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EXAMINATION OF AN INVENTORY MODEL
INCORPORATING PROBABILITIES OF OBSOLESCENCE

E.VW. BARANKIN and J. DEKNY
University of California, Berkeley

1. Imtroduction and description of the models. This paper
is devoted to the numerical study of two models of the inventory

problem. The first model is called the oxdinarv model. The sccond

is called the obsolescence model, and deccribes an extension of
the ordinary model in which the items in the inventory may become
obsolescence at any stage. "Obsolescence" will mean that the
item in question is no longer to be usaod and the stock on hand is
to be disposed of. It will be seen that the ordinary model is a
special case of the obsolescence modcl.

The intention of this piece of work is the modest onc of
providing an explicit comparison, in onc particular case, of
optimal inventory policies with and witihout the presence of
obsolescence probabilitics. Additional numerical studies will
lend further insight into our obsolescence model, but above all,
analytic studies arc needed.

In Section 2 we set up the recursion relation for the
ordinary model, and specify numerically the constants and component
cost functions. In Scction 3 we do the corresponding work for the
obsolescence model, introducing therce a specific probability dirstri-
bution of time of obsolescence. The solutions of the probleoms of
finding the optimal policiies and optimum total cost functions in

thesc two models arc presented in Section 4.



On both models the same number N of time periods is fixed
(N will be taken as 5 in our numerical work). These periods
will be designated as J1s Jgs¢..,Jdy, and the convention will be
adopted that period N is the earlicst in time, period N - 1 the
succeeding period and period 1 the last period. Thus, the pertinamt

time diagram is as follows, if we label the inventory points from

N to 0 with increasing time:

PN e | Jk% ! ,
N N-1 W2 . . . k k-l . . . 1 0
FIGURE I

The ordinary N-period model begins a period In with a primal
stock of items in the inventory. Dcnote by Xy the size of the
primal stock, which may be aiuy real number in general but may
be assumed to be nonncgative for this discussion. The primal
stock can be increcascd by Yy - Xy units vhere YN Z Xy The
quantity of item in the inventory after ordering,nsmely vy is
called the starting stock for period N, During period N there
will be a demand for QN units and it will be assunzd that the
demand, which may bec zero, always occurs after ary rcplenishment
Yy - ¥y to the primal stock xy. For the following period, IN-17
there will be a (possibly vanishing) left over stock from Jy,
called the initial stock for period JN—]." which will equal YN - QN’
if this ciuantity is 2 0. But this quantity may be negative, and



_3-

if so it will represent a shértage in the preceding period. If
indeed 'y - &y is negative, it will be assumed that any additional
items obtained to replenish the initial stock in period Jy ; will
first be consigned to the - (yy - &y) unfilled units of demand
from the preceding period. The starting stock YN-1 for period
JN_1 will be the initial stock YN - &N plus YN-1 (YN - EN)’
the amount by which the inven;ogy_is increased in period IN-1°
This procedure continues to period J, vhere the initial stock is
Yo = &) the remainder from period 2 and where the starting stock
y, is initial stock Yo = €, plus yg - {y, - &), the rcplenishment
to the inventory. If items remain in the inventory after the
demand in period 1, i.ec., if‘y1 - £1 > 0, the remainder will be
sold for salvage.

There are various costs associated with the models. The
cost of ordering quantities of the itcm to augment the primal
and starting stocks is called the ordering cost., For both the
regular model and the obsolescence model the ordering cost will
consist of the cost of the items ordexred plus a cost for placing
the order, the latter being called the setup cost. The cost of
failing to have an inventory at a fixed period large enough to
meet the demand of that period is called the penalty cost. The
cost of having a surplus at the end of a period after the demand
of that period is called the holding cost. These costs also
appear in the sane fashion in the ordinary and obsolescence models,
Salvage cost, which is a negative cost, 1s, in the ordinary model,
the value of the remaining items if any at the end of period 1,
This definition of salvage cost for the ordinary model will be
modified for the obsolescence model. Finally, there is a discount

factor.
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On both the ordinary and obsolescence models the demands in
the successive periods are assumed to be independent and to be
identically distributed according to a known probability distri-
bution. Demand is nonnegative,

The obsolescence model for N periods begins initially like
the ordinary modeli. The primal stock xy is increased to the
starting stock Yy and subscquently there is a nonnegative demand
Ene After the demand €y in period JN‘but before the beginning
of period Jy.1, obsolescence may occur according to some known
probability. Vhen this occurs, any rcmaining items are sold for
salvage and no further orders or demands occur--the proccss stops.
1f obsolescence does not occur, then at the beginning of period
JN-l the initial stock N - En is incrcased to the starting stock
YN-1+ After the demand £y ; in period Jy-1 but before the
beginning of period IN-2 obsolescence may occur with a certain
probability. If obsolescence does occur here, then any rcmaining
goods are sold for salvage. And so on, similarly.

It is clear from the above that salvage cost enters directly
in each period in which the probability of obsolescence is not
zero, Vhen all probabilities of obsolescence are zero except
for period 1, the obsolescence model becomes the ordinary model.

The component cost functions and the distribution of demand
being known, the inventory problem is then to find an ordering
policy for the N periods which will minimize the total expected
discounted cost (but see Section 3). In the ordinary and obsolescence

models the "optimal" policies are of the (s,S) type.

-~
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2. The recursion relarion for the ordinaxy medel. Let Ry

SRS AN A

Ucnato the total Adsecunted cost function for the n-period case,
n=1 2,... The total cost sustainced will depend on the primal
stock, x , the successive demands in the n periods, €ns Gp-12°°281,
and the several starting stocks, Yar Yp-1reces Y1 (As usual,
the "initial stock," %, at t, is the stock level resulting at
the end of period Jg+1, before stock-replenishment at > and the
"starting stock," aj,, at t, is the stock level at the beginning
of Ji after stoék-replenishment at ¢ thus, Y = %k is the
amount ordered for stock-replenishment at tk.) Hence, thc dependence
of H, is explicitly represented by Hn(xn; tn? &n-17°+2815 YnsYn-1-
...,yl).

If C denotes the replenishment cost function and 1 denotes

the holding-shortage cost function--which two functions are the

same for all periods--then evidently we have

(2.1) H (R;56,:6n-1s0 2615V Yn-12+-+Y1) = Clyg = %,)

+ I(Yn - Gn) + “’%._l(y“ - gn;gn-l’gngz, see 5 61; yn_l,

Yauzr - »¥y)

forn= 2, 3, ...,

where o is the discount factor. For every period J,, k = 1,2,...,n,

the fimections € and 1 sre given by

K, 1fz > 0

. I
(g.a) C'(z)=Co-z+ o, ifz:OJ

4



h .z for z
(2.3) Lz) = {P « (-z)for 2z

A WY

vhere Co’ h and p arc constant unit costs, and K is the sctup cost
for ordering.

The function Hl, the total cost function for the tecmporally
last period, Jl, is determined with the assumption of disposal
of left over items for a specified salvage value. If w denotes

the salvage gain function, then we have
(2.4) Hy(%y3833y7) = C(yy=%y) + 1(y1-&9) - w(yy=6q).

e take the function w to be charactcrized by a constant salvage
value per unit of left over item, say LAY thus, w is given by

w, 2, z 0,

o

Hy

(2.5) w(z) =
. o, 2z < 0,

Now (as usual) we consider the y;, ¥y,..., ¥, in (2.1) re-
placed by functions Yl(xl)’ Yz(xz),...,Yn(xn) of the réspcctive
X, these functions to be determined according to an optimal
principle, and thereby constituting the optimal policy. If we

naoke this replacement, and for brevity set

7/1‘ = (Yn’ Yn..]_:"':Yl)s
(2.6)
Hn(xn;enngn-l:“-:gl;?ﬁ) = Hngxn;ﬁnoen-l’-'-)ﬁl;Yn(xn):

Yn-l(xn-l) sees 'Yl(xl) ),



then from (2.1) we get--on regarding the £y 28 random variables--
(2.7) SH (g3t bnetse 2813 %) = S{C(Y,(xy) - x,)]

+ & [y (k) )] + tn

+aé {25“[11 _,(Yn(xn)—én;ﬁn..l,en_g,-~-:¢1?%-1‘ ’

vhere & denotes expectation, and é'tn denotes conditional ex-
pectation given S

The optimum principie is that (2.7) shall be minimized by
suitable choice of %fh. If we denote this minimum by C (x ],

then the customary argument gives, from (2.7),
(2.8) ¢ (%) =y§§2{5’[z(y-xn>]+ £ [Ly-t)] 408001 (78] ]

forn =2, 3,...,

and the minimizing value of y in (2.8) is the value of the
optimal componcnt function Yn(xn);

The determination of Ci(xl) comes from (2.4); we find

(2.9) Cl(xl) = min{Z [C(Y"x]_)] + & [I(Y’El)] - Z [W(Y'ﬁl);l .
y2x, . ,

Together, (2.8) and (2.9) enable us to determine, successively
forne1l, 2,..., the optimal component functions Yk(xk) and the
optimal expected cost functions Cp.(x,).

In our case at hand we are concerned with a five-period
interval, and therefore we are intercsted in (2.9) and in (2.8)

forn =2, 3, 4 and 5.
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In the present numerical study we specialize to the following.

values for the constants characterizing our total cost function:

Co = replenishment cost per unit of item = 2
K = set-up cost for ordering =1
h = holding cost per unit of item -2
(2.10) p = penalty cost per unit of item =6
W, = salvage value per unit of item = %
a = discount factor =1

and we take the demands in the several periods to be indcpendent

and identically distributed, with density function ¢ given by

e’ﬁ’ £z0

(2.11) o(¢) =
0, ¢ <0,
We then have

(2.12) Elcly - )] = C(y - x) =2 (y - %) + L(y)
svhere

. 1 ify > x
(2.13) L(y) = 1;0 ify s x,
and %foy(y-e)e'gda + ny“(e-y)e'gde. y >0,

(2.1%) Z[l(Y'ﬁk)] = % .
6f (¢-y)e %di, yzo0
0

% (-1 +y+ 133-y)a y>0,

= k
6(1 - Y): y=0, ' (any )



and
(2.15) 2 [Caer(vme0)] = [ Cpy(rmp)edee,

and finally,

(2.16) £ [w(y-¢1)]

[}
ST
Pam
~
1
yer
[#]
1
et
[a 9
o
-
<
v
(@]
-

%(- 1L+y+c7), y >0,

Inserting these cvaiuations into (2.9) we get

1 ‘ 4
O \ Z(-1+y+37e’), y>0
(2.17)  Cy(x) = $;§ [? (y=x) + I (y) + {j6(1-y), v <o }]

and inserting them into (2.8) gives

| %(-1+y+13e'y), y > 0,
€2¢18) c,(x) = ?Ei [:g (y-x)+I (y)+

6(1'Y):yéo

+‘/; Cn_l(y-e)e'edgl} .

with (2.17) we may now determine the optimum policy component
Y, and the optimm cxpected cost function Cy. Then, iteratively,
with (2.18) we determine Y,, C,,..., Y5, Cs. By well-known
argumenta it follows that the optimum policy is an (5,8)-policy
in each period. In Scction 4 we gilve the results of our calcu-
lations, and we have there tabulated the optimal s, and Sics

k=1, 2' 200y 5.
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3. The recursion relation for the obsolescence model. Let
N denote the number of periods in which we are interested. This
is specifically, in our present study, the number 5. For n = 1,2,
«..,N, let T, denotc the probability that obsolescence occurs
in the interval J,- The latter eventualities are disjoint, by
the nature of obsolescence. Furthormore since our inventory
process comes to an cnd in any casc after period J;, we can consider
the definition of obsolescence to be such that obselescence cer-
tainly occurs in Jy if it docs not occur before. (Or, cquivalently,
we may be given the datum that obsclescence, priorly defined,
certainly occurs within N periods, and thereby N is defined.) Thus,

we have

(3.1) s m. =1,

Let @ be a variable denoting the index of the period in
which obsolescence occurs, Forn =1, 2,..., N, lct ﬁn denote
the total discounted (to the inventory point n) cost function
for the periods Jn, Jn_l,... Jl. This function depends on the
variables described in Section 2, but as well on the variable w,
And indecd the value of H (X 380,80 10++s805Y0sYgups -+ s3750)
is determined by the values of x., ., & 750458, Yp» Ypo1se-es
Yo only.

The functions C, 1 and w, and the Jdiscount factor a arc the
same as in the ordinary model. Recalling that vhen obsolcscence
occurs in a particular period, eny left-over quantity of the item
is sold for salvage, we sce that in the prescnt case the reclation

between ﬁn and‘ﬁnnl is of the following form:
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(3.2) ﬂn(xn;gn, en-l’ e ,gl;Yh;yn_lg .o -:YI;CU) =

0, if w>n,

'w(yn"in): if w=n,
c(¥p%p) + Uyp=ty) +)
oty g ( yn"en; tn-1s

Bpeps e sb13Vno1sYnaps o ¢+ s ¥13®),1E asn-1),

_f__QI'n=2, 3,.:.,N

For n = 1, we_have simply:

ﬁ o 0, if w > l:,

(2:3) Bibqityinie) '{C(yl-xl) + Uypgy) - wiyp-6;), if = L.
Let us denote the policy functi;ns--to be determined by an

optimality principle--by ¥(x;), ¥,(%5),...,Y(xy), and sct

A A A "
flfn = (Yn: Yn-]_:-"sY]_):

A A A
By (%360, 6na1s e e 00613 D3 ®) = Ho(Rs8n, 60100000 8g3

¥ (%), 01 (%) oL 8 B)sd,

(3.4)

Now, for the present model the question presents itself
whether the optimization principle should be to minimize, as is

usual, the expectation

A A
(3.5) o E R kst Eerreeatys W ©
forn=1, 2,..., N, or alternatively, to minimize the conditional

expectation
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(.6) g[ﬁn(ﬁ;en,en-l,.n.al:?fﬁ; w)| o= “J

for cach n. On general grounds the latter principle scems the
more pertinent, the argument being that optimality considcrations
for the periods Jn, Jn_l,...,Jl‘ought not to give any positive
weighting to eventualities which, because they entail obsolescence
before the period Jn, involve no behavior within the periods

Jn’ Jn-l""’Jl' But in fact, in our specific model therc is

no difference between the two principles. This is so because

the obsolescence probabilities M are fixed and the quantities
which would get positive weighting under the first principle and
not under the sccond are in fact all 0, so that the weighting

is irrelevant. To scec this more precisely, notice that by (3.2)
and (3.3) we have, for alln =1, 2, ..., N, that ﬁn = 0 for

"« > n, and thercfore (looking on the i and @ as random variables)

N £ A
§‘Wr“’Hn(xn;gn’ﬁn-l”"’gl;

n
(3-7) ffﬁn(xn;en,gn_l,-..,gl;?n;m) = r—l 4
i ¥)

n A A
= 2 MG By (X3 dn,bn. 1 e e 0ty Ypit)

T,
'y

1,0
(= "k) A
k=1 ?/n;r)

n
aHn(xn.; ‘én’en-l) s oy Ql;

—
™M
3"="
W3

il

n 1
(2™ E (B (%ni s fmns e oot Psolo 3 1

form=1, 2,..., N,
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Thus, for each n, thc cxpressions (3.5) and (3.6) dJdiffer only
by a constant factor, and thereforc thc minimization of one is A
equivalent to the mininization of the other. (We are, of course,
tacitly assuming in all our deliberations here that the 7 are
suitably nonvanishing.)

Replacing the y, by Qk(xk) in (%.2) and taking expectations,

we get

t A ° tj: \ S’"' 4
(3.8) 'cHn(xn55n’ﬁn-1"“”3157;}:13“) = (kilvk) L C(Y, (%) %)

- 1rn,f_ I:{D(Yn(xn) - Qn)___l
n-l e J | roat s E13% o3 |
+ o _Z Ty C'Hn-l(Yn\xn) - t4n3‘3n-1”n-2"“’ﬂ’f/ﬁ-l’r)’
n = 21 3) 2 N.

This relation takes on a much morc convenient form when expressed
in terms of the conditional expectations (3.€). For brevity, let
é (n) denote the conditional expectation operator given w 2 n,
Then, on dividing (3.8) through by (Ekgl m.) and vtilizing (3,%)--
both as it stands and with n replaced by n - l--we find that (3.8)
is equivalently expressed as:

A

, A " v é
(3.9) &R (x5 6 o o083 30) = ST (x) = x)

# MU0 - 6] - my &[T (k) - £)]

vl - w) EOUR (¥ (x )¢

I ~
n?’ z;n-l’ ‘an-z’

vee, ﬁl;qfn_l;w) )
forn =2, 3, ..., N,




vhere
(3.10) uhai_-f—-ﬁjrl-—— .

ko1 Tk
Then, if é;(xn) denotes the minimum of (3.9), we have:
(3.11) & (x) = min {C(y-x) + EL[L(y-£,)]-1, & [w(y-¢.)]
- yzx .

s a(l-u ) EE 1 (y-e)}

for n=2, 3, seaey No
For n = 1, we obtain

(3.12) &y(x) = min fc(y-x)+ & [10y-¢;)]- £W(y-€1)]}

For each n, the minimizing y for a giwven x 1s the optimal policy
A
va 1uev Y ( x).
Substituting into (3.11) and (3.12) the detailed functions
and constants as specified in Section 2, we get:

{3113) Cl(x) = min ['g(y-x)+1 (y)+{%§11ty;?fe y;’ y > ?}}

(notice that Cl is identical with C,, given in (2.17)), and

%( ~l+y+13e”Y) '%5( -l+y+e”Y), y>0
6(L-y),yso

+ (1 - l-’-n)fowé\n_l(y-g)e'ﬁd;:] .

'(3.\14) 8 (x) = ;‘é:[ ggy-x)+1x(y)+

e sece that the form of the problem herc is the same as in- the -
case of the ordinary.model, there being simply the changes in
coefficients in the recursion relation (3.14) due to the Hy o
Again the optimal policy is of the (s,8)-type for each period,
and in Section 4 we present the optimal N and Sk'



-15-

We shall carry out our numerical study for the set of values
of the m, as tabulated below; we tabulate also the w  and the

quantities

5
(3.15) degf i om o= probability that obsolescence occurs in
) ' n=k e of the periods J5, Jyseeespe

TABLE 1
k s W2 Me
1 g 1 1
1 1 5
2 5 ¥ 5
1 1 1
> 15 S 5
1 2
4 3 BN =
5 I * .3

graphically, these quantities look as follows:
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1 / he - ~—
7/8 /. b e
6/8 YA A
. 9
5/8 , . A
L
ll./a " ¢
3/8 1 . /
2/8 } v Q\’ . » /
(4 \\t . . /
1/8 ] ./ Ne. e o “ : //
} /7 ‘\ \.;/ ‘
5 5y 3 2 1
> EIGURE II

4. The computational results. The results of carrying out

the minimizations in (2.17), (2.18) and in (3.13), (3.14) are
the following: ) ' '

ORDINARY MODEL

(81,84) = (0.67295, 1.81915)
. Cl(x) . [ 3.65249 - gx x < 0.67295
-gtgr g™ x 2 0.67295

(32:32) = (1.36731, 2.61030)
’ 6.03523 - 2x x < 1.36731

C.(x) = 1) - -
2l . - 2 + %x + 10.47669 ™%} G%xe X x z 1.36731
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(53,33) = (1.52801, 3.06648)

g.52142 - 2 X x < 1.52891
c (x) = - ) -
> -2 + Fx + 11,20586 o™ + 10.47669 e Xy
+ 3.08333 o %x® x > 1.52891
(84’54) = (1051388: 3-34470)
11,04205 - 2 x x < 1,51388
Cy(x) =  8.8575 - Tx v 6f ™ 1.51333 3 x < 1.52801

-3% + 1§x + 17.10608 e ¥ + 11.20586 ¢ *x
+ 5.2333% o %2 + 1.02776 o %%’

1.52891 = x

(55,85) = (1.42970, 3.77937)
13.64619 - 2% x < 1.42970

11.37537 - x + 65 €™ 142970 = x < 1.5.388

5.68808 + gx + 5.4319 e
C5(x) = + 6% e *x 1.51388 2 x < 1.52891

- 58+ E%X 21.35778 e * + 17.10608 ¢ *x
+ 5.6029% ¢ ¥x% + 1.74609 e *x7
+ 0.2569% e ®x*  1.52891 = x



(0.67295,

él(x) =

(1.19718,

Co(x) =

(1.h024,

63(x) =

(1.26515,

Cu(x) =

-18~

OBSOLESCENCZ MODEL

1.81915) |

3.65249 - g x x < 0.67295

- % + %:{ + 6% e ¥ x z 0.67295
2.4649) ‘
5.4907L - gx x < 1.19718
- % + %%3:+ 9.%0913 ¢ * + 4.625 ¢ ¥x

x > 1,19718

2.3852)
7.49881 - 2x x  1.4024

- 1.53702 + 0.9L443x + 10.83690 X

+ 8.35474 o *x + 2.05553 e ¥x?
x > 1,4024

%.,0228)
8.94219 - gx x 1.26515

6.37780 ~ 0.24270x + 6.439%6 e *
1.26515 S & < 14024
~2.46966 + 1.21183x + 13.40040 e™*
+8.865% o ®x + 341734 o %2
+ 0.56059 e %% x = 1.4024



(8_,8

S50 5) = (1.11243, 2.82610)

9.15756 - 2x x < 1.11243

6.3284 + 0.635624x + 6.39585 e %

1.11243 = x < 1.26515

A

4 .15577 + 1.062204 + 5.6608%e” %
+ 4,42706 ¢ ¥x1.26515 = x < 1,402}

-2,092635 + 2.06232x + 14,50318 e ¥

1.4024

v

+9.21396 e *x + 3.04737c ¥%? x
+3.78525 e'xx3 + 0.09635 e'xx4
We summarize the critical numbers in the following table

and craph:

T..BLE II

Ordinary liodel Obsolescence Model

0.67295 1.81915 : 0.67295 1.81915
1.36731 .61030 | 1.19718  2.46490
1.52891  3.06648 40240 2.83520
1.51386  3.34470 L2635  3,02280
1.42970 LTT837 J112h%  2,82610

n

et

(S A I\ I

Ll
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The domination of §k by S, and § by 5, for k =2, 3, 4, 5
reflect the possibility of termination of the obsolescence

model before period 1 and hence the nced for smaller inventories.
The agreement of the costs functions Ci(x) and 61(x) was noted in
(3.13) and is the rcason for the agrecment of §1 with 8; and of
31 with 8;. The concave properties of the 8,.-curve and the §k-
curve are a consequence of the fact the erdering cost function

C( ) is not convex (sec (2.2)). The concavity of the §k~

curve is reflected in part by the relatively high conditional

probability of obsolescence in period 5 (see Table I).
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