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OSCILLATIONS OF A PHYSICAL PENDULUM HAVING CAVITIES
FILLED WITH A VISCOUS FIUID

P. S. Krasnoshchekoy
(Moscow)

An asymptotic method has been proposed [1] for
investigating the nonstationary motlons of wviscous
incompressible flulds with large Reynolds numbers
(NRe), which arise during the oscillation of

various solids which either contaln a fluld or
are emersed in one, and also during the oscilla-
tion of liquld volumes having a free surface.

In this article the i1dea of this method 1s applied
to the investigatlon of small oscillations of a
physical pendulum having cavities completely filled
with an incompressible viscous fluild.

1. The pressure of a fluld contained in the cavity of an oscil-
lating pendulum (Fig. 1) is described by the Navlier-Stokes equations
and the continulty equatlon: _

. v ' oy " .
7T V- V)V =V —v(VxQ)
divV' =0 ) (1.1)
L v LU I=_£._
(Q V'xV, ¢ 5 U)

Here U is the potential of the mass forces acting on the fluid.

At the edge of the cavity the conditions of adhesion of fluild
particles to the walls of the cavity should be satisfled. This'gives

the following boundary conditions:
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@ = —y0, v=z6 =0 (é =%%) (1.2)

Here 6 1s the deflection angle of the pendulum from the equllib-
rium position while u', v', w', are the components of the velocity
vector Y'.

We assume that

V=V +7)
where VB 1s the velocity vector of the center of mass of the cavity,
and we convert to a new system of coordinates (x", y", z") with its
origin at the center of mass of the cavity and with axes parallel
to the axes of the stationary system of coordinates (x', y', z').
In the new system of coordinates we will have
T+ VTV =T — v (@), divVeS0, (1.3)
Here " .
Q7 =V'xV, g =—plp=U~(VSr)
At the boundary of the cavity:
) u"" =—y0, =z v =0 (1.%)

We will refer all quantlties to a characteristic scale., Let us

assume:
=T, & =Rz, y =Ry, =Rz V= 2RV
=20 oo - - (1.5)
. "‘T ’ L] =aT,-Q), 9=aﬁ, NRG‘—"_

T
where T 1s the characteristic period of one oscillation, R is the
characteristlc dimenslon of the cavity, o is the charactebistic ampli-
tude, and NRe 1s the Reynolds number.

Equations (1.3) and Boundary Conditions (1.4) are written in

independent variables in the form:

%+Q(V.V)Y=V¢—N1;(Vx9),'j. L, divY =0 (1.6)
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At the boundary of the cavity:
u=——_7/'5, ve=2zd, w=0 (1.7)
In the system of equations (1.6) the characteristic amplitude a
is a factor for nonlinear terms.
We will consider osclllations with a small amplitude and later
linearize Eqs. (1.6), disregarding magnitudes of the order a.

The linearlzed system of equations appears as follows:

v 1

(1.8)

The obJject of thils article is to investigate those forms of
osclllations for which the solution may be represented in the form:
1) = cest, V = 'cq"U (SC, v z) (1. 9)

Setting ¢ =ce"D(z,y,2), Q2 = ce"W (z,y, z), We have for such motions:
‘cU=V¢>'—j—V%;(VxlD)‘, divU =0 (1.120)
At. the boundary of the cavity: A
Us=—y0, U, =20, U,=0 (1.11)
Relationship (1.10) indicates that the vector U is the sum of the
potential and solenoidal vectors, Such a presentatlion makes 1t possible
to separate the equations, having obtaiﬁed a separate equation for

each unknown functilon.
Actually, having taken the div of both sides of the first equation

of System (1.10) we obtain:
a®=0 - (1.12)
i.e., a functlion of & which is harmonic 1n a volume filled with a fluid.
_Having taken the cure of both slides of the same equation we have:
W= oW (1.13)
Thus each of the unknown functions ¢, Y satisfles a separate

equation.
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At the boundary of the cavity these functlons are linked by the

following boundary conditions:

I 1 9%, ayu) s
b i — YG
9z Nne(ay Iz =V
00 4 /0¥,  BY, .
e ot i [ K e x6
ay Nm(az 0::)= .
L AR

oz Npe\ oz —a—.';—

Here Yx, b4 Yz are components of vector ¥,

¥
A fourth boundary condition determined at the limit of the
projection of vector ¥ onto the normal to the surface of the cavity
willl be Introduced later in a specially selected curvillnear system
of coordinates.
Let us consider ca&ities which appear as figures of revolution
whose axes are perpendicular to the plane of oscillations of the body.
We will introduce a curvilinear system of coordinates associated
with the surface of the cavity. In the case under consideration it
is convenlent to introduce the following coordinates: n — distance
along the lnner normal to the surface of the cavity taken from the
surface inward, a — angle which determines the position of the meridian
plane, and B — length of arc along the meridian?(Fig. 2). The varia-
bles in the (x,y,z) coordinate system are assoclated with the variables
n, a, B in the curvilinear coordlnate system by the followlng relation-
ships:

8
z=—[ro+Ssin’r(ﬁ)dﬁ-—-nm'r(ﬁ)]sina=~l‘r(ﬂ)— n cos ¥ (B)) sina

0
4

y=[ro+Ssin._!r BYdf — ncosy (ﬂ)]cosa._:: {r(p)—ncosy@)lcosa
-0 ‘ s . ‘ . ) .
z=Scos’f(§)dﬁ + nsin 1)
0 .
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1

radius of a clrcle obtained in fthe cross-sectlon of the
cavity by a plane perpendicular to the axls of symmetry
and passing through the center of mass of the cavity;

Here, To

r(B) = radius of the circle formed by points on the surface of
the cavlity having the coordinate B;
v(B) = angle between the tangent to the meridian at the point with

coordinate B and the positive direction of the z-axls.
We will write Eq. (1.13) and the boundary conditions in the new coor-
dinate system. For simpliclty we wlll use the notatlon:
, V.=Y¥, Y=Y V=Y

Then we have in the curvililinear coordinate system:

- 1 fo(_t+nv@ Y
o¥s NpelrB)—n cos Y@ (1 + ~7 BILIx (r ®)—n cos 1 (B) W) + :
9 (r(®)— M ORAIAYIR, y o OV
ol FmE ) ta(r@—nesr@ t+rr@n 5] (2.14)

(r@e=22) =129

At the edge of the cavity for n = O:

o 1 v, @Y, '__
CwmvelE =0 (1.45)
190 1 (9, AU+ @)Yy
w1 O(r@—ncosT@)Y, ¥,
% Nw(ﬁ)[ 3 T ]=°
' (2.47)

Let us derive the fourth boundary condition. The normal compo-
nent ‘ln of the vortex vector ¥ i1s deflned 1n terms of the tangentlal

components Ua and Uﬁ of the velocity vector U as follows:

v t SUARY Uy 3@ —ncosT@) U
‘ F""lr(B)—ftFosw(?»)l[1-:—n7’(B)J[ da - S X ']

At the edge of the cavity the vector U is known; consequently,
its components Ua and UB are known for n = 0, Differentiation with
respect to a and B for n = const 1s possible, and therefore calcula-
tion of the magnitude of ‘Y'n for n = O presents no partlcular difficulty

After simple calculations we obtain:
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Wn=—2siny@)o (1 18)

This relationship closes the system of boundary conditions for
the unknown functions ¢, V¥,. | ) .

The quantities ¥, ¥g, ¥, in Relationships (1.15)-¢1.18), are
components of vector ¥ in the curvilinear coordinate system. They
are connected with the componenets Yi by the relationshilps:

Vo= — ¥ cosa—~ ¥,sina
Ve T i e prrer e ) (2.49)
2008 7 (B) cos @ + ¥, sin 1 (B)

We wlll assume that the parameters of the pendulum guarantee a
sufficlently large Reynolds -number, We will assume:

' ‘ N;: = g? (1.20)
where € 1s a small dimensionless parameter.

The idea of constructing a solution for large Reynolds numbers
which was presented by Moiseyev [1] is analogous to the idea of
constructing a boundary layer. It 1s assumed that the vortices which
exist in the oscilllating flﬁid contained within the pendulum cavity
are concentrated mainly in a thin layer at the walls of the cavity.
This in turn makes it possible to consider the derivatives of the
components of the vector ¥ along the normal to the surface of the
cavity to be significantly greater than in the tangentlal directions.
Let us "expand" the independent variable n. We set

n = gn 4
Solution of the problem formulated will be.sought in the form of

serles to powers of the small parameter e:

®f-d>o+e®,+.._., ,‘Y‘=-}\1'fo,+‘lf'ﬂ+... (Im1,2,38) (1.21)

Substituting Series (1.21) into the equations and boundary
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condlitions and equating to zero the sum of the coefficlents for the
zero power of the parameter &, we obtaln the followlng problem for

the determination of the functilons ¢O and YOi:

LD, =0, owﬁ_—;% ({=1,2,3) (1.22)

At the boundary of the cavity, for n = O:

20 L a0, . Ve oD, Vo,
=0, ~;l(_3)7£+—a;1°—="(3)°’- ,73-"— ano =Q'_ Yon =0 (1.23)

From the first relationship of Cdnditions (1L23) we see that the
standard derivative of the harmonic function ¢, is zero at the bound-
ary of the cavity. Hence it 1s possible to consider ¢ = const without
. limiting the generality.

The components of the vector ¥ in the curvilinear system of
coordinates are assoclated with the components of the same vector in |
the Cartesian coordinate system by Relationships (1.19). These rela-
tionshlips are linear with regard to Y01, Yoz, YO} and the coefflclents
of Y01, Yoz, Y03 are independent of 7; consequently the functlons YOa’
YOﬁ’ and YOn satlisfy the same equations as Y01. Thus :

rv, ‘ Y, (1.24)

Vo= s oy ¥
o or = T O¥op = Frrald c =

At the boundary of the cavity these functlons satisfy the follow-

ing boundary conditions:

v,

a‘l’oa t] o . .
=T FE=0,  ¥,=0 (1.25)

The general solution of the equation satlsfied by’Yba, YOB and

b4 n has the followling form:

0
‘U c,cy’—"" + c,e"y"'
Let Re /o > O. By assumption, far from the walls of the cavity
there are no vortlces. Just as 1s done in boundary-layer theory, we

will consider the value n = o to be the respectlve internal points




of the cavity sufficlently far from the boundary. Then, in agreement
wlth the assumption concerning the absence of vortices, for n = o we
will have ¢y = 0.

The arbitra;y constant of integration ¢ is determined from

' Conditions (1.25), Finally, for the functions ¥, ¥Yog Yo, We obtain:

V=0 Yg=—r@aVi™ V=0 (1.26)

We will limit ouréelves to determination of only the flrst terms of
Series (1.21). Within the limits of this accuracy we write the
components of the absolute veloclty vector V' in a stationary system
of coordinates with its origin at the point of suspension of the
pendulum:

. = c-}Tl [io —r () o cosa LI (a)]e"‘,

v =—-c% [r (B) o sina v + 0 (e)] &, ' (1.27)

where 1 1s the distance of the center of gravity of the cavity from
the suspension axis, relative to the characteristic dimenslon of the
cavity. The resulting solution (1.27) will be asymptotic. Relative
to it, we have the following result, proof of which will not be cited
here, The difference modulus ,

. V=V |<0(e)

Here V' 1s the exact solution of the 1inearized problem and v*o
1s the approximate solution of this problem obtained by us.

Thus, if the Reynolds number 1s sufficiently high, the approxi-
mate solutlion assures good accuracy.

2, For a final solutlion of the problem 1t 1s necessary to
determine the as yet unknown constant ¢. For this it is necessary
to use the equation of pendulum osclllations which may be obtained
using the theorem concerning tle varlatlon of angular momentum of a

system. We have: ‘ .
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#{oxnvirae £ 4 {0 xevran = oo ant (o enm o

Dy . D f

(2.1)

Here Di = yolume of the solid;
D = volume of cavity;
Pq and V1 = density and velocity of points of the body;
p and V' = density and velocity of a particle of fluid;
g = vector of grayltational acceleration;

r! = radius vector from the axis of rotation to the
point of the body or fluid. .

In our case the equation of moments (2.1) ylelds a proJjection,
which differs from the identical zero, only onto the z' axis,
_The integrals which enter into (2.1) [returning to dimensional
varlables according to Formula (1.5)] may be reduced to the following

form _ _
{dl_i? 1§. « ‘xe “_"I) df}_Z' =cMkioer ) (°' = % ) (2.2)
{;‘-S(r' x pV’) df};, = ¢ (MI'*a" + VVM.Q'G'%) ‘A;"A (MQ--; 2:!93: »®e)(2,3)
e 2 S
{§ (' x pig) dv + 5 (" x pg) dr}z, = — cg (M, + MUY e .('2;4)
h. - : ;
Here M, = mass of the solid;

M = mass of the flulg;

k = radius of inertla of the solid relative to the axis of
suspension of the pendulum;

1!' = distance from the axls of suspension to the center of
mass of the cavity;

li = distance from the axls of suspenslon to the center of
gravity of the solid;

Bi, Bé = coordinates of the poles of the cavity.
Substituting (2.2), (2.3), and (2.4) into (2.1) we obtain the
following equation to define o:

[} .
’ T ] M 3
°‘+?~V,~'_c"+m’=9:(x=m9'm1'°—tﬁtﬁ:m) (2.5)

We will set o = vA%x. Then (2.5) takes the form:



'z*+-x%+:v‘:’—;-.=0 when _'u‘+y‘;'+€"=°- (V;=’5:'V’QT"""')- (2.6)
We will prove that thls equation has only two roots which s#tisfy
the condition Re y > O, We set y = a-+ iB.
After substitution in (2.6), we obtain for the determination of
o and B the system )
(a’—ﬂ;)j AP 0 e gt = 0 (2.7)
' .. 0> — 4of? — B2 4 3a* = 0 '
Determining Berfrom‘the second equation of System‘(2.7) and

substituting it in the first equation we obtaln:

840° - 96 + 48a* + 8a® — gt (16a® + Ba + 1) =0, Bl',=7-l:a'1/ﬁi—? (2.8)

The first equation in (2.8) has only one changé of sign 5f the
coefficients. Accofding to Descart's rule this polynomial has one
positive root. We are not interested in negative roots since in this
case the condition Re /X > O 1s violated. The second equation of
(2.8) gives two values of B which differ only in sign. Therefore,
Eq. (2.6) has only two roots for the case Re y > O.

We will solve Eq. (2.6) for the two limiting cases: when g
is large and when g 1s small. Let us ;ecall that the solutlion of
the problem concerning the motion of a fluid within a pendulum cﬁvity
was obtalned for a large Reynolds number. In turn, the magnitude of
the Reynolds number depends essentlally on the characteristic period
of one oscillation v/ [Im o'l which 1s determined only after solu-
tion of Eq. (2.6). Consequently, of all the possible solutions of Eq.
(2.6) which correspond to different parameters of the pendulum it is
possible to use only those which guarantee a sufficiently large
Reynolds number. ILater we will see that in the limiting cases of

large and small g which we examined, it is always possible to select
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pendulum parameters such that the Reynolds numbexr remains large.
Let us examine the case of large g. We will seek the solution

of Eq. (2.6) in the form of a series in powers of 1/v/T
y=V?(yo+-}—ay,+...) : (2.9)
Substituting (2.9) in (2.6) and equating to zero the sum of the
coefficlents with ldentical powers of 1/ v/q  we obtaln equations
the determination of the unknowns Yor Yy» ete.
For Yo we have: -
W AH1=0,  Reyy>0
whence we obtain:
=2+ g,=Fa=y
For the determination of‘y1 we have
Cdy +1 =0 when y, =13,
With an accuracy to value of the order of 1/ v inclusive, we
find
B om Ve at(o—yiTE)
: 0 =wyy (2.40)

Thus, in the case under consideration the frequency n and ampli-

tude A of the pendulum oscillations will be, respectively,

n=m—V7%g-. | A;egp(_ﬁg_g:')

As v~ 0, the dampihg factor approaches zero whilé the oscillatioﬂ
frequency approaches the frequenc§>w which corresponds to the oscilla- .
tion of a pendulum with an ldeal fluld. We will calculate by what
amount the amplitude‘decregses during each perliod T = W/"lIm o'l.

Denoting this amount by A we have

41—



" expRe(eh) _ ;. .. nBed
A = 1———:xp Re (d:ll) == 1 exp Ilmc’l (2. 11)
. Determining Re o' and lIm cL|'from (2.10) and substituting in
(2.11) we obtain:
: R\

It 1s easy to see that the examined case of large g corresponds

(A = 0 when g — o0)

to osclllations close to those of a pendulum with an ideal fluid.

Let us consider the sihplest example, Let the pendulum be a
welightless spherilcal shell filled with a viscous fluid and connected
to the suspension axis by a weightless rod (Fig.3). For such a pendulum

we will have:

. _2R - g Y@

o A=%, o=, 4=Tfm (2.12)
. . - 2.12
e YT RVE ( T _ RV:) - \ee

L= sz*{/?,?i-‘ 'I/T V;“W

. The characterisfic period of one oscillation with an accuraéy
to values of the order of 1/ /g is ‘

T=xVTg (2.13)

A The magnitude of T increases with an lncrease in the length 1

| of the pendulum. In thls case there 1s the danger of an inadmissible

reduction of the Reynolds number. IWe wlll set the Reynolds number

Npe 2_104 ard evaluate the allowable pendulum lengths 1 for various
' values of radius R. By definition N, = R°/¥T.
ST : "

In order to keep NRe > 10" 1t is required that

A L

Suppose that the pendulum 1s filled with water at a temperature.
of 20% (v =‘1.01-10'6 ma/bec). For R = 0.1 m we have 1/R £ 10,
i.e., 1< 1m. ForR=1mwe obtain 1/R 10%, 1.e., 1 < 10 Xm,
With an increase in R the allowable value of 1/R increases as R?.
'Thus the range of aﬁplicability of solution (2.12) is surficiently'.f
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broad.

Let us now examine the case of extremely small g. We note thr
it is possible to realize small g not only by increasing the kinerc -
viscosity v, which might lead to a reduction in Nhe' Actually, 1.
the case of the pendulum Just considered 1t is apparent that this r.=«
be achleved by decreasing the length of ‘the pendulum 1 or increasing'
the radius of the cavity R.

Let us represent Eq. (2.6) in the following form:

. PO+ =—¢ (2.4%)
From this 1t follows that .
¥y + 1] =|~—¢*|="¢

The product |y°||y+1| decreases with decreasing g. In this
process the factor 1y+1\ camot approach zero, otherwlse the condition
Re y > 0 1is violated. Consequently the modulus of the unknown root
has an order of smallness qz/}. Starting from this we wlll seek the
solution of Eq. (2.6) in the form of the.follow;ng series:

y=q"@+ gy +..)
For the determination of the unknowhs Yo and yq we obtaln
¥ +1=0, y*4+3y=0 -
From this we find: " .

. Y3 VS - 1.
yox=-:-+173'- yoz=';~—l’,—y. Yun=g—1

vy - NEY
‘;1- !ln’=':'+l-,l

With an accuracy to values of the order q2/3 inclusive, we have:
y=3gh(1+ 3¢ EiVIU~1gW)
For ¢! we obtaln the expression: ’
U 4 W'\ Y3 (2.15)
X-] —_ 11— 3 .
[ ( - )i‘ﬁr]

= T

or, limiting ourselves to magnitudes of the order q4/3: .
, wty\'h 1 ) .
o= () (-72iv3)
Just as in the preceding case, we determine by what amount the

amplitude drops from its origlnal value durlng the characteristic
perlod T.

FTD-TT-63~511/1+2+4 13-
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We have
A=1—expuRec/|1mc|

Using Eq. (2.15) to determine Re o' and |Im o', we obtain

'A'""-“”“’["'V?(’"?"")] (2.16)
(A—»l-_-—exp( V§) ~=0.84 whonq-»O)

It 1s apparent that thils case differs greatly from the case of
osclllations of a pendulum with an ideal fluid. It turns out that it
is possible to select a pendulum cavity so 1arée or a pendulum length
so small that the influence of viscosity on the motion of the pendulum

) cannot be neglected despite large Reynolds numbers, In the case of
féxtremely small q the amplitude may drop on the order of 844 from its
original value during aisingle swing.

We will demonstrate, using as our example the pendulum shown 1in
Fig. 3, that by increasing the radius of the cavity R while keeping
1 and v constant it 1s possible to reach as large Nﬁe and as small

g as desired. For this pendulum we have:

..(‘_gz‘l)"'(_}_itﬁ) (2.17)
M= G2 L2 (0 )" (2.18)

Q

gl

It is easily seen from (2.418) that NRe‘* wand q—» 0 as R— «.
Oscillations of the pendulum 1n thls case are extremely different
from oscillations of a similar pendulum with an ideal fluid. Thus,
a pendulum filled with water at 20°C (v = 1.01'10—6 mz/sec) with a
cavity radius R = 0,1 m and a length 1 = 0,00016 m will complete 5
oscillations per second, while the same pendulum with an ideal fluid
will make 25 oscillatlions per second. For the pendulum p#rameters

indicated above we will have:

FID-TT-63-511/1+2+4 14



g = 0.0012, Npo =104

which completely justifies the use of Solution (2.47) in this case.

L}
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