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OSCILLATIONS OF A PHYSICAL PENDULUM HAVING CAVITIES

FILLED WITH A VISCOUS FLUID

P. S. Krasnoshchekov

(Moscow)

An asymptotic method has been proposed [i] for
investigating the nonstationary motions of viscous
incompressible fluids with large Reynolds numbers
(NRe), which arise during the oscillation of

various solids which either contain a fluid or
are emersed in one, and also during the oscilla-
tion of liquid volumes having a free surface.

In this article the idea of this method is applied
to the investigation of small oscillations of a
physical pendulum having cavities completely filled
with an incompressible viscous fluid.

i. The pressure of a fluid contained in the cavity of an oscil-

lating pendulum (Fig. i) is described by the Navier-Stokes equations

and the continuity equation:

T/T + (V' V') V=''- v (7' x 0')
div' =0 (i)

Here U is the potential of the mass forces acting on the fluid.

At the edge of the cavity the conditions of adhesion of fluid

particles to the walls of the cavity should be satisfied. This gives

the following boundary conditions:
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U. Y - , = X,, w (1.2)

Here e is the deflection angle of the pendulum from the equilib-

rium position while u', v', w', are the components of the velocity

vector V'.

We assume that

= V + V

where Vo is the velocity vector of the center of mass of the cavity,

and we convert to a new system of coordinates (x", y , z") with its

origin at the center of mass of the cavity and with axes parallel

to the axes of the stationary system of coordinates (x', y', z').

In the new system of coordinates we will have
aVe
a-+ (V'.V') V" = V"p - V (V'x Q'), div '=O.,

Here Q, =v V, " --' p/p - U - (Vo'.r')

At the boundary of the cavity:

U,=- VX'6. w=o (1.4)

We will refer all quantities to a characteristic scale. Let us

assume:

t' =t, =Rx, / = Ry, z= Rz, V'= (RV

vTf" T fl  
T2 = (p, a, N .e = v

where T is the characteristic period of one oscillation, R is the

characteristic dimension of the cavity, a is the characte'istic ampli-

tude, and NRe is the Reynolds number.

Equations (1.3) and Boundary Conditions (1.4) are written in

independent variables in the form:

-+-- a (V.V) V -Y-- (V x 0), •divV-0 (1.6)
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At the boundary of the cavity:

U=-Y4, ,= X6, w.=o (1.7)

In the system of equations (1.6) the characteristic amplitude a

is a factor for nonlinear terms.

We will consider oscillations with a small amplitude and later

linearize Eqs. (1.6), disregarding magnitudes of the order a.

The linearized system of equations appears as follows:

Ov 1 (1.8)., "-- 7- V-- (17 .x f), div V ---O

The object of this article is to investigate those forms of

oscillations for which the solution may be represented in the form:

~c -t) = e , V =Ce°lu (X, Y, z) (1.9)

Setting p = ceI'( (x, y, z), Q = ce-,tW (z, y, z), we have for such motions:

: u=V -l (v× x), divU=0 (1 .O)

At. the boundary of the cavity:

Ux=- yor, Uv = x, U, = (1.11)

Relationship (i.10) indicates that the Vector Vf is the sum of the

potential and solenoidal vectors. Such a presentation makes it possible

to separate the equations, having obtained a separate equation for

each unknown function.

Actually, having taken the div of both sides of the first equation

of System (1.10) we obtain:

(D= 0 (1.12)

i.e., a function of D which is harmonic in a volume filled with a fluid.

Having taken the cure of both sides of the same equation we .have:

"Re

Thus each of the unknown functions 0, 1 satisfies a separate

equation.
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At the boundary of the cavity these functions are linked by the

following boundary conditions:

90 ,, (eV,, ... ' ,, xo
80. 1 O/ O'P' ) y5O- -I 'IF. - 6 /

ry Fe ax~i

Here Yx y'T yi'z are components of vector .

A fourth boundary condition determined at the limit of the

projection of vector ' onto the normal to the surface of the cavity

will be introduced later in a specially selected curvilinear system

of coordinates.

Let us consider cavities which appear as figures of revolution

whose axes are perpendicular to the plane of oscillations of the body.

We will introduce a curvilinear system of coordinates associated

with the surface of the cavity. In the case under consideration it

is convenient to introduce the following coordinates: n - distance

along the inner normal to the surface of the cavity taken from the

surface inward, q - angle which determines the position of the meridian

plane, and A - length of arc along the meridian (Fig. 2). The varia-

bles in the (x,y,z) coordinate system are associated with the variables

n, a, in the curvilinear coordinate system by the following relation-

ships:

a

x-[r, + Ssin r(V)dP - ni cos y fl)]sin ax= [r(~ n cos O()J siaa
0

Y=[ro+ sin. (0) d - n cos T (P)]cosa - [r (P) - ncos @)I cosa
0

0

-4-~



Here, rO = radius of a circle obtained in the cross-section of the
cavity by a plane perpendicular to the axis of symmetry
and passing through the center of mass of the cavity;

r( ) = radius of the circle formed by points on the surface of
the cavity having the coordinate f;

7(p) = angle between the tangent to the meridian at thp point with

coordinate 0 and the positive direction of the z-axis.

We will write Eq. (1.13) and the boundary conditions in the new coor-

dinate system. For simplicity we will use the notation:

Then we have in the curvilinear coordinate system:

1. _a Io I + --T' (P) alpt
' [r (3) - n cos 7 (3)] [ + n7' ( a)I[8= \ ( 3) - n cos T (.3) 7% +

4--n crs+(a)] [1. + ny'.()] M)] (1.14)

- 1/ ( , 2, 3)

At the edge of the cavity for n-- 0:

..... o, I, "'!3 '1j~ (1.1.5)
O n NRer (P 00t 8(3]

'1 oID (P 8(1 +nCO (3)) =rT). 8

ap N n -)-j/ ~ OV~jO(1.17)

Let us derive the fourth boundary condition. The normal compo-

nent Tn of the vortex vector Y is defined in terms of the tangential

components Ua and U of the velocity vector U as follows:

ra (I + nT'(r.) -V cos TrU( cos ) (03)) U

IrPB-nco0sT(W)[I nT'(P)IL da~-_________

At the edge of the cavity the vector U is known; consequently,

its components Ua and U are known for n = 0. Differentiation with

respect to a and A for n = const is possible, and therefore calcula-

tion of the magnitude of Yn for n = 0 presents no particular difficulty

After simple calculations we obtain:
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. - 2 sin ( a) (1.18)

This relationship closes the system of boundary conditions for

the unknown functions 0, Ti .

The quantities Wa, P, T n in Relationships (i.i5)- i.i8), are

components of vector ' in the curvilinear coordinate system. They

are connected with the componenets 'i by the relationships:

I=v '=_ 1 COS a - T' sin a
TO1 = - 'l sin T ()sin & + sin T (A) Cos a .- 'VS COST P) (i.9)

i cos T (P) sin a - 2 cos T () cos a + T3' sin T ()

We will assume that the parameters of the pendulum guarantee a

sufficiently large Reynolds number. We will assume:

=(1.20)

where e is a small dimensionless parameter.

The idea of constructing a solution for large Reynolds numbers

which was presented by Moiseyev [I] is analogous to the idea of

constructing a boundary layer. It is assumed that the vortices which

exist in the oscillating fluid contained within the pendulum cavity

are concentrated mainly in a thin laygr at the walls of the cavity.

This in turn makes it possible to consider the derivatives of the

components of the vector T along the normal to the surface of the

cavity to be significantly greater than in the tangential directions.

Let us "expand" the independent variable n. We set

n= eil

Solution of the problem formulated will be sought in the form of

series to powers of the small parameter a:

(Do + e(D + .... 9 -To,+ Tit + .. Y - 1, 2,3) (1.21 )

Substituting Series (1.21) into the equations and boundary
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conditions and equating to zero the sum of the coefficients for the

zero power of the parameter e, we obtain the following problem for

the determination of the functions (0 and Toi:

&(Do = 0, 0'0 , (1= ,2.3) (1.22)

At the boundary of the cavity, for n = 0:
1. o + "0o'" r (A 2, "o - 70 0 F=70, Oa+ -all ,, a o = (1.23)

From the first relationship of Conditions (1.23) we see that the

standard derivative of the harmonic function 00 is zero at the bound-

ary of the cavity. Hence it is possible to consider 0 = const without

limiting the generality.

The components of the vector Y in the curvilinear system of

coordinates are associated with the components of the same vector in -

the Cartesian coordinate system by Relationships (i.19). These rela-

tionships are linear with regard to Toil y0 2, T03 and the coefficients

of T0oi T02' T03 are independent of q; consequently the functions Tal

To0, and T On satisfy the same equations as Toil This:

T-704, L270o0 07 =,27o (1. 24)

At the boundary of the cavity these functions satisfy the follow-

ing boundary conditions:

,- p = r (;2. -v- -- 0, V=0 (1.25)

The general solution of the equation satisfied by YTa, T and

Ton has the following form:

Let Re VF" > 0. By assumption, far from the walls of the cavity

there are no vortices. Just as is done in boundary-layer theory, we

will consider the value T = w to be the respective internal points
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of the cavity sufficiently far from the boundary. Then, in agreement

with the assumption concerning the absence of vortices, for c c we

will have cI = 0.

The arbitrary constant of integration c2 is determined from

'Conditions (1.25). Finally, for the functions Toa' Top YOn we obtain:
I 'o. = 0, r - p ak ;( . 6

We will limit ourselves to determination of only the first terms of

Series (1.21). Within the limits of this accuracy we write the

components of the absolute velocity vector V' in a stationary system

of coordinates with its origin at the point of suspension of the

pendulum:

' c la - r () a cosa e- ;  +- 0 (a)elT I- W,. 27 0
V -c r fl o sina + 0 (8)] e, (.27)

where I is the distance of the center of gravity of the cavity from

the suspension axis, relative to the characteristic dimension of the

cavity. The resulting solution (1.27) will be asymptotic. Relative

to it, we have the following result, proof of which will not be cited

here. The difference modulus

IV' - Vo' < 0 (8)

Here V' is the exact solution of the linearized problem and V10

is the approximate solution of this problem obtained by us.

Thus, if the Reynolds number is sufficiently high, the approxi-

mate solution assures good accuracy.

2. For a final solution of the problem it is necessary to

determine the as yet unknown constant a. For this it is necessary

to use the equation of pendulum oscillations which may be obtained

using the theorem concerning t1m variation of angular momentum of a

system. We have:
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D, D D(21

Here Di - volume of the solid;

D = volume of cavity;

pi and Vi = density and velocity of points of the body;

p and V' = density and velocity of a particle of fluid;

g = Vector of gravitational acceleration;

r' = radius vector from the axis of rotation to the
point of the body or fluid.

In our case the equation of moments (2.1) yields a projection,

which differs from the identical zero, only onto the z' axis.

The integrals which enter into (2.1) [returning to dimensional

variables according to Formula (1.5)] may be reduced to the following

form

S(r' x r4V±') d'r}Z' = CMVle' a-

A (2.2)

(x pY') d'rIJ =C (MI"O" + YJ1 -MQO' 2) e"t (MQ n 01d)(.'

DD
•r' - g dc + (r"'g ~l, C '1 +M 1

Here Mi - mass of the solid;

M = mass of the fluid;

k = radius of inertia of the solid relative to the axis of
suspension of the pendulum;

Z' = distance from the axis of suspension to the center of
mass of the cavity;

I! - distance from the axis of suspension to the center of
gravity of the solid;

tj - coordinates of the poles of the cavity.

Substituting (2.2), (2.3), and (2.4) into (2.1) we obtain the

following equation to define a:

+ 0 -(Mi k%+,ll's (2.5)

We will set a - v%2x. Then (2.5) takes the form:
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Zwhen y + +q' . (j=Y, q') (2.6)

We will prove that this equation has only two roots which satisfy

the condition Re y> 0. We set y = a.+ ip.

After substitution in (2.6), we obtain for the determination of

a and A the system

(Cgs - 02)t + 0 4' ' - ' 341 +- qs = 0 (2.(?)
4e 4= - 442= - P2= + 3al 0

Determining P2 from the second equation of System (2.7) and

substituting it in the first equation we obtain:

640' + 96as'+ 480. + 80 - q' (1&1. + 8a + 1) =0, +3.= ' 3-(2.8)

The first equation in (2.8) has only one change of sign of the

coefficients. According to Descart's rule this polynomial has one

positive root. We are not interested in negative roots since in this

case the condition Re /x > 0 is violated. The second equation of

(2.8) gives two values of P which differ only in sign. Therefore,

Eq. (2.6) has only two roots for the case Re y > 0.

We will solve Eq. (2.6) for the two limiting cases: when

is large and when . is small. Let us recall that the solution of

the problem concerning the motion of a fluid within a pendulum cavity

was obtained for a large Reynolds number. In turn, the magnitude of

the Reynolds number depends essentially on the characteristic period

of one oscillation r/ Im a'l which is determined only after solu-

tion of Eq. (2.6). Consequently, of all the possible solutions of Eq.

(2.6) which correspond to different parameters of the pendulum it is.

possible to use only those which guarantee a sufficiently large

Reynolds number. Later we will see that in the limiting cases of

large and small & which we examined, it is always possible to select
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pendulum parameters such that the Reynolds number remains large.

Let us examine the case of large q. We will seek the solution

of Eq. (2.6) in the form of a series in powers of i//-

Y+ -' '  (2.9)

Substituting (2.9) in (2.6) and equating to zero the sum of the

coefficients with identical powers of i/ - we obtain equations.

the determination of the unknowns Yo, Yi, etc.

For y0 we have:

Yo' + 1 = 0, Reyo>O

whence we obtain:

For the determination of y. we have

4y, + I 0 wtan yj 1- /

With an accuracy to value of the order of / q- inclusive, we

find
Y I .. '~

or

(a' = 2yl) (2.io)

Thus, in the case under consideration the frequency n and ampli-

tude A of the pendulum oscillations will be, respectively,

"= "2YY ' A- 2

As v-+ 0, the damping factor approaches zero while the oscillation

frequency approaches the frequency c which corresponds to the oscilla-

tion of a pendulum with an ideal fluid. We will calculate by what

amount the amplitude decreases during each period T - r/lm u' .

Denoting this amount by A we have.
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Aiexp Re ex) n Real (2. 11)
exp Re (011)0 " 1 exp

Determining Re a' and ir a' 'from (2.10) and substituting in

(2.11) we obtain:

It Is easy to see that the examined case of large _ corresponds

to oscillations close to those of a pendulum with an ideal fluid.

Let us consider the simplest example. Let the pendulum be a

weightless spherical shell filled with a viscous fluid and connected

to the suspension axis by a weightless rod (Fg.3). For such a pendulum

we will have:
2R Csg q gN

k 4v R2

_, _ __ (2.12)

The characteristic period of one oscillation with an accuracy

to values of the order of i/ / is

r(2.A3)

The magnitude of T increases with an increase in the length I

of the pendulum. In this case there is the danger of an inadmissible

reduction of the Reynolds number. We will set the Reynolds number

NRa L ±0 and evaluate the allowable pendulum lengths I for various

values of radius R. By definition NRe = R2/vT.

In order to keep NRe 0 it is required that

T< 7 ,61or N

Suppose that the pendulum is filled with water at a temperature

of 200C (v M 1i.011O-6 m2/sec). For R = 0.1 m we have I/R < ±0,

i.e., I < im. For R - I m we obtain Z/R < 10 , i.e., I < ±0 kmn.

With an increase in R the allowable value of 1/R increases as R3 .

Thus the range of applicability of solution (2.12) is sufficiently
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broad.

Let us now examine the case of extremely small A. We note tht+

it is possible to realize small _q not only by increasing the kLnem--

viscosity v, which might lead to a reduction in NRe. Actually, ii.

the case of the pendulum just considered it is apparent that this .-.'.

be achieyed by decreasing the length of the pendulum I or increasing

the radius of the cavity R.

Let us represent Eq. (2.6) in the following form:

Y' (y + 1) - q (2.14)

From this it follows that

I Y'Y + 1=1-q'l=,q

The product IyI ly+il decreases with decreasing _. In this

process the factor ly+i cannot approach zero, otherwise the condition

Re y > 0 is violated. Consequently the modulus of the unknown root

has an order of smallness q Starting from this we will seek the

solution of Eq. (2.6) in the form of the following series:

Y = q%/ (Yo + q11-Yj +..

For the determination of the unknowns yo and y, we obtain

Yo,+ I 0, Yo" + 3 y, = 0

From this we find:

With an accuracy to values of the order q2/3 inclusive, we have:
Y = 9. "t + 23-.)• ( -31 q".)

For a' we obtain the expression:
=' r- 4 .V,. ] (2-15)

i;' 7= -T,../. - 3 2,../ 4 1, /,.

or, limiting ourselves to magnitudes of the order q /':

Just as in the preceding case, we determine by what amount the

amplitude drops from its original value during the characteristic

period T.
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We have

A I -expn Reoa/jIrMa, I

Using Eq. (2.15) to determine Re a' and lim a', we obtain

YT T (2.16)

It is apparent that this case differs greatly from the case of

osillations of a pendulum "with an ideal fluid. It turns out that it

is possible to select a pendulum cavity so large or a pendulum length

so small that the influence of Viscosity on the motion of the pendulum

cannot be neglected despite large Reynolds numbers. In the case of

,extremely small % the amplitude may drop on the order of 84% from its

original value during a single swing.

We will demonstrate, using as our example the pendulum shown in

Fig. 3, that by increasing the radius of the cavity R while keeping

I and v constant it is possible to reach as large NRe and as small

as desired. For this pendulum we have:

R 2'L 2 (2-(7)

--- I ./ -.T (2.08)

It is easily seen from (2.18) that N,,-+ w and q-+ 0 as R-+ -.

Oscillations of the pendulum in this case are extremely different

from oscillations of a similar pendulum with an ideal fluid. Thus,

a pendulum filled with water at 200C (v - Li.iO -6 m2/sec) with a

cavity radius R - 0. m and a length Z - 0.00016 m will complete 5

oscillations per second, while the same pendulum with an ideal fluid

will make 25 oscillations per second. For the pendulum parameters

indicated above we will have:
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q -:, 0.0012, IV, ~.. 101

which completely justifies the use of Solution (2.A7) in this case.

Submitted January 29, 1962

Fig. . Fig. 2. Fig. 3.
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