own axes as coordinate axes, is

.. x2  , y2 I

a 2  b2

The eccentricity e is defined as the distance from the focus to the center divided by a and is

defined by

e 2  -
b 2

a
2

The ellipticity (or flattening) is given by

a

The normal to the surface of the spheroid is known as the geographic vertical, and the angle

between this vertical and the equatorial plane is the geographic (or geodetic) latitude L.

The angle 8 between the geographic vertical and the radius MO is called the deviation of the

normal and is defined by

tan = e (1 -) sin 2L

1 - (2e-e 2) sin 2 L

The maximum value of 8 is 11.59 minutes at L = 45.10 degrees. The distance MQ measured from

M along the geographic vertical and terminating in the minor axis is called the normal N and is

given by

aN= Eq. 18
1I -e 2 sin 2 L

The dimensions of the earth to be used in the above expressions should be the same as those

used by surveyors in preparing data for site locations. The International Ellipsoid (Reference 5)
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and the Clarke Spheroid of 1866 (Reference 6) are most commonly used for this purpose. These

dimensions are as follows:

The International Ellipsoid

Semimajor axis - a: 6,378;388 meters

= 3,441.734 727 U.S. nautical miles

= 3,444.053 995 International nautical miles

Semiminor axis -b: 6,356,911.946 meters

= 3,430.146 394 U.S. nautical miles

= 3,432.457 854 International nautical miles

Ellipticity (flattening) - f: 1/297 = 0.006 722 670 022

Square of Eccentricity - e 2: 0.006 768 170 197

The Clarke Spheroid of 1866

Semimajor axis -a: 6,378,206.4 meters

= 3,441.636 737 U.S. nautical miies

= '3,'443.995 939 International nautical miles

Semiminor axis - b: 6,356,583.8 meters

= 3,429.969 329 U.S. nautical miles

= '3,432.280 669 International nautical miles

Ellipticity (flattening) - f: 1/294.98

Square of Eccentricity - e 2: 0.006 768 657 997 291

1 U.S. nautical mile = 1,853.248 meters = 6,080.20 feet

1 International nautical mile - 1852 meters = 6,076.103 33 ... feet

Effective July 1, 1954, the International nautical mile was adopted, in lieu of the U.S. nautical

mile, for use in the Departments of Defense and Commerce (Reference 7).

It is emphasized that the units employed to represent the earth's dimensions, which in turn affect

the constants and coefficients used in the conversion and transformation computations, must be

consistent with the units in which the radars measure slant range.
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B. The Effect of Ellipticity on the Transformation Equations

For conformal projections (the stereographic projection is conformal) the equations for projecting

the spheroidal earth onto a plane are the same as those for the spherical earth, except that an

angle, designated by V5 and known as the conformal latitude, must be used in place of the geo-

graphic latitude L. Thomas (reference 4, pp. 68 and 86) shows that a conformal projection of the

spheroid is accomplished by using the conformal latitude 0 in place of the geographic latitude L

and that this represents all conformal mapping of the spheroid on a plane. The conformal latitude

is defined by

id d+ e sin L tan + Eq. 19a

As an aid to computation Eq. 19a may be changed to the form

sin S = [0.99327733 + 0.00666251 sin 2 L + 0.00005959 sin4 L

+ 0.00000059 sin 6 
L + ... sin L Eq. 19b

where the constants have been calculated for the International Ellipsoid.

In addition to using the conformal latitudes and 0o in place of the geodetic latitudes L and

Lo to compute Wo and 8 in Eqs. 2 and 3 (b - L for a spherical earth), the registration error be-

tween observations of the same target by different radars will be minimized if the radius E of the

spherical earth used in the equations of Section II is replaced by (see Reference 4, pp. 86 and 87)

E = N cos Lo Eq. 20

No is the normal at the center of coordinates and is computed from Eq. 18.

C. The Effect of Ellipticity on the Conversion Equations.

Since the earth is an ellipsoid of revolution generated by revolving an ellipse about its minor

axis, a cross-section of the earth is elliptical when obtained from a plane containing the polar

axis, but a plane parallel to the equatorial plane will produce a circular cross-section. The

effects of ellipticity will therefore be a maximum for targets on the same meridian as the radar,

as shown in Figure 4. it is important to keep in mind that this figure is not drawn to scale. If it

were, the distance of the target T from the position of the radar R would not exceed 3/8 inch, and

the altitude H of the target above the earth's surface would have a maximum of 1/64 inch. The

angle would then be smaller than 5 degrees, and the difference between the true altitude TP and
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the radial altitude TP' is less than two parts per million. The angle P'TP is then very nearly

equal to 8, the deviation of the normal, since the normal at P is essentially parallel to the normal

P '. Also, the ellipticity of the earth, defined as the ratio of the difference between the equatorial

and the polar radii to the equatorial radius, is 1/297. This is much smaller than is shown in the

figure, so that the angle P 'QR is very nearly equal to (k/2, and the maximum value of 8 is 11.6

minutes.

For a spherical earth, the projection is made onto the line RS' which is perpendicular to the

diameter QR. The point to be projected is P' defined by the intersection of the surface with the

extended radius OT. The projected distance is therefore

D = RS' = 2Etan 2  Eq. 21

For a spheroidal earth, the projection is made onto the line RS which is perpendicular to the

normal at R. The point to be projection is P, defined by the normal to the surface from T. The

distance PP' is H8, and the angle P'QP is approximated by H8/2E. The projected distance can

then be found from the law of sines:

sin (2inH

De = RS- sn - 5 )2E = Sf 2 ) 2 q 2

si 180 90o-9o -) - Co 1 + E

Eq. 22a reduces to Eq. 21 when 8 = 0. By an exactly analogous procedure it can be shown that,

when the target is at a latitude less than that of the radar, the projected distance is

si 5 +H S )
s 2 + 2 2E 2E. Eq. 22b

If the angles and 8 will be sufficiently small so that

±o [2 I +2J' ] L

sin( ± H

tan 2 2,

- 13-



then from Eqs. 21 and 22

De - D ± H8 Eq. 23a

where the plus sign applies when the latitude of the target is smaller than that of the radar, and

the minus sign indicates that the target's latitude is greater than the radar's. In general when

target is not on the same meridian as the radar, but at an azimuth 8,

De ' D-H8cos e. Eq. 23b

When the plane of projection is elevated by a distance hr above the earth's surface, both De and
hr

D are increased by the factor 1 - -L. Eq. 23b then becomes
2E

The conversion error due to ellipticity is therefore

ec D -De =I + H 8cosO Eq. 24

The maximum value of ec for hr -HM /2 and HM = 10 is 0.034 nautical miles.

For the sake of completeness it should be mentioned that an error in both range and azimuth

arises from the fact that the normals to the surface from two points not on the same meridian do

not lie in the same plane. The magnitude of these errors may be evaluated by an extension of

the analysis by Hosmer (Reference 8). The results show that these errors will be wholly negli-

gible for most practical systems.
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APPENDIX A

The Conversion Equations for Elevated Radar Sites

The derivations of the relations below, though somewhat more complex, are analogous to the

corresponding relations in Reference 1. Only the results are shown.

Let H = altitude of target above sea level

HR = altitude of radar above sea level

hr = elevation of plane of projection above sea level

Define R' = S2 -(H - HR) ,

+hr
1 + h r  !

then D = R 2E
1 + HR  HHR '(

R i + hr_-(H +HR )  HHR +R' Eq. Al
LR + 2E HR) + BE.A

The maximum error resulting from approximating D by R is minimized if

h r = 2E 1,1 ( + HR)1/3 [i+ + HM)l/3] ]3/2 -

+HM
H 2 Eq. A2

where HM is the maximum altitude at which targets can be detected. For targets at altitude HM, the maxi-

mum error is

6M = 2E \7 [ + ( )2E( Eq. A3

The maximum error for targets at the radar's horizon is

'M /3 '3/2

- 2E I + E + .. ) Eq. A4

Equations A3 and A4 are equal for HR = 0. The effect of an elevated radar site is to increase the maximum

error by the factor V __ . 16-
E



APPENDIX B

Heading Angle Errors Caused by the Stereographic Projection

The stereographic projection does not project meridians as lines parallel to the v-axis in the

w-plane. As a consequence the heading from true (geographic) north of a target with velocity components

d and f is not given by tan- 1 (i/). To obtain the correct heading the angle it between the projection of

the meridian passing through the point defined by the target's positional components u and v and the line

parallel to the v-axis passing through that point must be added to tan- 1 (l/#). This angle is defined by

(sin q1o + sin q/) sin ( X-Xo) Eq. B1
tan = X-\,) + cos(V-X,) sin sin qp + cos % cos EB

2Vcos o + (1-U 2 -V2 ) sinb o  Eq. B2sin = 1 + U2 + V2

2U
tan (X- = (I - U2 _V 2) cos 0  2 V sin 0 °  Eq. B3

where

V , X = longitude and conformal latitude of the target,

00, X = longitude and conformal latitude of the center or coordinates,

V =v.
F

Note that the equation for /. is the same as that for 3 (Eq.. 3) and that Eqs. B2 and B3 represent

the inverse solution of Eq. 2, permitting the computation of the latitude and longitude of a point from its

u, v coordinates.

Equations BI - B3 define u as an explicit function of u and v. The first order term of the Taylor

expansion of I. about the origin (u = v = o) is

tan '

E

The headingof a target, measured clockwise from true north, is thus approximated without significant error by

tl tan
tan- 1  

- + ta u
E
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